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Learning Objectives for Unit 2

Define and apply the following:
« Event
- Random variable (univariate and multivariate)
- Joint, conditional and marginal distributions
« Independence; conditional independence
- Mass and density functions; cumulative distribution functions
« Measures of central tendency and spread

Use a graph to show conditional dependence and independence of random variables

Be familiar with common parametric statistical models

« Continuous distributions:
« Normal, Gamma, Exponential, Uniform, Beta, Dirichlet
+ Discrete distributions:
- Bernoulli, Binomial, Multinomial, Poisson, Negative Binomial

Use Bayes rule to find the posterior and predictive distribution (marginal likelihood) of a
parameter given a set of observations (using discrete apprommatmn%

State de Finetti's Theorem and its relationship to the concept of "true" probabilities
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Random Variable: Definition

- Definition: A random variable is a function from the sample space ()
to a set of outcomes (often the real numbers)
- Discrete (values can be enumerated) and continuous (values cannot be
enumerated)
- Example:
- Sample space (} is a set of patients

- Discrete random variable example: Y (w) is 0 if patient w has a fever
(temperature > 37°C or 98.6°F) and 1 if patient doesn’t have fever

- Continuous random variable example: X (w) is temperature of patient w

- A random variable defines events on the outcome space
- Example: Event Y = 1is subset {w € Q : Y(w) = 1} consisting of patients

with fever Z
MASON




RV from Frequentist View: Example

Question: does “randomly chosen” patient have disease?

Sample space S = {s1, s2, ...} represents population of patients arriving at medical clinic
- 30% of the patients in this population have the disease
- 95% of the patients who have the disease test positive
- 85% of the patients who do not have the disease test negative

Random variables:

« X maps randomly drawn patient s to X(s) = 0 if patient does not have disease and X(s) = 1 if patient
has disease

- Y maps randomly drawn patient s to Y(s) = 0 if patient’s test result is negative and Y(s) = 1 if
patient's test result is positive

Usqall?/ we suppress the argument and write (X, Y) for the two-component random
variable representing the condition and test result of a randomly drawn patient

. Pr(X=1)=0.3

. Pr(Y=1 | X=1) = 0.95

- Pr(Y=0 | X=0) =0.85

« Pr(X=1| Y=1) =0.73 (by Bayes rule)

These probabilities refer to a sampling process and not to any particular patient
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RV from Subjectivist View: Example

- Question: does a specific patient (e.g., George Smith) have disease?

- Sample space S ={s1, s2, ...} represents “possible worlds” (or ways the world could be)
- In 30% of these possible worlds, George has the disease
« In 95% of these possible worlds in which George has the disease, the test is positive
- In 85% of the possible worlds in which George does not have the disease, the test is negative

« Random variables:

« X maps possible world s to X(s) = 0 if George does not have disease and
X(s) = 1 if George has disease in this world

« Y maps possible world s to Y(s) = 0 if George’s test result is negative and
Y(s) = 1 if George’s test result is positive in this world

. Usqall?/ we suppress the argument and write (X, Y) for the two-component random
variable representing George’s condition and test result

. Pr(X=1)=0.3

. Pr(Y=1 | X=1) = 0.95

- Pr(Y=0 | X=0) =0.85

« Pr(X=1| Y=1) =0.73 (by Bayes rule)

- These probabilities refer to our beliefs about George’s specific case Z
MAsoON




Comparison

- Frequentists say a probability distribution arises from some random process on the
sample space (such as random selection)
- Pr(X=1) = 0.3 means: “If patients are chosen at random from the population of clinic patients, 30% of
them will have the disease”
- Pr(X=1| Y=1) = 0.73 means “If patients are chosen at random from the population of clinic patients
who test positive, 73% of them will have the disease”

- The probability George Smith has the disease is either 1 or 0, depending on whether he does or does
not have the disease

- Subjectivists say a probability distribution represents someone’s beliefs about the world

- Pr(X=1) = 0.3 means: “If we have no information except that George walked into the clinic, then our
degree of belief is 30% that he has the disease”

- Pr(X=1| Y=1) =0.73 means “If we learn that George tested positive, our belief increases to 73% that
he has the disease”

- The probability that George has the disease depends on our information about George. If we know

only that he went to the clinic, our probability is 30%. If we also learn that he tested positive, our
probability becomes 73%. If we receive a definitive diagnosis, then the probability he has the

disease is either 1 or 0, depending on whether he does or does not have the disease. NﬁSON




Mass, Density and Cumulative Distribution
Functions for Random Variables

- Cumulative distribution function (cdf) - Value of cdf at x is probability
that the random variable is less than or equal to x

- Probability mass function (pmf) - Maps each possible value of a
discrete random variable to its probability

- Probability density function (pdf) - Maps each possible value of a
continuous random variable to a positive number representing its
likelihood relative to other possible values
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Discrete Random Variable: pmf and cdf
Probability Mass Function
Probability mass function
0.2 - f(x) is probability that random variable X is
e ] | N equal to x
5 01 +—mm — — ° Ef(X)=1
N 5
0.05 +— I» | A_\
o I. . . . . . . \|\ . Cumulative Distribution Function
o 1 2 3 4 i 6 7 8 9\m\ s
\ 1 F(x)= Ef(x‘)
Cumulative distribution function s |
- F(x) is probability that random variable X is Los =
less than or equal to x 04
« Increases from zero (at -o0) to 1 (at +0) 02 =
- Step function has jump at each value s 1 a s o v e . y
- Height of step at possible value x is equal to )
value of pmf at x msoN




Continuous Random Variables: pdf and cdf

f(x) versus x
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Probability density function

- Each individual value has probability zero
- pdfis derivative of cdf: f(x) = dF(x)/dx

- f(x)Ax is approximately equal to the

probability that X lies in [x-Ax/2, x+Ax/2]
ff(x)dx =1

0 ]
1.6

1.2 1.4

0.8 T 1

Area under f(x) between a and b is
equal to difference. F(b)-F(a)
Cumulative distribution funcm
- Probability that X lies in interval [a,b] is
difference of cdf values and integgal of pdf:

0.4 0.6

ob74ity Density

Pri

P(a<Xsb)=F(b)—F(a)=ff(x)dx

R

F(x) versus x

F()= [ fx)dx

0.6 0.8 1 1.2 1.4 1.6
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Generalized Probability Density Function (gpdf)

- It is useful to have common notation for density and mass functions

- Integral symbol means integration when distribution is continuous
and summation when distribution is discrete

- Remember that an integral is a limit of sums

- gpdf f(x) is either a mass or density function:
(x) stands for measure

_ if X is di t (counting measure for discrete
.[ g()f(x)du(x) ; g(x)i(x) ifXis discrete random variables and uniform
) measure for continuous
random variables)

j g(x)f(x)du(x) = _[ g(x)f(x)dx if Xis continuous
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Central Tendency

- Mean (expected value E[X]): E[X]= f xf (x)d u(x)

- Weight each observation by its probaBiIity of occurring
- In skewed distributions the mean is “pulled toward” the long tail
- Sample mean of a random sample converges to the distribution mean as
the sample size becomes large
- Median (50th percentile X, 5): x5 = F71(0.5) = min{F (x) > 0.5}
- Half of the observations are larger, half smaller than the median
- Less influenced by skewness and outliers than the mean
- (There are several definitions of median of a discrete distribution)

- Mode (x,,.,): f(x_. )= f(x) forall x

- Most probable value
- Distributions may have multiple modes (multiple peaks in pmf or pdf)
- In multimodal distributions a single numerical summary of center may not £

be appropriate D’H\SON




Spread

- Variance and standard deviation V[X]=f(x—E[X])2 F(x)du(x)
- Variance is the expected value of the squared =
difference between an observation and the mean SD[X]=+/V[X]

- Standard deviation is the square root of the variance
- Standard deviation is in same units as the variable itself

- Median absolute deviation MAD[X] = |X — xo5los

- Median of the absolute value of the difference
between an observation and the median

- Less influenced by outliers than the standard deviation

- Credible interval (Bayesian confidence interval) P(r<X=<s)=a

- Level-a credible interval [r,s]:
- probability that the RV lies betweenrandsis a lyf&SON




Varieties of Credible Interval

20 25

Highest density Two-sided symmetric tail areas

25

One-sided
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Theoretical and Sample Summary Statistics

- Expected value and sample mean
— 1
BIX]= [ of (x0)du(x) -2 X

- Theoretical and sample variance
1 < —\2
Var[X]= [(x-E[X]) f(x)du(x) S -—. (X, -X)
- Theoretical and sample quantiles / percentilesl=1

F'(g) = mxin{F(x) = q}
- There are several definitions for sample quantiles and quantiles of discrete
distribution; this is one of the most common

- What is the name of the 0.5 quantile?

/
MASON




Multivariate Random Variables

- Often we are uncertain about several random variables
- If they are related we can’t treat them in isolation

- Examples:

- Distribution of test result depends on whether patient has disease
- Distribution of test score depends on socioeconomic status of student

- A joint distribution (also called a multivariate distribution) defines
a probability distribution on several random variables

/
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Formal Definition: Joint Distribution

- A random vector (or multivariate random variable) X is a vector

of random variables
- Underscore (often omitted) denotes a vector

- A joint distribution function is a function of several variables
» cdf F(x) = P(X < x)

- gpdf f(x) (density if continuous, mass function if discrete)

- Expected value vector
E[X]= [ xf(x)du(x)
. Covariance matrix

Cov[X]= [(X-E[X])(X - E[X]) f()du(x) MasON




Marginal and Conditional Distributions

+ If (X.Y) has joint gpdf f(x,y):

« The marginal gpdf of Xis f(x)= ff(g,z)du(z) (v is marginalized out)
f(x,y)
f)
- The joint gpdf of X and Y can be factored into conditional and marginal gpdfs:

J@E)=fxInf=rylxfx)
- The joint gpdf for n random variables (X, ..., X,,) can be written as:

fxeox,)=fx)f(e Ix) f(xs lx,x,) - f(x, 1 x,...x,_))

=Hf(xl. | x5 %))
- For independent ré=r11dom variables the joint gpdf is the product of the individual gpdfs:

y
- The conditional gpdf of X given Yis f(xly)=

PGt t) = £~ F 5 MasoN




Example: Joint, Conditional, Marginal
Distributions

- Random variables: - Conditional distribution of Y given X:
- P(Y=0 | X=0) = 0.85, P(Y=1 | X=0) = 0.15

- X—possible values 0 (well) and 1 (sick) . P(Y=0 | X=1) = 0.05, P(Y=1 | X=1) = 0.95

» Y —possible Va"{'?s 0 (tests negative) - Conditional distribution of X given Y:
and 1 (tests positive) - P(X=0 | Y=0) = 0.975, P(X=1 | Y=0) = 0.025
. P(X=0 | Y=1) = 0.269, P(X=1 | Y=1) = 0.731

- Joint distribution P(X,Y):

X=0 X=1

We calculated P(X=1 | Y=1) earlier;
can you calculate the other
conditional probabilities?

Y=0 |0.7x0.85=0.595 0.3 x0.05=0.015

Y=1 |0.7x0.15=0.105 0.3x0.95=0.285

* Marginal distributions:
« P(X=0)=0.595 + 0.105 = 0.7, P(X=1) = 0.015 + 0.285 = 0.3
« P(Y=0)=0.595 + 0.015 = 0.61, P(Y=1) = 0.105 + 0.285 = 0.39
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Example Joint Density Functions for 2
Random Variables

Independent Random Variables Correlated Random Variables

r-—._
!
3
8 |
g | | R code for
=3 | generating these
g | plots is provided
Al s
=z with this module
||
|
|

x —

fxy)=fx)fly)

————

fxy)=fx)fly | x)
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Scatterplots: Random Samples
from Independent & Correlated Bivariate Distributions

Independent Random Variables Correlated Random Variables
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Covariance

- The covariance matrix measures how random quantities vary together

- Diagonal elements are variances
- The (i,j)t" off-diagonal element is called Cov(X;X;) or covariance of X; and X,

Var(Xy) o Cov(Xq, Xpn)

E[(X; = u1)?] o E[(Xy — ) Xy — un)]‘
X = Cov()_() = g :
]

Bl — i) Ks —iD)] e ET(Xn — )

Cov(Xy, X)) - Var(Xy)

- If X; and X; are independent then Cov(X;,X;) =0
- Covariance matrix is diagonal if random variables are all mutually independent
- Cov(X,X;) is positive if X; tends to increase with X; and negative if X; tends to
decrease with X;

- If X;and X; have an exact [positive / negative] linear relationship then Cov(X,,X) is
equaI to [pIus / minus] the product of the standard deviations of X; and X;
' Mason




Correlation

- The correlation matrix is defined as:

- The diagonal elements are equal to 1

- The (i,j)" off-diagonal element is the covariance divided by the product of the

ith and jt standard deviations

Corr(&) =

1

E[(Xn — tn) (X3 — 11)]

VE[(Xn — un)21E[(X1 — p11)?]

(% ]

corr(X) = (diag(X))

E[(Xl — /’ll)(Xn — .un)]
\/E[(Xl - Ml)Z]E[(Xn - :un)z]

1

- The off-diagonal elements are real numbers between -1 and 1
- If RVs are independent then correlation is zero

- The closer the correlation is to 1 or -1, the more nearly linearly related the RVs are

Y (diag(X))"?

/
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Sample Covariance and Correlation |~ & 4.

w
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w

MPG.highway

- Sample covariance matrix

Tirrrrr
20 35 S0

o
, , . : Az w. |B i
- Diagonal entry in row i is sample variance of X; 1% : % ¢ s || o

%0 |

£3

&

o0 9 Horsepower

TTTT

S0 ki % 5
2 _Lgn 7,2 raLe
Si o Tl—l Zk:l(Xik—Xl) LI I | k °° l°[ T lcolol
10 30 50 20 30 40 50

- Off-diagonal element in row i and column j # i is sample covariance of X; and X;

50 150 300

| Fg T P e |
50 150 250

n
1 _ _
Ci = n—1 z(Xlk Xi)(XJk XJ') library(MASS) #Package w many example data sets
k=1 data("Cars93")  #Car data set
cor(Cars93[c(5,7,8,12,13)]1)

¢ Sample Correlat|0n matrlx Price  MPG.city MPG.highway EngineSize Horsepower
_ _ Price 1.0000000 -0.5945622 -0.5606804 0.5974254 0.7882176
- Diagonal entries are equal to 1 MPG.city  -0.5945622 1.0000000 ©.9439358 -0.7100032 -0.6726362
) ) _ o MPG.highway -0.5606804 ©0.9439358 1.0000000 -0.6267946 -0.6190437
- Off-diagonal element in row i and column j # i EngineSize ©.5974254 -0.7100032 -0.6267946 1.0000000 0.7321197
is sample correlation of X; and X; Horsepower  0.7882176 -0.6726362 -0.6190437 0.7321197 1.0000000

/
Ri - https://www.rdocumentation.org/packages/MASS/versions/7.3-55/topics/Cars93
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Independence and Conditional Independence

- X andY are independent if the conditional distribution of X givenY
does not depend onY

- When X and Y are independent, the joint density (or mass) function is equal
to the product of the marginal density (or mass) functions

- fxy) =)
- Xand Y are conditionally independent given £ if:
- fxpz) = Axl2)v|2)A2) General form is f(x,y,z) = f(x[y.2)f(y|2)(2)

- Conditional independence relationships simplify specificiation
of the joint distribution

/
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Graphical Representation of Conditional
Dependence

- Graphs provide a powerful tool for visualizing and formally modeling
dependencies between random variables
- Random variables (RVs) are represented by nodes
- Direct dependencies are represented by edges
- Absence of an edge means no direct dependence

S %)@%@
P(X,Y)=P(X)P(Y)

P(X.Y,Z,W)=P(X)P(Y)P(W | X,Y)P(ZIW)

X and Y are independent. W depends on X
and Y. Z depends on W and is conditionally

/
independent of X and Y given W. MSON

X and Y are independent




Joint Distribution for Multivariate Random
Variable: Summary

- A joint distribution models related random variables

- The marginal distribution models one or more random variable(s)
integrating over the other(s)

- The conditional distribution models one or more random variable(s)
given the value(s) of the other(s)

- Covariance and correlation matrices measure relationships between
random variables (theoretical and sample)

- Scatterplot matrices allow us to visualize relationships in sample data

- Graphical probability models provide a way to visualize conditional
dependence relationships

/
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Parametric Families of Distributions

- Statistics makes use of parametric families of distributions

- Many problems are modeled by assuming observations X, ..., X,y are
independent and identically distributed observations from a distribution with
gpdf fix |©)

 Functional form f(x|®) is known but value ® of parameter is unknown
- Parameter may be a number O or a vector © = (0,,...,0,)

- Canonical (standard) problems in statistics:
- Use sample to construct an estimate (point or interval) of ®
- Test a hypothesis about the value of ®
- Is the functional form f(X|®) an adequate model for the data?
- Predict features (e.g., mean) of a future sample Xy,p, -.., Xpun

- Many distributions have multiple parameterizations in common use _
and it is important not to confuse different parameterizations mSON




Some Discrete Parametric Families (.1 0f2)

- Binomial distribution with number of trials n and success probability m:
- Sample space: Non-negative integers (between 0 and n)

copmf: flnmy=| "t d-my B_ernoqlli d/_'str/_'but{'on is_a
X Binomial distribution with n=1
- E[X|n,n] = nm; Var[X|n,n] = nr (1 —m)
- Multinomial distribution with number of trials n and category probability r:
- Sample space: Vectors of non-negative integers that sum to n

| 14
- pmf: f(xl...,xpIn,nl,.._,np)=( n: )nnix,

xlex !

Poisson pmf with rate 1.8

i=1

-+ E[X|n,n] = nm; Var[Xn,n;] = nm(1—m;)

- Poisson distribution with rate A:
« Sample space: Non-negative integers

—A)Lx
. . fxla)=5
pmf m

x!
/
- E[X|A] = A; Var[X|A] = A o 1 2 3 4 5 o mSON

Probability

0.00 005 010 0.15 020 0.25




Some Discrete Parametric Families (.2 of2)

- Negative binomial distribution with size @ and probability m:

- Sample space: Non-negative integers
Distribution for number of failures in a
- pmf: Fxla,m)= o+x=1 | a (-1 sequence of'ind.ependen.t and .
identically distributed trials until
successes occur

+ ElXla,n] =22 ViX|a,n] =207

- Beta-binomial distribution with shape parameters a, § and number of trials n (or probability
parameter p =a;:_ﬁ, overdispersion parameter m = a + 8 and number of trials n)

- Sample space: Non-negative integers (between 0 and n) Gammawfum_:fm_'z
I‘(y)sfo v’ e "du
IF'a+p)( n \T'(a+x)I'(f+n-x)
° . | . -
pmf: f(xla.f) F(a)F(/j’)( x ) T(a+B+n)
a nafB(a+p+n) m+n)

_ na _ _ . a RN y 4
FlXlafn) = 255 = VarlXla,fon) = EEEA < o1 - py O MasoN




Some Continuous Parametric Families .1

- Gamma distribution with shape a and scale :

- Beta distribution with shape parameters a and 3:
- Sample space: Real numbers between 0 and 1

- pdf: f(xla,B)= r(a—"'ﬁ)xa-l(l_x)/s-l

- Sample space: Nonnegative real numbers Exponential distribution is a
1 L —x/ Gamma distribution with o=1
-1 _-x/IB

. pdf: fxla,p)=— x“e Gamma distribution is also

/5 I'(a) parameterized with shape Chi-square distribution with §

_ degrees of freedom is a Gamma
. — . — 2 and rate r = 1/] g
E[Xl a, :8] - aIB ’ Var [X | a, :8] - C(ﬂ b distribution with a=6 /2 and B=2

Uniform distribution is a Beta
distribution with a==1

[()T(B) o
- ElX|a,B] = a/(a+p); Var|X|a,f] =

- Gamma function
(a+p) (a+p+1) I'(y) Ef:uy‘le'“du

- Univariate normal distribution with mean u and standard
deviation o
- Sample space: Real numbers
. I N Y ERA
- pdf: f(xlwo)= mﬁ@cp{ 2( ) }

(o]

- E[X|u,0] = pu; Var[X|u,0]= 0?

/
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Some Continuous Parametric Families .,

- Multivariate normal distribution with mean u covariance matrix X:
- Sample space: Vectors of real numbers

. pdf: f(£|ﬁ,2)=\/ﬁexp{ (x u)zl(z—ﬂ)}

E|X|w 2] = w var [X|pz] = =

- Dirichlet distribution with shape parameters o,,a,....,a, :
- Sample space: Real non-negative vectors summing to 1

. pdf: D@+t ) oo
Spenx, lay,.a,) = I, )"'F(OCP)XI X,

— ai(l_a‘)

E a; (E,O‘f)2(2 a; +1)

- Dirichlet distribution is a multivariate generallzatlon of the Beta distributio
IVﬂ\SON




Sufficient Statistic

- A sufficient statistic is a data summary (function of sample of observations) such
that the observations are independent of the parameter given the sufficient
statistic

- Example: For a sample of n iid observations from a Poisson distribution, the sum of the
observations is a sufficient statistic for the rate parameter

- Example: For a sample of n observations from a Bernoulli distribution, the total number of
successes is a sufficient statistic for the success probability

- If observations X4, ..., X,;are sampled randomly from a distribution with gpdf
f(X | 8)andY is sufficient for the parameter 6, then the posterior distribution
f(0]X) depends on the observations only through the sufficient statistic

A sufficient statistic contains all information needed to calculate the posterior distribution for 8

- Fisher’s factorization theorem: T (X) is sufficient for 8 if and only if the conditional
probability distribution f (X | 8) can be factored as:

X1 0) = h(x)go(T(x))

/
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|__IDistribution

beta

binomial
Cauchy
chi-squared
exponentia

F

gamma
geometric
hypergeometric
log-normal
logistic
negative binomial
normal

Poisson
Studentt
uniform

Weibul

beta
binom
cauchy
chisq

exp

gamma
geom
hyper
lnorm
logis
nbinom
norm

pois

unif

weibull

Parameters

shapel, shape2
size, prob
location, scale
df

rate

df1, df2

shape, rate

p

m n, k

meanlog, sdlog
location, scale
size, prob

mean, sd

lambda

df

min, max

shape, scale

Distributions in R

In R, there are four functions for each distribution,
invoked by adding a prefix to the distribution’s base
name:

- p for “probability” — the cumulative distribution function (cdf)

. qfor “quantile” —the inverse cdf

- d for “density” — the density or mass function

- rfor “random” — generates random numbers from the
distribution

Examples: rpois, dgamma

Source:
http://www.johndcook.com/distributions_R_SPLUS.html|

* Information on distributions in R:
http://www.stat.umn.edu/geyer/old/5101/rlook.html|
* Some distributions we will use are not provided in base R

but are available in R packages /D




Independent and ldentically Distributed
Observations: Plate Representation

- Statistical models often assume the observations are a random sample from a
parameterized distribution

- Mathematically, this is represented as independent and identically distributed (iid)
conditional on the parameter ®

- The gpdf for an iid sample X, ..., X, conditionalnon ® is written as a product of factors:

fx,xy,..0x,10)= f(x,10)f(x,10)--- f(x, |9)=Hf(xl. 16)

@ - A “plate” represents repeated structure
» The RVs inside the plate are iid
conditional on their parents
@ * In this example, the X, are iid given ®
@ @ « Joint gpdf for (X,0):
— (01T fxi| 0)
- Conditional gpdf for X given ©:

: 7
blate IT, fixs] 6) MASON




Multi-Level Models: Graphical Representation

- We can use graphical probability models to: * Birth rates Ay for hospitals k=1,
) ) ) o . ..., n are sampled randomly from

- Specify complex multivariate distributions compactly a distribution with parameter A
- Visualize dependence relationships, and « Hourly births X}; at hospital k are

sampled from a Poisson
distribution with parameter Ay

j C A~h(a)

- Perform inference efficiently

- Parametric distributions
are often used as
building blocks to
construct complex
graphical probability
models

Ag ~iig 84| @)

ene
>
8

in ~id POisson(lk)

/
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Is @ Parametric Distribution a Good Model?

- Before applying a parametric model, we should assess its
adequacy
- Theoretical assumptions underlying the distribution
- Exploratory data analysis
- Formal goodness-of-fit tests

- In your homework | expect you to assess whether the

parametric model | give you is a good one (sometimes it
won’t be!)

/
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Some Tools for Exploratory Data Analysis

- A g-q plot is a commonly used diagnostic tool
- Plot quantiles of data distribution against quantiles of theoretical distribution
- If theoretical distribution is correct, the plot should look approximately like the plot
of y=x
- Problem: what about unknown parameters?
- Solution: We can estimate parameters from data

- Solution: in the case of a location-scale family, we can plot data quantiles against
standard distribution (location parameter = 0 and scale parameter = 1)

- If theoretical distribution is correct the plot should look approximately like a straight line
« Slope and intercept of line are determined by scale and location parameters

- Another diagnostic tool is to compare empirical and theoretical counts for
discrete RV (or discretized continuous RV)

- What other checks for model fit have you encountered?

/
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Are Birth Weights Normally Distributed?

Normal Q-Q Plot of Birthweights of Babies

4000

Data on birth weights of babies born in a Brisbane
hospital on December 18, 1997
https://rdrr.io/cran/UsingR/man/babyboom.html
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Birth Weights of Boys and Girls

Normal Q-Q Plot of Birthweights of Male Babies
Normal Q-Q Plot of Birthweights of Female Babies
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Are Times Between Births Exponentially Distributed?

Exponential Q-Q Plot of Birth Intervals
The data: times between o
births of babies born in a
Brisbane hospital on
December 18, 1997

150

100

R notes:

* ppoints function computes probabilities
for evaluating quantiles

* diff function computes lagged differences

* lines function adds lines to a plot

» gexp function computes exponential
quantiles

Empirical Quantiles

50

T I I !

# Exponential q-q plot of birth intervals 2 3 4
birthtime=babyboom[,4] # Time of birth in minutes after midnight (44 observations)

birthinterval=diff(birthtime) # compute birth intervals using diff function (43 observations) oretical Exponential Quantiles
exponential.quantiles = gexp(ppoints(length(birthtime))) # quantiles of standard exponential distribution (rate=1)

qqplot(exponential.quantiles, birthinterval,main="Exponential Q-Q Plot of Birth Intervals”,

xlab = "Theoretical Exponential Quantiles", ylab = "Empirical Quantiles™) /
lines(exponential.quantiles,exponential.quantiles*mean(birthinterval)) # Overlay a line mso
| N




Do Births Per Hour Follow a Poisson
Distribution?

Comparing empirical to theoretical counts is Distribution of Births per One-Hour Block

a useful tool for evaluating fit (if the ® =
0 Observed
| O Expected

expected counts are not too small)

0
kS
o
3
Empirical | Expected T
Births Count Count g
0 3 3.84 5 Y
1 8 7.03 €
(e}
2 6 6.45 o
3 4 3.94 g P
4 3 1.81 g
5+ 0 0.93 =
TOTAL 24 24.00 o -

0 1 2 3 4

Number of Babies Born (in One-Hour Block)
If times (in hours) between births are a random sample from

an exponential distribution, then counts of births per hour are

a random sample from a Poisson distribution I /D




Frequency Plot is Misleading
when Expected Counts are Too Small

Distribution of Events per Time Unit

- Plots show empirical (blue) and expected
(pink) counts from sample of 35
observations from Poisson distribution
with mean 20

EZMMHHMHIHM

- Bottom plot —binsizeis3 units e

- When expected counts are small, plots of
observed and expected counts will not
look similar

most bins have expected count of at least 5

-« Common rule of thumb: choose bin size so U ﬂ U




Example: Modeling
Transmission Errors

- Number of transmission errors per hour is
distributed as Poisson with parameter A
-AAx
i =2
X.
- Data on previous system established error rate as

Probability

0.4

0.3

0.2

0.1

0.0

Tranmission Error pmf Given Current Rate A =1.6

0 1 2 3 4 5 6

Number of Errors

7

1.6 errors per hour

- New system has design goal of cutting this rate in
half to 0.8 errors per hour

- Observe new system for 6 one-hour periods:
- Data: 1,0,1,2,1,0

- Questions:
- Have we met the design goal?

- Does the new system improve the error rate?

43

Probability

0.4

0.3

0.2

0.1

0.0

Tranmission Error pmf Given Design Goal A =0.8

0 1 2 3

Number of Errors

4 5 6

7
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The Prior Distribution (discretized)

- We use expert judgment to define prior distribution on a discrete set of values
« Error rate can be any positive real number
 Later we will revisit this problem with a continuous prior distribution)

- Experts familiar with the new system design said:

- “Meeting the design goal of 0.8 errors per hour is about a 50-50 proposition.”

- “The chance of making things worse than current rate
of 1.6 errors per hour is small but not negligible”

- Expert agrees that the discretized distribution shown Prior distrioution for Error Rate A

here is a good reflection of his prior knowledge
H | Hl l Hﬂm [Ee——

]

|

« Distribution is heavy tailed on the right

- P(N<0.8)=0.54

- P(N<1.6)=0.87

« Values of A greater than 3 are unlikely enough to ignore

Probability

0.00 0.05 0.10 0.15 020 0.25

- Expected value is about 1.0
0.2 0.6 1 12

3
44




Bayesian Inference for Error Rate

Prior distribution for Error Rate A
# Discretized parameter values (15 equally spaced values)

lambda <- seq(length=15, from=0.2, to=3) # Grid of values for parameter lambda

]

# Prior distribution on transmission error rate
priorDist <- ¢(0.110, 0.148, 0.149, 0.133, 0.111, 0.090, 0.070,
0.054, 0.040, 0.030, 0.022, 0.016, 0.012, 0.009, 0.006)

Probability
0.00 0.05 010 0.15 020 0.25

# The observations J {}{}[][][][]E]E:::::
0.6 1 12 16 3

errors <- ¢(1,0,1,2,1,0) 07

2! 22 2.6

I8

# The likelihood function is a product of Poisson pmfs
lik <- array(l,length(lambda)) # Initialize likelihood as a constant
for (i in 1:6) {

lik <- lik*dpois(errors[i],lambda) # Multiply by Likelihood

Posterior distribution for Error Rate A

|

}

1

# The posterior distribution
postDist <- priorDist*1ik/sum(priorDist*1ik)

Probability

000 0.05 010 0.15 020 0.25
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Features of the Posterior Distribution

- Central tendency

- Posterior mean of A is 0.87

- Prior mean of A is 0.97; data mean is .83

- Typically posterior central tendency is a compromise between the prior distribution and the

center of the data

- Variation

- Posterior standard deviation of A is about .33

- Prior standard deviation of A is about .62

- Typically variation in the posterior is less than variation in the prior (we have more information)
- Meeting the threshold

- Posterior probability of meeting or doing better than design goal is about .58

- Posterior probability that new system is better than old system is about .96

- Posterior probability that new system is worse than old system is less than .02

/
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Triplot

- Visual tool for examining Bayesian belief
dynamics

- Plot prior distribution, normalized
likelihood, and posterior distribution

- Normalized likelihood:

+ Posterior distribution we would obtain if all
values were assigned equal prior probability

- To calculate, divide likelihood by sum or
integral over 4

Probability

0.05 0.10 015 020 0.25 0.30

0.00

0.2

Triplot for Transmission Error Rate A

0.6

1.2

0 Prior
& Norm Lik
O Posterior

H%Whﬁnhm:m

2 22 2.

I

a-

3




Bayesian Belief Dynamics:
Sequential and Batch Processing of Observations

- Batch processing:

- Use Bayes rule with prior g(6) and combined likelihood
f(X4, ..., X,,]9) to find posterior g(6 Xy, ..., X;,)

- Sequential processing:
- Use Bayes rule with prior g(8) and likelihood f(X;|8) to find posterior g(8|X;)
- Use Bayes rule with prior g(8|X;) and likelihood f(X,|8) to find posterior g(6] X4, X;)

- Use Bayes rule with prior g(8| Xy, ..., X,.;) and likelihood f(X,|6) to find posterior g(8|Xj, ..., X,,)

- The posterior distribution after n observations is the same with both methods

/
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Visualizing Bayesian Belief Dynamics:

Hour-by-Hour Triplots for Transmission Error Data

Triplot for Error Rate at Hour 1 Triplot for Error Rate at Hour 2 Triplot for Error Rate at Hour 3
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Fundamental Identity of Bayesian Inference

Likelihood f()_(IO) (O)=f(x)g(6|)_(l Posterior

function — . \density
Prior M oinal function
density argina
function likelihood

- The joint gpdf of parameter and data can be expressed in two ways:
- Prior density for parameter times likelihood function

- Marginal likelihood times posterior density for parameter
- Marginal likelihood is (conditional) likelihood integrated over parameter

f f(x16)g(0)d6  continuous parameter

f(x) = [, f(x16)g(0)du(6)= 1"

Z f(x|6)g(6) discrete parameter
0
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Marginal Likelihood

- Before we have seen X, we use the marginal likelihood to predict the value of X
- When used for predicting X, the marginal likelihood is called the predictive distribution for X

- After we see X=x, we divide the joint probability f (x|68)g(0) by the marginal
likelihood f(x) to obtain the posterior probability mass function of 9:
Jf(x16)g(0)
- g0lx)=
Jf(x)

- The marginal likelihood f(x) is the normalizing constant in Bayes Rule — we divide by f(x) to
ensure that the posterior probabilities sum to 1

- The marginal likelihood f(x) = g f(x]6)g(8) includes uncertainty about both 6
and x given 6

- Non-Bayesians sometimes predict future observations using a point estimate of 6

- Predictions using the marginal likelihood are more spread out (include more
uncertainty) than predictions using a point estimate of

/
MASON




Predicting Future Observations:
Compare Marginal Likelihood with Poisson(E[A | observations so far])

Predicting Errors in Hour 1

05

B Marginal Likelihood

B Poisson

< 4

=
5 M
£ ° mean: 0.97 errors/hour £
g g
& ol [
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N I

e J . ‘ Bl e —— —

=

0 @ 2 3 4 5 6 7 8 9
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Predicting Errors in Hour 4

w
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E-} =3
] £
2 3
o o
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Predicting Errors in Hour 3
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Parameters and Conditioning:
Frequentists and Subjectivists

- Frequentist view of parameters
- Parameter 6 represents a true but unknown feature of a random data generating process

- It isdnot appropriate to put a probability distribution on 8 because the value of 8 is not
random

- Subjectivist view of parameters
- A subjectivist puts a probability distribution on 8 as well as X; given 6

- Parametric distributions are a convenient means to specify probability distributions that
represent our beliefs about as yet unobserved data

- Many subjectivists don’t believe “true parameters” exist

- Frequentists and subjectivists on conditioning
- Frequentists condition on parameter and base inferences on data distribution
f(x1]0) - f(xn|60)
- Even after X has been observed it is treated as random
- Subjectivists condition on knowns and treat unknowns probabilistically
- Before observing data X = x, the joint distribution of parameters and data is

f(x118) - f(xn10) g (8) Z
- After observing data, X = x is known and random variable © has distribution g(8|x4, ..., x;;) mSON




Connecting Subjective and Frequency Probability:
de Finetti’s Representation Theorem

IF

- Your beliefs are represented by a probability distribution P over a sequence of events
Xq, Xo, ...

- You believe the sequence is infinitely exchangeable (your probability for any
sequence of successes and failures does not depend on the order of successes and
failures)

THEN

- You believe with probability 1 that the proportion of successes will tend to a definite

limit as the number of trials goes to infinity

S , :
—~—pasn—> o where S, = # successes in n trials
n

- Your probability distribution for S, is the same as the distribution you would assess if ey
you believed the observations were random draws from some unknown “true” value
of p with probability density function f{(p)

G

A sequence a frequentist would call

1 £4 r”
PN ek random draws from a “true
PG, =k)= .([ [ k jp (1=p)""8(p)dp distribution is one a Bayesian would

/
call exchangeable ms
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Bayesian Inference for

Continuous Random Variables

Inference for continuous random variable is limiting case of inference with discretized random

variable as number of bins and width of bin goes to zero

- Accuracy tends to increase with more bins

- Accuracy tends to increase with smaller area per bin

- Be careful with tail area of unbounded random variables
- Closed form solution for continuous problem exists in special cases (see Unit 3)

Gamma Density and Discrete Approximation

—Gamma Density
—Discrete Approximation

* The prior distribution we o8
used for the transmission
error example was obtained
by discretizing a Gamma - 4—

distribution

* In Unit 3, we will compare

Probability Density
o
= ¢ ¢

o
¥

with the exact result using

the Gamma prior distribution

P

0.0

0.5

1.0 1.5 2.0 2.5 3.0
Lambda

3.5
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Summary and Synthesis

- Arandom variable represents an uncertain hypothesis
- Categorical, ordinal, discrete numerical, continuous numerical
« Function from sample space to outcomes (usually real numbers)
- Used to define events

- Probability mass functions, density functions, and cumulative distribution
functions are tools for defining probability distributions

- We examined measures of central tendency and spread

- Parametric families of distributions are convenient and practical “off the shelf”
models for common types of uncertain processes
- We listed several commonly used parametric families

- We noted that observations are often modeled as randomly sampled from a parametric
family with unknown parameter

- We applied Bayes rule to infer a posterior distribution for a parameter (using a discretized
prior distribution)

- We contrasted the subjectivist and frequentist approaches to parameter inference

- We saw that de Finetti's exchangeability theorem provides a connection between the
frequentist and subjectivist views of parameters /D




