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Abstract

In recent years, first-principles modeling techniques have made tremendous
advances. This allows researchers to estimate the various properties of materials
and provide invaluable insights into the physical processes from a microscopic
perspective, which cannot directly be assessable by experiments. With the
continuing increasing computation powers, first-principles methods are expected
to play a more important role in materials design. This chapter aims to serve
as a battery-related computation handbook for general readers who may be
new to first-principles calculations. Specifically, this chapter will introduce
the well-established ab initio modeling methods widely used in battery-related
studies from both the thermodynamic and kinetics aspects. The thermodynamic
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approaches that will be discussed include the computations of equilibrium
voltage and voltage profiles, electronic structure, and stability analyses. The
kinetics approaches will cover common methods for ionic diffusion studies:
transition state theory and nudged elastic band method and ab initio molecular
dynamics. This is followed by the conclusion and outlook.
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1 Introduction

Global warming coupled with energy demand has made the development of
renewable energy technologies (solar, geothermal, tidal, wind, etc.) a global interest
and major concern. However, most renewable energy technologies suffer from high
variability and mismatch between demand and supply. Reliable and cost-effective
electrical energy storage is therefore a crucial enabler to renewables, as well as
nonpolluting means of transportation (Lewis 2007). Among the multitude of energy
storage technologies (e.g., zinc-manganese battery, nickel-cadmium battery, nickel-
hydrogen battery, lead-acid battery, alkali-ion battery, fuel cell, redox flow battery,
etc.), the rechargeable alkali-ion battery has emerged as one of the most attractive
candidates for grid and vehicular applications and the dominant one for mobile
consumer applications, due to its high specific energy, high operation voltage, wide
working temperature, and long cycle life (Tarascon and Armand 2001).

A rechargeable battery comprises two electrodes – the cathode and the anode –
separated by an electrolyte (Fig. 1). Alkali ions shuttle between the two electrodes,
with the electrolyte acting as an alkali-ion conductor and electrical insulator. During
discharge, alkali ions (A+ in Fig. 1) are extracted from anode and inserted to the
cathode, passing through the electrolyte in the process. Meanwhile, electrons pass
through the external circuit to perform work. The reverse process occurs during
charge.

The energy contained in any battery is the integral of the voltage multiplied by
the charge capacity. To achieve high-energy and high-power density for long cycling
life in alkali-ion battery, the electrode should have high specific capacity (charge
stored per unit mass or volume), high operating voltage, reasonable electron and
ionic conductivity, and good phase and electrochemical stability. Suitable electrolyte
selection for a pair of electrodes in alkali-ion battery is another important aspect. To
prevent the reduction and oxidation of the electrolyte, it is necessary that Fermi
level of anode should be lower in energy than the lowest unoccupied molecular
orbital (LUMO) of the electrolyte, while Fermi level of the cathode should be
higher in energy than the highest occupied molecular orbital (HOMO) of the
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Fig. 1 Schematic of a rechargeable alkali-ion battery with transition metal oxide as cathode
(green, alkali-ion; purple, TM; red, oxygen ion), carbon-based material as anode

electrolyte (Roy and Srivastava 2015). In the context of solid-state electrolytes,
LUMO (HOMO) is referred to as the conduction band minimum (valence band
maximum). Additionally, the electrolyte, especially for the solid-state electrolyte, is
expected to have good interfacial stability, facile ion conductions which are more
stringent than electrodes, and excellent electronic insulations.

Due to the significant advances in computation power in recent years, computer
simulations have become an important complementary tool kit to experiments for
the understanding and design of materials. First-principles density functional theory
(DFT), (Hohenberg and Kohn 1964) especially the framework developed by Kohn
and Sham (1965) that evaluates various properties of materials by solving single-
particle Kohn-Sham equation with minimal approximation, has been particularly
successful in this context. First-principles calculations allow researchers to evaluate
the key properties of materials from an atomistic level, and hence provide invaluable
insights into the fundamental physical processes that may not be directly assessable
by experiments. Moreover, computation-guided discovery of novel materials has
made tremendous progress for energy applications, including new alkali-ion battery
materials (Deng et al. 2016; Urban et al. 2016). This is facilitated not only by
the increasing computer power but also the development of the automated high-
throughput first-principles screening that allows rapid identification of the most
promising candidates from a pool of hundreds of thousands of initial candidates.

In the following sections, we will give a general introduction of well-established
first-principles modeling techniques used to elucidate the thermodynamics and
kinetics of battery materials.
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2 Thermodynamic Approaches

2.1 Equilibrium Voltage

The operating voltage is a key metric of a battery to evaluate the stored energy
density. By definition, the voltage difference between electrodes of a battery is equal
to the difference in electron electrochemical potentials of the electrodes:

V = −ηcathode
e− − ηanode

e−
e

(1)

where ηcathode
e− and ηanode

e− are the electrochemical potentials of electrons (Fermi
levels) in the cathode and anode. Inserting alkali chemical potential in any material,
μX

A = ηX
e−+ηX

A+ , into Eq. 1 yields:

V = −
(
μcathode

A − μanode
A

) − (
ηcathode

A+ − ηanode
A+

)

e
(2)

where ηcathode
A+ and ηanode

A+ are the electrochemical potentials of alkali-ion in the
cathode and anode. When a battery is at thermodynamic equilibrium (ηcathode

A+ =
ηanode

A+ ), the voltage difference between electrodes can be expressed in terms of the
difference in alkali chemical potential:

V = −μcathode
A − μanode

A

zF
(3)

where z is the amount of charge transferred, and F is the Faraday constant. By
definition, μA = dG/dNA is the change of the Gibbs free energy of the electrode
material with alkali-ion concentration (Aydinol et al. 1997). The voltage is thus
a function of free energy change of the overall cathode/anode reactions (Nernst
equation):

V = −�Gr

zF
(4)

where V is the average voltage by considering over a finite amount of reactions
between cathode and anode.

Assuming that the entropic and volumetric effects are small at low tem-
perature, the Gibbs free energy change for alkali insertion is often approx-
imated by the DFT total energy difference for two alkali-ion concentrations
�Gr = �Er + p�Vr − T�Sr ≈ �Er. Taking the lithium-layered oxide cathode
LixMO2 with a Li metal anode as an example, the overall reaction is given as
follows:
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Lix2MO2 + (x1 − x2) Li → Lix1MO2 (5)

with x1 > x2. Then the reaction voltage can be calculated as:

V(x1,x2) ≈ −E
(
Lix1MO2

) − E
(
Lix2MO2

) − (x1 − x2) E (Li)

(x1 − x2) F
(6)

The energies of LixMO2, MO2, and Li can be obtained via DFT total energy cal-
culations. This approximation is not limited to insertion or intercalation electrodes
but can also be applied to conversion or alloy reactions.

Most early DFT calculations of average voltage for battery materials were
based either on the local density approximation (LDA) or the generalized gradient
approximation (GGA) for the exchange-correlation potential (Kohn and Sham 1965;
Langreth and Mehl 1983). However, for the modeling of reactions involving changes
in electronic states, neither LDA nor GGA are good approximations due to improper
cancelation of self-interaction error. Many TM oxides have strongly localized d
electrons at the metal center, which leads to the large error of voltage predicting
based on LDA or GGA functional. In this regard, an inclusion of a Hubbard U in
DFT calculations (aka DFT + U) was developed in the 1990s that significantly
improves the DFT results for the system with strong correlated electronic structure
(Anisimov et al. 1991, 1993). The method is controlled by Hubbard U parameter,
which can be derived for each species either self-consistently (Cococcioni and de
Gironcoli 2005) or more often, via fitting to experimental properties such as the
oxide formation energy. The idea is borrowed from the Hubbard model in solid-
state physics, to describe the transition between conducting and insulating systems.
The larger the U value, the greater the penalty for shared electrons, driving the
system toward integer electronic occupations (Cococcioni and de Gironcoli 2005).
With proper choice of the U parameter, DFT + U calculations significantly improve
the accuracy of predicted voltages over pure LDA or GGA for TM oxides (Zhou et
al. 2004). More recently, DFT calculations using screened hybrid functionals, such
as the Heyd-Scuseria-Ernzerhof (HSE) functional, (Heyd and Scuseria 2004; Heyd
et al. 2003, 2006) have been shown to yield a similar accuracy as GGA + U without
the need for an adjustable U parameter, though at significantly higher computational
cost. A detailed comparison of calculated voltages for lithium TM oxides with GGA,
GGA + U, and HSE06 can be found in an earlier work by Chevrier et al. (2010)

2.2 Voltage Profile

Calculating the voltage profile requires the knowledge of stable intermediate
phases during alkalination/de-alkalination process. The formation energy calcula-
tions allow one to determine the ground state energy of the stable phase at all
intermediate concentrations. Taking the layered transition metal oxide LixCoO2 as
an example, the formation energy with respect to the stable end members (LiCoO2
and CoO2) is expressed as:
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Fig. 2 (a) Stability convex hull (black line) of LixCoO2. Filled square, DFT results; open square,
cluster expansion results; filled circles, Li atoms; empty circles, Li-vacancy. (b) Predicted Li
intercalation voltage of the LixCoO2/Li cell as a function of Li concentration at T = 0 K. (c)
Equilibrium voltage profile at T = 300 K calculated from Monte Carlo simulations. (Reproduced
from Ref. (Wolverton and Zunger 1998) with permission. Copyright (1998) American Physical
Society)

Ef (LixCoO2) = E (LixCoO2) − xE (LiCoO2) − (1 − x) E (CoO2) (7)

The resulting DFT-computed formation energy vs. composition curve (convex
hull) is generated as shown in Fig. 2a. In this pseudo-binary stability diagram,
the intermediate phases that are thermodynamically stable with respect to the
end members (LiCoO2 and CoO2) form the convex hull. When the energy of an
intermediate phase is above the convex hull (e.g., the dotted line in the figure), it
implies that such intermediate phase is energetically unstable against its adjacent
stable intermediate phases (filled and open squares in the figure) on the convex hull.
At each concentration, different configurations of Li-vacancies and oxygen stacking
sequence are considered. Examples of some of the predicted Li-vacancy ordering in
LixCoO2 are also illustrated in the figure. After the stable intermediate phases are
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identified, stepwise average voltage can be computed based on Eq. 6, which leads
to the voltage profile in Fig. 2b.

It should be noted that the DFT-computed voltage is an approximation without
considering entropic effects, and the accessible alkali orderings are also limited by
the supercell size utilized. These approximations work reasonably well for average
voltages, especially for two-phase reactions involving ordered phases (e.g., olivine
LiFePO4). To obtain a full voltage profile and account for the configurational
entropy (important for solid solution regions), one approach is to fit the DFT
energies of a large number of alkali concentrations and orderings for a host
material to a cluster expansion Hamiltonian. As shown in Fig. 2a, additional stable
intermediate phases of LixCoO2 (indicated by open squares on the black line) are
discovered by using such approach. The key assumption here is that the contribution
to free energy from the other degrees of freedom (e.g., vibrational, electronic) is
insignificant and can be coarse-grained out. Monte Carlo simulations, e.g., using
the Metropolis algorithm, can then be carried out using the Hamiltonian to sample
the configurational space and evaluate finite temperature voltage profile. Details of
the cluster expansion method and Monte Carlo simulation can be found in some
excellent reviews (Urban et al. 2016; Meng and Arroyo-de Dompablo 2009). As an
example, Wolverton and Zunger applied first-principles-based cluster expansion and
Monte Carlo methods to model the Li-vacancy orderings in LixCoO2, resulting in
the temperature-dependent voltage profiles (see Fig. 2b and c for T = 0 and 300 K).
Temperature effect mainly results in a continuous voltage slope, which smooths out
the voltage steps that are present in the 0 K limit.

2.3 Electronic Structure

The relative energies of electronic levels for different components in alkali-ion
battery determine the limitation of the stored energy. Figure 3a schematizes the
relation between the equilibrium voltage and electronic structures of the electrode,
electrolyte. At open circuit condition, the energy difference of Fermi levels between
the anode and cathode builds electron electrochemical potentials. Assuming there
is no electrode/electrolyte reaction, this electron potential difference equals the
difference in alkali chemical potential between the anode and cathode, which is
measured as open circuit voltage (VOC). Once charging current is applied, electrons
are further pumped out from the valence band of cathode through the circuit to the
conduction band of the anode, resulting in the downshift and upshift for the Fermi
level of cathode and anode, respectively. Alkali ions are extracted from cathode
to the anode with the oxidation change of other ions, e.g., TM ions to balance
the charge. The whole process is fully reversible during the discharging process
in an ideal case. The redox potential (Vredox) measured during charging/discharging
process is limited by the “window” of the electrolyte. If the potential of the anode
and cathode shift beyond the LUMO and HOMO of the electrolyte, the electrolyte
is reduced on the anode and oxidized on the cathode to form the solid electrolyte
interphase (SEI). The ideal SEI is an ionic conductor and an electron insulator,
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Fig. 3 (a) Relative energies of the electrolyte window and the electrode chemical potentials
μcathode

A and μanode
A with no electrode/electrolyte reaction. (b) Relative positions of energy levels

and typical electron configurations in layered Ni-Mn-Co oxide cathode

which prevents further decomposition of the electrolyte and thus increases stable
voltage window.

The electronic levels of the electrode involved in the redox reaction arise from
the d-states of the TM cations in most cases. The Fermi level energy as well as the
density of states (DOS) near the Fermi level for redox center can be obtained from
DFT calculations. Figure 3b qualitatively summarizes the positions of the redox
active energy levels for Co4+/Co3+, Ni4+/Ni3+, and Mn4+/Mn3+, as well as the
oxygen 2p band in TM oxides. In most of the structures including layered, spinel,
and disordered rock salt, TM ions occupy octahedral sites that are coordinated by
six oxygen atoms. Based on crystal field theory, TM five d orbitals split into two
sets of levels labeled t2g and eg as shown in Fig. 3b. Each of the level can hold
two electrons with opposite spin. The commonly observed electronic configurations
of d orbitals for Co4+/Co3+, Ni4+/Ni3+, and Mn4+/Mn3+ are also illustrated in
Fig. 3b. The lone electron in eg level triggers Jahn-Teller distortion, breaking the
degeneracy between the two eg orbitals to lower the overall energy for the case of
Mn3+ and Ni3+. When the battery is charged, TM cations are oxidized to 4+ from
3+, and they are reduced back to +3 oxidation state as they receive electrons from
the anode during discharging. More importantly, the Co3+/Co4+ level is the lowest
in energy because Co redox involves the more stable t2g orbitals, while Ni and Mn
redox involves the less stable eg orbitals. This relative alignment of energy levels
directly indicates redox reaction sequence of the electrode containing different TM
ions since lower energy levels correspond to higher redox voltages.

Although the electronic structure is in general complex, it provides another key
insight into the available number of electrons near Fermi level. If an alkali-ion
is extracted from the cathode host structure, an electron is pumped out from the
valence band at the same time. Therefore, the more the available number of electrons
are, the higher the alkali-ion storage capacity is. In classical layered cathode, e.g.,
LiCoO2 and LiNi0.5Mn0.5O2, oxygen ions are coordinated by three Li and three
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Fig. 4 An example of an oxygen site in the fully lithiated structure (a) without a Li-O-Li linear
bond and (b) with a Li-O-Li linear bond, required for labile oxygen states

TM ions as shown in Fig. 4a. In this configuration, a much larger projected DOS
originating from the TM states than from the O states between 0 and −1.5 eV below
Fermi level (commercial organic liquid electrolyte window) is found, indicating that
the redox reactions are dominated and restricted by the TM 3d electrons. On the
other hand, Li-excess is created by the substitution of some TM by Li, leading to
Li-O-Li configurations in many of the new exciting cathode materials. It shows an
increased oxygen projected DOS below the Fermi level for oxygen with a linear
Li-O-Li bond based on GGA + U calculations (see Fig. 4b). This labile oxygen
observed computationally with increased projected DOS below the Fermi level
paves the completely new research on anionic redox and breaks the bottleneck for
reaching higher energy density in alkali-ion battery (Grimaud et al. 2016; Okubo
and Yamada 2017).

The electronic band gap deduced from the calculated DOS is also useful to
investigate the electronic properties of a potential electrode or solid electrolyte
material. While high electronic conductivity for the electrode material is a necessary
condition for high rate performance of alkali-ion battery, low electronic conductivity
is required for the potential electrolyte materials. Similar to the voltage calculation,
the introduction of a U correction term in the GGA method could substantially
improve the accuracy of calculated band gaps (Zhou et al. 2004). Other helpful
information that can be extracted from electronic structure analysis includes
chemical bonding, orbital hybridization, magnetic properties, etc.

2.4 Stability Analyses

2.4.1 0 K Phase Stability
The pseudo-binary stability diagram mentioned in the previous subsection essen-
tially works for electrode materials. In a general situation, the thermodynamic
stability of any given compound (e.g., solid electrolyte) can be analyzed by



10 I.-H. Chu et al.

evaluating its decomposition energy referenced to the linear combinations of stable
compounds in this compositional space. This can be achieved by constructing the
convex hull using the DFT energy of all known compounds in this compositional
space. In the case of olivine LiFePO4, for example, the related stability analysis
requires the DFT energies of all existing LixFeyPzOu compounds (x, y, z, and u are
nonnegative integers) including itself in Li-Fe-P-O quaternary compositional space.
The stability metric under this circumstance is called the energy above the hull
(Ehull), (Sun et al. 2016; Ong et al. 2008) which measures how stable a compound is
by measuring how high its energy is above the convex hull. It is always nonnegative,
and it equals zero for stable compounds. The higher the Ehull, the more unstable the
compound tends to be. With the advent of large open-source materials databases
such as the Materials Project (Jain et al. 2013), a common approach is to leverage
on pre-computed DFT energies in these databases for compounds other than that
of primary interest, which significantly reduce the computational effort involved,
especially for high-dimension compositional space. Ehull is frequently adopted as an
efficient descriptor for phase stability and synthesizability in high-throughput first-
principles screening studies to rapidly rule out structures that are unlikely stable at
ambient temperatures (high Ehull).

2.4.2 Surface Stability
The real surface configuration rarely coincides with the ideal lattice plane which is
a geometrical abstraction of the crystal structure. In reality, the stable surface can
contain charged species adsorbed from the environment, charge density rearrange-
ment, and stepped or kinked surface profile. This makes determination of surface
thermodynamics very challenging. For this reason, first-principles calculations can
be a useful tool to determine facet-specific surface energies. The standard model to
calculate surface energies is a two-dimensional surface slab with bulk stoichiometry
oriented to expose the facet of interest, with a sufficiently large vacuum layer added
on top of the slab to ensure that there is minimal interaction between the slab and its
periodic images along the surface normal. The k-point grid for surface slab is thus
generated as k1 × k2 × 1, which assures no energy dispersion in the direction out of
the surface.

Standard procedures of generating surface slabs include basis transformation,
atomic coordinates rescaling, termination choice, and polarity check. Surfaces are
typically defined using the Miller index notation by the conventional unit cell.
However, first-principles calculation requires the basal plane to be coincident with
the constructed slab surface. The basis of the conventional unit cell has to be
transformed so that (001) plane of the new basis is parallel to the Miller plane of
interest. The third vector should be as orthogonal to the basal plane as possible
with a relatively short length. The atomic coordinates are then redefined based
on the new basis. For a given surface orientation, a number of termination layers
usually exist due to different atomic configurations and can be chosen by placing the
basis at different positions along the third vector. Note that a charged surface with
a perpendicular dipole moment in a repeated unit (type III according to surfaces
classification by Tasker) produces a polarizing electric field in the bulk, leading to
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infinite periodic cell energies (Tasker 1979). For example, the (111) face of NiO
ionic crystal has alternating layers of Ni2+ and O2− ions, which forms a permanent
dipole moment perpendicular to the surface. Atomic reconstruction by moving half
the charged species on one surface to the other side to cancel out the 2D-dipole is a
common approach (the so-called Tasker III to Tasker II reconstruction) to stabilize
type III surface (Bruno 2013).

From DFT calculations, the surface energy can be computed using the following
expression:

γ = 1

2A
[E (slab) − N · E (bulk)] (8)

where A is the surface area of the slab, E(slab) is the surface slab energy, E(bulk)
is the bulk energy per atom, and N is the number of atoms in the surface slab. The
prefactor 1/2 comes from the fact that each surface slab contains two equivalent
surfaces. The Wulff shape, which is the equilibrium shape of the crystal, can be
constructed using the lowest surface energies of different facets. The larger the
surface area of a facet contributes to the Wulff shape, the more stable that facet tends
to be. As an example, surface properties of olivine LiFePO4 cathode were studied
by Wang and co-workers (Wang et al. 2007). The two low-energy surfaces (010)
and (201) are found to make up almost 85% of the surface area of Wulff crystal
shape. More importantly, redox potential for the (010) surface was calculated to
be much lower than the bulk value, which shows the anisotropic property of surface
redox potentials. This study pinpoints the effect of surface energies and crystal shape
on the electrochemistry for electrode materials composed of particles at nanoscale.
Surface electronic structure, surface reconstruction, and adsorbate interactions can
also be studied based on surface stability calculations.

2.4.3 Electrolyte/Electrode Interface Stability
Understanding of electrolyte/electrode interfaces has become a recent focus of
the greatest importance for the performance improvement of electrochemical
energy storage systems. For alkali-ion batteries with liquid organic electrolyte, SEI
formation due to electrolyte decomposition is critical to cycling performance and
safety. For all solid-state alkali-ion batteries with sulfide-type electrolytes, the rate-
determining process is usually observed around the cathode/electrolyte interfaces.
To predict the electrode/electrolyte interface stability under large variations in
environmental conditions is one of the grand challenges for battery study. First-
principles calculation using DFT-based methods has been developed to investigate
most stable interfacial matching of two crystal solids (Haruyama et al. 2014).
In a traditional manner, the procedure to investigate the interface formed by two
compounds comprises three major steps: (i) identify the lowest-energy surface facet
of each material as detailed in surface stability calculations; (ii) patch the two
surface slabs using a reasonably large supercell (with a vacuum layer of 10 Å) to
ensure as small lattice parameter misfit as possible; and (iii) enumerate all possible
configurations for the interface supercell including slide of one surface slab with



12 I.-H. Chu et al.

respect to the other, and perform DFT relaxations. The alkali-ion sites and alkali-
ion transfer properties in the most stable interface can then be further investigated
under different thermodynamic equilibrium conditions.

The explicit interface calculations often require very high computational cost
because of the supercell used. For studies of electrolyte/electrode interfacial stabil-
ity, a critical step is to identify the possible reaction products formed at the interface.
In the case of solid electrolyte/electrode interfaces, there are two efficient analysis
methods based on two different thermodynamic approximations for such purposes
(Zhu et al. 2015a; Richards et al. 2016; Tang et al. 2018).

• Fast ionic diffusion limit: In this approximation, the diffusing ions in the solid
electrolyte are assumed to be the main mobile species. Under such conditions, the
interface can be modeled as an open system with respect to the mobile species.
The relevant thermodynamic potential is the grand potential. Taking the Li-ion
solid electrolyte as a concrete example, the Li grand potential is expressed as
ϕ = E − μLiNLi, where E, NLi, and μLi are, respectively, the internal energy,
the number of Li atoms in the open system, and the Li chemical potential.
When the metallic Li is taken as the anode, the Li solid electrolyte/anode
interface is modeled as the solid electrolyte at high μLi≈ μLi0, and the Li solid
electrolyte/cathode interface is modeled as the solid electrolyte at low μLi≈
μLi0 − V, where V is the cell voltage and μLi0 as the chemical potential in
metallic Li.

• Multi-species equilibrium: The second method assumes full thermody-
namic equilibrium between the solid electrolyte and electrode in varying
electrolyte/electrode compositional ratios x (between 0 and 1). Specif-
ically, the equilibrium composition at a given ratio x corresponds to
celectrolytex + celectrode(1 − x) with cy being the composition of compound y.
To estimate the likely reaction products at different x values, a pseudo-binary
stability diagram that is like the aforementioned stability diagram for electrode
materials is constructed. In this pseudo-binary stability diagram, however, the
x values correspond to the compositional ratio x, whereas y values are the
associated reaction energy which reaction products have the same composition
as celectrolytex + celectrode(1 − x). This approach tends to be more reflective of the
conditions during actual synthesis and assembly conditions.

Note that the approaches presented here are within thermodynamic approxi-
mations. To capture the kinetic effects on the formation of electrolyte/electrode
interfaces, computationally more demanding approaches, e.g., ab initio molecular
dynamics can be adopted (see Sect. 3.2.6).

2.4.4 Defects and Dopability
Extrinsic doping is a common strategy to further optimize battery material prop-
erties, such as phase stability, ionic and electronic conductivity, and cost. It is
crucial to predict the feasibility of introducing a dopant into a crystal structure
based on first-principles calculation. The size of the supercell model is inversely
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proportional to the dopant concentration. Note that different types of doping,
including substitutional, interstitial, and anti-site, need to be considered for the
supercell construction. Generally speaking, the dopability of a species depends on
its ionic radius and oxidation state relative to existing species in the crystal. In the
case of charge balance doping, the neutral dopant formation energy can be defined
as follows:

Ef (doped) = E (doped) − E (pristine) −
N∑

i=1

niμi (9)

where E(doped) and E(pristine) are the energies of the structure with and without
the neutral dopant, respectively, μi is the atomic chemical potential of species i,
ni is the number of atoms of species i being added or removed, and N is the total
number of species in the doped structure. Synthesis condition can be selected based
on the energy calculation to tune species chemical potential so that the formation
energy can be low enough to prevent any species precipitation. Additionally, the
doped structure should remain stable without any decomposition during synthesis.

3 Kinetics Approaches

There are two widely used first-principles approaches that can assess the kinetics of
alkali-ion diffusion in battery materials: transition state theory-based methods such
as the nudged elastic band approach and ab initio molecular dynamics simulations.
In the following, we will present the key concept of each approach for ionic diffusion
studies as well as their limitations.

3.1 Transition State Theory and the Nudged Elastic Band Method

In materials where the equilibrium lattice sites are well defined, the ionic diffusion
can be investigated using transition state theory. From an atomistic viewpoint,
diffusion can be viewed as a series of hopping events of ions between neighboring
sites. In each hop, an ion migrates from one site to its neighboring vacant site via
an activated state (aka the transition state), which has the highest Gibbs free energy
along the minimum energy path between the two sites. Based on the transition state
theory (Deng et al. 2016; Urban et al. 2016), the rate k at which the hopping event
occurs can be expressed as:

k(T ) = υ∗(T )e
− �Ga(T )

kBT (10)

�Ga(T ) = Ga(T ) − Gi(T ) (11)
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Fig. 5 An example of NEB
computed migration barriers.
The two example structures
are LiCoO2 (LCO) and
NaCoO2 (NCO).
(Reproduced from Ref. (Ong
et al. 2011) with permission.
Copyright (2011) Royal
Society of Chemistry)
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Here, �Ga(T) is known as the activation barrier, and it is the difference of the
Gibbs free energies at the activated state (Ga(T)) and initial state (Gi(T)). υ∗ (T)
is the effective attempt frequency at temperature T. In the dilute limit of carrier
concentration, the diffusivity can be approximated as D(T) d2k(T) where d is the
hopping distance (assumed to be known). Moreover, the attempt frequency υ∗(T) is
often assumed to be temperature-independent, and the typical values fall between
1011 and 1013 s−1 (Urban et al. 2016). When the diffusivity follows the Arrhenius
relation (see Eq. 18 below), the activation barrier in Eqs. 10 and 11, �Ga(T),
can be assumed to be temperature independent. When the entropic effects become
negligible, �Ga(T) can be further approximated as DFT energy difference between
the activated state and the initial state (�Ga(T) ≈ �Ea).

For ionic diffusion studies, the nudged elastic band (NEB) method (Jonsson et
al. 1998) is a widely used approach to determine the 0 K activation barriers of the
ion migration paths for a given atomic configuration. This approach requires the
initial and final states of the migration path (aka end points) as input, from which
a given set of intermediate states (aka images) are generated to serve as the initial
guess of the migration path. The minimum energy path is determined by minimizing
the atomic forces in all the images subject to the constraint of a harmonic coupling
(in terms of harmonic springs) between adjacent images. In the end, the activation
barrier (�Ea) is computed as �Ea = Emax − Ei where Emax is the highest energy
along the optimized migration path and Ei is the energy of the initial state. An
example of NEB results is shown in Fig. 5 for layered oxides ACoO2 (A = Li
and Na) (Ong et al. 2011).

In a typical NEB calculation, it essentially comprises the following four steps:

1. Initial structural optimization calculations of the pristine crystal structure.
2. Structural optimizations of the two initial and final state structures.
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3. An interpolation between the initial and final states to generate a set of images
along the migration path. The linear interpolation is the most commonly used
scheme for such purpose.

4. An NEB calculation to find the lowest-energy migration path, from which the
highest energy is determined, and hence the activation barrier.

In the studies of ionic diffusion, the NEB method can be applied to evaluate
the barrier of any given migration path. This makes it particularly useful to probe
the effects of local environment (e.g., local arrangement of the framework) on the
ionic diffusion. Indeed, the NEB calculations have been employed to understand the
diffusion mechanisms in several important battery materials, e.g., layered LiCoO2
and olivine LiFePO4 cathodes (Deng et al. 2016; Urban et al. 2016). Moreover,
the migration barriers from NEB calculations can also serve as inputs for other
techniques, including the kinetic Monte Carlo (KMC) simulations. This is a Monte
Carlo simulation method that studies the time evolution of natural processes using
lattice models, e.g., the diffusion of alkali ions in the battery materials. Using
the local environment-dependent barriers from NEB calculations, a first-principles
cluster expansion can be carried out to parameterize these barriers for Monte Carlo
simulations. More details about the KMC method, including the basic steps in the
simulations, can be found in literature (Deng et al. 2016; Urban et al. 2016).

3.1.1 Limitations of the NEB Method
In studies of alkali-ion batteries, the NEB method has been mainly applied to the
bulk systems (pristine electrodes and solid electrolytes). In the case of noncrystalline
systems, e.g., electrolyte/electrode interfaces, much higher computational efforts are
inevitably required due to the large number of distinct ionic migration paths that
need to be considered due to the lower symmetry. There are two further limitations
of the NEB method compared to the ab initio molecular dynamics simulations (see
Sect. 3.2).

First, the start and end points of the migration path must be specified as
inputs for NEB calculations. For alkali battery materials with complex diffusion
properties, e.g., when ionic motions are highly concerted (common in superionic
conductor electrolytes), the identification of the relevant migration events and
local environment become very challenging. In this scenario, ab initio molecular
dynamics (see Sect. 3.2) becomes the more appropriate technique to use. For this
reason, NEB calculations are primarily performed in dilute carrier limits, e.g., single
alkali-ion vacancy migration in an otherwise fully alkaliated structure or single
alkali migration in an otherwise alkali-ion-free framework structure.

Second, NEB calculations essentially output the migration barrier at 0 K, i.e., the
temperature effects are not considered in the calculations. Besides, to estimate an
accurate hopping rate associated with the migration path, and hence the diffusivity,
the prefactor in Eq. 10 must be computed explicitly. However, it is often assumed to
be some value between 1011 and 1013 s−1.



16 I.-H. Chu et al.

3.2 Ab Initio Molecular Dynamics Simulations

Molecular dynamics (MD) simulates the atomic motions at finite temperatures by
integrating the Newtonian equations of motions. A key input of this approach is
the description of the interatomic interactions, whereas the main output is the tra-
jectories of the atomic motions. Depending on how the interatomic interactions are
obtained, MD simulations can be categorized into two general classes: classical MD
and ab initio MD (AIMD) simulations. In classical MD simulations, the interatomic
interactions are expressed in terms of analytical functions with parameters fitted
using either experimental or first-principles data, whereas in AIMD simulations, the
interatomic interactions are obtained by directly solving the Schrödinger equation
with approximations.

Although classical MD simulations are computationally less expensive than the
ab initio counterpart, it does suffer from serious drawbacks stemming from the use
of empirical potentials, e.g., poor transferability across different chemistries, and
the difficulty in dealing with complex interatomic interactions with simple function
forms. On the other hand, AIMD simulations can generally be applied across broad
chemical spaces, and the accuracy of the interatomic interactions is essentially
limited by the underlying approximations of the ab initio approach.

There are two main variants of AIMD models today: Born-Oppenheimer (BO)
variant and Car-Parrinello (CP) variant (Car and Parrinello 1985; Hutter 2012).
For battery-related studies, the former variant is more commonly adopted. The
theory behind these AIMD techniques is beyond the scope of this chapter and is
extensively covered by many excellent textbooks and reviews (Hutter 2012; Marx
and Parrinello 1996). The main disadvantage of AIMD methods is the significantly
higher computational cost compared to the classical MD, and also the NEB method
(Sect. 3.1). This places constraints on the accessible cell size as well as time scale in
AIMD simulations. However, these can be mitigated by the advances in computer
power and the nature of the problem under investigation.

The key output from AIMD simulations is the trajectories of ionic motions, from
which the diffusion properties of materials, e.g., ionic diffusivity and conductivity,
can be evaluated. The AIMD technique has gained tremendous successes in the stud-
ies of alkali-ion battery materials, particularly for the understanding and discovering
novel alkali-ion superionic conductors. In the following, we will first sketch the
well-established analysis methods and how they are applied to understand the ionic
diffusions in battery materials. We will also discuss practical considerations on the
parameter selection, the applications of AIMD in electrolyte/electrode interfaces,
and the limitation of this technique. We should stress that these analysis approaches
are agnostic of the types of MD simulations (i.e., classical and ab initio), and they
are also applicable to other classes of materials, e.g., oxygen conductors in solid
oxide fuel cells.
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3.2.1 Ionic Diffusion and Conduction Coefficients
For a given 3D crystal structure with N mobile ions, the self-diffusion coefficient
can be computed from AIMD simulations by evaluating the velocity-velocity
autocorrelation function (Green-Kubo relation):

D∗ = 1

3N

� ∞
0

dt

N∑

i=1

〈−→vi (t0) · −→vi (t + t0)
〉
t0 (12)

where −→v (t) is the velocity of ion i at time t and angular bracket in the integrand
stands for an ensemble average over the initial time argument t0.

This quantity is more frequently estimated from the ionic displacements via the
Einstein equation:

D∗ = 1

2dt
lim

t→∞
∂�

⇀
r (t)2

∂t
(13)

�
⇀
r (t)2 = 1

N

〈
N∑

i=1

[
⇀
r i (t + t0) − ⇀

r i (t0)
]2

〉

t0

(14)

Here,
⇀
r0(t) is the position of mobile ion i, and �

⇀
r (t)2 is known as the mean

square displacement (MSD) of the mobile ions over time t as an ensemble average
over the initial time argument t0.

We should stress that the two expressions (Eqs. 12 and 13) for the self-diffusion
coefficient D∗ are equivalent. However, due to the short accessible time scales in
AIMD simulations that are limited up to a few hundred picoseconds in most cases,
the convergence speed becomes an important factor to consider when computing
the diffusion coefficient. In this context, Eq. 13 is more commonly adopted for
computing D∗ because it tends to converge more rapidly than that of Eq. 12
due to the averaging of the square displacements. Moreover, the long-time tail of
the integral in Eq. 12 may also cause numerical inaccuracy when evaluating the
diffusion coefficient in a short simulation time scale.

With the diffusion coefficient at temperature T in hand, the ionic conductivity
can be estimated using the Nernst-Einstein equation expressed below,

σ(T ) = ρz2F 2

RT
D∗(T ) (15)

Here, ρ and z are, respectively, the molar density and charge of the mobile ions in
the simulation cell. For example, z = +1 for alkali ions such as Li+ and Na+. F and
R are the Faraday constant and the gas constant, respectively. We should point out
that since the computed D∗ corresponds to the tracer diffusivity in experiments, the
conductivity derived from Eq. 15 assumes no correlations in ionic motions. Here,
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the correlation essentially describes how the displacement of one ion depends on
those of other ions during the diffusion.

In many situations, such ionic correlation can be measured in terms of Haven
ratio HR, (Murch 1982)

HR = D∗

Dσ

(16)

where Dσ is known as charge diffusivity defined below:

Dσ = 1

6N
lim

t→∞
∂

∂t

〈{
N∑

i=1

[
⇀
r i (t + t0) − ⇀

r i (t0)
]}2〉

t0

(17)

The Haven ratio equals one when the ionic motions are uncorrelated, while it
is less than 1 for correlated ionic motions. For fast ionic conductors, HR typically
falls between 0.3 and 0.6 (Morgan and Madden 2014; Bron et al. 2013). Given the
fact that the convergence of Dσ in any molecular dynamics simulations is usually
much slower than that of D∗ , there have only been few AIMD studies that attempt
to explicitly estimate the HR value.

3.2.2 Activation Energy
Apart from the ionic diffusivity and conductivity, another key quantity of interest is
the activation energy Ea. Under the assumption that there are no phase transitions,
one can perform AIMD simulations at multiple temperatures and fit the temperature-
dependent diffusivity D to the Arrhenius relationship:

D = D0e
−Ea/kT (18)

Here, D0 stands for the diffusivity at temperature T → ∞, and k denotes the
Boltzmann constant. One can obtain Ea via a linear fitting of the log of D vs. 1/T
(see Fig. 6a as an example). We should note that AIMD simulations are usually
performed at elevated temperatures, e.g., above 600 K, to increase the number
of diffusion events. The diffusivity at ambient temperatures can also be obtained
from Eq. 18 via linear extrapolation. Nevertheless, we should stress that the scheme
implies that the fundamental diffusion mechanisms remain unchanged between the
entire temperature range of interest.

3.2.3 Analysis of the Diffusion Process
Besides the ionic diffusivity and conductivity, the ionic trajectory data also provide
rich details about diffusion process of ions, including the energy landscape in
the battery material and the related diffusion pathways for the mobile ions. The
latter information can be obtained by calculating the probability density function
P

(−→
r , T

)
, which is a function of both the temperature and a spatial 3D grid

(typically a uniform grid). Specifically, for an input trajectory data with a given
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Fig. 6 (a) Arrhenius plot of doped structures Na3 + xMxP1-xS4 (M = Si, Ge or Sn). (b)
Isosurface (blue) of Na+ probability density distribution P for Na3.0625Si0.0625P0.9375S4 at 800 K.
(Reproduced from Ref. (Zhu et al. 2015b) with permission. Copyright (2015) American Chemical
Society)

time scale and temperature T, P is computed by first counting the total number of
mobile ions occupying each grid point using a distance-based algorithm. This is
followed by a normalization such that

� 


0 Pd
−→
r = 1 with 
 being the volume of

the unit cell. Two useful pieces of information can be extracted from the probability
density function: (1) low-energy sites (corresponding to higher P

(−→
r , T

)
values) at

where the mobile ions prefer to reside and (2) pathways for the ionic diffusion. As an
example, Fig. 6b demonstrates the Na+ probability density function in cation-doped
sodium superionic conductor Na3PS4. We should point out that the occupancies of
the symmetrically distinct sites can also be estimated using this function, which
provides useful message for further understanding the ionic diffusion process.

The Van Hove correlation function is a well-known technique to assess the ionic
correlations during the diffusion process. Van Hove correlation function is often split
into two parts, self-part GS and distinct-part Gd, and they are expressed as follows:

Gs (r, t) = 1

4πr2Nd

〈
Nd∑

i=1

δ
(
r − |⇀r i (t + t0) − ⇀

r i (t0) |
)〉

t0

(19)

Gd (r, t) = 1

4πr2ρNd

〈
Nd∑

i �=j

δ
(
r − |⇀r i (t0) − ⇀

r j (t + t0) |
)〉

t0

(20)

Here, δ(·) refers to the 1D Dirac delta function. Nd and r are, respectively, the
number of mobile ions in the unit cell and the radial distance. ρ is the number density
for the mobile ions that is used as the normalization factor such that Gd → 1 when
r� 1. In terms of physical interpretation, the self-part Gs(r, t) can be considered as
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the probability density of a mobile ion that diffuses away from its initial position by
a distance r after time t. The distinct-part Gd(r, t) describes the radial distribution of
Nd − 1 ions after time t with respect to the initial reference mobile ion. Note that
when t = 0, Gd(r, t) is reduced to the static pair distribution function.

3.2.4 Practical Considerations in AIMD Simulations
Since the AIMD techniques are computationally expensive, special care is required
when selecting the relevant simulation parameters so that it achieves a good
balance between the computational cost and the realistic results. In general, the
selection of these parameters depends strongly on (i) the specific system under
investigation, e.g., fast or slow conductors, and (ii) the type of problem of interest,
e.g., comparative evaluation for systems with similar chemistries/topologies, or
accurate diffusivity calculations. For any AIMD simulations of interest, key param-
eters include the simulation cell size, total simulation time, time step, simulation
temperature, the ensemble, and so on. An inclusive summary about the parameter
selection can be found in literature for interested readers (Shin and Saal 2018).

3.2.5 Modeling Electrolyte/Electrode Interfaces
AIMD simulations can also be used to explicitly model the electrolyte/electrode
interfaces, which play a crucial role in the battery performance during charge-
discharge process. To obtain more realistic results, the simulation supercell size for
such systems is required to be much larger than the supercell for bulk materials,
especially along the lattice direction normal to the interface. In principle, the diffu-
sion properties at the interfaces may be estimated via AIMD simulations. However,
that requires significant computational efforts due to the required large supercell
and long simulation time scales. More often, AIMD simulations are applied to
simulate the structural evolutions during alkaliation/de-alkaliation process (Leung
and Budzien 2010) and the chemical reactions between the electrolyte (solid or
liquid) and electrode materials from which the likely interfacial reaction products
can be identified (Tang et al. 2018). In those simulations, a smaller supercell size
with a shorter time scale may be utilized to speed up the AIMD simulations and
obtain realistic results in a qualitative manner. Analysis tools have been developed
in recent years that aim to efficiently determine the interfacial products from AIMD
simulations. Among them include the radial distribution function (RDF) analysis.
In that method, the RDFs of all possible products in their crystalline phases are
compared to that of the interface to identify the likely reaction products. We should
note that all these existing techniques are based on various approximations, and they
are required for further improvements.

3.2.6 Limitation of AIMD Simulations
Similar to the NEB method, AIMD simulations are mainly applied to the bulk sys-
tems for their diffusion properties, especially the alkali-ion superionic conductors.
For alkali-ion superionic conductors, key quantities such as ionic diffusivity and
conductivity can often be estimated within the accessible AIMD time scale that is
typically up to a few hundred picoseconds. For bulk electrode material such as alkali
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transition-metal oxide cathodes, the presence of transition metals often requires
spin polarization calculations. Also, the ionic conduction in the electrode materials
is usually much slower than in the superionic conductors, implying that longer
simulation time scale may be needed for properly converged ionic conductivity.
Therefore, diffusion studies using AIMD simulations for these materials often
require substantially higher computational cost, and key diffusion properties such
as alkali-ion migration barriers and ionic conductivity are often estimated from
NEB calculations (see Sect. 3.1) instead. Nevertheless, AIMD simulations can still
be performed for the electrode materials for other purposes, e.g., to estimate the
diffusion pathways of the alkali ions, site occupancy, etc.

As a final note for AIMD simulations, the ionic diffusivity (and activation
energy) of a material at ambient temperatures is essentially obtained via linear
extrapolation from those obtained at elevated temperatures. This implies that the
diffusion mechanisms between the ambient temperatures and elevated temperatures
must stay unchanged. For materials where such condition does not hold, the NEB
method should be utilized instead.

4 Conclusion and Outlook

This chapter provides a general overview of the well-established first-principles
methods used in battery-related studies (electrodes, electrolytes, and their inter-
faces) from both the thermodynamic and kinetics aspects. These include many
key properties of alkali-ion battery: equilibrium voltage, phase stability, elec-
tronic structures, and ionic diffusion properties. First-principles calculations need
to have closed-loop interaction with experimental design and data. Simulations
provide insight into development of new materials and aid in the interpretation of
experimental observations. Experimental results in turn prove the validity of the
theoretical model and proposed mechanism. Despite the remarkable advances of the
first-principles methods in recent years, there remain some pressing challenges in
modeling technique when it comes to (1) noncrystalline systems, e.g., the presence
of intrinsic defects and the electrolyte/electrode interfaces, and (2) the design of
high-voltage high-capacity cathode materials.

First, it should be noted that most of the first-principles methods presented here,
e.g., voltage calculations and NEB methods, have mainly been applied to perfect
crystalline solids. From the experimental perspective, however, intrinsic defects
such as dislocations, stacking fault, and micro-strain are always present in the
synthesized material. These intrinsic defects can have significant impact on the
electrochemical performance of the battery material. In principle, imperfections
(e.g., dopants) can be modeled via the construction of supercell, and the size of
the supercell depends mainly on the defect concentration. Given that there are
often more than one possible configuration upon the introduction of defects, an
efficient structural enumeration is needed to be performed, which is followed by
DFT calculations for each possible distinct configuration. Hence, it eventually leads
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to the lowest-energy doped structure. This procedure is often computationally very
expensive, especially in the dilute defect concentration.

Solid electrolyte/electrode interface is another important example of noncrys-
talline first-principles modeling, which is highly challenging at the current stage.
To obtain realistic results, the required supercell needs to be sufficiently large,
especially the length along the normal of the interface that aims to minimize the
artificial interactions between periodic images. In principle, the AIMD method is
suitable for interfacial diffusion studies at finite temperatures. Nevertheless, the
required long simulation time scales as well as the length scales indicates that such
simulations are almost computationally infeasible.

For cathode materials, it should be noted that this chapter is mainly devoted
to intercalation electrode materials, wherein energy storage is possible through a
reversible intercalation in a stable host framework. Although anionic redox has been
recently discovered and confirmed, the capacity of this intercalation type electrode
material is mainly limited to one electron per transition metal. Conversion and alloy
reactions in electrode material are thus proposed to achieve higher capacities. More
oxidation states of TM are feasible in conversion and alloy-type electrodes, which
allows more electrons to reversibly change during electrochemical cycling. Similar
to intercalation reactions, the thermodynamics of conversion/alloy reactions can be
investigated from first-principles calculations by computing the total energy of all
the involved compounds. Additional complexity does exist since conversion/alloy
reactions produce multiple phases or domains with different chemical composition,
where interface and nanosize effects (i.e., requiring noncrystalline modeling) often
dominate the thermodynamic properties of materials.

The solutions to the aforementioned limitations and challenges are multifold.
First, computational power will continue to grow rapidly, which can allow for longer
simulations and larger system sizes and chemical complexity. Second, multi-scale
approaches that aim at bridging the multiple time and length scales are expected
to further improve in the future. That enables us to probe even more realistic
models with higher computational accuracy. Third, the continued development of
automation software tools will also facilitate the studies of battery materials and
significantly minimize the researchers’ time to monitor the simulations. Fourth,
building open-access materials science databases from standardized first-principles
high-throughput calculations can also facilitate the first-principles modeling. More
importantly, with the rapid increase of the computation data, machine learning
models can be trained with a higher prediction power, enabling researchers to
discover hidden design rules for battery materials.
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