# Bayesian Inference and Decision Theory

Unit 2: Random Variables, Parametric Models, and Inference from Observation



© Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 1 -

## Learning Objectives for Unit 2

- Define and apply the following:
  - Event
  - Random variable (univariate and multivariate)
  - Joint, conditional and marginal distributions
  - Independence; conditional independence
  - Mass and density functions; cumulative distribution functions
  - Measures of central tendency and spread
- Use a graph to show conditional dependence and independence of random variables
- Be familiar with common parametric statistical models
  - Continuous distributions:
    - Normal, Gamma, Exponential, Uniform, Beta, Dirichlet
  - Discrete distributions:
    - Bernoulli, Binomial, Multinomial, Poisson, Negative Binomial
- Use Bayes rule to find the posterior and predictive distribution (marginal likelihood) of a parameter given a set of observations (using discrete approximation)
- State de Finetti's Theorem and its relationship to the concept of "true" probabilities



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 2 -

## Random Variable: Definition

- Definition: A random variable is a function from the sample space  $\Omega$  to a set of **outcomes** (often the real numbers)
  - Discrete (values can be enumerated) and continuous (values cannot be enumerated)
- Example:
  - Sample space  $\boldsymbol{\Omega}$  is a set of patients
  - Discrete random variable example:  $Y(\omega)$  is 0 if patient  $\omega$  has a fever (temperature > 37°C or 98.6°F) and 1 if patient doesn't have fever
  - Continuous random variable example:  $X(\omega)$  is temperature of patient  $\omega$
- A random variable defines events on the outcome space
  - Example: Event Y = 1 is subset {ω ∈ Ω : Y(ω) = 1} consisting of patients with fever

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 3 -

## RV from Frequentist View: Example

- Question: does "randomly chosen" patient have disease?
- Sample space S = {s1, s2, ...} represents population of patients arriving at medical clinic
  - 30% of the patients in this population have the disease
  - 95% of the patients who have the disease test positive
  - 85% of the patients who do not have the disease test negative
- Random variables:
  - X maps randomly drawn patient s to X(s) = 0 if patient does not have disease and X(s) = 1 if patient has disease
  - Y maps randomly drawn patient s to Y(s) = 0 if patient's test result is negative and Y(s) = 1 if patient's test result is positive
- Usually we suppress the argument and write (X, Y) for the two-component random variable representing the condition and test result of a randomly drawn patient
  - Pr(X=1) = 0.3
  - Pr(Y=1 | X=1) = 0.95
  - Pr(Y=0 | X=0) = 0.85
  - Pr(X=1 | Y=1) = 0.73 (by Bayes rule)
- These probabilities refer to a sampling process and not to any particular patient



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 4 -

## RV from Subjectivist View: Example

- Question: does a specific patient (e.g., George Smith) have disease?
- Sample space S = {s1, s2, ...} represents "possible worlds" (or ways the world could be)
  - In 30% of these possible worlds, George has the disease
  - In 95% of these possible worlds in which George has the disease, the test is positive
  - In 85% of the possible worlds in which George does not have the disease, the test is negative
- Random variables:
  - X maps possible world s to X(s) = 0 if George does not have disease and X(s) = 1 if George has disease in this world
  - Y maps possible world s to Y(s) = 0 if George's test result is negative and Y(s) = 1 if George's test result is positive in this world
- Usually we suppress the argument and write (X, Y) for the two-component random variable representing George's condition and test result
  - Pr(X=1) = 0.3
  - Pr(Y=1 | X=1) = 0.95
  - Pr(Y=0 | X=0) = 0.85
  - Pr(X=1 | Y=1) = 0.73 (by Bayes rule)
- These probabilities refer to our *beliefs* about George's specific case

MASON

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 5 -

## Comparison

- Frequentists say a probability distribution arises from some random process on the sample space (such as random selection)
  - Pr(X=1) = 0.3 means: "If patients are chosen at random from the population of clinic patients, 30% of them will have the disease"
  - Pr(X=1 | Y=1) = 0.73 means "If patients are chosen at random from the population of clinic patients who test positive, 73% of them will have the disease"
  - The probability George Smith has the disease is either 1 or 0, depending on whether he does or does not have the disease
- Subjectivists say a probability distribution represents someone's beliefs about the world
  - Pr(X=1) = 0.3 means: "If we have no information except that George walked into the clinic, then our degree of belief is 30% that he has the disease"
  - Pr(X=1 | Y=1) = 0.73 means "If we learn that George tested positive, our belief increases to 73% that he has the disease"
  - The probability that George has the disease depends on our information about George. If we know only that he went to the clinic, our probability is 30%. If we also learn that he tested positive, our probability becomes 73%. If we receive a definitive diagnosis, then the probability he has the disease is either 1 or 0, depending on whether he does or does not have the disease.

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 6 -

## Mass, Density and Cumulative Distribution Functions for Random Variables

- **Cumulative distribution function** (cdf) Value of cdf at *x* is probability that the random variable is less than or equal to *x*
- **Probability mass function** (pmf) Maps each possible value of a discrete random variable to its probability
- Probability density function (pdf) Maps each possible value of a continuous random variable to a positive number representing its likelihood relative to other possible values

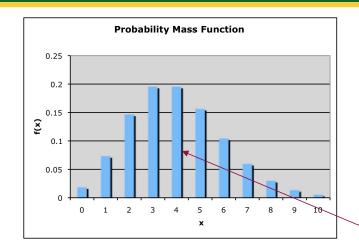


©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 7 -

## Discrete Random Variable: pmf and cdf

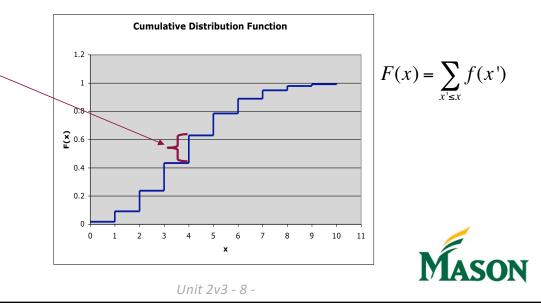


Cumulative distribution function

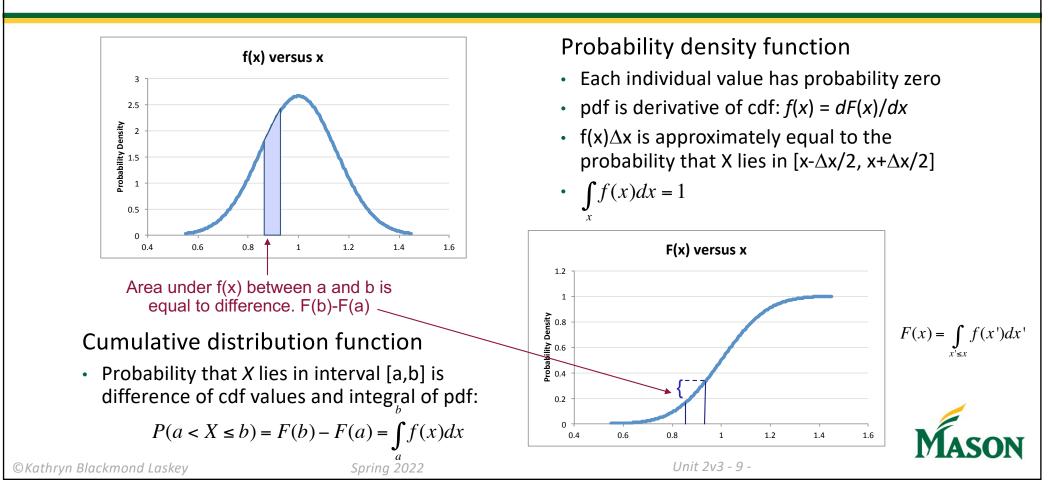
- F(x) is probability that random variable X is less than or equal to x
- Increases from zero (at  $-\infty$ ) to 1 (at  $+\infty$ )
- Step function has jump at each value
- Height of step at possible value *x* is equal to value of pmf at *x*©Kathryn Blackmond Laskey
  Spring 2022

Probability mass function

- f(x) is probability that random variable X is equal to x
- $\sum_{x} f(x) = 1$



#### Continuous Random Variables: pdf and cdf



## Generalized Probability Density Function (gpdf)

- It is useful to have common notation for density and mass functions
- Integral symbol means integration when distribution is continuous and summation when distribution is discrete
  - Remember that an integral is a limit of sums
- gpdf f(x) is either a mass or density function:

$$\int_{x} g(x)f(x)d\mu(x) \equiv \sum_{x} g(x)f(x) \quad \text{if X is discrete}$$

$$\int_{X} g(x)f(x)d\mu(x) \equiv \int_{X} g(x)f(x)dx$$
 if X is continuous

 $\mu(x)$  stands for *measure* (*counting measure* for discrete random variables and *uniform measure* for continuous random variables)



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 10 -

## **Central Tendency**

- Mean (expected value E[X]):  $E[X] = \int xf(x)d\mu(x)$ 
  - Weight each observation by its probability of occurring
  - In skewed distributions the mean is "pulled toward" the long tail
  - Sample mean of a random sample converges to the distribution mean as the sample size becomes large
- Median (50th percentile  $x_{0.5}$ ):  $x_{0.5} = F^{-1}(0.5) = \min_{x} \{F(x) \ge 0.5\}$ 
  - Half of the observations are larger, half smaller than the median
  - Less influenced by skewness and outliers than the mean
  - (There are several definitions of median of a discrete distribution)
- Mode  $(x_{\max})$ :  $f(x_{\max}) \ge f(x)$  for all x
  - Most probable value
  - Distributions may have multiple modes (multiple peaks in pmf or pdf)
  - In multimodal distributions a single numerical summary of center may not be appropriate

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 11 -

## Spread

- Variance and standard deviation  $V[X] = \int (x E[X])^2 f(x) d\mu(x)$ 
  - Variance is the expected value of the squared xdifference between an observation and the mean  $SD[X] = \sqrt{V[X]}$
  - Standard deviation is the square root of the variance
  - Standard deviation is in same units as the variable itself
- Median absolute deviation
  - Median of the absolute value of the difference between an observation and the median
  - Less influenced by outliers than the standard deviation
- Credible interval (Bayesian confidence interval)  $P(r \le X \le s) = \alpha$ 
  - Level- $\alpha$  credible interval [r,s]:
    - probability that the RV lies between r and s is  $\boldsymbol{\alpha}$

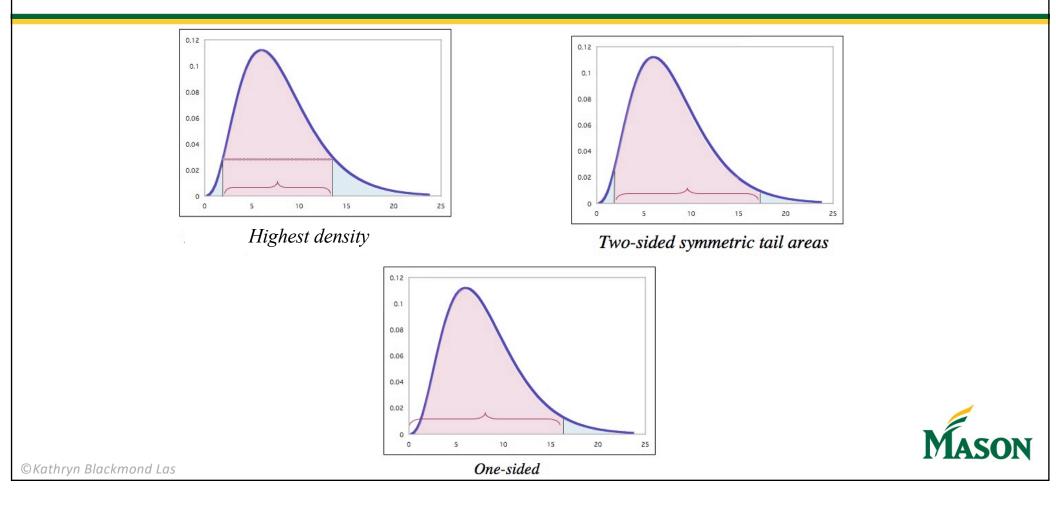
©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 12 -

 $MAD[X] = |X - x_{0.5}|_{0.5}$ 

#### Varieties of Credible Interval



## Theoretical and Sample Summary Statistics

- Expected value and sample mean  $E[X] = \int xf(x)d\mu(x) \qquad \overline{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}$
- Theoretical <sup>x</sup> and sample variance

$$\operatorname{Var}[X] = \int (x - \operatorname{E}[X])^2 f(x) d\mu(x) \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i)^2 d\mu(x)$$

Theoretical and sample quantiles / percentiles

 $F^{-1}(q) = \min_{x} \{F(x) \ge q\}$ 

- There are several definitions for sample quantiles and quantiles of discrete distribution; this is one of the most common
- What is the name of the 0.5 quantile?

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 14 -

 $(-\overline{X})^2$ 



## Multivariate Random Variables

- Often we are uncertain about several random variables
- If they are related we can't treat them in isolation
- Examples:
  - Distribution of test result depends on whether patient has disease
  - Distribution of test score depends on socioeconomic status of student
- A joint distribution (also called a multivariate distribution) defines a probability distribution on several random variables



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 15 -

## Formal Definition: Joint Distribution

- A <u>random vector</u> (or <u>multivariate random variable</u>) X is a vector of random variables
  - Underscore (often omitted) denotes a vector
- A *joint* distribution function is a function of several variables
  - $\operatorname{cdf} F(\underline{x}) = P(\underline{X} \leq \underline{x})$
  - gpdf  $f(\underline{x})$  (density if continuous, mass function if discrete)
  - Expected value vector

$$E[\underline{X}] = \int \underline{x} f(\underline{x}) d\mu(\underline{x})$$

• Covariance<sup>*R<sup>n</sup>*</sup> matrix

$$Cov[\underline{X}] = \int_{R^n} \left( \underline{X} - E[\underline{X}] \right) \left( \underline{X} - E[\underline{X}] \right)^T f(\underline{x}) d\mu(\underline{x})$$

Spring 2022

©Kathryn Blackmond Laskey

Unit 2v3 - 16 -



## Marginal and Conditional Distributions

- If (<u>X,Y</u>) has joint gpdf f(<u>x,y</u>):
  - The marginal gpdf of <u>X</u> is  $f(\underline{x}) = \int f(\underline{x}, \underline{y}) d\mu(\underline{y})$  (<u>y</u> is marginalized out)
  - The conditional gpdf of <u>X</u> given  $\underline{Y}$  is  $f(\underline{x} | \underline{y}) = \frac{f(\underline{x}, \underline{y})}{f(y)}$
- The joint gpdf of <u>X</u> and <u>Y</u> can be factored into conditional and marginal gpdfs:

 $f(\underline{x},\underline{y}) = f(\underline{x} \mid \underline{y}) f(\underline{y}) = f(\underline{y} \mid \underline{x}) f(\underline{x})$ 

• The joint gpdf for *n* random variables  $(X_1, ..., X_n)$  can be written as:

$$f(x_1, \dots, x_n) = f(x_1) f(x_2 | x_1) f(x_3 | x_1, x_2) \cdots f(x_n | x_1, \dots, x_{n-1})$$
  
=  $\prod_{i=1}^n f(x_i | x_1, \dots, x_{i-1})$ 

For <u>independent</u> random variables the joint gpdf is the product of the individual gpdfs:

$$f(x_1, \dots, x_n) = f(x_1) \cdots f(x_n)$$

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 17 -

# Example: Joint, Conditional, Marginal Distributions

- Random variables:
  - X possible values 0 (well) and 1 (sick)
  - Y possible values 0 (tests negative) and 1 (tests positive)
- Joint distribution P(X,Y):

|     | X=0                | X=1                |
|-----|--------------------|--------------------|
| Y=0 | 0.7 x 0.85 = 0.595 | 0.3 x 0.05 = 0.015 |
| Y=1 | 0.7 x 0.15 = 0.105 | 0.3 x 0.95 = 0.285 |

- Marginal distributions:
  - P(X=0) = 0.595 + 0.105 = 0.7, P(X=1) = 0.015 + 0.285 = 0.3
  - P(Y=0) = 0.595 + 0.015 = 0.61, P(Y=1) = 0.105 + 0.285 = 0.39
- ©Kathryn Blackmond Laskey

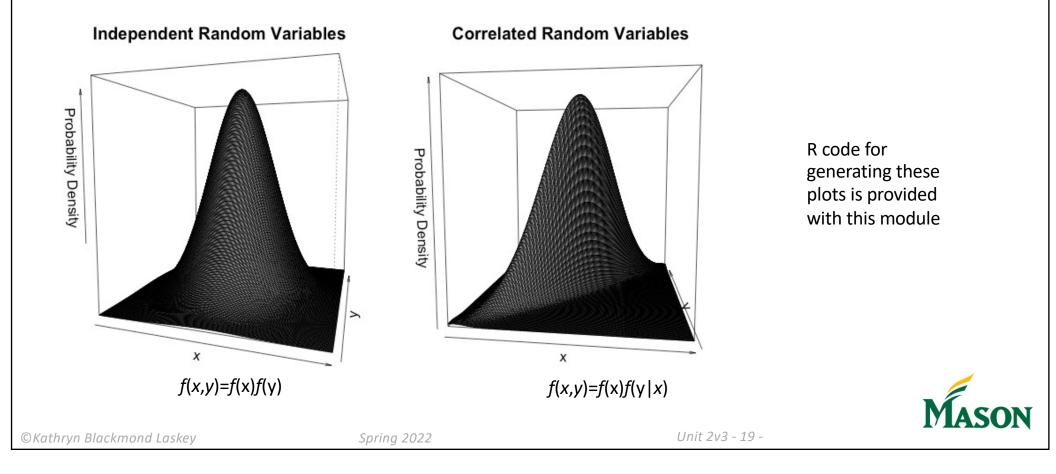
- Conditional distribution of Y given X:
  - P(Y=0 | X=0) = 0.85, P(Y=1 | X=0) = 0.15
  - P(Y=0 | X=1) = 0.05, P(Y=1 | X=1) = 0.95
- Conditional distribution of X given Y:
  - P(X=0 | Y=0) = 0.975, P(X=1 | Y=0) = 0.025
  - P(X=0 | Y=1) = 0.269, P(X=1 | Y=1) = 0.731

We calculated P(X=1 | Y=1) earlier; can you calculate the other conditional probabilities?

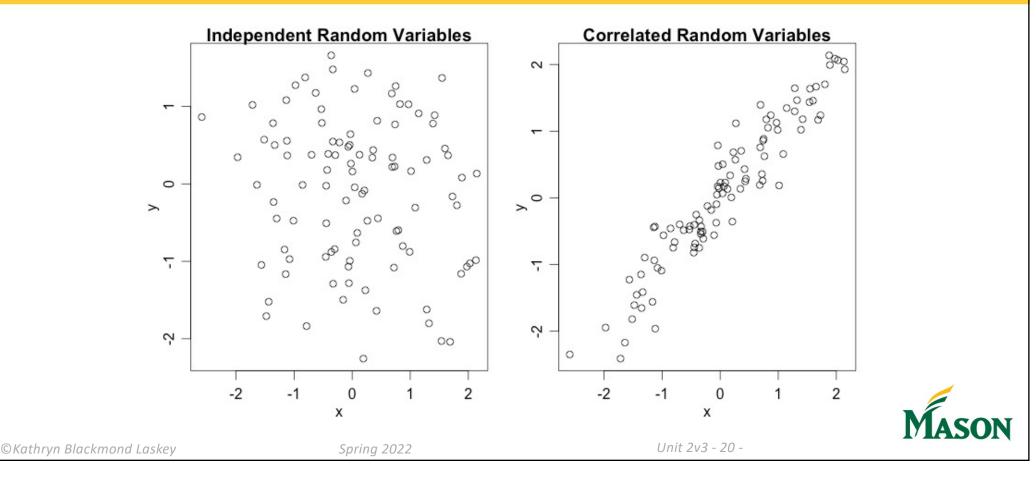


Unit 2v3 - 18 -

### Example Joint Density Functions for 2 Random Variables



#### Scatterplots: Random Samples from Independent & Correlated Bivariate Distributions



## Covariance

- The <u>covariance matrix</u> measures how random quantities vary together
  - Diagonal elements are variances
  - The (i,j)<sup>th</sup> off-diagonal element is called Cov(X<sub>i</sub>,X<sub>j</sub>) or covariance of X<sub>i</sub> and X<sub>j</sub>,

$$\Sigma = Cov(\underline{X}) = \begin{bmatrix} E[(X_1 - \mu_1)^2] & \cdots & E[(X_1 - \mu_1)(X_n - \mu_n)] \\ \vdots & \ddots & \vdots \\ E[(X_n - \mu_n)(X_1 - \mu_1)] & \cdots & E[(X_n - \mu_n)^2] \end{bmatrix} = \begin{bmatrix} Var(X_1) & \cdots & Cov(X_1, X_n) \\ \vdots & \ddots & \vdots \\ Cov(X_1, X_n) & \cdots & Var(X_n) \end{bmatrix}$$

- If  $X_i$  and  $X_j$  are independent then  $Cov(X_i, X_j) = 0$ 
  - Covariance matrix is diagonal if random variables are all mutually independent
- Cov(X<sub>i</sub>,X<sub>j</sub>) is positive if X<sub>i</sub> tends to increase with X<sub>j</sub> and negative if X<sub>i</sub> tends to decrease with X<sub>j</sub>
- If X<sub>i</sub> and X<sub>j</sub> have an *exact* [positive / negative] linear relationship then Cov(X<sub>i</sub>,X<sub>j</sub>) is equal to [plus / minus] the product of the standard deviations of X<sub>i</sub> and X<sub>j</sub>

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 21 -

## Correlation

- The correlation matrix is defined as:  $\operatorname{corr}(\mathbf{X}) = (\operatorname{diag}(\Sigma))^{-\frac{1}{2}} \Sigma (\operatorname{diag}(\Sigma))^{-\frac{1}{2}}$ 
  - The diagonal elements are equal to 1
  - The (i,j)<sup>th</sup> off-diagonal element is the covariance divided by the product of the i<sup>th</sup> and j<sup>th</sup> standard deviations

$$Corr(\underline{X}) = \begin{bmatrix} 1 & \cdots & \frac{E[(X_1 - \mu_1)(X_n - \mu_n)]}{\sqrt{E[(X_1 - \mu_1)^2]E[(X_n - \mu_n)^2]}} \\ \vdots & \ddots & \vdots \\ \frac{E[(X_n - \mu_n)(X_1 - \mu_1)]}{\sqrt{E[(X_n - \mu_n)^2]E[(X_1 - \mu_1)^2]}} & \cdots & 1 \end{bmatrix}$$

- The off-diagonal elements are real numbers between -1 and 1
  - If RVs are independent then correlation is zero
  - The closer the correlation is to 1 or -1, the more nearly linearly related the RVs are



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 22 -

## Sample Covariance and Correlation

- Sample covariance matrix
  - Diagonal entry in row i is sample variance of X<sub>i</sub>

$$S_i^2 = \frac{1}{n-1} \sum_{k=1}^n (X_{ik} - \bar{X}_i)^2$$

Price MPG.city MPG.hiah EngineSize

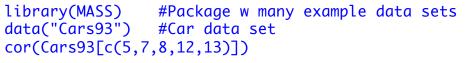
15 25 35 45

• Off-diagonal element in row i and column j  $\neq$  i is sample covariance of  $X_i$  and  $X_i$ 

$$C_{i} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{ik} - \bar{X}_{i})(X_{jk} - \bar{X}_{j})$$

- Sample correlation matrix
  - Diagonal entries are equal to 1
  - Off-diagonal element i is sample correlation

in row i and column j ≠ of 
$$X_i$$
 and  $X_j$ 



|             | Price      | MPG.city   | MPG.highway | EngineSize | Horsepower                              |  |
|-------------|------------|------------|-------------|------------|-----------------------------------------|--|
| Price       |            | -          | -0.5606804  | -          | • • • • • • • • • • • • • • • • • • • • |  |
| MPG.city    | -0.5945622 | 1.0000000  | 0.9439358   | -0.7100032 | -0.6726362                              |  |
| MPG.highway | -0.5606804 | 0.9439358  | 1.0000000   | -0.6267946 | -0.6190437                              |  |
| EngineSize  | 0.5974254  | -0.7100032 | -0.6267946  | 1.0000000  | 0.7321197                               |  |
| Horsepower  | 0.7882176  | -0.6726362 | -0.6190437  | 0.7321197  | 1.0000000                               |  |
|             |            |            |             |            |                                         |  |



 $R_i = \frac{C_{ij}}{S_i S}$ 

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 23 -

https://www.rdocumentation.org/packages/MASS/versions/7.3-55/topics/Cars93

## Independence and Conditional Independence

- <u>X</u> and <u>Y</u> are <u>independent</u> if the conditional distribution of <u>X</u> given <u>Y</u> does not depend on <u>Y</u>
  - When <u>X</u> and <u>Y</u> are independent, the joint density (or mass) function is equal to the product of the marginal density (or mass) functions
  - $f(\underline{x},\underline{y}) = f(\underline{x})f(\underline{y})$
- <u>X</u> and <u>Y</u> are conditionally independent given <u>Z</u> if:
  - $f(\underline{x},\underline{y},\underline{z}) = f(\underline{x}|\underline{z})f(\underline{y}|\underline{z})f(\underline{z})$  General form is f(x,y,z) = f(x|y,z)f(y|z)f(z)
- Conditional independence relationships simplify specificiation of the joint distribution



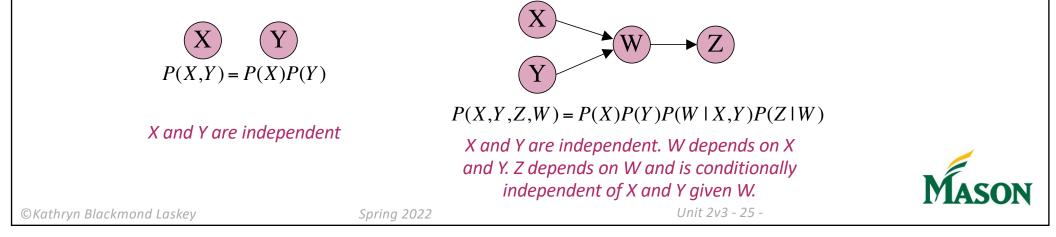
©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 24 -

# Graphical Representation of Conditional Dependence

- Graphs provide a powerful tool for visualizing and formally modeling dependencies between random variables
  - Random variables (RVs) are represented by nodes
  - Direct dependencies are represented by edges
  - Absence of an edge means no direct dependence



# Joint Distribution for Multivariate Random Variable: Summary

- A joint distribution models related random variables
- The marginal distribution models one or more random variable(s) integrating over the other(s)
- The conditional distribution models one or more random variable(s) given the value(s) of the other(s)
- Covariance and correlation matrices measure relationships between random variables (theoretical and sample)
- Scatterplot matrices allow us to visualize relationships in sample data
- Graphical probability models provide a way to visualize conditional dependence relationships



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 26 -

## Parametric Families of Distributions

- Statistics makes use of parametric families of distributions
  - Many problems are modeled by assuming observations  $X_1$ , ...,  $X_N$  are independent and identically distributed observations from a distribution with gpdf  $f(x \mid \Theta)$ 
    - Functional form  $f(x | \Theta)$  is known but value  $\Theta$  of parameter is unknown
  - Parameter may be a number  $\Theta$  or a vector  $\underline{\Theta} = (\Theta_1, ..., \Theta_p)$
- Canonical (standard) problems in statistics:
  - Use sample to construct an estimate (point or interval) of  $\Theta$
  - Test a hypothesis about the value of  $\Theta$
  - Is the functional form  $f(X | \Theta)$  an adequate model for the data?
  - Predict features (e.g., mean) of a future sample  $X_{1+N}$ , ...,  $X_{M+N}$
- Many distributions have multiple parameterizations in common use and it is important not to confuse different parameterizations
   © Kathryn Blackmond Laskey
   Spring 2022
   Unit 2v3 - 27 -



#### Some Discrete Parametric Families (p. 1 of 2)

- <u>Binomial distribution</u> with number of trials *n* and success probability  $\pi$ :
  - Sample space: Non-negative integers (between 0 and *n*)

• pmf: 
$$f(x \mid n, \pi) = \begin{pmatrix} n \\ x \end{pmatrix} \pi^{x} (1 - \pi)^{n - x}$$

•  $E[X|n,\pi] = n\pi; Var[X|n,\pi] = n\pi (1-\pi)$ 

- <u>Multinomial distribution</u> with number of trials *n* and category probability  $\pi$ :
  - Sample space: Vectors of non-negative integers that sum to n

• pmf: 
$$f(x_1...,x_p \mid n, \pi_1,...,\pi_p) = \left(\frac{n!}{x_1!\cdots x_p!}\right) \prod_{i=1}^p \pi_i^{x_i}$$

• 
$$E[\underline{X}|n,\underline{\pi}] = n\underline{\pi}; \ Var[X_i|n,\pi_i] = n\pi_i(1-\pi_i)$$

- <u>Poisson distribution</u> with rate  $\lambda$ :
  - Sample space: Non-negative integers

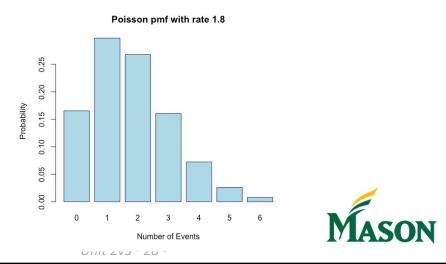
• pmf: 
$$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^3}{x!}$$

• 
$$E[X \mid \lambda] = \lambda$$
;  $Var[X \mid \lambda] = \lambda$ 

©Kathryn Blackmond Laskey

Spring 2022

Bernoulli distribution is a Binomial distribution with n=1



#### Some Discrete Parametric Families (p. 2 of 2)

- *Negative binomial distribution* with size  $\alpha$  and probability  $\pi$ :
  - Sample space: Non-negative integers
  - pmf:  $f(x \mid \alpha, \pi) = \begin{pmatrix} \alpha + x 1 \\ \alpha \end{pmatrix} \pi^{\alpha} (1 \pi)^{x}$
  - $E[X|\alpha,\pi] = \frac{\alpha(1-\pi)}{\pi}$ ;  $V[X|\alpha,\pi] = \frac{\alpha(1-\pi)}{\pi^2}$

Distribution for number of failures in a sequence of independent and identically distributed trials until  $\alpha$  successes occur

Gamma function

 $\Gamma(y) = \int_{0}^{\infty} u^{y-1} e^{-u} du$ 

- <u>Beta-binomial distribution</u> with shape parameters  $\alpha$ ,  $\beta$  and number of trials n (or probability parameter  $p = \frac{\alpha}{\alpha + \beta}$ , overdispersion parameter  $m = \alpha + \beta$  and number of trials n)
  - Sample space: Non-negative integers (between 0 and n)

• pmf: 
$$f(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} {n \choose x} \frac{\Gamma(\alpha + x)\Gamma(\beta + n - x)}{\Gamma(\alpha + \beta + n)}$$
  
•  $E[X \mid \alpha, \beta, n] = \frac{n\alpha}{\alpha + \beta} = np$ ;  $Var[X \mid \alpha, \beta, n] = \frac{n\alpha\beta(\alpha + \beta + n)}{(\alpha + \beta)^2(\alpha + \beta + 1)} = np(1 - p)\frac{(m+n)}{m+1}$   
© Kathryn Blackmond Laskey Spring 2022 Unit 2v3 - 29 -

#### Some Continuous Parametric Families (p. 1)

- <u>Gamma distribution</u> with shape  $\alpha$  and scale  $\beta$ :
  - Sample space: Nonnegative real numbers

• pdf: 
$$f(x \mid \alpha, \beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$

• 
$$E[X \mid \alpha, \beta] = \alpha\beta$$
;  $Var[X \mid \alpha, \beta] = \alpha\beta^2$ 

- <u>Beta distribution</u> with shape parameters  $\alpha$  and  $\beta$ :
  - Sample space: Real numbers between 0 and 1

• pdf: 
$$f(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
  
•  $E[X \mid \alpha, \beta] = \alpha / (\alpha + \beta); Var[X \mid \alpha, \beta] = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$ 

Exponential distribution is a Gamma distribution with  $\alpha = 1$ 

Chi-square distribution with  $\delta$ degrees of freedom is a Gamma distribution with  $\alpha = \delta/2$  and  $\beta = 2$ 

Uniform distribution is a Beta distribution with  $\alpha = \beta = 1$ 

Gamma function  $\Gamma(y) \equiv \int_0^\infty u^{y-1} e^{-u} du$ 



• Univariate normal distribution with mean 
$$\mu$$
 and standard deviation  $\sigma$ :

• Sample space: Real numbers

• pdf: 
$$f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x_i - \mu}{\sigma}\right)^2\right\}$$

• 
$$E[X|\mu,\sigma] = \mu$$
;  $Var[X|\mu,\sigma] = \sigma$ 

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 30 -

Gamma distribution is also

parameterized with shape

and rate  $r = 1/\beta$ 

### Some Continuous Parametric Families (p. 2)

- *Multivariate normal distribution* with mean  $\mu$  covariance matrix  $\Sigma$ :
  - Sample space: Vectors of real numbers

• pdf: 
$$f(\underline{x} \mid \underline{\mu}, \Sigma) = \frac{1}{\sqrt{2\pi \mid \Sigma \mid}} \exp\left\{-\frac{1}{2}\left(\underline{x} - \underline{\mu}\right)' \Sigma^{-1}\left(\underline{x} - \underline{\mu}\right)\right\}$$

• 
$$E\left[\underline{X}|\underline{\mu},\underline{\Sigma}\right] = \underline{\mu}; Var\left[\underline{X}|\underline{\mu},\underline{\Sigma}\right] = \underline{\Sigma}$$

- <u>Dirichlet distribution</u> with shape parameters  $\alpha_1, \alpha_2, ..., \alpha_p$ :
  - Sample space: Real non-negative vectors summing to 1

• pdf: 
$$f(x_1,...,x_p \mid \alpha_1,...,\alpha_p) = \frac{\Gamma(\alpha_1 + \dots + \alpha_p)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_p)} x_1^{\alpha_1 - 1} \cdots x_p^{\alpha_p - 1}$$

$$E[X_i \mid \alpha_1, ..., \alpha_p] = \frac{\alpha_i}{\sum_j \alpha_j} \quad Var[X_i \mid \alpha_1, ..., \alpha_p] = \frac{\alpha_i(1 - \alpha_i)}{\left(\sum_j \alpha_j\right)^2 \left(\sum_j \alpha_j + 1\right)^2}$$

Dirichlet distribution is a multivariate generalization of the Beta distribution

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 31 -

## Sufficient Statistic

- A sufficient statistic is a data summary (function of sample of observations) such that the observations are independent of the parameter given the sufficient statistic
  - Example: For a sample of *n* iid observations from a Poisson distribution, the sum of the observations is a sufficient statistic for the rate parameter
  - Example: For a sample of n observations from a Bernoulli distribution, the total number of successes is a sufficient statistic for the success probability
- If observations  $X_1, \ldots, X_n$  are sampled randomly from a distribution with gpdf  $f(X \mid \theta)$  and Y is sufficient for the parameter  $\theta$ , then the posterior distribution  $f(\theta \mid X)$  depends on the observations only through the sufficient statistic
  - A sufficient statistic contains all information needed to calculate the posterior distribution for heta
- Fisher's factorization theorem: T(X) is sufficient for  $\theta$  if and only if the conditional probability distribution  $f(X \mid \theta)$  can be factored as:

$$f(X \mid \theta) = h(x)g_{\theta}(T(x))$$

©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 32 -

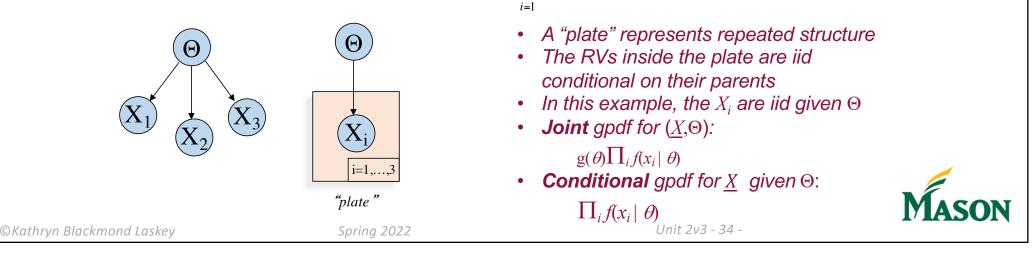


## **Distributions in R**

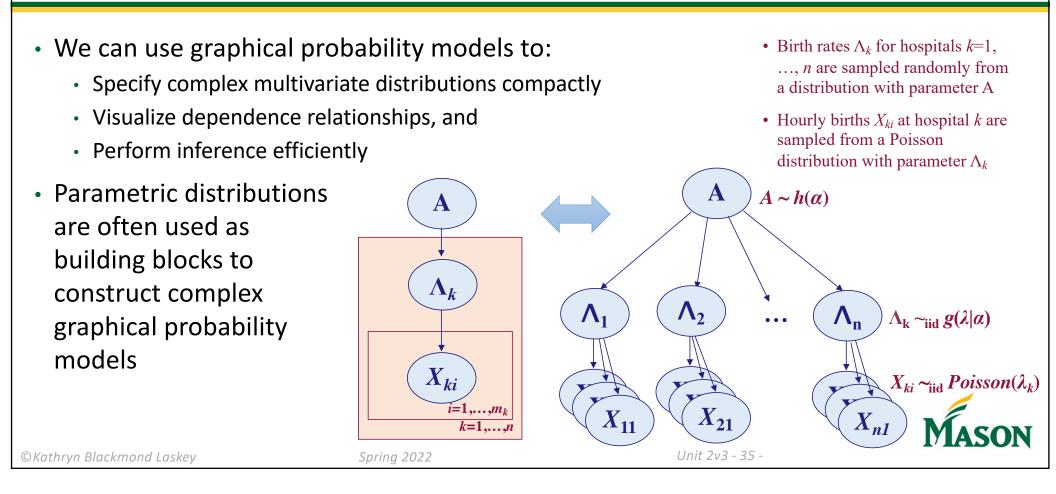
| Distribution       | Base name | Parameters      |                                                                                                                                          |  |  |  |  |
|--------------------|-----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| beta               | beta      | shape1, shape2  | In R, there are four functions for each distribution, invoked by adding a prefix to the distribution's base                              |  |  |  |  |
| binomial           | binom     | size, prob      |                                                                                                                                          |  |  |  |  |
| Cauchy             | cauchy    | location, scale |                                                                                                                                          |  |  |  |  |
| chi-squared        | chisq     | df              | name:                                                                                                                                    |  |  |  |  |
| exponential        | exp       | rate            | <ul> <li>p for "probability" – the cumulative distribution function (content</li> </ul>                                                  |  |  |  |  |
| F                  | f         | df1, df2        | <ul> <li>q for "quantile" – the inverse cdf</li> </ul>                                                                                   |  |  |  |  |
| gamma              | gamma     | shape, rate     | <ul> <li>d for "density" – the density or mass function</li> </ul>                                                                       |  |  |  |  |
| geometric          | geom      | р               | <ul> <li>r for "random" – generates random numbers from the</li> </ul>                                                                   |  |  |  |  |
| hypergeometric     | hyper     | m, n, k         | distribution                                                                                                                             |  |  |  |  |
| log-normal         | lnorm     | meanlog, sdlog  | Examples: rpois, dgamma                                                                                                                  |  |  |  |  |
| logistic           | logis     | location, scale |                                                                                                                                          |  |  |  |  |
| negative binomial  | nbinom    | size, prob      | Source:<br>http://www.johndcook.com/distributions_R_SPLUS.html                                                                           |  |  |  |  |
| normal             | norm      | mean, sd        |                                                                                                                                          |  |  |  |  |
| Poisson            | pois      | lambda          | <ul> <li>Information on distributions in R:</li> </ul>                                                                                   |  |  |  |  |
| Student t          | t         | df              | <ul> <li>http://www.stat.umn.edu/geyer/old/5101/rlook.html</li> <li>Some distributions we will use are not provided in base R</li> </ul> |  |  |  |  |
| uniform            | unif      | min, max        |                                                                                                                                          |  |  |  |  |
| Weibull            | weibull   | shape, scale    | but are available in R packages                                                                                                          |  |  |  |  |
| ©Kathryn Blackmond | Laskey    | Spring 2022     | 2 Unit 2v3 - 33 -                                                                                                                        |  |  |  |  |

## Independent and Identically Distributed Observations: Plate Representation

- Statistical models often assume the observations are a random sample from a parameterized distribution
- Mathematically, this is represented as independent and identically distributed (iid) conditional on the parameter  $\Theta$
- The gpdf for an iid sample  $X_1, ..., X_n$  conditional on  $\Theta$  is written as a product of factors:  $f(x_1, x_2, ..., x_n | \theta) = f(x_1 | \theta) f(x_2 | \theta) \cdots f(x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$



## Multi-Level Models: Graphical Representation



## Is a Parametric Distribution a Good Model?

- Before applying a parametric model, we should assess its adequacy
  - Theoretical assumptions underlying the distribution
  - Exploratory data analysis
  - Formal goodness-of-fit tests
- In your homework I expect you to assess whether the parametric model I give you is a good one (sometimes it won't be!)



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 36 -

## Some Tools for Exploratory Data Analysis

- A q-q plot is a commonly used diagnostic tool
  - Plot quantiles of data distribution against quantiles of theoretical distribution
  - If theoretical distribution is correct, the plot should look approximately like the plot of y=x
  - Problem: what about unknown parameters?
  - Solution: We can estimate parameters from data
  - Solution: in the case of a location-scale family, we can plot data quantiles against standard distribution (location parameter = 0 and scale parameter = 1)
    - If theoretical distribution is correct the plot should look approximately like a straight line
    - Slope and intercept of line are determined by scale and location parameters
- Another diagnostic tool is to compare empirical and theoretical counts for discrete RV (or discretized continuous RV)
- What other checks for model fit have you encountered?

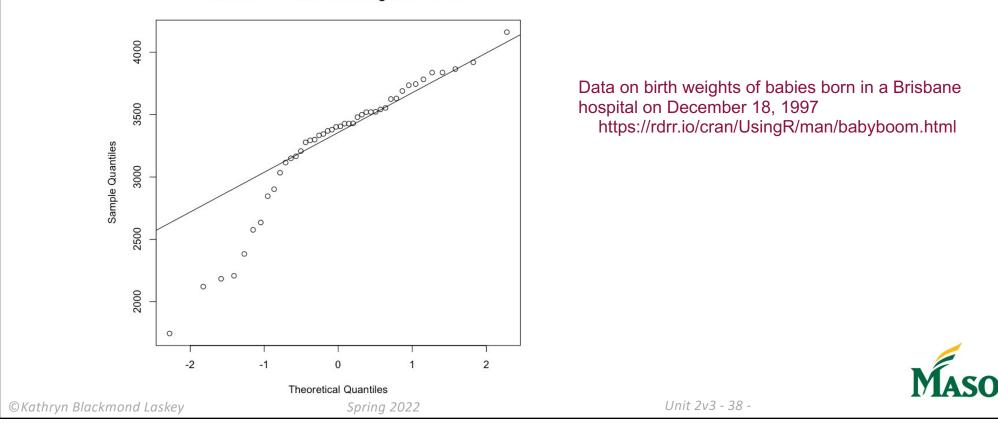


©Kathryn Blackmond Laskey

Spring 2022

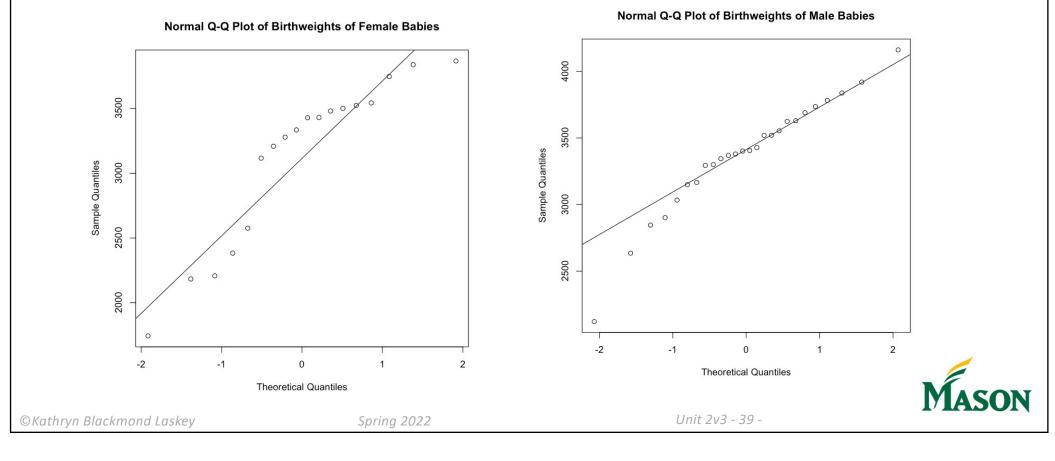
Unit 2v3 - 37 -

## Are Birth Weights Normally Distributed?

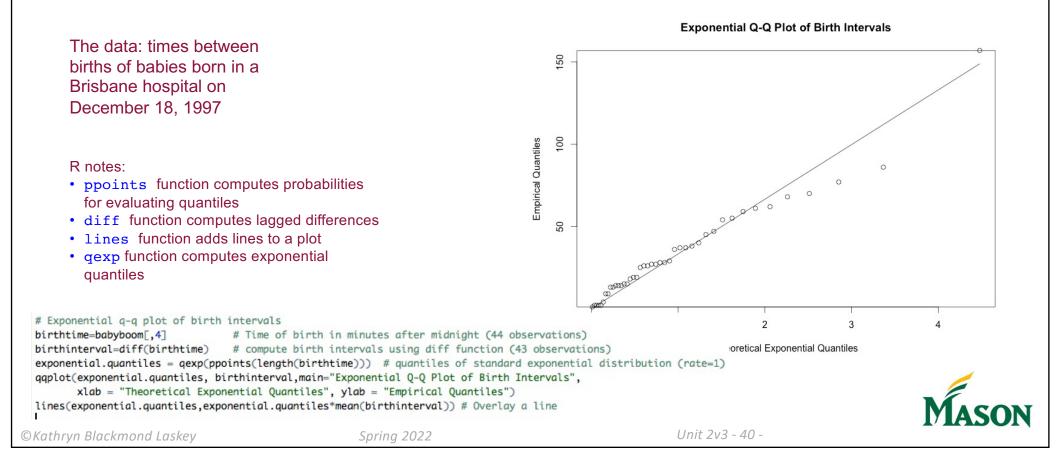


Normal Q-Q Plot of Birthweights of Babies

### Birth Weights of Boys and Girls



#### Are Times Between Births Exponentially Distributed?



## Do Births Per Hour Follow a Poisson Distribution?

Comparing empirical to theoretical counts is a useful tool for evaluating fit (if the expected counts are not too small)

| Births | Empirical<br>Count | Expected<br>Count |
|--------|--------------------|-------------------|
| 0      | 3                  | 3.84              |
| 1      | 8                  | 7.03              |
| 2      | 6                  | 6.45              |
| 3      | 4                  | 3.94              |
| 4      | 3                  | 1.81              |
| 5+     | 0                  | 0.93              |
| TOTAL  | 24                 | 24.00             |

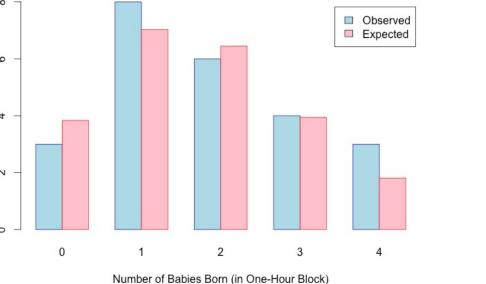
*If times (in hours) between births are a random sample from an exponential distribution, then counts of births per hour are a random sample from a Poisson distribution* 

©Kathryn Blackmond Laskey

Spring 2022



**Distribution of Births per One-Hour Block** 



MASON

Unit 2v3 - 41 -

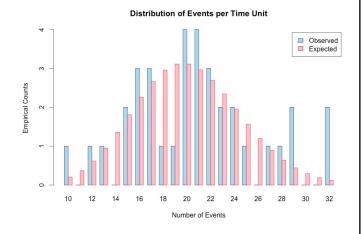
## Frequency Plot is Misleading when Expected Counts are Too Small

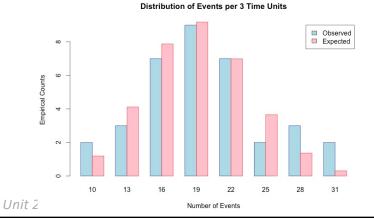
- Plots show empirical (blue) and expected (pink) counts from sample of 35 observations from Poisson distribution with mean 20
  - Top plot bin size is 1 unit
  - Bottom plot bin size is 3 units
- When expected counts are small, plots of observed and expected counts will not look similar
- Common rule of thumb: choose bin size so most bins have expected count of at least 5



Spring 2022

L



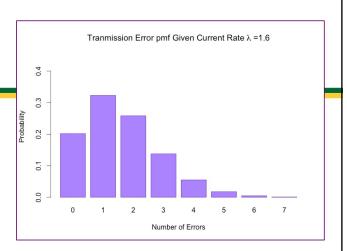


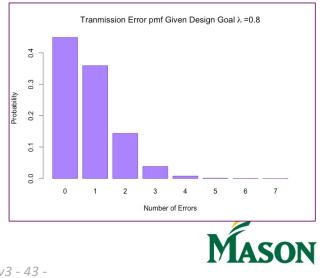
## Example: Modeling Transmission Errors

- Number of transmission errors per hour is distributed as Poisson with parameter  $\lambda$ 

$$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

- Data on previous system established error rate as 1.6 errors per hour
- New system has design goal of cutting this rate in half to 0.8 errors per hour
- Observe new system for 6 one-hour periods:
  - Data: 1, 0, 1, 2, 1, 0
- Questions:
  - Have we met the design goal?
  - Does the new system improve the error rate?





43 ©Kathryn Blackmond Laskey

Spring 2022

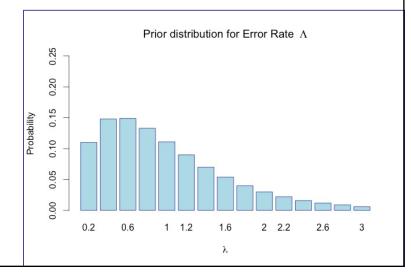
Unit 2v3 - 43 -

## The Prior Distribution (discretized)

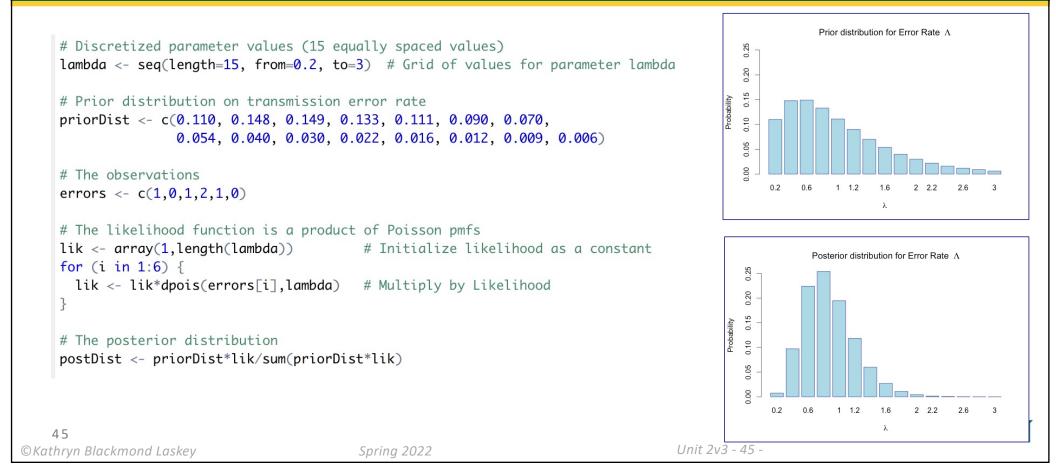
- We use expert judgment to define prior distribution on a discrete set of values
  - Error rate can be any positive real number
  - Later we will revisit this problem with a continuous prior distribution)
- Experts familiar with the new system design said:
  - "Meeting the design goal of 0.8 errors per hour is about a 50-50 proposition."
  - "The chance of making things worse than current rate of 1.6 errors per hour is small but not negligible"
- Expert agrees that the discretized distribution shown here is a good reflection of his prior knowledge
  - Expected value is about 1.0
  - Distribution is heavy tailed on the right
  - P(∧≤0.8) = 0.54
  - P(∧≤1.6) = 0.87
  - Values of  $\Lambda$  greater than 3 are unlikely enough to ignore

44 ©Kathryn Blackmond Laskey

Spring 2022



#### **Bayesian Inference for Error Rate**



## Features of the Posterior Distribution

- Central tendency
  - Posterior mean of  $\Lambda$  is 0.87
  - Prior mean of  $\Lambda$  is 0.97; data mean is .83
  - Typically posterior central tendency is a compromise between the prior distribution and the center of the data
- Variation
  - Posterior standard deviation of  $\Lambda$  is about .33
  - Prior standard deviation of  $\Lambda$  is about .62
  - Typically variation in the posterior is less than variation in the prior (we have more information)
- Meeting the threshold
  - Posterior probability of meeting or doing better than design goal is about .58
  - Posterior probability that new system is better than old system is about .96
  - Posterior probability that new system is worse than old system is less than .02



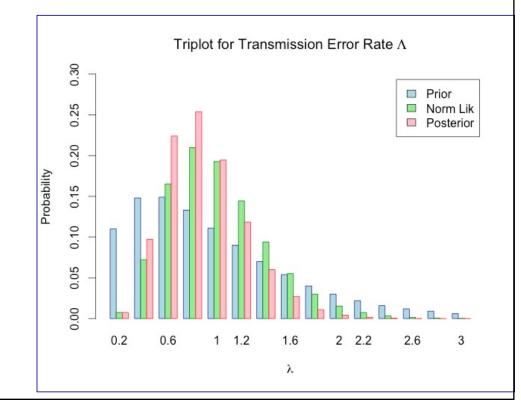
46 ©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 46 -

## Triplot

- Visual tool for examining Bayesian belief dynamics
- Plot prior distribution, normalized likelihood, and posterior distribution
- Normalized likelihood:
  - Posterior distribution we would obtain if all values were assigned equal prior probability
  - To calculate, divide likelihood by sum or integral over  $\lambda$



Spring 2022

#### Bayesian Belief Dynamics: Sequential and Batch Processing of Observations

- Batch processing:
  - Use Bayes rule with prior g(θ) and combined likelihood f(X<sub>1</sub>, ..., X<sub>n</sub>|θ) to find posterior g(θ|X<sub>1</sub>, ..., X<sub>n</sub>)
- Sequential processing:
  - Use Bayes rule with prior  $g(\theta)$  and likelihood  $f(X_1|\theta)$  to find posterior  $g(\theta|X_1)$
  - Use Bayes rule with prior  $g(\theta|X_1)$  and likelihood  $f(X_2|\theta)$  to find posterior  $g(\theta|X_1, X_2)$
  - ...
  - Use Bayes rule with prior  $g(\theta | X_1, ..., X_{n-1})$  and likelihood  $f(X_n | \theta)$  to find posterior  $g(\theta | X_1, ..., X_n)$
- The posterior distribution after n observations is the same with both methods

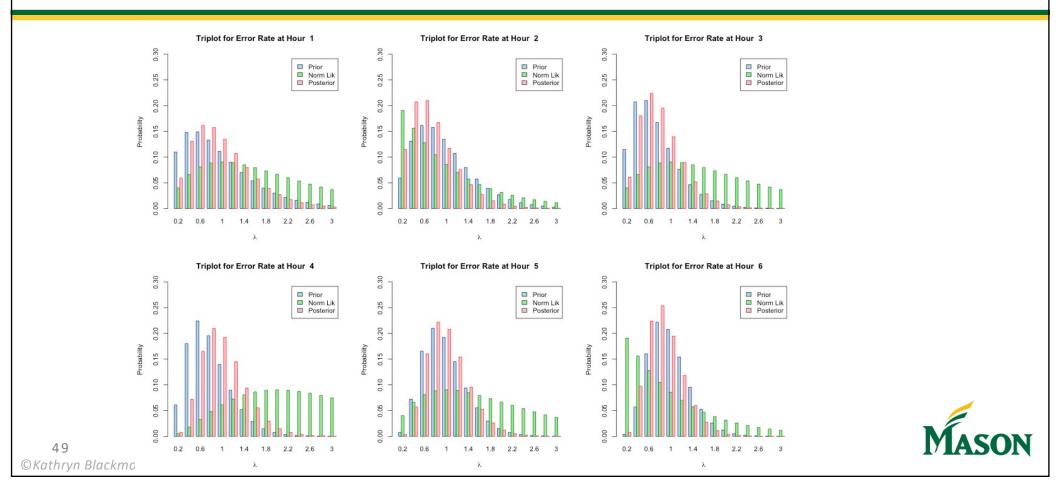


©Kathryn Blackmond Laskey

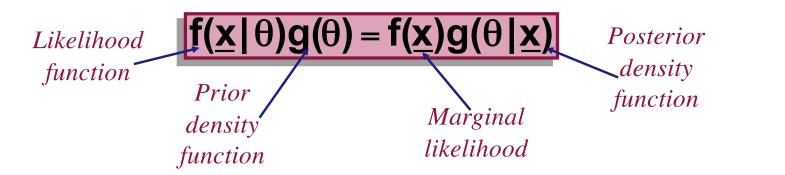
Spring 2022

Unit 2v3 - 48 -

#### Visualizing Bayesian Belief Dynamics: Hour-by-Hour Triplots for Transmission Error Data



## Fundamental Identity of Bayesian Inference



- The joint gpdf of parameter and data can be expressed in two ways:
  - Prior density for parameter times likelihood function
  - Marginal likelihood times posterior density for parameter
    - Marginal likelihood is (conditional) likelihood integrated over parameter

$$f(\underline{x}) = \int_{\theta} f(\underline{x} | \theta) g(\theta) d\mu(\theta) = \begin{cases} \int_{\theta} f(\underline{x} | \theta) g(\theta) d\theta & \text{continuous parameter} \\ \sum_{\theta} f(\underline{x} | \theta) g(\theta) & \text{discrete parameter} \end{cases}$$

$$(Sathryn Blackmond Laskey & Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 2022 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - Value - Spring 202 & Unit 2v3 - 50 - V$$

# Marginal Likelihood

- **Before we have seen X**, we use the marginal likelihood to predict the value of X
  - When used for predicting X, the marginal likelihood is called the *predictive distribution* for X
- After we see X=x, we divide the joint probability  $f(x|\theta)g(\theta)$  by the marginal likelihood f(x) to obtain the posterior probability mass function of  $\theta$ :

• 
$$g(\theta \mid x) = \frac{f(x \mid \theta)g(\theta)}{f(x)}$$

- The marginal likelihood f(x) is the normalizing constant in Bayes Rule we divide by f(x) to ensure that the posterior probabilities sum to 1
- The marginal likelihood  $f(x) = \sum_{\theta} f(x|\theta)g(\theta)$  includes uncertainty about both  $\theta$  and x given  $\theta$
- Non-Bayesians sometimes predict future observations using a point estimate of heta
- Predictions using the marginal likelihood are more spread out (include more uncertainty) than predictions using a point estimate of  $\theta$



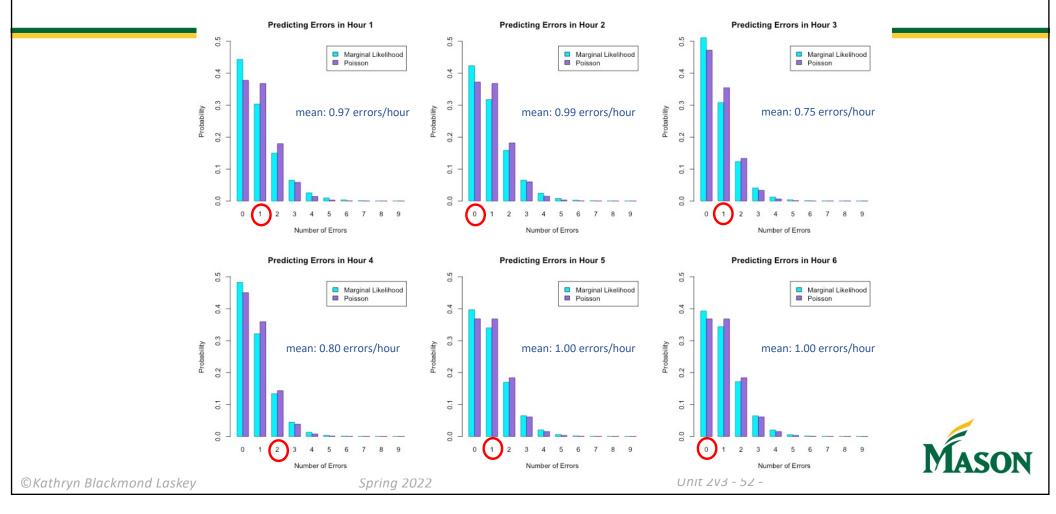
©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 51 -

#### Predicting Future Observations:

Compare Marginal Likelihood with Poisson(E[ $\Lambda$  | observations so far])



## Parameters and Conditioning: Frequentists and Subjectivists

- Frequentist view of parameters
  - Parameter  $\theta$  represents a true but unknown feature of a random data generating process
  - It is not appropriate to put a probability distribution on  $\theta$  because the value of  $\theta$  is not random
- Subjectivist view of parameters
  - A subjectivist puts a probability distribution on  $\theta$  as well as  $X_i$  given  $\theta$
  - Parametric distributions are a convenient means to specify probability distributions that represent our beliefs about as yet unobserved data
  - Many subjectivists don't believe "true parameters" exist
- Frequentists and subjectivists on conditioning
  - Frequentists condition on parameter and base inferences on data distribution  $f(x_1|\theta) \cdots f(x_n|\theta)$ 
    - Even after X has been observed it is treated as random
  - Subjectivists condition on knowns and treat unknowns probabilistically
    - Before observing data X = x, the joint distribution of parameters and data is  $f(x_1|\theta) \cdots f(x_n|\theta)g(\theta)$
    - After observing data, X = x is known and random variable  $\Theta$  has distribution  $g(\theta | x_1, ..., x_n)$

©Kathryn Blackmond Laskey

Unit 2v3 - 53 -

# Connecting Subjective and Frequency Probability: de Finetti's Representation Theorem

#### IF

- Your beliefs are represented by a probability distribution P over a sequence of events  $X_1, X_2, \ldots$
- You believe the sequence is <u>infinitely exchangeable</u> (your probability for any sequence of successes and failures does not depend on the order of successes and failures)

#### THEN

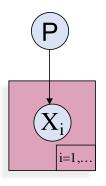
• You believe with probability 1 that the proportion of successes will tend to a definite limit as the number of trials goes to infinity

 $\frac{S_n}{n} \to p \text{ as } n \to \infty \qquad \text{where } S_n = \# \text{ successes in n trials}$ 

• Your probability distribution for  $S_n$  is the same as the distribution you would assess if you believed the observations were random draws from some unknown "true" value of p with probability density function f(p)

$$P(S_n = k) = \int_0^1 \binom{n}{k} p^k (1-p)^{n-k} g(p) dp$$

A sequence a frequentist would call random draws from a "true" distribution is one a Bayesian would call exchangeable



©Kathryn Blackmond Laskey

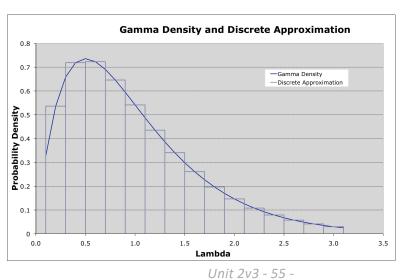
Spring 2022

Unit 2v3 - 54 -

## **Bayesian Inference for Continuous Random Variables**

Inference for continuous random variable is limiting case of inference with discretized random variable as number of bins and width of bin goes to zero

- Accuracy tends to increase with more bins
- Accuracy tends to increase with smaller area per bin
- Be careful with tail area of unbounded random variables
- Closed form solution for continuous problem exists in special cases (see Unit 3)
  - The prior distribution we used for the transmission error example was obtained by discretizing a Gamma distribution
  - In Unit 3, we will compare with the exact result using the Gamma prior distribution



© Kathryn Blackmond Laskey

Spring 2022



## Summary and Synthesis

- A random variable represents an uncertain hypothesis
  - Categorical, ordinal, discrete numerical, continuous numerical
  - Function from sample space to outcomes (usually real numbers)
  - Used to define events
- Probability mass functions, density functions, and cumulative distribution functions are tools for defining probability distributions
  - We examined measures of central tendency and spread
- Parametric families of distributions are convenient and practical "off the shelf" models for common types of uncertain processes
  - We listed several commonly used parametric families
  - We noted that observations are often modeled as randomly sampled from a parametric family with unknown parameter
  - We applied Bayes rule to infer a posterior distribution for a parameter (using a discretized prior distribution)
  - We contrasted the subjectivist and frequentist approaches to parameter inference
  - We saw that de Finetti's exchangeability theorem provides a connection between the frequentist and subjectivist views of parameters



©Kathryn Blackmond Laskey

Spring 2022

Unit 2v3 - 56 -