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Diffusion Process--Review

• A diffusion process is the solution       to the stochastic differential 

equation: 

• is a continuous-time Markov process with continuous sample 

paths. 

• Existence and Uniqueness of the solution. (Theorem 9.1 Steele)

Lipschitz condition:

Linear growth condition:
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Motivation

• Consider the SDE: 

• and         are treated as known function. If      is also known,  one 

can solve the SDE analytically for some cases (e.g. GBM, OU), or at 

least one can simulate paths of       recursively from SDE. 

• If       is unknown, but one has data observed from     , estimating 

is necessary to understand the characteristics of the process. 

Goal:  Estimate diffusion parameters based on discretized samples of     .         
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Estimation Methods of Diffusion Process--Review

• Based on discretization: 

• Frequentist tools 

Maximum Likelihood Estimation and related.

Method of Moments and related.

• We focus on Bayesian modeling. 

MCMC Analysis proposed by Eraker (2001), 

Application on Stochastic Kinetic models by Golightly& Wilkinson (2005)
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Bayesian Modeling of Diffusion Process

• Consider: 

• Assumption:  1. Lipschitz and linear growth condition.

2.                                is positive definite for all               . 

3. We have a sample of observations 

where  
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Bayesian Modeling of Diffusion Process

• Denote                        , 

where        is      dimensional,        is        dimensional,                 .

• Discretize      on [0, T]:
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Bayesian Modeling of Diffusion Process

• Discretized Model

• Joint Posterior

～
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Bayesian Modeling of Diffusion Process

• MCMC:   Metropolis-Hastings within Gibbs. Update        and      

alternatively.

– Step 0: Set initial values for       and latent/missing data.  

– Step 1: For i=1,…, n, conditional on       , update

– Step 2: Conditional on      , update      .
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MCMC--step 1: update

• Conditional posterior for missing data. 

• The unnormalized density (7) can be bimodal.
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MCMC--step 1: update 

• Actually we have

(                      ).

This is a one-mode normal if both        and        does not depend on    ,

Otherwise, it can be of more complex form.

• The author propose Metropolis-Hastings to sample from      .

)
~
,~(),ˆ,ˆ|ˆ( 11 VNYYYp iii µθ =+−

)]ˆ()ˆ([)(~
1

2

11

2

1

122

1 tYtY iiiiiiii ∆−+∆++= +

−

−−

−

−

−−−

− µσµσσσµ

tV ii ∆+= −−−

−

122

1 )(
~

σσ

iŶ
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MCMC--step 1: update 

• If the      part of       is observed, then: 

• Metropolis-Hastings algorithm the author used:

Un-normalized posterior density :  

Proposal density:

(Note: proposal density does not depend on current state of Markov Chain)

And 

Detailed manipulation: 

Sample        from q, and accept it with prob.

Note that this is different from MH we used in general.
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MCMC--step 1: update  

• Determining the proposal density.

• Therefore for         small:

iŶ

t∆

This is the proposal 

density 
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MCMC--step 1: update

• Determining the c, pick arbitrary       . 

If the p is approximately has the shape of q, the ratio of the density 

should be constant for all x, thus for x=    . 

Side note: since we update the       with prob.    

This way to find C implies acceptance probability is near 1. 
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MCMC--step 2: update

• Conditional on       , update

• Depend on the form of    , i.e. the form of SDE.

• Two examples given: 

– Constant elasticity of variance (CEV) model: 

– Continuous-Time stochastic volatility (SV) model:

θ

θ



Applications to Stochastic Kinetic Models
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Molecular Approach to Kinetics

• Bimolecular reaction example:

Y1+Y2→Y3

This reaction will occur when a molecule of Y1 collides with a 

molecule of Y2 while molecules move around randomly, driven by 

Brownian motion.

• Hazard h

In a small, fixed volume and assuming thermal equilibrium, it has 

been shown that the hazard of molecules colliding is constant 

(Gillespie, 1992).

• Law of mass action:

h proportional to Y1Y2
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Chemical Reaction System

• Consider a system of reactions involving k species Y1, Y2, . . . ,Yk

and r reactions R1, R2, . . . ,Rr in thermal equilibrium inside some 

fixed volume V.

where uij is the stoichiometry associated with the jth reactant of the ith

reaction and vij is the stoichiometry associated with the jth product of the 

ith reaction. Each reaction, Ri , has a stochastic rate constant, ci , and a 

rate law or hazard, hi (Y, ci ), where Y = (Y1, Y2, . . . ,Yk ) is the current 

state of the system and each hazard is determined by the order of 

reaction Ri under an assumption of mass action kinetics.



19

Chemical Reaction System

• Write in a compact form: UY→VY, where U = (uij ) and V = (vij ) are 

r×k dimensional matrices (obtained from the stoichiometry of the 

system).

• Consider change of number of molecules in reaction i and species j, 

aij = vij − uij.

• The reaction network can then be represented by the net effect 

reaction matrix: A = V − U.
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Example: Prokaryotic Autoregulatory Gene 

Network

• Repression, transcription reaction

• Translation reaction (including binding ribosome to mRNA, 
translation of mRNA and folding of polypeptide chain)

• Dimerization

• mRNA and protein degradation
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Net Effect Reaction Matrix

Y’=(RNA, P, P2, DNA · P2, DNA)

Hazards c2DNA · P2 c3DNA c4RNA c6P2 c7RNA c8P

c1P2DNA 0.5c5P(P-1)
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Diffusion Approximation

• Master equation

Expand P(Y-Ai; t) using 2
nd order Taylor expansion
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Diffusion Approximation

• Fokker-Planck Equation

• Itô diffusion

μ(Y) is the column vector of μi (Y)

β1/2(Y) is any matrix satisfying β1/2(β1/2)’ = [βij(Y )] = β(Y )

W(t) is k-dimansional Brownian motion
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Calculating Coefficients

• Suppose at time t, the state of the system is Y(t)=(Y1(t), . . . ,Yk(t))=Y 
so that the hazards of R1, R2, . . . ,Rr are h1(Y,c1), h2(Y,c2), . . . , hr
(Y,cr ). 

• Let Ni denote the number of type-i reactions occurring in the interval 
(t, t+Δt]. Then for “small” time Δt, Ni≈ Poisson(hi (Y,ci)Δt) and the 
change in the number of molecules of Yj is given by

• The diffusion equation then becomes

with drift and diffusion functions

Here, μ and β depend explicitly on Y and the parameter vector Θ
= (c1, c2, . . ., cr ). A is the net effect matrix and h(Y, Θ) is the 
column vector of hazards hi (Y, ci ).
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Drift μ(Y,Θ)

not full rank

Add row 4 to row 5, get DNA·P2 + DNA = K, remove row 4
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Diffusion β(Y,Θ) = BB’

B’=
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Inference for Nonlinear Diffusion Models

• Discretize SDE by Euler approximation

where ΔW(t) is a d-dimensional i.i.d. N(0, IΔt) random vector.

• Augment with latent data points

Suppose we have measurements xi at evenly spaced times with 

intervals of length Δ∗, refine grid by Δt= Δ∗/m, where m is 

sufficiently large to ensure that the discretization bias associated 

with the Euler approximation is arbitrarily small.
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Augmented data

Note, Ŷ is (d1+d2)×(n+1) matrix, we have d1(n−(n/m+1)) + d2(n+1)

missing values
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Bayesian Estimation

• Joint posterior density

where π(Θ) is the prior density of Θ, π(Z0) is the prior density of 

Z0, and

ΔYi = Yi−Yi−1, μi =μ(Yi,Θ), and βi = β(Yi,Θ). f denotes the 

(unnormalized) transition density obtained from the Euler 

discretization.
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MCMC

• Metropolis-within-Gibbs

– Initialize all unknowns. Use linear interpolation to initialize Xi and 
set Zi = 0.0 for all i. Set g = 1.

– For all i = 0, 1,. . . , n at iteration g draw Yi from its full conditional. 
When i is not a multiple of m, we use an MH step with proposal 
density q(·|Yi−1, Yi+1,Θ)=N(1/2(Yi−1+Yi+1), 1/2Δtβ(Yi−1,Θ)). If i is 
a multiple of m, only simulate the d2 elements, Z

i, using an MH 
step with proposal density q(·|Yi−1,Yi+1,Θ) further conditioned on 
xi .

– Draw Θ(g) using an MH step with a Gaussian random walk 
update (on log(Θ)).
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Simulation Study
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