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1 Introduction

The motivation for Bayesian approaches to spatial modeling lies in the difficulties of
spatial data that we’ve discussed. Data points near each other will be very similar in
terms of the kinds of variables, like demographics, SES and geographic features, in
which we are likely to be interested as epidemiologists, making familiar approaches
like linear or logistic regression inappropriate. Poisson models of the kinds of count
data we find in spatial epidemiology while an attractive option, are subject to their
own difficulties. The data tend to be over-dispersed, meaning that the variance is
greater than the mean 1 While a number of effective approaches to spatial data
analysis exist, the spatial data we work with as epidemiologists are most often not
the kind of highly ordered, ‘lattice’ or point-process data for which many spatial
analytic techniques have been developed.

In this chapter, we’ll try to tackle Bayesian Hierarchical Modeling of spatial
data. Bayesian analysis is a vast and rapidly expanding field. Space constraints
here preclude a more general and thorough treatment of the topic of Bayesian epi-
demiological analysis. 2 We will for now limit ourselves to focused introduction
and then (in the next chapter) return to applications in the New York City TBI
vignette.

Most of this section of the notes are based on Andrew Lawson’s texts and work-
shops which are well-worth pursuing if you would like a more thorough treatment of
the subject. I particularly recommend Bayesian Disease Mapping. And if you have
the opportunity, by all means attend one of Dr. Lawson’s workshops.

∗Email: cjd11@columbia.edu
1A Poisson distributed variable has a single parameter, λ for both its mean and variance
2There are some excellent such texts. I highly recommend Andrew Gelman’s introductory text

and David Speigelhalter’s excellent early book on the subject
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We’ll first consider the types of data and questions for which Bayesian approaches
are suited. Then we’ll introduce the basic theory of Bayesian statistics, and proceed
to describe the gamma-Poisson model as a flexible and useful approach in the multi-
level setting frequently encountered in spatially distributed count data. I’ll present
an example of the methods, using data from Hurricane Katrina in Orleans Parish,
Louisiana, and consider some of the advantages and limitations of Bayesian spatial
analysis for the practicing epidemiologist.

2 The problem with place

As we have seen, aggregating data to the group level based on geography is not
simple. Bringing data together spatially frequently results in heterogeneous and ar-
bitrary groupings that may be too large and undifferentiated to capture risk appro-
priately. Analyses that rely on variable specification based on irregular geographic
units, such as ZIP Codes, may be affected by extreme values based on a few cases
in small populations. Rare events contribute to more heterogeneity than is assumed
by commonly used epidemiological methods like the Poisson models. Finally, epi-
demiologically influential covariates of an outcome, which may be unmeasured, are
likely to be similar in adjacent areas resulting in spatial autocorrelation.

A a basic measure of increased occurrence might be a ratio that compares ob-
served to expected counts of an outcome in a geographic area like a census block. We
could then calculate some risk that explains any change from the expected number
to the observed number. So, for example, if there were no risk in a particular area,
this risk factor would be equal to 1, and the observed number would be equal to the
expected number. If, on the other hand, there was some increased or decreased risk
of in a particular area this number would be greater than or less than 1. This is a
standardized mortality (or morbidity) ratio (SMR), where for region i:

• yi is the observed count for some outcome

• ei is expected count

• θi is the (unknown) parameter for the relative risk

A crude estimate of the risk θi would be smri = yi
ei

As noted, this kind of data is subject to the problems of non-independence.
Census blocks near each other are likely to be similar in important ways based on
geography and population demographics. The areal units are also often defined in
irregular and arbitrary ways unrelated to their potential use for health outcomes
analyses. In the United States ZIP Codes are intended as a convenient means of
delivering mail. They are far from regularly arranged yet they have been treated
as lattice-like for point-process data. Finally, count data of the kind often used
in spatial injury epidemiology are subject to over dispersion and instability. Small
expected numbers in the denominator e.g. say only two household in a census
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block, can lead to large inflated risk estimates if only one household is affected.
These characteristics call into question the suitability of such approaches as simple
Poisson models.

2.1 The Rev. Bayes meets Dr. Snow

A century before John Snow mapped cholera deaths in London Thomas Bayes, an
English minister and mathematician, sparked an approach to conditional probability
that bears his name3 and that addresses, in many respects, the problems inherent
in spatial epidemiological analysis. At it’s most basic level, the Bayesian approach
to knowledge asks: How do we combine what we expect with what we see? Or put
somewhat differently, how do we learn from the data to update our knowledge?

Clinicians, who I believe tend to be natural Bayesians, are taught ‘hoof beats
usually mean a horse is approaching’, and that much more information is needed
before concluding it is a zebra. We turn to this mode of thinking in our approach
to spatial analysis. How does what we expect to see in a region, based on the
surrounding regions, impact our conclusions about what we actually see? Bayes
Theorem formalizes and quantifies this common-sense approach to evidence and
expectations.

2.2 From common sense, to numbers.

Statistically, in a Bayesian approach, we base our conclusions about the probability
of a risk estimate given our data, Pr[θ|y], on a combination of our prior expectation,
expressed as the probability of observing some risk estimate Pr[θ], and the likelihood
of observing the data with which we are presented, Pr[y|θ]:

Pr[θ|y] ∝ Pr[θ] · Pr[y|θ] (1)

When we have a lot of data based on our observations, the likelihood of that
data tends to overwhelm any prior expectations we might have had to the contrary.
The less data we have, the more influence our prior expectation will have.

Our prior distribution essentially dictates how we believe the parameter θ would
behave if we had no data from which to make our decision. What, for example,
might we expect is the probability that someone living within 3 miles of a certain
location would die from a gun shot wound? Our best guess might be, for example,
1 in 20 or about 5%, and that this probability varies around this point estimate in
a normal fashion with a variance of say 0.01 or 1%. This estimate may be based
on previous studies, law enforcement data, clinical experience or a combination of
sources. What then, if we conduct a study that indicates the risk of firearm related

3Stigler’s Law of Eponomy states that ‘No scientific discovery is named after its original dis-
coverer’. In this case Thomas Bayes clearly got the ball rolling (if you know his original thought
experiment, then pun intended) but folks like Richard Price and especially Pierre Simon Laplace
should rightfully have their names attached to the theory. Still, ‘Bayesian’ has a certain ring to it.
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fatality within 3 miles of the location is 45%? How do we revise what we think
about the risk of firearm-related deaths in this area? Any revision will depend in
large measure on how likely these data or observations are given our expectations
(and model). This, then, is the second bit of information on the right side of the
equation, referred to as the likelihood or the likelihood function which represents the
probability we assign our observed data given the postulated parameters represented
by our prior. Our posterior distribution, or revised probability of the parameter θ, is
a combination of these two probabilities. 4 In a very common sense way, it tells us,
for example, that if the results of our study differ markedly from our best existing
information we should perhaps be somewhat skeptical.

2.3 From numbers to BUGS

For many years, approaches to combining the prior and the likelihood were restricted
to a set of situations where the prior distribution was conjugate to, or in the same
family, as the likelihood and could be derived by some fairly simple updating of the
likelihood function. So, for example, in the setting of an standardized mortality ratio
(SMR), a Γ(α, β) prior is conjugate to a Pois(λ) likelihood and can be updated with
the information in the likelihood function through the simple formula Γ(α+y, β+e)
5

Many reasonably realistic problems, though, are not amenable to conjugate anal-
yses. There may not be an appropriately conjugate prior. They may require higher
order differential equations that do not have closed or simple solutions. 6 In these
cases, simulation approaches can be use to solve for the parameter estimates, but
for may years the required computing power for the kinds of simulations necessary,
and more importantly, an approach or algorithm to define a valid sample space from
which to simulate were not widely available or widely appreciated.

Software developed over the past decade or so, of which the WinBUGS package
developed in the UK is a notable example, takes advantage of both advances in
computing and in the understanding of constructing Monte Carol Markov Chains
to make such simulations approach. WinBUGS (which stands for Windows Bayes
Using Gibbs Sampling) samples from a proposed posterior distribution using either
Gibb’s (for which it’s named) or Metropolis Hasting algorithms.

The details of the sampling schemes used in packages like WinBUGS is beyond

4And leads to the essential mantra of Bayesian analysis: ‘The posterior is proportional to the
prior times the likelihood.’ Which should be invoked like an incantation when doubt and confusion
arise.

5Don’t worry too much if this isn’t entirely clear at this point.
6For a meaningful appreciation of Bayesian analysis, you may have to review some (though not

necessarily a lot) of your college calculus. In this case, you may think of ”higher order” as referring
to equations that require multiple factors to solve, and ”simple or closed” as equations that have
only one solution or that can be integrated to 1. This last point is critical, since we’re dealing with
probabilities which, by definition must sum or integrate to 1.

4



the scope of this short description, 7 but it is important to note that this approach
carries with it additional responsibilities for the analyst.

First, because these are Markov Chains, each value is dependent on the prior
value in the chain; we must assess correlation of sample values. We do this by re-
viewing autocorrelation graphs and statistics. Ideally, we would like any correlation
among values to drop off after the first lag.

Second, since we are trying to sample the (posterior) target distribution as fully
and as efficiently as possible, our proposal distribution should sample an appropri-
ately wide area of the proposal distribution. This part of practical Bayesian analysis
can get messy, particularly if our proposal distribution is too narrow or our starting
value is off somewhere in the hinterlands of a large multi-dimensional target poste-
rior distribution. One approach to this task is to calculate acceptance rates. For
random walk chains with normal proposal densities, ideal acceptance rates would
be about 50% for one parameter model and about 25% for multi-parameter models.
Gibb’s sampling, which is based on defining a multi-parameter distribution con-
ditional on one parameter given all the others, can help obviate some of this fine
tuning necessary for more traditional Metropolis-Hastings algorithms, which require
that the proposal distribution be specified a priori.

Third, to help ensure that we are, indeed, sampling from the stable underlying
target distribution, we also do things like evaluate whether the chain of sample
values actually converges to a stable distribution that is consistent with the posterior
distribution in which we are interested. Practically, we do this by running 2 or 3
chains of samples each starting with an initial value chosen from widely dispersed
areas of the target distribution, 8 and then evaluating the chains to make sure they
are all sampling form the same distribution. This evaluation can be as simple as
looking at the kernal density of the distribution graphically to make sure they are
reasonably overlapping, to calculating statistics such as the Brooks-Gellman-Rubin
(BGR) that compares within chain variation to across chain variation.

Finally, and in some respects most critically, we are obligated to evaluate our
choice of prior distributions, some of which may be more influential or appropriate
than others. This can be accomplished with sensitivity analyses substituting and
evaluating the effects of different prior distributions.

7In addition to Lawson, a couple of excellent references and introductory texts for all this stuff
are: (1) Albert, J. (2009) Bayesian Computation with R. New York: Springer. (2) Banerjee, S.,
Carlin, B. P., and Gelfand, A. E. (Eds.). (2004). Hierarchical modeling and analysis for spatial
data. Boca Raton, Chapman and Hall/CRC. (3) Gelman A, Carlin JB. (2009) Bayesian Data
Analysis. Boca Raton: Chapman and Hall/CRC. (4) Greenland, S. (2006). Bayesian perspectives
for epidemiological research: I. Foundations and basic methods. Int J Epidemiol, 35(3), 765-775.
and (5) Spiegelhalter D, Abrams K, and Myles J. (2004) Bayesian Approaches to Clinical Trials
and Healthcare Evaluation. West Sussex, John Wiley and Sons.

8If this sounds a lot easier said than done, it is.
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2.4 From BUGS to a model

Bayesian thinking lends itself naturally to the kind of hierarchical models suited
to areal spatial analysis. We can specify not only a distribution for how we be-
lieve individual risk (θi) is distributed, but also, by specifying an additional set of
parameters, how we believe θ varies across higher levels of organization, such as
geographic units. One could, for example, say that yi is the empirical (observed)
rate of some event in a geographic area i, θ is the true underlying rate, and some
additional parameter(s) how that true rate varies across all such areas in which we
are interested.

To begin building a model, we must define our prior and our likelihood. Let’s
start with the likelihood, or data component of the model. For count data of the kind
with which we frequently work in epidemiology, we assume an underlying Poisson
distribution. Often described as the distribution of rare events, the Poisson distri-
bution is characterized by a single parameter, λ (i.e., both µ = λ , and var = λ). λ
is the rate per unit time at which some event k occurs, and the Poisson distribution
is defined as:

Pois(λ) = eλ
k
/k! (2)

The yi counts in area i, are independently identically Poisson distributed and
have an expectation in area i of ei , the expected count, times θi , the risk for area
i :

yi, iid ∼ Pois(eiθi) (3)

Having defined our likelihood, we next define a prior distribution for this likeli-
hood. A useful and commonly used prior distribution for θ in the setting of spatial
analyses is the gamma (Γ) distribution:

θ ∼ Γ(α, β) (4)

where, µ = α/β , and var = α/β2

The Gamma distribution consists of a very flexible class of probability distri-
butions. For example, Γ(1, b) is exponential with µ = 1/b, Γ(v2 ,

1
2) is chi square

distributed with v degrees of freedom. Gamma distributions are constrained to be
positive, which is necessary when dealing with count data, and setting the two pa-
rameters equal to each other α = β results in a null value of 1, which is useful
for modeling risk estimates. Finally, the Gamma distribution is conjugate to the
Poisson distribution, making our prior and our likelihood of the same family which
not only allows for simplified statistics in one parameter problems, but carries with
it additional advantages in terms of a valid choice of prior in more complicated
analyses.
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2.4.1 The Poisson-gamma model

Since a basic Bayesian assumption is that any parameter in a problem has a prior
distribution of its own, the α and β parameters in the gamma also have prior
distributions. The usual approach is to put exponential distributions on α and β.
9:

yi ∼ Pois(eiθi) (5)

θ ∼ Γ(α, β) (6)

α ∼ exp(v), (7)

β ∼ exp(ρ) (8)

Below is an example of the code for this hierarchical model in BUGS language.
The code looks a lot like R. But not really.

model

{

For (i in 1:m) # loop to repeat for every spatial level

{

y[i]~dpois(mu[i]) # Poisson likelihood for observed counts

mu[i]<-e[i]*theta[i]

theta[i]~dgamma(a,b) # relative risk

}

a~dexp(0.1) # hyperprior distributions

b~dexp(0.1)

}

Following that is an illustration of the basic hierarchy in a directed acyclic graph
(called a ‘Doodle’ in the BUGS world) for the model (on the left) and a description
of the components of the graph (on the right).

9At this point we begin to see the inherently hierarchical nature of the Bayesian approach
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Figure 1: Poisson-gamma Spatial Model Hierarchy

2.4.2 Random and spatial effects

Taking the natural logarithm of our hierarchical model allows the inclusion of linear
regression terms, a random effects term and a spatial effects term:

yi ∼ Pois(µi) (9)

log(µi) = βn + T1 + T2 (10)

(11)

Where βn represents a vector a log-linear regression terms for variables that
might capture potential confounders like age, gender, or socio-economic status, T1
represents a random effect term, and T2 represents a spatial effects term.

Random effects terms have been proposed 10 as a useful way to account for
group-level heterogeneity . Basically, when there is more variation, or ‘noise’, in
data than is accounted for by the individual-level model and error, we separate out
part of the error or residual variance (r ∼ nl(0, σ)) that we believe is due to the
groups that give rise to or within which the individuals are nested (v ∼ nl(0, σ)).
This variance or heterogeneity though, is not explicitly spatially structured.

The explicit spatial effects component in the model can be represented by a
conditional autoregressive (CAR) term, which we first encountered in our discussion

10Though not always accepted...
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of spatial linear models. As you may recall, a CAR model is based on a set of spatial
neighborhoods. In the usual formulation, each neighborhood consists of adjacent
spatial shapes that share a common border. The mean θj in neighborhood j is
normally distributed with its parameters defined as µj the average of the µij ’s in
the neighborhood and σj equal to the σ’s of the neighborhood µij ’s divided by the
number (δj) of spatial shapes in the neighborhood. 11

µj ∼ nl(µ̄δ, τµ/nδ) (12)

In much the same way the random effect term captures unstructured hetero-
geneity, the CAR term captures spatially structured heterogeneity or variance in
the data that is not captured by your risk model.

Our updated model, then looks like this:

yi ∼ Pois(eiθi = µi) (13)

log(µi) = βn + νi + υi (14)

ν ∼ nl(0, τν) (15)

υ ∼ nl(ῡδ, τυ/nδ) (16)

The WinBUGS package makes it relatively easy to specify a CAR model. You
first define an adjacency matrix, which is basically a list of all block groups that
share an adjacency. You then define a set of weights for those adjacencies. The most
straightforward and most commonly used approach is a weight of 1 when two spatial
shapes share an adjacency and a weight of zero when they do not. The following
code demonstrates what a model might look like in BUGS:

model

{

for( i in 1 : m ) {

y[i] ~ dpois(mu[i])

mu[i] <- e[i] * rr[i]

log(rr[i]) <- b0 + b1*variable1 + b2*variable2 + b3*variable3 +v[i] + h[i]

# h is CAR term

# v is random effects term

r[i]<-(y[i]-mu[i]) # r is residual

v[i]~dnorm(0,tau.v) # prior on random effects needs to be inside loop

11The spatially structured component CAR is sometimes described as a Gaussian process λ ∼
Nl(W, τλ) where W represents the matrix of neighbors that defines the neighborhood structure, and
the conditional distribution of each λi , given all the other λi ’s, is normal with µ = the average λ
of its neighbors and a precision (τλ).
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}

# priors

b0~dflat()

b1~dnorm(0, 0.001)

b2~dnorm(0, 0.001)

b3~dnorm(0, 0.001)

h[1:m]~car.normal(adj[], weights[], num[], tau.h) #prior on CAR

tau.v~dgamma(0.001,0.001) # priors on v and h

tau.h~dgamma(0.001,0.001)

}

}

3 From theory to practice: Post-Katrina Repatriation
Model

Before applying these methods to our ongoing example about traumatic brain injury
in New York City, I’ll illustrate the basic approach with a model I developed to try
to document and help explain why some New Orleans neighborhoods seemed to
rebound relatively quickly, while others languished (and some continue to languish)
for years following Hurricane Katrina. The data is US Postal Service counts of
the number of households in a census block actively receiving mail. We compare
pre-hurricane counts in June 2005 (our expected number) with June 2009 counts
(observed number). θi is an estimate for the increase or decrease in the observed vs.
the expected number of households receiving mail in a census block group using a
Bayesian smoothed estimate of yi/ei. (Note that we are interested primarily in the
decreased ‘risk’ of mail delivery in a census block). Based on some preliminary, non-
spatial, analyses, we are interested in the role of income and geographic elevation
above sea-level as predictors of repatriation.

We first plot the unadjusted observed vs. the expected proportion of house-
holds receiving mail in block groups pre and post hurricane. The results are fairly
heterogeneous, with some areas actually experiencing a net increase in population
following the disaster.

We then map our social and environmental variables to see how they vary geo-
graphically and if that variation may be consistent with changes in repatriation.

There appears to be, even on this subjective level, an inverse relationship between
these two variables. Our next step, is to examine their relationship to repatriation
more rigorously. For this, we turn to a Bayesian hierarchical model.

In addition to assessing whether poverty and/or elevation above sea level explains
whether folks returned to their homes in Orleans Parish after Hurricane Katrina we
also include a conditional auto-regression (CAR) term to ‘smooth’ the outcome
estimate and a a random effects term to capture additional non-modeled variability
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Figure 2: Percent Observed vs. Expected Households Receiving Mail, Orleans
County, LA, June 2005 vs. May 2009, by Census Block Group.

across the ecologic units of census block groups. We compared models using the
Deviance Information Criterion (DIC) which is a Bayesian analogue of the Akaike
Information Criterion (AIC), where a relatively smaller value is considered a ‘better’
model. We found that by this criterion, a model consisting of the CAR term, poverty,
elevation and an interaction term for poverty and elevation is the ‘winner’.

model

{

for( i in 1 : m ) {
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Figure 3: Proportion of Population Living Below Federal Poverty Level, Orleans
County, LA, 2000, by Census Block Group.

y[i] ~ dpois(mu[i])

mu[i] <- e[i] * rr[i]

log(rr[i]) <- b0 + b1*((elevation[i]-3.7)/3.6) + b2*((poverty[i]-28.4)/18.2) + b3*((elevation[i]-3.7)/3.6)*((poverty[i]-28.4)/18.2) + h[i] # h is CAR term

r[i]<-(y[i]-mu[i]) # r is residual

prob50[i]<-step(0.5-rr[i]) # step function to calculate and plot exceedence

}

h[1:m]~car.normal(adj[], weights[], num[], tau.h) #no need weights in model get from matrix #define CAR

b0~dflat()

b1~dnorm(0, 0.001)
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Figure 4: Elevation (in Meters) Above Sea Level. Orleans County, LA, by Census
Block Group

b2~dnorm(0, 0.001)

b3~dnorm(0, 0.001)

tau.h~dgamma(0.001,0.001) }

Notice that we transformed or re-parameterized our poverty and elevation vari-
ables by subtracting the mean dividing by the standard error. The explanation
for this lies in assessing convergence to the assumed posterior distribution. Our
first plot tracings of the Markov chains appear to be ‘wandering’ and not efficiently

13



sampling the the sample space for the posterior distribution.

Figure 5: Sample tracings, before re-parameterization.

This issue of potential non-convergence prevents us from making valid inferences
on the parameters. There are a few ways to address it. We can re-parameterize the
problematic variables by centering them (subtracting the mean value), standardize
them (dividing by the standard error) or transform them (taking the log of the
value). We find that centering and standardizing the values returns plot tracings
much more consistent with convergence. We can test this assessment through use of
a statistic, such as the Brooks-Gellman-Rubin statistic, which in this case indicated
adequate convergence.

Having fit the model, we now proceed to make inferences and apply the results
to smoothing the mapped risk estimates and identifying areas of unusually low repa-
triation rates. We begin by plotting the probability distributions for our parameter
estimates. These are probability density plots of the beta coefficients. That last
statement should give you some pause, and actually represents perhaps the most
profound difference between a Bayesian approach and the more commonly encoun-
tered frequentist or Pearson-Neyman approach to biostatistics. From these data, we
can directly calculate the probability of a parameter value. 12

12Take a moment to think about that, and ponder wither the p-value.
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Figure 6: Sample tracings, after re-parameterization.

Figure 7: Kernel density plots of model parameters.

Based on these probability distributions, we can easily calculate the mean and
upper and lower credible intervals at the 2.5% and 97.5 probability level for our
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parameters.
We see these estimates in the following table.

Node (parameter) mean sd MC error 2.5% 97.5%

Intercept -0.3643 0.004737 1.777E-4 -0.3739 -0.3552
Elevation 0.02958 0.02042 9.978E-4 -0.00882 0.06738
Poverty -0.1443 0.025 0.001272 -0.1913 -0.09626
PovertyElevation 0.07187 0.01735 8.302E-4 0.04037 0.1067

The MC error refers to the Monte Carlo error. It is the standard deviation
divided by the number of sampling iterations, so is an indication of the increasing
precision of our estimates as our sampling increases. As a rule of thumb, the Monte
Carlo error should be 1% to 5% of the posterior standard deviation. We conclude
from these results that the percentage of individuals below the poverty level was the
most consistent predictor of repatriation following this disaster, even more so than
elevation above sea level.

The CAR model also returns risk estimates for each census block in our data,
conditioned on all the surrounding risk estimates. We can map these results as
smoothed risk estimates.

Comparing this map to our previous un-smoothed map (Figure 2) we see there
has been some ‘shrinkage’ toward local mean values.

With this admittedly healthy preamble, we turn our attention once again to
traumatic brain injury in New York City to see if a Bayesian approach returns more
valid or reliable results than those of non-Bayesian approaches.
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Figure 8: Bayesian Smoothed Risk Estimates Orleans Parish Census Block-Group
Level Depopulation September 2008 vs. August 2005 Based on Number of House-
hold Receiving Mail Delivery
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