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Abstract: Inference on large-scale models is of great interest in modern science.

Examples include deterministic simulators of fluid dynamics to recover the source

of a pollutant, and stochastic agent-based simulators to infer features of consumer

behaviour. When computational constraints prohibit model evaluation at all but

a small ensemble of parameter settings, exact inference is infeasible. In such cases,

emulation of the simulator enables the interrogation of a surrogate model at arbi-

trary parameter values. Combining emulators with observational data to estimate

parameters and predict a real-world process is known as computer model calibra-

tion. The choice of the emulator model is a critical aspect of calibration. Exist-

ing approaches treat the mathematical model as implemented on computer as an

unknown but deterministic response surface. In many cases the underlying math-

ematical model, or the simulator approximating the mathematical model, are not

determinsitic and in fact have some uncertainty associated with their output. In this

paper, we propose a Bayesian statistical calibration model for stochastic simulators.

The approach is motivated by two applied problems: a deterministic mathematical

model of intra-cellular signalling whose implementation on computer nonetheless

has discretization uncertainty, and a stochastic model of river water temperature

commonly used in hydrology. We show the proposed approach is able to map the

uncertainties of such non-deterministic simulators through to the resulting infer-

ence while retaining computational feasibility. Supplementary computer code and

datasets are provided online.

Key words and phrases: Computer experiments, differential equation, models, phys-

ical statistical, stochastic simulation, uncertainty quantification.

1. Introduction

Models of complex processes allow scientists to gain a deeper understanding

of system dynamics or enable policy makers to make decisions based on future

projections. These models, known as computer simulators, may solve large-scale

systems of differential equations or implement stochastic simulations such as

agent-based systems, that describe real-world processes. Of particular impor-

tance to decision makers is the task of appropriately quantifying and combining
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uncertainty from all sources when performing inference.

More specifically, simulators can be said to describe the spatio-temporal evo-

lution of one or many system states, defined up to some unknown components

called calibration parameters. These may include physical constants, forcing

functions, or initial or boundary conditions. For a given computer model, in-

terest lies in inferring unknown calibration parameters from noisy, often indi-

rect observations of the states at discrete spatio-temporal locations. An impor-

tant challenge arises when the states, and hence the likelihood of the data, are

computationally expensive to evaluate. Computer model calibration (Kennedy

and O’Hagan (2001); Higdon et al. (2004, 2008); Goldstein and Rougier (2006);

Joseph and Melkote (2009)) performs inference in this situation by modeling,

or emulating, the simulated states conditional on a well-designed sample of the

computationally expensive simulator. The additional source of uncertainty as-

sociated with the emulation is propagated through the inference, typically using

a hierarchical Bayesian framework. Our work in this paper is concerned with

accounting for stochasticity in the state, a key source of uncertainty that has so

far been mostly ignored or, at best, inadequately represented in the statistical

calibration literature.

Existing methodology essentially treats simulators as deterministic black-box

functions, where the output is fixed for a given parameter input setting. That is,

it is assumed that running the simulator at the same inputs will always produce

exactly the same output. However, it is widely known that in a broad class of

problems this assumption is unrealistic, and a given parameter input setting will

yield a sample of realizations, or ensembles, from an unknown distribution over

the states.

For instance, agent-based models aim to reconstruct the macroscopic be-

haviour of complex systems by forward simulating a large number of “agent”

models that describe the microscopic behaviour of the system under study. Such

models are used in analyzing the behaviour of the stock market and biological

systems (Palmer et al. (1994); Tesfatsion (2002); Gilbert (2008); Auchincloss and

Roux (2008)). These stochastic simulation models also make available an ensem-

ble of solution realizations at given settings of the parameters. We investigate a

stochastic simulator of water temperature (Cluis (1972); Caissie, El-Jabi and St-

Hilaire (1998)), where river water temperature is simulated by combining sparse

observational water data with readily available air temperature data. The goal

is to calibrate scientifically meaningful air-to-water heat transfer coefficients.

Stochastic simulations also arise when, for a given input, the output states
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are deterministic but uncertain. For example, a simulator defined implicitly as a

set of partial differential equations (PDE) typically does not have a closed form

solution. Instead, for a given parameter setting, the states are discretized and

approximated numerically using a deterministic technique. It has been shown

that choices related to this discretization can have a substantial effect on ap-

proximated system states (e.g. Kim et al. (2013); Arridge et al. (2006)), so that

a typical calibration framework that ignores this error is likely to lead to biased

estimates of the calibration parameters and posterior under-coverage. This issue

has led to the use of Bayesian ideas for modeling uncertainty associated with

discretization of an infinite-dimensional state as a stochastic process (Chkrebtii

et al. (2016)). However, as with discretizing the PDE system, simulating re-

alizations from this probabilistic uncertainty model is typically computationally

expensive. Instead, an ensemble of solution realizations of the probabilistic solver

of Chkrebtii et al. (2016) may be obtained at a small, well-chosen collection of

calibration parameter settings and used to perform efficient inference in the ap-

proach we propose.

One example of an implicit model where the solution states have non-negligible

discretization uncertainty describes the temporal evolution of the concentration

of four intracellular gene transcription factors within the JAK-STAT signalling

network pathway (Pellegrini and Dusanter-Fourt (1997); Swameye et al. (2003)).

It has been shown in Chkrebtii et al. (2016) that choices related to discretization

strongly shape posterior correlations among model states, motivating the use of

simulators that model this uncertainty. Not only are such simulators stochastic,

but they are computationally expensive, motivating further advances in computer

model calibration.

This paper is concerned with developing a statistical approach to computer

model calibration experiments which can take into account the uncertainty in

simulation models when made available as a large ensemble of realizations. Our

approach uses empirical orthogonal functions to represent the functional uncer-

tainty of the simulator by associating each ensemble member realized at a given

setting of the calibration parameter with a single latent weight. These latent

weights are then modeled as points in a latent weight-space on which we place

a Gaussian process prior which we can then use to construct unobserved real-

izations of the simulation model at unobserved settings of the parameters while

retaining the desired uncertainty.

The reconstructed simulator realization at the unknown parameter corre-

sponding to the observational data is linked through a hierarchical Bayesian
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model for the field observations. Included in this observational data model are

model discrepancy components that are also given Gaussian process priors. The

overall model specification is then completed by placing appropriate prior distri-

butions on model parameters, and the model is fitted by a Markov chain Monte

Carlo (MCMC) algorithm.

We first begin by reviewing the concept of calibration for computer exper-

iments in the context of Bayesian hierarchical modeling. We then describe the

Kennedy-O’Hagan model that forms the basis of further developments.

1.1. Calibration experiments

The problem of inference, or calibration, for computer models of a state

x(s;θ) at spatial-temporal locations si ∈ S and unknown calibration parameter

setting θ ∈ Θ consists of recovering the unknown calibration parameters θ ∈ Θ

from partial or indirect observations, y(s), of the state. The calibration parame-

ters θ represent the setting of this parameter that “best” matches the computer

model to the observed data. They usually are themselves of considerable scien-

tific interest when these parameters have important scientific meaning, such as

the viscosity of a modeled fluid or the initial state of a dynamical system.

Because the simulator is often an inexact representation of reality, the notion

of a systemic discrepancy is introduced between the simulator and the true state

of the observed process. Such discrepancy may be additive, represented by δ(s),

which allows for correcting an additive bias in the simulated state as x(s;θ)+δ(s).

Another popular correction is multiplicative discrepancy, represented as κ and

usually taken to be constant with respect to spatial-temporal location. This

discrepancy allows for correcting the scaling of the simulated state as κx(s;θ).

Let x(θ) = (x(s1;θ), . . . , x(sn;θ))> represent the vector of state outputs

at the spatial-temporal grid locations s1, . . . , sn, let δ = (δ(s1), . . . , δ(sn))>

represent the vector of the additive discrepancy at spatial-temporal grid loca-

tions s1, . . . , sn and let Λf be an n × n precision matrix representing the un-

certainty in our observations. Then the likelihood of the observations, y =

(y(s1), . . . , y(sn))>, observed at the n spatial-temporal locations conditional on

the state outputs, calibration parameters, discrepancies and precision parameters

is

y | θ, δ, κ,Λf .

The simplest model (Higdon et al. (2004)) assumes homoscedastic precision,

Λf = λfIn and a Gaussian likelihood, so that the conditional distribution is
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y | θ, δ, κ, λf ∼ N (κx(θ) + δ, λfI) . (1.1)

If the simulator were computationally inexpensive, estimating the unknowns

would be fairly straightforward – specifying priors on the calibration parameter,

π(θ), discrepancies, π(δ, κ) and precision, π(λf ), one could sample from the

posterior distribution

θ, δ, κ, λf | y

using a Metropolis within Gibbs algorithm (Higdon et al. (2004)), which requires

evaluating the simulator at a large number of proposed settings of the calibration

parameter, θ.

However, due to the high computational cost of producing simulations of the

state x(θ), only a limited number, say m, of simulator evaluations, can be made.

This feature of the simulator immediately precludes the use of any inferential

approach which requires large numbers of simulator evaluations at settings of θ,

such as the approach just described.

This computational limitation led to the introduction of an additional layer

in the Bayesian hierarchy representing uncertainty in the simulator x(θ), which

is emulated rather than being evaluated. The emulator is a statistical model

for the state given a small well-designed collection of m simulator evaluations,

x(θ1), . . . ,x(θm). This conditional distribution of the state at the calibration

parameter setting θ given the m state outputs evaluated at parameter settings

θ1, . . . ,θm is expressed as

x(θ) | x(θ1), . . . ,x(θm),θ1, . . . ,θm,θ, ·.

It may depend on additional hyperparameters (here denoted by the ‘·’), the form

of which depends on the specific emulation model used. For instance, Kennedy

and O’Hagan (2001) use a Gaussian process (GP, Sacks et al. (1989)) emulator,

while Higdon et al. (2008) use basis functions for dimension reduction in addition

to a Gaussian process model. In any case, the introduction of this second layer of

modeling allows one to construct predictions of the unobserved state for arbitrary

choices of calibration setting θ as well as propagating the uncertainty in the

emulated state through to the posterior inference for the calibration parameter

and all other quantities of interest.

1.2. The Kennedy-O’Hagan model

The method proposed by Kennedy and O’Hagan (2001) is widely considered

as the basis for subsequent development of statistical computer model calibra-

tion, so we elaborate on it in relation to our general setup. Their approach,
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subsequently expanded into a fully Bayesian approach by Higdon et al. (2004,

2008), makes extensive use of Gaussian process (GP) priors and Gaussian con-

jugacy. The likelihood for the observations is specified as (1.1), while the state

is modeled a priori as a realization of a GP,(
x(θ)

x

)
∼ N

(
µ, λ−1x

[
R0 R0,x

Rx,0 Rx

]
+ λ−1c In(m+1)

)
,

where x =
(
x(θ1)

T , . . . ,x(θm)T
)T
, µ =

(
µT0 ,µ

T
x

)T ∈ R(m+1)n is the mean of the

states, λ−1x ∈ R is the marginal process variance, and λ−1c ∈ R represents small

scale variability of the states, sometimes called the “nugget” (Cressie (1993)).

The correlation matrix is typically modeled using the Gaussian correlation func-

tion, that assumes the states can be represented by a smooth, infinitely differen-

tiable process, and parameterized as

[Rx]ij =

p∏
k=1

q∏
l=1

φ
(sik−sjk)2
k ρ

(θil−θjl)2
l ,

where the φk ∈ (0, 1) are correlation parameters for all k = 1, . . . , p spatial-

temporal covariate dimensions and the ρl ∈ (0, 1) are correlation parameters for

all l = 1, . . . , q calibration parameter dimensions.

The discrepancy is also modeled as a realization of a GP,

δ ∼ N(µδ, λ
−1
δ Rδ),

where µδ ∈ Rn, λδ ∈ R, and [Rδ]ij =
∏p
k=1 ψ

(sik−sjk)2
k , which models a smooth

discrepancy between the calibrated simulator and the observed process with cor-

relation parameters ψk ∈ (0, 1), k = 1, . . . , p.

Combining these priors with the likelihood, the joint model of Kennedy and

O’Hagan (2001) for the field observations and simulator outputs is,(
y

x

)
∼ N

((
µ0 + µδ
µx

)
, λ−1x

[
R0 R0,x

Rx,0 Rx

]
+ λ−1δ

[
Rδ 0

0 0

]
+

[
λ−1f In 0

0 λ−1c Inm

])
.

(1.2)

This model has been discussed at length in the computer experiments literature.

There are assumptions of it that do not satisfy our requirements. The term λ−1c ,

which represents simulator output uncertainty, has largely been dealt with in

a cursory manner or simply ignored. Primarily, the setting of this parameter

has been driven by a desire to maintain computational stability in manipulating

the large covariance matrices of (1.2) rather than a concerted attempt to model

and quantify possible uncertainties in simulator outputs. Furthermore, a simple
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i.i.d. Normal error model is likely not justified to account for simulator error

as most of the simulation models calibrated in this framework exhibit smooth

and continuously varying response surfaces as functions of the simulator’s inputs.

More realistic uncertainty is sometimes available when an ensemble of realizations

of a stochastic simulation model are available. Model (1.2) was proposed in the

context of calibrating a single state. In many applications, one may be interested

in calibrating multiple states simultaneously, some or all of which are observed

in the field. Extending (1.2) to the case of multiple states would seem difficult

given the computational limitations of the model with just a single state.

In the next section, we motivate the need for a statistical calibration method-

ology that can account for simulator uncertainties, and potentially multiple

states, with an application in water temperature modeling and a PDE model

of a biochemical system. We develop our model in Section 3, and demonstrate

the proposed approach on the water temperature and JAK-STAT examples in

Sections 4 and 5. We conclude in Section 6.

2. Motivation

In this section, we introduce two examples of calibrating simulators to ob-

servations where simulator uncertainty need be accounted for in the statistical

methodology. We are also interested in calibrating multi-state stochastic simu-

lators, and our second example involves calibrating four states.

2.1. Stochastic water temperature model

The prediction of temperature fluctuations in inland bodies of water is crit-

ical for ecological and conservation initiatives because of its effect on wildlife

and the possibility of monitoring thermal water pollution. Climate change has

made such studies increasingly important in order to understand and predict

water quality and aquasystem dynamics under various climate change scenarios

(Caissie, El-Jabi and Turkkan (2014)). Deterministic models of water tempera-

ture are based on physical principles and are forced by meteorological variables,

but are limited by the amount of data required for calibration and by the avail-

ability of appropriate models. Stochastic models (Benyahya et al. (2007); Caissie,

El-Jabi and St-Hilaire (1998); Caissie, El-Jabib and Satish (2001); Cluis (1972))

are more flexible but may be expensive to evaluate for a given parameter setting.

Here we focus on a simple stochastic model for the temporal evolution of river

water temperature at a fixed spatial location.

Stochastic simulators of water and air temperature are comprised of an an-
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nual trend component and a short-term fluctuation component, or residual. The

simulator requires nearby air temperature data to capture the short-term fluc-

tuations of observed water temperatures. The annual trend is separated from

the short term fluctuation by fitting a simple sinusoid to capture annual seasonal

variability. Many model formulations have been proposed to capture the resid-

ual component, such as Markov models and autoregressive processes (Caissie,

El-Jabi and St-Hilaire (1998); Caissie, El-Jabib and Satish (2001)). The model

of (Caissie, El-Jabi and St-Hilaire, 1998) has

Tw(t) = Ta(t) +Rw(t), (2.1)

where the annual seasonal component is

Ta(t) = a1 + a2 sin

(
2π

365
(t− t0)

)
,

with t as the time index. A simple formulation for the short-term component is

related to air temperature residuals as

Rw(t) = KRa(t) + ε,

for ε
i.i.d.∼ N(0, σ2).

The calibration parameters θ = (a1, a2, t0,K, σ)T are the level, a1, and scal-

ing, a2, of the annual trend component, the offset term t0, and the thermal

transfer coefficient, K, representing heat transfer from the ambient air into the

river water, and σ describes the spread of remaining small-scale variability.

Our observations are temperatures of Alum Creek in Africa, OH (U.S. Geo-

logical Survey (2015)) from July 18, 2012 through October 12, 2014. Meterolog-

ical data is also available (The University of Dayton (2015)), giving the required

daily average air temperature data to generate realizations from the stochastic

water temperature simulator.

The goal is to estimate the settings of these calibration parameters and

predict the state (temperature series) and any model discrepancy between the

simulator and observations. We explore calibrating this model to the Alum Creek

dataset in Section 4.

2.2. JAK-STAT model of intracellular signaling pathway

Gene transcription is a complex mechanism that is critical for many biological

processes and the understanding of gene transcription in cells is important. Here

we describe the JAK-STAT system, a transcription network that has been exten-

sively studied in the literature (Pellegrini and Dusanter-Fourt (1997); Swameye

et al. (2003); Timmer et al. (2004); Raue et al. (2009); Horbelt, Timmer and Voss
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(2002)). Cellular gene transcription begins with a stimulus that is external to the

cell. In the JAK-STAT system, the stimulus is the binding of a hormone called

Erythropoietin (EpoRA) to specialized receptors located on the surface of the

cell. In response, molecules called transcription factors (Janus kinases), located

within the cytoplasm, begin a series of biochemical reactions (phosphorylation)

which cycle through an unknown number of reaction states as they move to-

wards the cell nucleus. Once in the nucleus, the transcription factors (now called

STATs) begin the process of gene transcription. Once completed, the reversible

chemical reactions return the chemical species to its original reaction state, al-

lowing the process to begin again. Current understanding of this biochemical

reaction includes four reaction states and the possibility of other unknown states

proxied by a time delay. The concentrations x1(s,θ), . . . , x4(s,θ) at time s of the

states depend on unknown parameters θ ∈ R6 defined implicitly via the delay

differential equation,

d

ds
x1(s,θ) = − θ1 x1(s,θ) EpoRA(s,θ) + 2 θ4 x4(s− θ5), s ∈ [0, 60],

d

ds
x2(s,θ) = θ1 x1(s,θ) EpoRA(s,θ)− θ2 x22(s,θ), s ∈ [0, 60],

d

ds
x3(s,θ) = − θ3 x3(s,θ) +

1

2
θ2 x2

2(s;θ), s ∈ [0, 60],

d

ds
x4(s,θ) = θ3 x3(s,θ)− θ4 x4(s− θ5,θ), s ∈ [0, 60],

x1(s;θ) = θ6, s ∈ [−θ5, 0],

xi(s;θ) = 0, i = 2, 3, 4, s ∈ [−θ5, 0],

(2.2)

where subscripts indicate component states. Measurements are made using a

process called immunoblotting (Swameye et al. (2003)), which recovers nonlinear

transformations of the explicit states contaminated with additive error,

y1(s) = κ1 (x2(s) + 2x3(s)) + ε1(s),

y2(s) = κ2 (x1(s) + x2(s) + 2x3(s)) + ε2(s),

y3(s) = x1(s) + ε3(s),

y4(s) = x3(s) (x2(s) + x3(s))
−1 + ε4(s),

where the constant multiplicative discrepancies κ = (κ1, κ2) reflect the unknown

relative scales in the measurement of y1 and y2. The errors, εj(s), 1 ≤ j ≤ 4,

are modeled as independent Gaussian random variables with zero mean and

known variances, λ−1f = (λ−1f,1, . . . , λ
−1
f,4). Experimental data was obtained from

Swameye et al. (2003) and two artificial observations were proposed in Raue et al.

(2009) to overcome the lack of identifiability associated with arbitrary units of
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concentration.The forcing function EpoRA is modeled by a GP interpolation of

its experimental measurements in Swameye et al. (2003).

An important goal is to recover the unknown model parameters and discrep-

ancies, θ and κ, based on the measured data y. Not only will the rates θ1, . . . , θ4
help us to understand the phosphorylation reaction, but the delay parameter θ5
may give an idea of the number of unmodelled states between the fourth state

and the original STAT factor. This, in turn, may help future efforts in model

building for the JAK-STAT system. Exact inference requires an explicit represen-

tation of the concentration states x1, . . . , x4, i.e. the solution of model (2.2). For

a system of this complexity a solution is not available in closed form. Numerical

techniques for delay differential equations suffer from low precision, which has

motivated some researchers to replace the above model with a surrogate ordinary

differential equation system which is then solved numerically. Our goal here is to

use the model (2.2) while accounting for the uncertainty in its numerical solution

using the methods of Chkrebtii et al. (2016), but within a constrained amount

of computation time.

3. Model

We now outline the details of our proposed statistical calibration method-

ology for stochastic simulators with single or multiple states. Due to the high-

dimensional nature of our simulator outputs, we consistently use the following

conventions:

• index i refers to the ith output grid setting,

• index j refers to the jth setting of the calibration parameter vector,

• index k refers to the kth state output from our multi-state stochastic sim-

ulation model, and,

• index u refers to the uth realization of our multi-state stochastic simulation

model.

We assume for simplicity that field observations and simulator outputs are

available at the same output grid locations s ∈ S for each of the ns states. Each

grid location si, i = 1, . . . , n, is a p×1 vector representing the setting of p covariate

variables. In our applications the si are usually spatial-temporal locations, but

this need not be the case. The simulation model takes as input an si and a

calibration parameter setting θj resulting in a single realization of the simulator

for the kth state being xk(si,θj).
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Our simulation model data consists of an ensemble of such state realizations

produced by the computer code given a fixed setting of the parameters θ. We

interpret these realizations as i.i.d. samples from some distribution representing

uncertainty in the simulation of the process. The stochastic simulators are treated

as black-box random functions in the sense that, given inputs, we merely collect

realizations from the simulators without any knowledge of internal workings of

the stochastic simulators. Our development assumes the availability of N such

realizations of the simulation model xk(si,θj) for each state k at each setting of θj
and spatial-temporal location si where N is the number of iterations we require

to perform model calibration using our MCMC algorithm. The uth realization

of the stochastic simulator xk(si,θj) is identified as xukij , u = 1, . . . , N .

In order to emulate stochastic simulators in an approach that is computa-

tionally feasible for at least problems of moderate complexity and/or data size,

we are motivated by such dimension-reduction ideas as the empirical orthogonal

functions (EOFs) (von Storch and Zwiers (1999)) approach to calibration. In the

case of stochastic simulators, data dimensionality is much higher, and it does not

seem obvious how one should approach the dimension-reduction problem. Our

solution is motivated by a tensor representation of our high-dimensional data,

which we describe next.

3.1. Tensor variate representation of stochastic simulator outputs

The key sources of uncertainty here are the variability across simulator real-

izations, the variability across states, the variability across the spatial-temporal

grid, and the variability across calibration parameter settings. A natural way to

represent our high-dimensional data is as the m× ns × n×N multi-dimensional

array χ (Ohlson, Ahmad and Von Rosen (2013)). Thus, we express our data as

the 4-way tensor χ ∈ Rm×ns×n×N . With this representation, the value at tensor

entry u, k, i, j is given by [χ]u,k,i,j = xukij .

Analyzing high-dimensional data structures from the tensor viewpoint has

become popular in computer vision (Vasilescu and Terzopoulos (2003)) and Mag-

netic Resonance Imaging (MRI) applications (Basser and Pajevic (2003)). A key

idea in representing high-dimensional data using tensors is how one can decom-

pose the signal in a manner that offers better interpretability. For instance, a

D-way tensor can be decomposed into 1-way tensors (vectors) in a procedure

analgous to Principal Components Analysis (PCA) performed on a matrix (Lu,

Plataniotis and Venetsanopoulos (2008)). Another approach is the High-Order

Singular Value Decomposition (HOSVD) which decomposes a D-way tensor into
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2-way tensors (matrices) in a procedure analagous to the SVD of a matrix (Lath-

auwer, Moor and Vandewalle (2000a,b)).

The HOSVD tensor decomposition is the more general approach, and is what

we use to motivate our model. The HOSVD (Lathauwer, Moor and Vandewalle

(2000a,b); Kolda and Bader (2009)) decomposes our high-dimensional object into

a sum of lower-rank objects,

[χ]u,k,i,j =

R1∑
r1

R2∑
r2

R3∑
r3

R4∑
r4

Er1,r2,r3,r4a(1)u,r1a
(2)
k,r2

a
(3)
i,r3
a
(4)
j,r4
, (3.1)

where R1, R2, R3, R4 denote the ranks of the approximation, E is the R1 ×R2 ×
R3 × R4 core tensor (analagous to the diagonal weight, or eigenvalue, matrix in

the SVD), and a
(1)
u,r1 ∈ A(1) is an entry in the N × R1 factor matrix A(1), the

analogue of an eigenvector in the SVD (similarly for ns×R2 matrix A(2), n×R3

matrix A(3) and m×R4 matrix A(4)). If the entries of E are Gaussian, then the

resulting tensor χ can be viewed as a draw from a tensor-variate Gaussian Process

(Xu, Fan and Qi (2012)). As such, representing our data as a tensor is the high-

dimensional generalization of the GP approach of Kennedy and O’Hagan (2001)

and exploiting dimension-reduction techniques for tensors is the high-dimensional

generalization of the EOF approach of Higdon et al. (2008).

Equation (3.1) shows that the HOSVD decomposes our tensor object into

separate effects arising from variability across simulator runs, variability across

states, variability across the spatial-temporal grid, and variability across the

stochastic realizations of the simulator. The HOSVD decomposition captures and

decomposes the tensor’s variability through an operation called matricization.

Matricization re-arranges any tensor into a matrix, and each D-way tensor has

D such matricizations. It turns out (Kolda and Bader (2009)) that the dth

matricization can be written as

X(d) = A(d)E(d)

(
A(D) ⊗ · · · ⊗A(d+1) ⊗A(d−1) ⊗ · · · ⊗A(1)

)T
,

where ⊗ represents Kronecker product and E(d) is the corresponding matriciza-

tion of the core tensor. Thus, for a D-way tensor in RI1×···×ID , the dth matri-

cization re-arranges a tensor into a matrix with Id rows, stacking the remaining

dimensions of the tensor column-wise. For instance, X(4) matricizes our tensor

into a matrix with m rows and N × ns × n columns. The solution to A(4) in

the HOSVD arises as the R4 left singular vectors from the SVD of X(4) (Kolda

and Bader (2009)). We interpret these left singular vectors as arising from latent

eigenfunctions that describe the variability of the tensor across the m simulator

runs, motivating the use of a Gaussian process prior.
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We reconstruct a missing entry in our tensor representation of simulator

outputs, the trajectory of the simulator at the unknown calibration parameter

setting θ, by modeling the appropriate eigenvectors. To be clear, we assume

that the other matricizations of our tensor are not relevant to our modeling

interests. That is, we assume there is no interest in modeling an unobserved

state given the observed states; we assume that our data will be on the same

grid as the simulator outputs and therefore there is no interest in modeling a

state at an off-grid location; and finally, we assume that we have access to all

the MCMC realizations of the stochastic simulator required so that modeling a

new realization is also not required. Under these assumptions, working with the

particular matricization X(4) is all that is needed to reconstruct the stochastic

simulator at the unknown setting θ.

3.2. Modeling simulator realizations

Our proposed emulator within the Bayesian hierarchy is constructed as fol-

lows. Let Φu, u = 1, . . . , N, represent the uth (n · ns) ×m matrix of simulator

realizations of all model states with columns representing the vectors of simulator

outputs obtained at the m settings of calibration parameters,

Φu =



xu111 xu112 . . . xu11m
xu121 xu122 . . . xu12m

...
...

...
...

xu1n1 xu1n2 . . . xu1nm
...

...
...

...

xunsn1 xunsn2 . . . xunsnm


.

The transpose of matricization X(4) corresponds to the (N ·n·ns)×m matrix

XT
(4) =

Φ1

...

ΦN

 .
We work with the transpose only so that the matrix orientation follows the

typical convention of placing simulator outputs column-wise for each setting of

calibration parameters.

Let XT
(4) = ǓĎV̌T be the singular value decomposition (SVD) of XT

(4), where

Ǔ is (N · n · ns)×m, Ď is m×m and V̌ is m×m. The low-rank approximation

using nc EOFs from the SVD is U = (U1, . . . ,UN )T , where each submatrix Uu

is the (n·ns)×nc matrix Uu = ŨuD̃
1/2, for u = 1, . . . , N, with Ũu the (n·ns)×nc
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submatrix of Ǔu and D̃ the nc × nc upper diagonal submatrix of Ď. Similarly,

let V = ṼD̃1/2, where Ṽ is the m× nc submatrix of V̌.

The statistical emulator for each model output is constructed, using the

nc < m EOFs, as

xukij ≈
nc∑
l=1

vl(θj)Uukil,

where vl(θj) = [V]jl and where the number of bases to use in the approxima-

tion, nc, can be determined by cross-validation as outlined in the Supplementary

Materials.

This formulation captures some important properties of the chosen EOFs

that facilitate the statistical model. Primarily, at different realizations of the sim-

ulation model the variation amongst these realizations across states and spatial-

temporal locations is completely captured in the left eigenvectors, Uu, while the

weights, vl(θj), do not vary across realizations. This reflects the fact that θj
is a fixed, known quantity when the simulator is run at the setting θj . Subse-

quently, it is sensible that the latent weight vl(θj) should also be treated as fixed

conditional on the parameter setting.

For the nc latent weight spaces, we treat the fixed, known vl(θj)’s and the

corresponding unobserved weight vl(θ) for the unobserved state(s) as realizations

of a Gaussian process indexed by the calibration parameter settings,

vl(θ1), . . . , vl(θm), vl(θ)|λvl ,ρl,θ1, . . . ,θm,θ ∼ N(0, λ−1vl Rvl), (3.2)

where the correlation matrix Rvl has

[Rvl ]j,j′ =

q∏
t=1

ρ
(θt,j−θt,j′)2
l,t ,

for correlation parameters ρl = (ρl,1, . . . , ρl,q) ∈ (0, 1)q.

3.3. Modeling observations

The field observations are modeled as in (1.1). Given the vector of unob-

served weights v(θ) = (v1(θ), . . . , vnc
(θ))>, the additve discrepancies for each

state, δ = (δ>1 , . . . , δ
>
ns

)>, and the multiplicative discrepancies for each state,

κ = (κ1, . . . , κns
)>, the likelihood for each state is

yk|Uuk,v(θ), δk, κk ∼ N(κkUukv(θ) + δk, λ
−1
f,kIn), k = 1, . . . , ns,

where λ−1f,k corresponds to measurement error variance of the observational data

for state k.
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3.4. Prior on discrepancies

Statistical calibration typically accounts for model discrepancy through addi-

tive and multiplicative misspecification of the simulator (Kennedy and O’Hagan

(2001); Brynjarsdóttir and O’Hagan (2014)), although more general forms have

been investigated (Kleiber, Sain and Wiltberger (2014)). For the additive dis-

crepancy, δ is modeled using independent GPs for each state variable,

δk ∼ N
(
µδk , λ

−1
δk

Rδk

)
,

for k = 1, . . . , ns, where λδk ∼ Gamma(αδk , βδk), and

[Rδk ]jj′ =

p∏
t=1

ψ
(st,j−st,j′ )2
k,t ,

for j, j′ = 1, . . . , n. For the multiplicative discrepancies, we also use independent

normal conjugate priors for each state, with κk ∼ N(µκk
, λ−1κk

) for k = 1, . . . , ns.

Additive discrepancy priors have been discussed in the literature to a rea-

sonable extent (Kennedy and O’Hagan (2001); Higdon et al. (2008); Vernon,

Goldstein and Bower (2010); Brynjarsdóttir and O’Hagan (2014)) while multi-

plicative discrepancies are less common. Theoretical aspects of calibration in

the presence of model discrepancy has also been explored (Tuo and Wu (2015,

2016)).

3.5. Prior on calibration parameters, θt

Assuming calibration parameters have been rescaled to [0, 1], uninformative

independent uniform priors are placed on each parameter, θt ∼ Unif(0, 1). When

a priori knowledge of the parameters is available, these priors can be adjusted

accordingly, as we do in the JAK-STAT example in Section 5.

3.6. Other prior distributions

In addition to the main model components – the emulator of Section 3.3, the

likelihood of Section 3.4, and the discrepancy priors of Section 3.5 – we need to

specify the prior distributions for the remaining unknowns. Generally, specifica-

tion of these priors is simpler as the model is less sensitive to these parameters

unless specified otherwise. We summarize these priors in the Supplementary

Materials.

With all the priors specified as described, the posterior distribution[
{θt}qt=1, {vl(θ)}nc

l=1, δ,κ, {λvl}
nc

l=1, {ρ}
nc

l=1, {λf,k}
ns

k=1, {λδk}
ns

k=1{ψk}
ns

k=1|y,Uu,V
]
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∝ [y|Uu,v(θ), δ,κ]

nc∏
l=1

([vl(θ)|vl, λvl ,ρl,θ] [vl|λvl ,ρl,θ])

ns∏
k=1

[δk|µδk , λδk ,ψk]

×
nc∏
l=1

([λvl ] [ρl])

ns∏
k=1

[λf,k]

ns∏
k=1

([λδk ] [ψk])

q∏
t=1

[θt] (3.3)

is sampled via an MCMC algorithm as outlined in the Supplementary Materials.

3.7. Accounting for simulator uncertainty

In our framework, simulator uncertainty is propagated through to the statis-

tical calibration by directly sampling from the simulator at the fixed parameter

settings θ1, . . . ,θm. At each parameter setting θj , the corresponding realization

is represented by the column vector Φuj for u = 1, . . . , N, which we think of as

samples from some distribution conditional on the calibration parameter setting

θj . Each of the N steps in the MCMC algorithm then requires a sample (or,

in practice, an approximate sample when nc < m) from this distribution us-

ing the basis representation obtained using the Uu’s, u = 1, . . . , N and vl(θj)’s,

l = 1, . . . , nc, j = 1, . . . ,m, from which the uncertainty of the stochastic simula-

tor is propagated through to the statistical calibration.

In EOF-based calibration methods, all inference is conditional on the recov-

ered eigenvectors that are discretely observed over the continuous domain S, the

truncation of the spectrum of EOF’s to a small number of such eigenvectors,

and to the particular set of discrete spatial-temporal locations used in observing

an otherwise continuous field over S. Such Bayesian models are approximate in

that sense, and the approximation improves if the number of spatial-temporal

locations goes to infinity (so-called infill asymptotics) and the number of eigen-

vectors retained goes to infinity. Analogously, inference for the approach outlined

is conditional on the additional discrete sampling of N simulator realizations at

each of θ1, . . . ,θm. These samples discretely approximate the continuous sam-

ple space of the conditional distribution of simulator model outputs, and this

approximation can be improved by increasing N .

4. Calibrating the Stochastic Water Temperature Model

The water temperature model (2.1) is used to demonstrate the proposed

methodology. The model is formed from a seasonal effect component, Ta(t),

and a short-term fluctuation component, Rw(t). Many model forms have been

proposed to capture the short-term fluctuation component, and the model we

use is the simplest, suggesting that some small-scale discrepancy may be present
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Table 1. Prior distributions on the calibration parameters for the stochastic water tem-
perature model.

θ Symbol Description Prior
1 a1 Overall temperature level Unif(10,20)
2 a2 Seasonal component scale Unif(10,20)
3 K Thermal diffusivity Unif(0,1)
4 t0 Seasonal component offset Unif(50,80)
5 σ Short-term fluctuation deviation Unif(0,1)

in our calibration.

Plausible ranges for the calibration parameters were chosen by performing

an exploratory data analysis, and uniform priors were assigned to each parameter

as summarized in Table 1. A set of m = 30 calibration parameter settings were

chosen using a space-fillling design (Johnson, Moore and Ylvisaker (1990)) and

N realizations of the simulator were sampled at each of these settings. Arranging

these N realizations column-wise for each setting of the calibration parameters

results in our simulator output matrix, Φu, u = 1, . . . , N. Prior distributions

for the remaining parameters were chosen according to the default approach

described in Sections 3.4 and 3.6. Of particular importance are setting the priors

for the discrepancies and λf . The water temperature modeling literature suggests

that the more complex models for Rw(t) are additive in nature. We assume only

additive discrepancies and fix κ = 1. As the additive discrepancy is expected to

account for non-smooth small-scale behaviour, we center the prior mean at µδ =

0 and use the exponential correlation model (Cressie (1993)) for the discrepancy

correlation matrix Rδ(ψ).

The prior on ψ was chosen to emphasize short-range correlation, taking ψ ∼
Beta(αψ = 1, βψ = 100). The scale of the discrepancy was selected to match the

95th percentile (i.e. ± 2 s.d.) of the range of observed residuals between the

observations y and the first m = 30 simulator realizations, Φ1. Empirically, the

variance of this residual was around 100. Choosing a shape parameter of αδ = 10,

we matched the inverse of the prior mean of λδ by re-arranging (αδ/βδ)
−1 = 100,

leading to the prior distribution Gamma(αδ = 10, βδ = 1, 000).

The prior on the observational error, λf , was selected to match a small per-

centage, say 10%, of the residual variance calculated above. From this estimate,

we arrived at the prior distribution λf ∼ Gamma(αf = 10, βf = 100).

The number of components, nc, retained in the bases expansion was investi-

gated using the leave-one-out cross-validation approach described in the Supple-

mentary Materials. The cross-validated MSPE for predicting the held-out mean
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Table 2. Effect of varying the number of bases, nc, used in the model on the cross-
validated MSPE of the mean held-out state and MSE of the estimated calibration pa-
rameters.

nc = 2 nc = 3 nc = 4 nc = 5 nc = 6 nc = 8 nc = 10
MSPE 2.74 2.71 0.044 0.018 0.067 0.048 0.051
MSE(θ) 0.118 0.097 0.047 0.065 0.076 0.072 0.058

−

Figure 1. 25,000 posterior samples of the calibrated stochastic simulator and uncertain-
ties. The grey lines represent the prior realizations of the stochastic simulator, while the
vertical black lines represent the 95% credible intervals for the calibrated discrepancy-
corrected simulator and the dashed lines represent 95% credible intervals for the observed
process. The vertical dotted lines are 95% credible intervals for the additive discrepancy
component, which is at the level of zero (horizontal dotted line) but does exhibit small-
scale structure as expected.

simulator and the mean squared error (MSE) of the posterior mean calibration

parameter estimates (scaled to unit interval) are summarized in Table 2. The

results of this cross-validation study suggest nc = 4 bases is a good compromise

between accuracy and computational cost.

The results of calibrating the water temperature simulator to the Africa, OH

dataset are shown in Figures 1 and 2. The emulator (black lines) in Figure 1 fits

the data well, demonstrating good coverage of the observed data (red dots), yet

there is clear evidence of a small-scale discrepancy (blue lines). The presence of

this discrepancy, which appears discontinuous and autocorrelated, is in agreement

with the assumptions found in more advanced models of Rw(t) in the literature,
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Figure 2. Kernel density estimates for the calibration parameters of the water tempera-
ture stochastic simulator based on 25,000 posterior samples. Calibration paramerers a1
(solid) and a2 (dashed) shown in the left pane, t0 shown in center pane, K (solid) and σ
(dashed) shown in right pane.

such as AR(1) and AR(2) models (Caissie, El-Jabi and St-Hilaire (1998)).

The MCMC algorithm for the proposed calibration model was iterated for

N = 50, 000 steps, with the first 25, 000 being discarded as burn-in. The pos-

terior densities for the calibration parameters shown in Figure 2 indicate that

most parameters are well determined despite the stochasticity of the simulator.

However, the thermal diffusivity coefficient, K, is less well determined than the

annual model component parameters a1, a2, and t0. This is not suprising given

the presence of discrepancy and the underparameterized form of Rw(t) employed.

With a more flexible model of the small-scale structure for Rw(t), the diffusivity

coefficient might be better resolved.

In comparison, fitting the model using a single realization of the simulator

showed notable differences, particularly in the assessment of uncertainties. For

instance, the standard deviations of the posterior distributions of the calibration

parameters as summarized in Table 3 were consistently smaller when accounting

for simulator uncertainty as compared to deterministic calibration. This suggests

that accounting for simulator uncertainty can actually remove uncertainty that

might otherwise be mapped to parameter estimates when performing determin-

istic calibration.

The correlations of the estimated parameters shown in Table 4 are not cap-

tured when assuming the simulator is deterministic. This can be important infor-

mation for interpreting the simulator or performing variable selection. Moreover,

this suggests that the joint distribution of the calibration parameters is better

determined when the stochasticity of the simulator is accounted for as compared

to a deterministic analysis.
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Table 3. Sample standard deviations of posterior calibration parameter realizations using
stochastic versus deterministic calibration models.

a1 a2 K t0 σ
Stochastic Calibration 0.045 0.062 0.218 0.025 0.291
Deterministic Calibration 0.056 0.109 0.263 0.032 0.286

Table 4. Pearson correlations of parameters estimated using the stochastic versus deter-
ministic (in brackets) calibration models.

a1 a2 K t0 σ
a1 1.00 −0.72 (−0.13) 0.17 (−0.13) 0.23 (0.02) −0.02 (−0.01)
a2 −0.72 (−0.13) 1.00 −0.26 (−0.09) −0.32 (−0.13) −0.01 (0.01)
K 0.17 (−0.13) −0.26 (−0.09) 1.00 0.15 (0.28) 0.01 (0.00)
t0 0.23 (0.02) −0.32 (−0.13) 0.15 (0.28) 1.00 −0.02 (0.08)
σ −0.02 (−0.01) −0.01 (0.01) 0.01 (0.00) −0.02 (0.08) 1.00

While the predictions of both models are good (as one would expect since

both models include discrepancies), the second order properties again show some

differences. For instance, the standard deviations of the posterior distributions

for the predicted process are similar for both models, but the standard devia-

tion for the discrepancy when accounting for simulator uncertainty (0.776) was

about 10% smaller than when performing deterministic calibration (0.862). Sim-

ilarly, the standard deviation of the posterior emulated state, when accounting

for simulator uncertainty (0.607), was about 17% smaller than when perform-

ing deterministic calibration (0.732). Taken together, these results demonstrate

that accounting for uncertainty in stochastic simulators can lead to more efficient

uncertainty quantification in the resulting calibration.

5. Calibrating the JAK-STAT Model

To show how we enable calibration of probabilistic differential equation

solvers that capture state discretization uncertainty as part of the probabilis-

tic solution, we study the JAK-STAT system described in Section 2. Because

(2.2) has no closed form solution, Chkrebtii et al. (2016) performed exact infer-

ence by directly modeling uncertainty associated with discretization of the states

within the inverse problem. The drawback of this approach is the computational

expense incurred. A computer model calibration approach could significantly

reduce the computational cost, but must account for the stochastic nature of

the probabilistic solver. We overcome this difficulty by making calibration for

probabilistic solution simulators feasible.
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Table 5. Prior distributions on the calibration parameters for the JAK-STAT system.

Symbol Description Prior
θi, i = 1, . . . , 4 Reaction rates of first for states χ2

1

θ5 Time delay χ2
6

θ6 Initial concentration of the first state N
(
y(3)(0), 402

)
θ7 Prior precision of the probabilistic solver 100 + Log-N (10, 1)
θ8 Length-scale of the probabilistic solver 0.12 + Exp (0.1)

Our goal is to infer calibration parameters θ ∈ R8 where θ1 through θ4 rep-

resent reaction rates in model (2.2), θ5 is the time required for the process of

gene transcription to begin and for the reaction states to return to the origi-

nal state, θ6 is the initial concentration for the first reaction state, and θ7 and

θ8 are unknown hyperparameters associated with the probabilistic solver. Prior

distributions on the calibration parameters are provided in Table 5. For a given

parameter regime, the model of discretization uncertainty of (2.2) produces pos-

terior draws based on an equally-spaced time discretization grid of size 500. The

emulator is constructed from a random design with m = 100 calibration param-

eter settings drawn from the prior distributions in Table 5. For this application,

we expect that fine scale structure in the state may not be captured by using a

small number of parameter settings to construct the emulator, therefore an addi-

tive model discrepancy, δ, is introduced on the observation process as described

in Section 3.3. It is assigned a Gaussian process prior with stationary squared

exponential covariance structure and zero prior mean µδ. The prior model on

the precision parameters λδ,λf is described in Sections 3.4 and 3.6.

Our analysis is based on 20,000 posterior samples. The marginal posteriors

over the observation processes are superimposed on the data in Figure 4, and

fit well overall without fully capturing all the small scale structure, as expected.

The discrepancy captures structure that is not contained in the emulated model

space, including any misspecification in the original delay differential equation

model for the system itself. We find that the discrepancy captures very little

structure, and is rather diffuse and essentially stationary. Interestingly, increas-

ing the number, m, of sampled parameter settings from 20 and 50 (shown in

the Supplementary Materials) to 100 had little effect on the fit of the model to

the data and structure of the discrepancy although with a noticeable decrease in

uncertainty. This suggests that parameter regions of very high posterior proba-

bility may be small relative to scale of parameter sampling regions, as expected

for such highly nonlinear problems.
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Figure 3. Kernel density estimates of the marginal stochastically calibrated posterior
(gray) with m = 100 model runs, and exact posterior (black, Chkrebtii et al. (2016)) for
the JAK-STAT system. Marginal prior densities are shown as dotted lines.

Increasing the number of model runs does, however, push the posterior den-

sity of several rate parameters further from the prior (posterior density plots for

m = 20, 50 computer model runs are provided in the Supplementary Materials).

Estimated marginal posterior densities for the calibration parameters are shown

in Figure 3. Based on observed differences from the marginal priors, we conclude

that the data is informative for all the parameters except for the initial concen-

tration, θ6, of the first state, which depends on the scaling of the concentration

units and is not identifiable given the experimental data (e.g. Raue et al. (2009)).

Further, the marginal posterior distributions of the calibrated model are more

diffuse than their exact counterparts in Chkrebtii et al. (2016), due to the contri-

bution of uncertainty from emulating the exact model based on a finite number,

m, of model evaluations. Despite this, the posterior modes align well with their

exact analogues while computational gain is dramatic. Indeed, performing the

calibration using the proposed method requires about 30 minutes on a modern

notebook computer for 20,000 samples of the posterior, while the same number

of samples using the full solution method of Chkrebtii et al. (2016) requires over

a day.

6. Discussion

In this paper we have presented an approach for calibration stochastic simu-
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Figure 4. 200 samples from the marginal calibrated posterior with m = 100 model
runs (top row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison
(bottom row, Chkrebtii et al. (2016)) over the first two observation processes of the JAK-
STAT system, for which experimental data is available. Experimental data locations are
shown as red circles with error bars representing twice the experimental error standard
deviation.

lators in a computationally efficient manner while allowing for the uncertainty in

the simulator outupts to be propagated through to the calibration parameter es-

timates as well as the state and discrepancy predictions. Our method also allows

for multiple states to be calibrated simultanenously within the same framework.

The proposed model can thus be viewed as a higher-dimensional generalization of

the deterministic, single-state EOF-based approach to calibration first described

in Higdon et al. (2008).
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Applying the methodology to our two motivating examples suggests that

accounting for the non-determinism in some simulators can be important. In the

water temperature example, a simple stochastic simulator of water temperature

captures seasonal variability through a functional form and small-scale structure

through a thermal diffusivity model that connects ambient air temperature data

to the water temperature. The proposed method provided plausible estimates

of the model parameters while capturing expected discrepancy in the model for

diffusivity due to the underparameterized form of the small-scale structure used.

The discrepancy found is in agreement with more complex models of thermal

diffusivity found in the river water temperature modeling literature. In compari-

son, deterministic calibration underestimated pairwise correlations of calibration

parameters and had wider uncertainties for most estimated quantities. This

suggests that accounting for the stochasticity of the simulator more accurately

captures the full joint distribution of parameters.

In the second example, the proposed methodology enables emulation of

Bayesian probability models of discretization uncertainty in the solution of dif-

ferential equations. We have demonstrated its feasibility and computational ef-

ficiency on the complex JAK-STAT gene trancription network. The resulting

posterior parameter distributions as well as state and discrepancy estimates are

largely in close agreement with the exact method found in the literature. Yet,

the computational cost is vastly reduced. This result is a promising step for-

ward in extending the scope of discretization uncertainty modeling to possibly

large-scale systems, such as those used in oceanography and atmospheric sci-

ences, where small perturbations in the state, such as those due to discretization

as well as model discrepancy, can have a substantial impact.

One limitation of the model described is the possibility of additional inputs,

z, which can be controlled both in the simulation model and in the real-world.

A common example of this situation is that of settings of temperature and pres-

sure in engineering applications. When outputs and observations are available

on the same spatial-temporal grid for each setting of the joint input parame-

ters (θ, z), our approach can easily accomodate this by including the additional

variables z1, . . . , zm and z in the GP emulation model in (3.2), recognizing that

the setting of these parameters for the field data, z, is fixed and known. More

generally, our model cannot accomodate spatial-temporal inputs that are not

crossed with the input settings (θ, z). Here, the conceptual framework of tensors

and matricization introduced in Section 3 suggests the possibility of modeling

more than one matricization in order to emulate the desired outputs in such
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a scenario. Another possible extension would be the case of multiple simula-

tion models which has been addressed by Bayesian Model Averaging techniques

(Raftery et al. (2005); Hoeting et al. (1999)). Combining all three sources of

uncertainty - multiple simulators, simulator emulation and stochastic simulators

- would be a challenging but potentially very interesting endeavor.

We have developed a Bayesian model for calibrating complex multi-state

non-deterministic simulators. Our treatment of simulator stochasticity is more

honest than assuming a simple i.i.d. error (nugget) model, yet the approach only

relies on samples of the simulator being available rather than knowledge of its

full distribution in closed-form, which is typically unavailable. The method is

implemented in R (R Core Team (2012)) and will shortly be available as package

cmce on CRAN.

Supplementary Materials

The online supplement contains additional details of the MCMC algorithm,

calibrating prior distributions, and additional figures for the JAK-STAT example.
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