
SPECIAL FEATURE: REVIEW Bayesian, Fisherian, error, and evidential statistical
approaches for population ecology

Bayesian data analysis in population ecology: motivations,
methods, and benefits

Robert M. Dorazio1

Received: 17 October 2014 /Accepted: 10 August 2015 / Published online: 7 September 2015

� The Society of Population Ecology and Springer Japan (outside the USA) 2015

Abstract During the 20th century ecologists largely

relied on the frequentist system of inference for the anal-

ysis of their data. However, in the past few decades ecol-

ogists have become increasingly interested in the use of

Bayesian methods of data analysis. In this article I provide

guidance to ecologists who would like to decide whether

Bayesian methods can be used to improve their conclusions

and predictions. I begin by providing a concise summary of

Bayesian methods of analysis, including a comparison of

differences between Bayesian and frequentist approaches

to inference when using hierarchical models. Next I pro-

vide a list of problems where Bayesian methods of analysis

may arguably be preferred over frequentist methods. These

problems are usually encountered in analyses based on

hierarchical models of data. I describe the essentials

required for applying modern methods of Bayesian com-

putation, and I use real-world examples to illustrate these

methods. I conclude by summarizing what I perceive to be

the main strengths and weaknesses of using Bayesian

methods to solve ecological inference problems.

Keywords Frequentist inference � Hierarchical
modeling � Missing data � Occupancy model � Spatial
analysis � State-space modeling

Introduction

During the 20th century scientists in many fields of study

(including ecology) largely relied on the frequentist system

of inference for the analysis of their data. This approach

was appealing for at least two reasons. First, frequentist

inference could be used to solve many of the problems

routinely encountered by scientists (i.e., parameter esti-

mation, prediction, hypothesis testing, and model criticism

and selection). Second, the approach was practical in the

sense that it could be implemented using commonly

available computing resources and algorithms.

In contrast, the Bayesian approach to inference did not

enjoy these advantages during most of the 20th century.

Though Bayesian inference was much older (Bayes 1763;

Laplace 1774a, b) and known to be remarkably simple and

versatile (at least conceptually), relatively few classes of

models could be fitted to data using commonly available

computing resources (Jeffreys 1961; Box and Tiao 1973);

thus Bayesian inference was not widely used by scientists.

The main impediment to Bayesian analysis was the

inability to compute high-dimensional integrations

required for models that contained many parameters.

This computational barrier was essentially eliminated

during the last two decades of the 20th century when the

widespread availability of high-speed computing catalyzed

the development of a set of generic algorithms for fitting

Bayesian models to data. These algorithms, known col-

lectively as Markov chain Monte Carlo (MCMC) algo-

rithms, can be used to fit any Bayesian model, including

models whose posterior density cannot be evaluated ana-

lytically or approximated numerically (Geyer 2011; Robert

and Casella 2011).

Armed with MCMC algorithms, 21st-century scientists

can easily conduct Bayesian analyses of their data. In some
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cases software, such as WinBUGS (http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/contents.shtml),

JAGS (mcmc-jags.sourceforge.net), or Stan

(mc-stan.org/), may be used to facilitate analysis.

More importantly, however, is that scientists are free now

to formulate entirely new classes of models for the analysis

of their data, models that allow sampling processes, which

lead to observations (data), to be linked with scientific

processes, whose effects may not be directly observable but

are usually the subjects of interest. Various adjectives have

been used to describe these models, including ‘‘hierarchi-

cal’’, ‘‘state-space’’, or ‘‘multi-level’’; however, a common

feature of these models is that separate—and often differ-

ent—assumptions are used to describe the variation in

observed quantities and the variation in latent (unobserved)

quantities of scientific interest.

The rapid development of new classes of hierarchical

models has fueled, to some extent, the use of Bayesian

inference. In the field of ecology, for example, Bayesian

methods of analysis have been described in several

recently published books (Clark 2007; McCarthy 2007;

Royle and Dorazio 2008; King et al. 2010; Link and

Barker 2010; Kéry and Schaub 2012; Parent and Rivot

2013). While the analyses in these books range from

partially to fully Bayesian, all of these books describe

various kinds of hierarchical models and illustrate the

inferential benefits of using Bayesian methods to fit these

models.

The present article is not intended as a review of the

entirety of Bayesian models and topics described in these

books; nor is this article intended to resurrect any ide-

ological or philosophical comparisons of Bayesian and

frequentist systems of inference. Instead, my goal is

entirely utilitarian: I attempt in the present article to

provide guidance to ecologists, in particular, to popula-

tion ecologists, who would like to decide whether

Bayesian methods can be used to improve their conclu-

sions and predictions. I begin by providing a (hopefully)

concise summary of Bayesian methods of analysis,

including a comparison of differences between Bayesian

and frequentist approaches to inference when using

hierarchical models. Next I provide a list of problems

where Bayesian methods of analysis may arguably be

preferred over frequentist methods. These problems are

usually encountered in analyses based on hierarchical

models of data. In the third and fourth sections of this

article, I describe the essentials required for applying

modern methods of Bayesian computation (i.e., MCMC)

and I use real-world examples to illustrate these meth-

ods. I conclude the article by summarizing what I per-

ceive to be the main strengths and weaknesses of using

Bayesian methods to solve ecological inference

problems.

The Bayesian approach to learning

Suppose we have a model that describes the processes

assumed to have produced an observed set of data. For the

purposes of learning, this model is used to approximate the

complexities of Nature’s true data-generating ‘‘model.’’ Let

h denote the parameters (a vector of unknown values) of

the model, and let y ¼ ðy1; . . .; ymÞ0 denote the data (a

vector of m observations). We wish to make inferences

(that is, to learn) about h given the information in y.

Recall that under the frequentist approach to inference,

the model and its unknown parameters h are viewed as

generating a hypothetical sequence of data sets, say

h ! yð1Þ; yð2Þ; yð3Þ; . . .

via repeated sampling or repeated experiments. Any

member yðiÞ of this sequence and its associated parameter

estimate ĥðiÞ are viewed as random outcomes when making

inferences about h.

Under the Bayesian approach to inference, the view that

h has an unknown fixed value which generates data y

randomly under the model’s assumptions remains valid. A

distinguishing characteristic of the Bayesian approach is

that uncertainty about the magnitude of h prior to

observing the data is specified formally using a prior dis-

tribution. In addition, once the data from a sample or

experiment have been collected, y is regarded as fixed (not

random) and all inferences about h are made conditional on

the observed value of y and the prior distribution. The

Bayesian approach does not assume that h is random

(Laplace 1774b; Lindley 2000). Probability is simply used

to express uncertainty in the magnitude of h both before

and after the data y have been observed. The Bayesian

approach does assume that the path to updating prior

uncertainty in h must follow the axioms of probability

theory and its calculus. Unlike frequentist inference, the

Bayesian approach to inference does not rely on the idea of

a hypothetical sequence of repeated or replicated data sets

or on the asymptotic properties of estimators of h. In fact,

Bayesian probability statements (inferences) about h are

valid for any sample size, as will be shown shortly.

Conceptually, computing Bayesian inferences is quite

straightforward. The calculus of probabilities is used for

everything, including estimation of parameters, prediction

of unknown quantities, and quantification of uncertainties.

To be specific, let ½yjh� denote the probability density of the
data1 given the assumptions of the model and the value of

its parameters h, and let ½h� denote the probability density

1 I use bracket notation (Gelfand and Smith 1990) to specify

probability density functions; thus, [x, y] denotes the joint density of

random variables X and Y, [x | y] denotes the conditional density of X

given Y ¼ y, and [x] denotes the unconditional (marginal) density of X.
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that specifies prior beliefs about the magnitude of h. Using

the definitions of conditional and joint probabilities yields

Bayes’ rule:

½hjy� ¼ ½y; h�
½y� ¼ ½yjh�½h�

½y�

where the marginal density of the data, ½y� ¼
R
½yjh�½h�dh, is

the normalizing constant for ½hjy�. This density function is

often called the posterior density because it expresses

quantitatively how prior beliefs about the magnitude of h

are changed given a model of the data ½yjh� and the

information in y. The posterior distribution of h is

expressed as hjy to indicate the explicit conditioning on the

fixed value y. The posterior provides the basis for every

aspect of Bayesian inference (estimation, prediction, etc.).

For example, results of Bayesian analyses are often

reported using summaries of the posterior distribution of h,

such as the posterior mean EðhjyÞ or variance VarðhjyÞ.
Alternatively, quantiles of the posterior distribution (such

as Prðha � h� h1�aj yÞ ¼ 1� a) may be used to express

uncertainty in the magnitude of h. Posterior quantiles are

called credible limits to distinguish them from frequentist

confidence limits, which are based on the uncertainty of

estimates ĥ in hypothetical repeated samples or

experiments.

A simple hierarchical model

In the previous section I described Bayesian inference in

general terms. For some ecologists this description may be

too abstract to be fully understood or appreciated. There-

fore, to illustrate the simplicity of Bayesian learning, I

describe in this section an analysis of data based on a

hierarchical model that is widely used in ecology. This

model was developed to estimate the occurrence of a

species (plant or animal) from data collected in presence-

absence surveys. Importantly, these surveys use a sampling

protocol that allows species occurrences to be estimated

while accounting for the effects of errors in detection.

Suppose m sites were selected at random from a region

where a particular species was thought to be present. In

addition, suppose J independent surveys were conducted at

each site to determine whether this species was present or

‘‘absent’’ (more correctly, not detected). Let yi 2 f0; . . .; Jg
denote the number of surveys where the species was

detected at the ith site. The vector y ¼ ðy1; . . .; ymÞ0 sum-

marizes the observed data. The hierarchical model first

proposed for the analysis of these data is often called a

model of ‘‘site-occupancy’’ (MacKenzie et al. 2002; Tyre

et al. 2003) or simply ‘‘occupancy’’ (MacKenzie et al.

2006; Royle and Dorazio 2008). Let Zi denote a binary-

valued random variable that indicates whether the species

was present (Zi ¼ 1) or absent (Zi ¼ 0) at site i. The sim-

plest occupancy model makes two distributional

assumptions:

Zi �BernoulliðwÞ
YijZi ¼ zi �BinomialðJ; pziÞ

where w denotes the probability of species occurrence (i.e.,

presence of one or more individuals of the species) and

where p denotes the conditional probability of detecting the

species given that it was present. We wish to learn about

the values of the parameters w and p given the information

in the observed data y. In some cases we also want to learn

about the value of �Z ¼ ð1=mÞ
Pm

i¼1 Zi, which equals the

proportion of surveyed sites in which the species was

present. This quantity is defined unambiguously regardless

of the model actually used to analyze the data. Shortly we

will see that �Z can be viewed as a derived parameter of the

occupancy model.

To fit this occupancy model using Bayesian methods,

assume that ½w; p� ¼ ½w�½p� specifies the prior density of

parameters w and p. In other words, prior to observing the

data, w and p are assumed to vary independently. The

posterior density of the parameters h ¼ ðw; p; Z1; . . .; ZmÞ0
is

½w; p; zjy� ¼ ½w�½p�
Qm

i¼1½zijw�½yijJ; pzi�
½y� ð1Þ

¼ ½w�½p�
½y�

Ym

i¼1

wzið1� wÞ1�zi
J

yi

� �

ðpziÞyið1� pziÞJ�yi ð2Þ

where the normalizing constant ½y� cannot be expressed in

closed form. I could have removed z from this density (by

integration) to obtain the posterior density of just w and p:

½w; pjy� ¼ ½w�½p�
½y�

Ym

i¼1

w
J

yi

� �

pyið1� pÞJ�yi þ ð1� wÞIðyi ¼ 0Þ

ð3Þ

¼ ½w�½p�C
½y� fwnpy� ð1� pÞnJ�y� g � fwð1� pÞJ þ 1� wgm�n ð4Þ

¼ ½w�½p�
½y� ½yjw; p� ð5Þ

where n ¼
Pm

i¼1 Iðyi [ 0Þ is the number of sites where the

species was detected, y� ¼
Pm

i¼1 yi is the total number of

detections in the sample of m sites, and C ¼
Qm

i¼1

J

yi

� �

.

Note that ½yjw; p� is the marginal likelihood function for the

parameters h ¼ ðw; pÞ0. The normalizing constants in

Eqs. 2 and 5 are actually different, but neither can be

expressed in closed form; therefore, a Bayesian analysis of

the data gains little by integrating away the parameter

values z. In fact, doing so is actually counterproductive
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when inferences are required for �Z, the proportion of sur-

veyed sites in which the species was present. For example,

it is easily proved that PrðZi ¼ 1jyi [ 0Þ ¼ 1, that is, a

species must have been present at site i if it was detected at

that site. If the species was not detected at site i, we can

show also that PrðZi ¼ 1jyi ¼ 0Þ ¼ wð1� pÞJ=fwð1� pÞJþ
1� wg. These two results imply that �Z can be estimated as

follows:

�Z ¼ ðnþ N0Þ=m ð6Þ

where n is the number of sites where the species was

detected and where N0 is a random variable for the number

of sites where the species was present but not detected.

Given the model parameters, N0 has the following

distribution:

N0jn;w; p�Binomialðm� n; wð1� pÞJ=fwð1� pÞJ þ 1� wgÞ

Therefore, if the values of w and p were known, we could

estimate the expected value of �Z using

Eð�Zjn;w; pÞ ¼ n

m
þ m� n

m
� wð1� pÞJ

wð1� pÞJ þ 1� w
ð7Þ

Of course, the parameters w and p are unknown and must

be estimated from the data. In addition, the estimator of �Z

should account for posterior uncertainty in these parame-

ters. In a Bayesian analysis of the data, probability calcu-

lations are used to infer the values of �Z. Specifically, the

posterior probability of a particular value of �Z is equivalent

to the posterior probability of a particular value of N0

(owing to Eq. 6):

Prð�Z ¼ ðnþ n0Þ=m j yÞ

¼
Z 1

0

Z 1

0

PrðN0 ¼ n0jn;w; pÞ ½w; pjy� dwdp
ð8Þ

where �Z 2 fn=m; ðnþ 1Þ=m; . . .; 1g and where the proba-

bility in the integrand corresponds to the binomial mass

function of the conditional distribution of N0. Equation 8

shows that the posterior probability of a particular value of
�Z averages (integrates) the binomial probabilities of n0
over the posterior distribution of w and p values. A similar

calculation yields the posterior expectation of �Z:

Eð�ZjyÞ ¼
Z 1

0

Z 1

0

Eð�Zjn;w; pÞ ½w; pjy� dwdp ð9Þ

¼ n

m
þ m� n

m

Z 1

0

Z 1

0

wð1� pÞJ

wð1� pÞJ þ 1� w
½w; pjy� dwdp

ð10Þ

To illustrate a Bayesian analysis using real data, I fitted the

occupancy model to a set of salamander data that have

been analyzed previously using frequentist methods

(MacKenzie et al. 2006, p. 99–101). The data were

obtained by conducting J ¼ 5 biweekly presence-absence

surveys of Blue-Ridge two-lined salamanders (Eurycea

wilderae) at each of m ¼ 39 sample locations (sites).

During the period of sampling (April to mid-June) the

occupancy status (presence or absence) of these salaman-

ders was assumed to have been constant at each site.

Salamanders were detected at n ¼ 18 of the sites that were

surveyed. The number of surveys where salamanders were

detected equaled one (12 sites), two (1 site), three (4 sites),

or four (1 site).

In the analysis of these data, I assumed uniform prior

distributions for w and p to specify prior ignorance about

the values of these parameters. For now, let’s ignore the

technical details of the analysis (MCMC algorithm pro-

vided in Electronic Supplementary Material (ESM) S1)

and focus on computing inferences for the model’s

parameters and for the proportion of sites occupied by this

species. The estimated posterior distributions of w, p, and �Z
are plotted in Fig. 1. The probability of detecting this

species during a single survey appears to have been much

less than one (posterior mean = 0.26; 95 % credible

interval = 0.16–0.38), so the observed proportion of sites

where salamanders were detected (n=m ¼ 0:46) is likely to
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Fig. 1 Estimated posterior distribution of the proportion of sites

occupied �Z and of the probabilities of occurrence w and detection

p obtained by fitting a Bayesian occupancy model to data collected

during presence-absence surveys of the Blue-Ridge two-lined

salamander
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be an underestimate of the true occurrence probability of

salamanders. In fact, the estimated posterior mean of w
equals 0.61 (95 % credible interval = 0.40–0.88), which is

about 30 % higher than the naive estimate provided by n /

m. The estimated posterior mean for the proportion of sites

occupied by salamanders equals 0.62, only slightly higher

than that of w. However, the estimated 95 % credible

interval for �Z ranges from 0.46 to 0.87, indicating that

uncertainty about �Z is lower than that of w.
To compare the Bayesian analysis of the salamander

data with a frequentist analysis, I computed maximum

likelihood estimates (MLEs) of w and p using ½yjw; p� as the
marginal likelihood function. The MLEs and 95 % confi-

dence intervals (ŵ ¼ 0:59 (0.35–0.80); p̂ ¼ 0:26 (0.16–

0.39)) are similar to the Bayesian estimates, which is not

surprising given the sample size and my choice of prior. In

a frequentist analysis �Z is estimated using the so-called

‘‘best unbiased predictor’’ (Laird and Ware 1982), which

equals �̂Z ¼ Eð�Zjn; ŵ; p̂Þ ¼ 0:59 (using Eq. 7). However,

constructing a confidence interval for �Z is somewhat

problematic. The delta method can be used to approximate

Varð �̂ZÞ from the estimated covariance matrix of the MLEs,

but what distribution should be used to compute the con-

fidence interval? As an alternative Laird and Louis (1987)

proposed that confidence intervals be computed using

parametric bootstrapping. In this approach the MLEs are

used to simulate an arbitrarily large number of data sets and

the best unbiased predictor is computed for each of these

simulated data sets. A confidence interval for �Z then would

be estimated using quantiles of the simulated distribution

of best unbiased predictions. Applying this approach to the

salamander data yields a 95 % confidence interval of 0.38–

0.92. The lower limit of this confidence interval presents a

problem because it falls below n=m ¼ 0:46, the proportion

of sites where salamanders were observed. The problem

occurs because salamanders were ‘‘observed’’ at fewer than

n sites in some of the simulated data sets. Therefore, while

the parametric bootstrapping approach of Laird and Louis

(1987) may be useful in some cases, the approach also can

produce undesirable or unexpected results, as with the

salamander data.

Pros and cons of Bayesian inference

The Bayesian approach to learning is compelling because

it is conceptually and mathematically coherent and it is

entirely prescriptive. As noted by Little (2006, 2011),

once a model and prior distribution are specified, proba-

bility theory provides a clear path to inference regardless

of the target. The posterior distribution is used for every

inference regardless of whether the target is a model

parameter, a function of model parameters, or a model-

based prediction. No other system of inference—fre-

quentist or otherwise—is as clear and complete as the

Bayesian approach to learning.

Another benefit is that Bayesian inferences are valid for

any sample size. This benefit is particularly useful in

analyses of ecological data sets that contain relatively few

observations. In these cases the asymptotic assumptions

that form the basis of frequentist confidence intervals can

be violated, leading to incorrect inferences and conclu-

sions. While Bayesian inferences are valid in these cases,

information in the prior distribution can exert a substantial

effect on the results. For this reason, having to specify a

prior distribution can be viewed as the ‘‘price’’ paid for the

validity of Bayesian inference.

Prior specification may be regarded as a benefit or as a

disadvantage of Bayesian methods. In problems where

prior information about a model’s parameters exists or may

be elicited (say, using expert opinion), Bayes’ rule specifies

precisely how such information should be used when

computing inferences from data. On the other hand, in

problems where little is known about a model’s parameters

prior to data collection, an analyst may want to specify a

prior that is vague or non-informative. Unfortunately, the

definition of non-informative has proven to be elusive.

Considerable debate remains among statisticians that have

given the issue of non-informative priors careful thought

(Berger 2006). As a practical matter, I believe that speci-

fication of non-informative (or weakly-informative) priors

generally requires scientific context because most prior

distributions are not invariant to transformation of param-

eters. For example, a prior that is uniform for h can be quite

non-uniform (and informative) for gðhÞ, a one-to-one

transformation of h. As an illustration, recall that I assumed

a uniform prior distribution for w in the occupancy model

described earlier. In more complicated models this

parameter is often transformed to the logit scale (say,

b ¼ logfw=ð1� wÞg). It is easily proved that the prior

density of b induced by assuming a uniform prior for w is

pðbÞ ¼ expðbÞ=f1þ expðbÞg2, which is a symmetric,

unimodal function centered at zero with non-negligible

probability mass in the vicinity of zero (e.g.,

Prð�3� b� 3Þ¼: 0:905). Therefore, assuming a uniform

prior for w implies an informative prior for its logit.

An important limitation of Bayesian (and frequentist!)

methods of analysis is that they fail to include a unified

set of procedures for comparing alternative models of

data and for assessing the adequacy of an individual

model. In practice, model building often iterates between

proposing changes in model complexity and evaluating

the consequences of those proposals. Therefore, fre-

quentist ideas would seem to have an important role to

play in model development and assessment. Models that

Popul Ecol (2016) 58:31–44 35
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are selected to have good frequentist properties should be

less prone to errors in specification. For example, if a

model is selected so that its 95 % credible interval covers

an unknown parameter or an out-of-sample prediction

95 % of the time in (hypothetical) repeated surveys or

experiments, then the model would seem to be accept-

able. A wide variety of approaches have been developed

for Bayesian model comparison (Royle and Dorazio

2008; Hooten and Hobbs 2015), but none of these

approaches has produced a clear winner among statisti-

cians. Instead, there appears to be a growing appreciation

that while inferences and predictions are best conducted

using Bayesian methods, the evaluation and comparison

of models are best accomplished from a frequentist per-

spective (Box 1980; Rubin 1984; Draper 1996; Gelman

et al. 1996; Little 2006; Gelman 2011; Little 2011). The

idea here is that if a model’s inferences and predictions

are to be well-calibrated, they should have good operat-

ing characteristics in hypothetical repeated samples

(Royle and Dorazio 2008).

Motivations for Bayesian analysis

In the analysis of real data, I am generally pragmatic when

deciding between Bayesian and frequentist methods of

analysis. I am content to use frequentist methods in cir-

cumstances where those methods have the potential to

produce sensible and useful results. These circumstances

usually involve relatively simple models and large sample

sizes (i.e., sufficiently large for the application of fre-

quentist asymptotics). As a corollary, however, I recognize

that not all inference problems can be solved with fre-

quentist methods, and I view Bayesian methods as essential

for the solution of these problems.

The following list contains problems or circumstances

where I believe Bayesian methods of analysis can arguably

be preferred over frequentist methods. These problems are

often encountered when using hierarchical models of data

that link a submodel of sampling processes with a sub-

model of ecological processes, whose latent (unobserved)

effects are often the subject of interest.

Inference for latent state variables In many problems

the target of inference is a set of parameters or state vari-

ables that lies at an intermediate level of a hierarchical

model. The set of occupancy state variables fZ1; . . .; Zmg
defined in hierarchical models of presence-absence data

(MacKenzie et al. 2006; Royle and Dorazio 2008; Dorazio

and Taylor Rodrı́guez 2012; Johnson et al. 2013) is an

example. The set of site-specific abundance parameters

defined in metapopulation models of spatially referenced

counts (Royle and Dorazio 2006, 2008 chapter 8) is

another example. In other problems interest may be

focused on a quantity whose definition transcends a par-

ticular model but can be computed as a function of a

model’s latent state variables (e.g., the proportion of sites

occupied in presence-absence surveys). In still other

problems, predictions of latent state variables at unsampled

locations, such as predictions of spread of invasive species

(Wikle 2003; Hooten and Wikle 2007), may be the target

of inference. A Bayesian analysis is straightforward to

apply in all of these inference problems. In contrast, the

frequentist solution to these problems, often referred to as

‘‘best unbiased prediction’’ (Laird and Ware 1982) or

‘‘empirical Bayes estimation’’ (Morris 1983; Laird and

Louis 1987), does not provide an automatic procedure that

can account fully for the uncertainty involved in estimating

a hierarchical model’s parameters.

Missing data problems Ideally surveys or experiments

are conducted such that responses and predictors are

measured for every unit of observation. Statistical analysis

then may be conducted on a complete set of data. Unfor-

tunately, missing observations are commonplace in real

surveys and experiments. The sources of missingness may

be random (e.g., equipment failure preventing sampling),

or they may be induced by design (e.g., non-detection of

animals in capture-recapture surveys). Missing observa-

tions are also common in restrospective analyses of

observational surveys, where the same sample locations

were not necessarily surveyed each year during some

longer period of time. Whatever the cause, accounting for

missingness with frequentist methods generally requires

difficult marginalizations to evaluate the likelihood func-

tion for the observed, but incomplete, data (Little and

Rubin 2002). In contrast, Bayesian methods—especially

those based on MCMC sampling—provide a straightfor-

ward solution to inference problems with missing data.

Kéry et al. (2009), for example, showed how Bayesian

methods could be used to estimate temporal trends in

abundance even though survey data were missing from

different locations in different years.

Intractable likelihood functions In some classes of

statistical models the likelihood function of the observed

data cannot even be evaluated, much less maximized. The

number of parameters in these models typically increases

with the sample size and some parameters must be

removed (by integration) to obtain the observed data

likelihood. A problem occurs when the integrations can-

not be done analytically and cannot be accurately

approximated using numerical methods or simulation. The

likelihood function for models of non-Gaussian responses

with spatial dependence (Diggle et al. 1998) provides a

good example. Bayesian methods based on MCMC

algorithms are essential for fitting these models. For

example, Bayesian analyses have been used to predict

maps of spatially correlated, latent abundances and
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occurrences of wildlife species (Royle and Wikle 2005;

Johnson et al. 2013).

Complex models of different sources and types of data

Using modern methods of Bayesian computation, ecolo-

gists may formulate and fit complicated models that allow

inferences to be drawn from different sources and types of

data. An example is the class of integrated population

models (Buckland et al. 2007; Schaub and Abadi 2011)

that allow a population’s dynamics to be estimated using a

joint analysis of demographic data (e.g., capture-recapture

surveys of individuals) and time-series data (e.g., annual

counts of the population). In some cases the different types

of data can be analyzed separately with or without using

Bayesian methods. In other cases information shared

among different data types allows inferences to be com-

puted for parameters that otherwise would not be estim-

able. While parameter identifiability is naturally a concern

in these cases and must be considered, the Bayesian

approach to inference provides a straightforward way to fit

these models.

Note that my list does not include two items that are

often cited as motivations for conducting a Bayesian

analysis: use of prior information and small sample size.

In analyses of data from ecological surveys or experi-

ments, prior information about the targets of inference is

often unavailable or ignored, so it is hard to argue that

methods of ecological analysis are driven by access to

prior information. On the other hand, when prior infor-

mation does exist, there is no doubt that inferences can

benefit from this information (e.g., see McCarthy and

Masters 2005; Morris et al. 2013). Regarding sample size,

Bayesian methods should definitely be preferred for valid

inference when there is little data; however, an analyst

must be willing to accept that the prior can influence the

results of the analysis in these cases. In my experience

when ecologists are confronted with this reality, they

often become motivated to collect additional data so that

the effects of the prior become less important to their

conclusions.

MCMC methods of fitting Bayesian models

There are many texts that describe Bayesian computional

methods and MCMC methods in particular. One of the

earliest book-length treatments by Tanner (1996) is still

highly relevant; however, a more comprehensive and up-

to-date treatment of MCMC methods is provided in the

handbook edited by Brooks et al. (2011). In this section I

describe the essentials required for applying modern

methods of Bayesian computation. My intention is to

provide an introduction to the subject, not an exhaustive

description of MCMC methods.

Recall that for many models the normalizing constant

½y� ¼
R
½yjh�½h�dh of the posterior density function ½hjy�

cannot be calculated, especially when models contain

many parameters. In these cases summaries of the posterior

distribution can be estimated using MCMC algorithms. The

idea is to construct a Markov chain for the model’s

parameters whose stationary (invariant) distribution is

equivalent to the posterior hjy provided a set of technical

conditions are satisfied (irreducibility, Harris recurrence,

reversibility). By simulating an arbitrarily long chain (say,

hð1Þ; hð2Þ; . . .; hðMÞ), the posterior expectation of a function

gðhÞ,

EðgðhÞjyÞ ¼
Z

gðhÞ½hjy�dh;

can be approximated by the arithmetic average

�gM ¼ 1

M

XM

i¼1

gðhðiÞÞ:

This estimator is justified through the Markov chain strong

law of large numbers: If EðjgðhÞj jyÞ\1, then �gM !
EðgðhÞjyÞ almost surely as M ! 1 (Flegal and Jones

2011; Geyer 2011). Therefore, by using an appropriate

MCMC algorithm, summaries of the posterior distribution

can be estimated using ergodic averages without having to

evaluate the posterior’s normalizing constant.

An important practical consideration for using these

theoretical results involves the choice of M. A Markov

chain must be run sufficiently long to have converged to its

stationary distribution; however, in practice the assessment

of convergence is usually subjective and based on experi-

ence. In special cases M can be determined a priori if one

establishes a drift and minorization condition for the chain

(Hobert 2011). More commonly, however, Bayesian anal-

yses are conducted using black box MCMC (as coined by

Geyer 2011) wherein a Markov chain is constructed with

the appropriate stationary distribution (the posterior) but

nothing is known about the chain’s dynamics or its sta-

tionary distribution except what may be learned from

running the chain. In this situation the large of amount of

theory about convergence of Markov chains is not really

applicable (Geyer 2011).

This situation has generated a persistent folklore about

the practice of MCMC methods. This folklore includes the

idea of computing convergence diagnostics from multiple,

independent Markov chains constructed to have the same

stationary distribution. One such diagnostic, the ‘‘potential

scale reduction factor’’ (denoted by R̂) (Gelman and Shir-

ley 2011) is based on a comparison of variances within and

between different Markov chains. Although this diagnostic

seems sensible, it cannot be used to determine with cer-

tainty that a Markov chain has been run sufficiently long to
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guarantee convergence. Again, the convergence theory of

Markov chains does not suggest that R̂ or any other diag-

nostic provides a foolproof measure for assessing

convergence.

Given that posterior summaries must be estimated from

a finite-length Markov chain containing unknown amounts

of autocorrelation, every Bayesian analyst using MCMC

methods should estimate and report the magnitude of

Monte Carlo error associated with each estimate of a

posterior summary. Methods for estimating Monte Carlo

error are described by Flegal and Jones (2010, 2011).

Although Monte Carlo error generally declines with the

length of a Markov chain, an estimate of this error indicates

the reliability of an estimate of the posterior summary. In

practice, the estimated Monte Carlo error can be used to

construct an asymptotically valid confidence interval for

any posterior summary (Flegal and Jones 2011), thereby

allowing the reliability of the estimate of the posterior

summary to be assessed.

Several MCMC algorithms exist for constructing a

Markov chain whose stationary distribution is equivalent to

the posterior. I conclude this section by describing two of

these algorithms.

The Gibbs sampling algorithm

One of the most widely used MCMC algorithms is called

the Gibbs sampler. This algorithm is a special case of the

Metropolis-Hastings algorithm, and the two are often used

together to produce efficient hybrid algorithms that are

relatively easy to implement. To illustrate the Gibbs sam-

pler, consider a model that includes three parameters (that

is, h ¼ ðh1; h2; h3Þ0) and assume that the full conditional

distributions of each parameter are relatively easy to

sample. These distributions are defined by conditioning on

the data and on the value of all other parameters as follows:

– h1jh2; h3; y
– h2jh1; h3; y
– h3jh1; h2; y
To begin the Gibbs sampler, an arbitrary set of initial

values is assigned to each parameter, i.e., h1 ¼ hð0Þ1 ,

h2 ¼ hð0Þ2 , h3 ¼ hð0Þ3 , where the superscript in parentheses

denotes the iteration of the Gibbs sampler. The Gibbs

sampling algorithm proceeds by taking a random draw

from each full conditional distribution in sequence and

using the updated value of each parameter in subsequent

draws as follows:

Step 1: Draw hð1Þ1 � h1jhð0Þ2 ; hð0Þ3 ; y

Step 2: Draw hð1Þ2 � h2jhð1Þ1 ; hð0Þ3 ; y

Step 3: Draw hð1Þ3 � h3jhð1Þ1 ; hð1Þ2 ; y

This sequence of draws completes one iteration of the

Gibbs sampler and generates a new set of parameter values,

say h ¼ hð1Þ. Steps 1–3 are then repeated using the values

of h from the previous iteration to obtain the Markov chain

hð1Þ; hð2Þ; hð3Þ; . . .. Note that the order in which parameters

are updated does not matter, though it may affect how

rapidly the chain converges to its stationary distribution.

The Metropolis-Hastings sampling algorithm

Suppose the full conditional distributions are familiar and

easy to sample for some, but not all, parameters of a model.

In this case the unfamilar full conditionals may be sampled

using an alternative algorithm, the Metropolis-Hastings

sampler, whereas the remaining full conditionals may be

sampled using Gibbs. This approach leads to a hybrid

MCMC algorithm, and many classes of Bayesian models

may be fitted by adopting this approach.

To describe the Metropolis-Hastings (MH) algorithm,

suppose the normalizing constant C for the full conditional

distribution of a parameter h is unknown. In other words

suppose only the non-negative function f ðhÞ that satisfies

the following equation is known:

f ðhÞ ¼ C pðhÞ

where pðhÞ is the unknown density function and

C ¼
R1
�1 f ðhÞdh. The MH algorithm depends on a pro-

posal distribution to provide a potential update of the state

of the Markov chain: hðtÞ ! hðtþ1Þ. The proposal distribu-

tion must be easy to sample and have known probability

density function gðhÞ. Often—though not always—the

proposal specifies an update that depends on the current

state of the Markov chain hðtÞ. For this reason, the density

of the proposal distribution is often written conditionally as

gðhjhðtÞÞ. Using this notation, the MH sampling algorithm

is:

Step 1: Draw h� gðhjhðtÞÞ.
Step 2: Calculate the Hastings ratio

R ¼ ff ðhÞ gðhðtÞjhÞg=ff ðhðtÞÞ gðhjhðtÞg
Step 3: Accept h as hðtþ1Þ with probability a ¼

minðR; 1Þ
(that is, assign hðtþ1Þ ¼ h with probability a,

and assign hðtþ1Þ ¼ hðtÞ with probability

1� a).

The efficiency of a MH algorithm depends, of course, on

the choice of proposal distribution. If h contains many

parameters, a multivariate-t or multivariate normal distri-

bution is often used as a proposal by selecting its param-

eters to approximate the target distribution. This can be

accomplished by assigning the mean of the proposal
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distribution to equal the value of h that maximizes

logðf ðhÞÞ, which may be found analytically or numerically

depending on the form of f ðhÞ. The covariance of the

proposal distribution can be computed by inverting the

negative of the hessian matrix of logðf ðhÞÞ evaluated at its

maximum. The objective is to construct a proposal distri-

bution that allows the MH algorithm to sample regions of

high posterior density and not waste computing time by

proposing values of h with low posterior density.

The Gibbs and MH samplers are two of the most widely

used MCMC algorithms. Other algorithms exist (Brooks

et al. 2011), but many Bayesian models can be fitted using

either or both of these algorithms. All of the models

described in the present article were fitted using Gibbs and

MH algorithms (see ESM).

Examples of Bayesian analysis

In this section I illustrate how Bayesian methods of anal-

ysis can be used to solve two different inference problems.

The first is a missing-data problem that requires inferences

for the abundance of meadow voles (Microtus pennsyl-

vanicus) surveyed by capture-recapture methods. The

second problem involves an intractable likelihood function

that is produced by modeling unobserved sources of spatial

dependence among the abundances of seaside sparrows

(Ammodramus maritimus mirabilis) surveyed by double-

observer sampling.

Capture-recapture with individual-level covariates

The data in this example were collected using capture-

recapture surveys of meadow voles at the Patuxent Wildlife

Research Center in 1981 (Nichols et al. 1984). Each of the

voles encountered in these surveys was weighed and

examined to assess its sexual identity. The data have been

analyzed in many journal articles and books (e.g., Williams

et al. 2002, chapter 19). Here I analyze the recaptures of

male voles that were trapped and released during each of

five consecutive nights beginning June 27. Trapping yiel-

ded n ¼ 56 male voles, and individuals with higher body

masses were often captured more frequently (Fig. 2).

It seems clear from Fig. 2 that the effect of body mass

on capture probability should be considered when formu-

lating a model to estimate the unknown abundance of

voles. The problem is that the body masses of uncaptured

voles are not available; therefore, a model of these missing

data is needed to solve the inference problem. Let X denote

a random variable for the body mass of an individual vole,

and let Y denote a random variable for the number of

trapping periods (nights) in which an individual vole was

captured out of J ¼ 5 total periods. To relate these vari-

ables, assume

X�Normalðl; r2Þ
Y jX ¼ x�BinomialðJ; pðxÞÞ

where logitðpðxÞÞ ¼ a0 þ a1x specifies an individual’s

capture probability p(x) as a logit-linear function of its

body mass x and two unknown parameters (a0 and a1).
Recall that X and Y were observed only for the n indi-

vidual voles that were captured. Following the conven-

tional notation used in capture-recapture models of

demographically closed populations, let N denote the

unknown abundance of voles that were present and avail-

able to be captured in the traps. For the N � n unobserved

voles the number of captures is known (Y ¼ 0 for these

individuals); however, their body masses are not known. A

frequentist analysis of these data could be conducted using

the following likelihood function of the observed, but

incomplete, data:

½x; y; njN; a; l; r� ¼
N

n

� �

pN�n
0

Yn

i¼1

Nðxijl; r2Þ BinðyijJ; pðxiÞÞ

ð11Þ

where Nðxijl; r2Þ denotes the (normal) probability density

of xi, BinðyijJ; pðxiÞÞ denotes the (binomial) probability of

yi, and p0 is the unconditional probability that an individual
vole was not captured during the J trapping periods.

Computing p0 requires a marginalization over the unknown

body mass of this individual as follows:

p0 ¼ ð
ffiffiffiffiffiffi
2p

p
rÞ�1

Z 1

�1
expf�ðx� lÞ2=ð2r2Þg

f1þ expða0 þ a1xÞg�J
dx

ð12Þ
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Fig. 2 Increase in predicted capture probability of meadow voles

with individual body mass. Estimated mean of the posterior-

predictive distribution is plotted using a solid line. Shading indicates

95 % credible interval. Points indicate the observed proportion of

nights (y / J) that each vole was captured
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Unfortunately, this integral cannot be evaluated in closed

form and must be approximated numerically. However, a

frequentist analysis can be conducted by finding the value

of the parameter vector h ¼ ðN; a; l; rÞ0 that maximizes

½x; y; njN; a; l;r� while evaluating the integral at each

iteration of the maximization.

Suppose the model is expanded by assuming

N�BinomialðM;wÞ, where M is a known upper limit for

vole abundance and w is an unknown parameter to be

estimated along with other parameters of the model. The

likelihood function of this expanded model (after

marginalizing N) is

½x; y; njw; a; l; r� ¼
M

n

� �

wnðwp0 þ 1� wÞM�n
Yn

i¼1

Nðxijl; r2Þ BinðyijJ; pðxiÞÞ
ð13Þ

A frequentist analysis could be conducted by maximizing

this likelihood function, and an empirical Bayes estimator

of N could be computed using the MLEs (indicated by

circumflexes on parameters) as follows:

N̂ ¼ EðNjn; ŵ; â; l̂; r̂Þ ¼ nþ ðM � nÞ � ŵp̂0

ŵp̂0 þ 1� ŵ

Unfortunately, this analysis still requires p0 to be evaluated

at each iteration of the maximization, and estimating a

confidence interval for N̂ that accounts for uncertainty in

the MLEs is problematic.

I introduced this expanded model because the

BinomialðM;wÞ model of N is implied when the capture-

recapture data are analyzed using Bayesian inference and

parameter-expanded data augmentation (Royle and Dor-

azio 2012). To apply this approach, the original vector y of

n capture frequences is augmented with M � n zeros,

where M is a known constant that specifies the maximum

value of N. The value of M can be assigned using prior

information about N or, in the absence of prior information,

M can be assigned an arbitrarily high value (Royle and

Dorazio 2012). The assumptions used to model the aug-

mented data are similar to those of the original model:

Z �BernoulliðwÞ
X�Normalðl; r2Þ

Y jX ¼ x; Z ¼ z�BinomialðJ; z pðxÞÞ

where Z is a binary-valued random variable that denotes

whether an individual in the augmented data set belongs

(Z ¼ 1) or does not belong (Z ¼ 0) to the population of N

voles that could have been captured in the traps. In this

model the abundance of voles is a derived parameter,

specifically N ¼
PM

i¼1 Zi. The unnormalized posterior

density for the augmented data is

½w; a; l; r; z; x�njy; xn� / ½w; a; l; r�
YM

i¼1

BernðzijwÞ

Nðxijl; r2Þ BinðyijJ; zi pðxiÞÞ

where xn ¼ ðx1; . . .; xnÞ0 denotes the vector of body masses

of captured individuals and where x�n ¼ ðxnþ1; . . .; xMÞ0
denotes the vector of unobserved body masses that must be

estimated.

I completed a Bayesian analysis of the vole data using

MCMC methods. In this analysis I centered and scaled the

body mass measurements to have zero mean and unit

variance. Details about the MCMC algorithm and prior

distributions are described in ESM S2. The results of my

analysis are similar to those reported by Royle and Dorazio

(2008) table 6.4, who used different priors and the Win-

BUGS software program. Estimates of posterior summaries

of the model parameters are given in Table 1. The results

corroborate the positive association between capture

probability and body mass that was evident in the raw data

and suggest that the posterior means of vole capture

probabilities ranged from about 0.15 to 0.88 (Fig. 2). The

estimated posterior mean of l was slightly less than zero,

the average of the standardized body masses of captured

voles. This result is consistent with the positive association

between capture probability and body mass—that is, on

average the uncaptured voles must have had lower body

masses than did voles in the sample. The estimated pos-

terior distribution of vole abundance N is skewed (Fig. 3)

but has most of its mass near the observed number of voles

(n ¼ 56). This result is consistent with the relatively high

capture probabilities obtained by trapping these animals on

five successive evenings.

An important benefit of the Bayesian analysis is that

solves the inference problem for N completely. In contrast,

suppose a frequentist analysis was conducted by maxi-

mizing the marginal likelihood in Eq. 13, computing the

empirical Bayes estimator N̂, and approximating the

uncertainty in N̂ by the delta method. What sampling dis-

tibution should be used to compute a confidence interval

for N? The frequentist approach to this inference problem

Table 1 Estimates of posterior summary statistics for parameters of

the capture-recapture model fitted to the meadow vole data

Parameter Mean 2.5 % 97.5 %

N 59.534 (0.0462) 56.000 (0.0059) 67.000 (0.1441)

a0 0.578 (0.0007) 0.300 (0.0016) 0.859 (0.0015)

a1 0.980 (0.0015) 0.657 (0.0020) 1.327 (0.0026)

l -0.096 (0.0034) -0.436 (0.0061) 0.209 (0.0043)

r 1.064 (0.0027) 0.866 (0.0024) 1.330 (0.0053)

Limits of 95 % credible intervals are indicated by the columns labeled

2.5 and 97.5 %. Monte Carlo standard errors are given in parentheses
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runs into the same roadblock that was illustrated earlier

with occupancy modeling.

Spatial dependence in abundance of sparrows

surveyed by double-observer sampling

The data in this example were simulated for an endangered

subspecies of seaside sparrows whose geographic range is

limited to areas within and adjacent to Everlades National

Park, Florida. This subspecies has been studied extensively

(Walters et al. 2000), and much is known about its biology.

However, the sparrow population has not been sampled

using methods that can account for errors in detection of

sparrows; therefore, for purposes of illustration I simulated

the spatial distribution of sparrow abundances using a

parametric model and maps of sparrow habitat (Fig. 4).

From these abundances I simulated double-observer sur-

veys at randomly selected locations within the sparrow’s

known range.

To be more specific, let s denote the spatial coordinates

of a location within the sparrow’s range. Assume that the

abundance NðsÞ of sparrows at location s has a Poisson

distribution with mean lðsÞ ¼ expðuðsÞÞ. Assume further

that extra-Poisson variation in NðsÞ is specified as follows:

uðsÞ j gðsÞ�Normalðx0ðsÞbþ gðsÞ; r2Þ

where the conditional mean depends on a vector of

covariate measurements xðsÞ, the effects of these covariates
b, and a parameter gðsÞ that specifies the effect of latent

sources of spatial variation in uðsÞ. The values of gðsÞ and
gðrÞ for two locations s and r are assumed to be positively

correlated. The correlation is assumed to decline expo-

nentially with the Euclidean distance between the loca-

tions, that is, expð�jjs� rjj=/Þ, where / is a strictly

positive range parameter with units of Euclidean distance.

The spatial effect parameters are assumed to have a zero-

centered, multivariate normal distribution, that is,

g�Normalð0; r2gRÞ, where Rsr ¼ expð�jjs� rjj=/Þ and r2g
is a scale parameter that specifies the magnitude of the

spatial variation.

The assumptions of the hierarchical model of sparrow

abundances can be stated succinctly using vector notation:

Nju� PoissonðexpðuÞÞ ð14Þ

ujg�NormalðXbþ g; r2IÞ ð15Þ

g�Normalð0; r2gRÞ ð16Þ

where I denotes the identity matrix. This model is often

used to specify spatial dependence in counts observed at a

finite number of locations (Diggle et al. 1998; Wikle

2010). Bayesian methods are essential for fitting this model

because an evaluation of the observed-data likelihood

requires the latent parameters u to be integrated away.

Whereas g can be integrated out analytically (see ESM S3),

numerical methods for removing u do not provide an

accurate approximation of the observed-data likelihood.

The analysis of sparrow counts poses even greater

computational problems because errors in detection of
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Fig. 3 Estimated posterior distribution of the abundance of meadow

voles based on the analysis of capture–recapture data

a

b

Fig. 4 Spatial distribution of seaside sparrow habitat: a average water
level (cm) during the breeding season and b vegetation categories.

Black line indicates the boundary of Everglades National Park,

Florida
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sparrows prevents their abundances N from being directly

observable. Suppose m locations were selected at random

from the sparrow’s known range. At each location assume

that two observers (A and B) counted sparrows indepen-

dently for a fixed period of time. If the observers were able

to keep track of individual sparrows, their counts can be

summarized as follows: yAðsiÞ, the number of sparrows at

location si detected by observer A only; yBðsiÞ, the number

of sparrows at location si detected by observer B only; and

yABðsiÞ, the number of sparrows at location si detected by

both observers (i ¼ 1; . . .;m). I used a multinomial model

to relate these counts to the unknown abundance NðsiÞ
of sparrows at location si. Let YðsiÞ ¼ ðYAðsiÞ;

YBðsiÞ; YABðsiÞÞ0 denote a random variable for the vector of

counts, and assume

YðsiÞ jNðsiÞ ¼ nðsiÞ � MultinomialðnðsiÞ; pðsiÞÞ

where pðsiÞ¼ pAðsiÞð1� pBðsiÞÞ; pBðsiÞð1� pAðsiÞÞ; pAðsiÞð
pBðsiÞÞ0. These multinomial probabilities depend on the

detection probabilities of both observers, which were

specified as logit-linear functions of parameters a ¼
ðaA; aB; awÞ0 and a covariate measurement wðsiÞ as follows:

logitðpAðsiÞÞ ¼ aA þ aw wðsiÞ
logitðpBðsiÞÞ ¼ aB þ aw wðsiÞ

Using the models of sparrow abundance and sampling

described above, I simulated double-observer counts at

each of m ¼ 200 locations within the sparrow’s range. Nest

success of seaside sparrows is closely tied to water level in

the Everglades because the nests built slightly above

ground level are vulnerable to seasonal flooding events. To

simulate the effects of flooding, I used average water level

during the breeding season (Fig. 4a) as a spatially refer-

enced covariate xðsÞ, and I assumed that the effects of this

covariate on abundance were negative. In addition, I

assumed that latent, spatially correlated sources of varia-

tion in sparrow abundances were present and that their

magnitude greatly exceeded the effects of non-spatial

sources of variation, which were parameterized by r2. I
used vegetation categories (Fig. 4b) to simulate spatial

heterogenety in detection probabilities. Specifically, I

assigned the detection covariate w a value of zero at sample

locations with glades marsh (the dominant vegetation cat-

egory) and a value of one at locations with other types of

vegetation. The parameter values used to generate the

simulated data are provided in ESM S3.

I used MCMC methods to fit two different Bayesian

models to the simulated data. In one model mean sparrow

abundance was formulated as a log-linear function of

average water level and a spatially correlated random

effect. This model is identical to the model that generated

the data. In the second model mean sparrow abundance was

formulated as a log-linear function of a spatially correlated

random effect. This model was fitted to assess how well the

effects of water level on sparrow abundance could be

predicted by modeling spatial dependence without the

benefit of an informative covariate. Details about the

MCMC algorithm and prior distributions are described in

ESM S3.

The spatial distributions of sparrow abundance predicted

by these two models were quite similar (Fig. 5a, b).

Moreover, the predictions appeared to capture the true

spatial patterns in sparrow abundance (Fig. 5c), which

were known, of course, since the abundances were simu-

lated. Modeling spatial dependence alone appeared to

a

b

c

Fig. 5 Spatial distribution of predicted mean abundance of seaside

sparrows. Locations of double-observer surveys are superimposed.

a Predictions based on average water level during the breeding season

as a spatial covariate of abundance. b Predictions based on spatial

dependence alone and no covariates of abundance. c True mean

abundances for the simulated population of seaside sparrows
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provide a reasonable approximation of the spatial distri-

bution of sparrow abundance. This result was not entirely

surprising because the hierarchial model of sparrow

abundances (Eqs. 14–16) can be reparameterized as

follows:

Nju� PoissonðexpðuÞÞ ð17Þ

ujc�NormalðXbþHc; r2IÞ ð18Þ

c�Normalð0; r2gKÞ ð19Þ

where H is a m� m matrix of latent covariates (eigen-

vectors of R scaled to provide an orthonormal basis), c

denotes the effects of these covariates, and K is a diagonal

matrix containing the m eigenvalues of R (see ESM S3). In

other words, the spatial effects g can equivalently be

assumed to have been produced from a set of latent spa-

tially varying covariates H. In the analysis of the sparrow

data, H appears to have captured the effects of water level

when the measurements of water level were not included in

X. This suggests that a spatial analysis of double-observer

counts could provide a useful approach for monitoring the

population of seaside sparrows living in Everglades

National Park, even if important covariates of sparrow

abundance have not been measured or identified.

Summary

The results of many ecological studies (empirical and

observational) are analyzed using hierarchical models.

These models include at least two components: one that

specifies the effects of the sampling or observational pro-

cess (which leads to data), and another that specifies the

scientific process of interest in terms of ecologically rele-

vant state variables and parameters. Hierarchical models

may include additional layers of complexity, but the sep-

aration of observational and ecological processes is fun-

damental to these models.

In this article I have shown that while some hierarchical

models can be fitted using frequentist methods, Bayesian

methods of analysis generally provide a more complete

solution to the inference problem. For example, ecological

problems that require inferences about latent state variables

or missing data can be solved easily using Bayesian

methods, whereas frequentist solutions to these problems

often fail to account fully for errors in estimation when

calculating the uncertainty of model-based predictions. For

ecological problems that involve intractable likelihood

functions (e.g., models of spatial dependence for non-

Gaussian responses), Bayesian methods of analysis are

preferred simply because they provide the only available

solution.

Bayesian methods of analysis are perhaps most com-

pelling because every aspect of inference follows the rules

of probability theory. There is a clear path to inference

regardless of whether interest is focused on the parameters

of a model or on its predictions. In contrast, the Bayesian

approach to model assessment and model comparison

includes many options. Statisticians have developed a

variety of procedures for assessing the adequacy of an

individual model and for comparing alternative models, but

no clear winner has emerged. There is a growing appre-

ciation that while inferences and predictions are best con-

ducted using Bayesian methods, the evaluation and

comparison of models are best accomplished from a fre-

quentist perspective. Therefore, statistical analyses in the

21st century will likely involve a combination Bayesian

and frequentist ideas, as noted by Efron (2005) and Little

(2006).
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