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Bayesian Inference 
and Decision 
Theory
Unit 2: Random Variables, Parametric 
Models, and Inference from Observation
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• Define and apply the following:
• Event
• Random variable (univariate and multivariate)
• Joint, conditional and marginal distributions
• Independence; conditional independence
• Mass and density functions; cumulative distribution functions
• Measures of central tendency and spread

• Use a graph to show conditional dependence and independence of random variables
• Be familiar with common parametric statistical models

• Continuous distributions: 
• Normal, Gamma, Exponential, Uniform, Beta, Dirichlet

• Discrete distributions:
• Bernoulli, Binomial, Multinomial, Poisson, Negative Binomial

• Use Bayes rule to find the posterior and predictive distribution (marginal likelihood) of a 
parameter given a set of observations (using discrete approximation)

• State de Finetti's Theorem and its relationship to the concept of "true" probabilities

Learning Objectives for Unit 2
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• Definition: A random variable is a function from the sample space Ω
to a set of outcomes (often the real numbers)
• Discrete (values can be enumerated) and continuous (values cannot be 

enumerated)

• Example:
• Sample space Ω is a set of patients
• Discrete random variable example: 𝑌 𝜔 is 0 if patient 𝜔 has a fever 

(temperature > 37°C or 98.6°F) and 1 if patient doesn’t have fever
• Continuous random variable example: 𝑋 𝜔 is temperature of patient 𝜔

• A random variable defines events on the outcome space
• Example: Event 𝑌 = 1 is subset {𝜔 ∈ Ω ∶ 𝑌 𝜔 = 1} consisting of patients 

with fever

Random Variable: Definition
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• Question: does “randomly chosen” patient have disease?
• Sample space S = {s1, s2, …} represents population of patients arriving at medical clinic

• 30% of the patients in this population have the disease
• 95% of the patients who have the disease test positive
• 85% of the patients who do not have the disease test negative

• Random variables:
• X maps randomly drawn patient s to X(s) = 0 if patient does not have disease and X(s) = 1 if patient 

has disease
• Y maps randomly drawn patient s to Y(s) = 0 if patientʼs test result is negative and Y(s) = 1 if 

patientʼs test result is positive 
• Usually we suppress the argument and write (X, Y) for the two-component random 

variable representing the condition and test result of a randomly drawn patient
• Pr(X=1) = 0.3
• Pr(Y=1 | X=1) = 0.95
• Pr(Y=0 | X=0) = 0.85
• Pr(X=1 | Y=1) = 0.73 (by Bayes rule)

• These probabilities refer to a sampling process and not to any particular patient 

RV from Frequentist View: Example
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• Question: does a specific patient (e.g., George Smith) have disease?
• Sample space S = {s1, s2, …} represents “possible worlds” (or ways the world could be)

• In 30% of these possible worlds, George has the disease
• In 95% of these possible worlds in which George has the disease, the test is positive
• In 85% of the possible worlds in which George does not have the disease, the test is negative

• Random variables:
• X maps possible world s to X(s) = 0 if George does not have disease and 

X(s) = 1 if George has disease in this world
• Y maps possible world s to Y(s) = 0 if George’s test result is negative and 

Y(s) = 1 if George’s test result is positive in this world
• Usually we suppress the argument and write (X, Y) for the two-component random 

variable representing George’s condition and test result
• Pr(X=1) = 0.3
• Pr(Y=1 | X=1) = 0.95
• Pr(Y=0 | X=0) = 0.85
• Pr(X=1 | Y=1) = 0.73 (by Bayes rule)

• These probabilities refer to our beliefs about George’s specific case 

RV from Subjectivist View: Example
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• Frequentists say a probability distribution arises from some random process on the 
sample space (such as random selection)
• Pr(X=1) = 0.3 means: “If patients are chosen at random from the population of clinic patients, 30% of 

them will have the disease”
• Pr(X=1 | Y=1) = 0.73 means “If patients are chosen at random from the population of clinic patients 

who test positive, 73% of them will have the disease”
• The probability George Smith has the disease is either 1 or 0, depending on whether he does or does 

not have the disease

• Subjectivists say a probability distribution represents someone’s beliefs about the world
• Pr(X=1) = 0.3 means: “If we have no information except that George walked into the clinic, then our 

degree of belief is 30% that he has the disease”
• Pr(X=1 | Y=1) = 0.73 means “If we learn that George tested positive, our belief increases to 73% that 

he has the disease”
• The probability that George has the disease depends on our information about George. If we know 

only that he went to the clinic, our probability is 30%. If we also learn that he tested positive, our 
probability becomes 73%. If we receive a definitive diagnosis, then the probability he has the 
disease is either 1 or 0, depending on whether he does or does not have the disease.

Comparison
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• Cumulative distribution function (cdf) - Value of cdf at x is probability 
that the random variable is less than or equal to x

• Probability mass function (pmf) - Maps each possible value of a 
discrete random variable to its probability

• Probability density function (pdf) - Maps each possible value of a 
continuous random variable to a positive number representing its 
likelihood relative to other possible values

Mass, Density and Cumulative Distribution 
Functions for Random Variables
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Probability mass function
• f(x) is probability that random variable X is 

equal to x

•

Cumulative distribution function
• 𝐹(𝑥) is probability that random variable 𝑋 is 

less than or equal to 𝑥
• Increases from zero (at -¥) to 1 (at +¥)
• Step function has jump at each value
• Height of step at possible value 𝑥 is equal to 

value of pmf at 𝑥

Discrete Random Variable: pmf and cdf

Cumulative Distribution Function
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Probability density function
• Each individual value has probability zero
• pdf is derivative of cdf: f(x) = dF(x)/dx
• f(x)Dx is approximately equal to the 

probability that X lies in [x-Dx/2, x+Dx/2]
•

Cumulative distribution function
• Probability that X lies in interval [a,b] is 

difference of cdf values and integral of pdf:

Continuous Random Variables: pdf and cdf

Area under f(x) between a and b is
equal to difference. F(b)-F(a)
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• It is useful to have common notation for density and mass functions
• Integral symbol means integration when distribution is continuous 

and summation when distribution is discrete
• Remember that an integral is a limit of sums

• gpdf f(x) is either a mass or density function:

if X is discrete

if X is continuous

Generalized Probability Density Function (gpdf)

xx

g(x)f(x)d (x) g(x)f(x)µ ºåò

x x

g(x)f(x)d (x) g(x)f(x) xdµ ºò ò

µ(x) stands for measure
(counting measure for discrete 
random variables and uniform 
measure for continuous 
random variables)
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• Mean (expected value E[X]):
• Weight each observation by its probability of occurring
• In skewed distributions the mean is “pulled toward” the long tail
• Sample mean of a random sample converges to the distribution mean as 

the sample size becomes large
• Median (50th percentile x0.5):

• Half of the observations are larger, half smaller than the median
• Less influenced by skewness and outliers than the mean
• (There are several definitions of median of a discrete distribution)

• Mode (xmax):
• Most probable value
• Distributions may have multiple modes (multiple peaks in pmf or pdf)
• In multimodal distributions a single numerical summary of center may not 

be appropriate

Central Tendency

E[X] = xf (x)dµ(x)
x
∫

f (xmax ) ≥ f (x) for all x

𝑥!.# = 𝐹$% 0.5 = min
&
{𝐹(𝑥) ≥ 0.5}
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• Variance and standard deviation
• Variance is the expected value of the squared 

difference between an observation and the mean
• Standard deviation is the square root of the variance
• Standard deviation is in same units as the variable itself

• Median absolute deviation
• Median of the absolute value of the difference 

between an observation and the median
• Less influenced by outliers than the standard deviation

• Credible interval (Bayesian confidence interval)
• Level-a credible interval [r,s]:  

• probability that the RV  lies between r and s is a

Spread

V[X]= x −E[X]( )2 f (x)dµ(x)
x
∫

SD[X]= V[X]

P r ≤ X ≤ s( ) =α

𝑀𝐴𝐷 𝑋 = 𝑋 − 𝑥!.# !.#
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Varieties of Credible Interval

Two-sided symmetric tail areasHighest posterior density (HPD)
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• Expected value and sample mean

• Theoretical and sample variance

• Theoretical and sample quantiles / percentiles

• There are several definitions for sample quantiles and quantiles of discrete 
distribution; this is one of the most common

• What is the name of the 0.5 quantile?

Theoretical and Sample Summary Statistics

€ 

E[X] = xf (x)dµ(x)
x
∫

€ 

Var[X] = x −E[X]( )2 f (x)dµ(x)
x
∫

€ 

F −1(q) =min
x

F(x) ≥ q{ }

€ 

X =
1
n

Xi
i=1

n

∑

€ 

S2 =
1

n −1
Xi − X( )2

i=1

n

∑



Unit 2v3 - 15 -©Kathryn Blackmond Laskey Spring 2022

• Often we are uncertain about several random variables
• If they are related we can’t treat them in isolation
• Examples: 

• Distribution of test result depends on whether patient has disease
• Distribution of test score depends on socioeconomic status of student

• A joint distribution (also called a multivariate distribution) defines 
a probability distribution on several random variables

Multivariate Random Variables
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• A random vector (or multivariate random variable) X is a vector 
of random variables
• Underscore (often omitted) denotes a vector

• A joint distribution function is a function of several variables
• cdf 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
• gpdf 𝑓(𝑥) (density if continuous, mass function if discrete)

• Expected value vector 

• Covariance matrix

Formal Definition: Joint Distribution

E[X]= xf (x)dµ(x)
Rn
∫

Cov[X]= X −E[X]( ) X −E[X]( )T f (x)dµ(x)
Rn
∫
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• If (X,Y) has joint gpdf f(x,y):

• The marginal gpdf of X is                                      (y is marginalized out) 

• The conditional gpdf of X given Y is 

• The joint gpdf of X and Y can be factored into conditional and marginal gpdfs:

• The joint gpdf for n random variables (X1, …, Xn) can be written as:

• For independent random variables the joint gpdf is the product of the individual gpdfs:
𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥1)⋯ 𝑓(𝑥𝑛)

Marginal and Conditional Distributions

f (x)= f (x, y)dµ(y)
y
∫

f (x | y)=
f (x, y)
f (y)

f (x, y)= f (x | y) f (y)= f (y | x) f (x)

 

f (x1,…xn )= f (x1) f (x2 | x1) f (x3 | x1, x2 )! f (xn | x1,…xn−1)

                = f (xi | x1,…xi−1)
i=1

n

∏
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• Conditional distribution of Y given X: 
• P(Y=0 | X=0) = 0.85, P(Y=1 | X=0) = 0.15
• P(Y=0 | X=1) = 0.05, P(Y=1 | X=1) = 0.95

• Conditional distribution of X given Y: 
• P(X=0 | Y=0) = 0.975, P(X=1 | Y=0) = 0.025 
• P(X=0 | Y=1) = 0.269, P(X=1 | Y=1) = 0.731 

• Random variables:
• X – possible values 0 (well) and 1 (sick)
• Y – possible values 0 (tests negative) 

and 1 (tests positive)

• Joint distribution P(X,Y):

Example: Joint, Conditional, Marginal 
Distributions

X=0 X=1

Y=0 0.7 x 0.85 = 0.595 0.3 x 0.05 = 0.015

Y=1 0.7 x 0.15 = 0.105 0.3 x 0.95 = 0.285

We calculated P(X=1 | Y=1) earlier; 
can you calculate the other 
conditional probabilities?

• Marginal distributions:
• P(X=0) = 0.595 + 0.105 = 0.7, P(X=1) = 0.015 + 0.285 = 0.3
• P(Y=0) = 0.595 + 0.015 = 0.61, P(Y=1) = 0.105 + 0.285 = 0.39
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Example Joint Density Functions for 2 
Random Variables

f(x,y)=f(x)f(y) f(x,y)=f(x)f(y|x)

R code for 
generating these 
plots is provided 
with this module 
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Scatterplots: Random Samples 
from Independent & Correlated Bivariate Distributions
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• The covariance matrix measures how random quantities vary together
• Diagonal elements are variances
• The (i,j)th off-diagonal element is called Cov(Xi,Xj) or covariance of Xi and Xj, 

Σ = 𝐶𝑜𝑣 𝑋 =
𝐸 (𝑋# − 𝜇#)$ ⋯ 𝐸 (𝑋# − 𝜇#)(𝑋% − 𝜇%)

⋮ ⋱ ⋮
𝐸 (𝑋% − 𝜇%)(𝑋# − 𝜇#) ⋯ 𝐸 (𝑋% − 𝜇%)$

=
𝑉𝑎𝑟(𝑋#) ⋯ 𝐶𝑜𝑣(𝑋#, 𝑋%)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋#, 𝑋%) ⋯ 𝑉𝑎𝑟(𝑋%)

• If Xi and Xj are independent then Cov(Xi,Xj) = 0
• Covariance matrix is diagonal if random variables are all mutually independent

• Cov(Xi,Xj) is positive if Xi tends to increase with Xj and negative if Xi tends to 
decrease with Xj

• If Xi and Xj have an exact [positive / negative] linear relationship then Cov(Xi,Xj) is 
equal to [plus / minus] the product of the standard deviations of Xi and Xj

Covariance
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• The correlation matrix is defined as:
• The diagonal elements are equal to 1
• The (i,j)th off-diagonal element is the covariance divided by the product of the 

ith and jth standard deviations

𝐶𝑜𝑟𝑟 𝑋 =

1 ⋯
𝐸 (𝑋% − 𝜇%)(𝑋' − 𝜇')

𝐸 (𝑋% − 𝜇%)( 𝐸 (𝑋' − 𝜇')(
⋮ ⋱ ⋮

𝐸 (𝑋' − 𝜇')(𝑋% − 𝜇%)
𝐸 (𝑋' − 𝜇')( 𝐸 (𝑋% − 𝜇%)(

⋯ 1

• The off-diagonal elements are real numbers between -1 and 1
• If RVs are independent then correlation is zero
• The closer the correlation is to 1 or -1, the more nearly linearly related the RVs are

Correlation
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• Sample covariance matrix
• Diagonal entry in row i is sample variance of 𝑋)

𝑆)( =
%

'$%
∑*+%' (𝑋)*− ?𝑋𝑖)(

• Off-diagonal element in row i and column j ≠ i is sample covariance of 𝑋) and 𝑋,

𝐶) =
1

𝑛 − 1
A
*+%

'

(𝑋)*− ?𝑋𝑖)(𝑋,* − ?𝑋𝑗)

• Sample correlation matrix
• Diagonal entries are equal to 1
• Off-diagonal element in row i and column j ≠ i

is sample correlation of 𝑋) and 𝑋,
𝑅) =

𝐶),
𝑆)𝑆,

Sample Covariance and Correlation

library(MASS)    #Package w many example data sets
data("Cars93")   #Car data set
cor(Cars93[c(5,7,8,12,13)]) 

https://www.rdocumentation.org/packages/MASS/versions/7.3-55/topics/Cars93
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• 𝑋 and 𝑌 are independent if the conditional distribution of 𝑋 given 𝑌
does not depend on 𝑌
• When 𝑋 and 𝑌 are independent, the joint density (or mass) function is equal 

to the product of the marginal density (or mass) functions

• f(x,y) = f(x)f(y)

• X and Y are conditionally independent given 𝑍 if: 
• f(x,y,z) = f(x|z)f(y|z)f(z)

• Conditional independence relationships simplify specificiation
of the joint distribution

Independence and Conditional Independence

General form is f(x,y,z) = f(x|y,z)f(y|z)f(z)
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• Graphs provide a powerful tool for visualizing and formally modeling 
dependencies between random variables
• Random variables (RVs) are represented by nodes
• Direct dependencies are represented by edges
• Absence of an edge means no direct dependence

Graphical Representation of Conditional 
Dependence

YX ZW
Y

X

P(X,Y ,Z,W )= P(X)P(Y )P(W | X,Y )P(Z |W )

P(X,Y )= P(X)P(Y )

X and Y are independent
X and Y are independent. W depends on X 
and Y. Z depends on W and is conditionally 

independent of X and Y given W.
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• A joint distribution models related random variables
• The marginal distribution models one or more random variable(s) 

integrating over the other(s)
• The conditional distribution models one or more random variable(s) 

given the value(s) of the other(s)
• Covariance and correlation matrices measure relationships between 

random variables (theoretical and sample)
• Scatterplot matrices allow us to visualize relationships in sample data
• Graphical probability models provide a way to visualize conditional 

dependence relationships

Joint Distribution for Multivariate Random 
Variable: Summary
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• Statistics makes use of parametric families of distributions
• Many problems are modeled by assuming observations X1, …, XN are 

independent and identically distributed observations from a distribution with 
gpdf f(x |Q)
• Functional form f(x|Q) is known but value Q of parameter is unknown

• Parameter may be a number Q or a vector Q = (Q1,...,Qp)

• Canonical (standard) problems in statistics:
• Use sample to construct an estimate (point or interval) of Q
• Test a hypothesis about the value of Q
• Is the functional form f(X|Q) an adequate model for the data?
• Predict features (e.g., mean) of a future sample X1+N, …, XM+N

• Many distributions have multiple parameterizations in common use 
and it is important not to confuse different parameterizations

Parametric Families of Distributions
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• Binomial distribution with number of trials n and success probability 𝜋:
• Sample space:  Non-negative integers (between 0 and n)

• pmf:

• 𝐸[𝑋|𝑛, 𝜋] = 𝑛𝜋; 𝑉𝑎𝑟[𝑋|𝑛, 𝜋] = 𝑛𝜋 (1 − 𝜋)

• Multinomial distribution with number of trials n and category probability 𝜋:
• Sample space: Vectors of non-negative integers that sum to n

• pmf:

• 𝐸[𝑋|𝑛, 𝜋] = 𝑛𝜋; 𝑉𝑎𝑟[𝑋𝑖|𝑛, 𝜋𝑖] = 𝑛𝜋𝑖(1 − 𝜋𝑖)

• Poisson distribution with rate 𝜆:
• Sample space:  Non-negative integers

• pmf:

• 𝐸[𝑋 | 𝜆] = 𝜆 ; 𝑉𝑎𝑟[𝑋 | 𝜆] = 𝜆

Some Discrete Parametric Families (p. 1 of 2)

f (x | n,π )= n
x

⎛

⎝
⎜

⎞

⎠
⎟π x (1−π )n−x Bernoulli distribution is a 

Binomial distribution with n=1

 
f (x1…, xp | n,π1,…,π p )=

n!
x1!!xp!

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ π i

xi

i=1

p

∏

f (x | λ)= e
−λλ x

x!
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• Negative binomial distribution with size 𝛼 and probability 𝜋:

• Sample space: Non-negative integers

• pmf:

• 𝐸 𝑋 𝛼, 𝜋 = ((#*+)
+

;   V 𝑋 𝛼, 𝜋 = ((#*+)
+!

• Beta-binomial distribution with shape parameters 𝛼, 𝛽 and number of trials n (or probability 
parameter 𝑝 = !

!"#
, overdispersion parameter 𝑚 = 𝛼 + 𝛽 and number of trials 𝑛)

• Sample space: Non-negative integers (between 0 and n)

• pmf:

• 𝐸 𝑋 𝛼, 𝛽, 𝑛 = %(
(-.

= 𝑛𝑝 ; 𝑉𝑎𝑟 𝑋 𝛼, 𝛽, 𝑛 = %(.((-.-%)
(-. !((-.-#)

= 𝑛𝑝(1 − 𝑝) (/-%)
/-#

Some Discrete Parametric Families (p. 2 of 2)

f (x |α ,π ) = α + x −1
α

⎛
⎝⎜

⎞
⎠⎟
πα (1−π )x

f (x |α,β) = Γ(α +β)
Γ(α)Γ(β)

n
x

"

#
$

%

&
'
Γ(α + x)Γ(β + n− x)

Γ(α +β + n)

Distribution for number of failures in a 
sequence of independent and 
identically distributed trials until 𝛼
successes occur

€ 

Γ(y) ≡ uy−1e−udu
0

∞

∫
Gamma function
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• Gamma distribution with shape 𝛼 and scale 𝛽:
• Sample space:  Nonnegative real numbers

• pdf:

• 𝐸[𝑋| 𝛼, 𝛽] = 𝛼𝛽 ; 𝑉𝑎𝑟[𝑋 | 𝛼, 𝛽] = 𝛼𝛽2

• Beta distribution with shape parameters 𝛼 and 𝛽:
• Sample space:  Real numbers between 0 and 1

• pdf:

• 𝐸[𝑋|𝛼, 𝛽] = 𝛼/(𝛼 + 𝛽) ; 𝑉𝑎𝑟[𝑋|𝛼, 𝛽] =

• Univariate normal distribution with mean 𝜇 and standard
deviation 𝜎:
• Sample space: Real numbers

• pdf:
• E[X|μ,σ] = μ ; Var[X|μ,σ]= σ2

Some Continuous Parametric Families (p. 1)

f (x |α,β )= 1
βαΓ(α)

xα−1e−x/β

αβ
(α +β )2 (α +β +1)

f (x |α,β )= Γ(α +β )
Γ(α)Γ(β )

xα-1(1− x)β-1

€ 

f (x |µ,σ ) =
1
2πσ

exp − 1
2
xi -µ
σ

% 

& 
' 

( 

) 
* 
2+ 

, 
- 

. 
/ 
0 

Exponential distribution is a 
Gamma distribution with α=1

Chi-square distribution with 𝛿
degrees of freedom is a Gamma 
distribution with α=𝛿/2 and 𝛽=2

Uniform distribution is a Beta 
distribution with α=β=1

€ 

Γ(y) ≡ uy−1e−udu
0

∞

∫
Gamma function

Gamma distribution is also 
parameterized  with shape 
and rate r = 1/𝛽
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• Multivariate normal distribution with mean 𝜇 covariance matrix Σ:
• Sample space:  Vectors of real numbers

• pdf:

• 𝐸 𝑋 𝜇, Σ = 𝜇; 𝑉𝑎𝑟 𝑋 𝜇, Σ = Σ

• Dirichlet distribution with shape parameters :
• Sample space:  Real non-negative vectors summing to 1

• pdf:

•

• Dirichlet distribution is a multivariate generalization of the Beta distribution

Some Continuous Parametric Families (p. 2)

f (x | µ,Σ) = 1
2π | Σ |

exp − 1
2 x − µ( ) 'Σ−1 x − µ( ){ }

 
f (x1,…, xp |α1,...,α p )=

Γ(α1 +!+α p )
Γ(α1)!Γ(α p )

x1
α1-1!xp

α p-1

E[Xi |α1,...,α p ]=
αi

α jj∑
Var[Xi |α1,...,α p ]=

αi (1−αi )

α jj∑( )
2

α jj∑ +1( )

 α1,α2,…,α p
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• A sufficient statistic is a data summary (function of sample of observations) such 
that the observations are independent of the parameter given the sufficient 
statistic
• Example: For a sample of 𝑛 iid observations from a Poisson distribution, the sum of the 

observations is a sufficient statistic for the rate parameter
• Example: For a sample of n observations from a Bernoulli distribution, the total number of 

successes is a sufficient statistic for the success probability

• If observations 𝑋$, … , 𝑋%are sampled randomly from a distribution with gpdf
𝑓(𝑋 | 𝜃) and 𝑌 is sufficient for the parameter 𝜃, then the posterior distribution 
𝑓(𝜃|𝑋) depends on the observations only through the sufficient statistic
• A sufficient statistic contains all information needed to calculate the posterior distribution for 𝜃

• Fisher’s factorization theorem: 𝑇(𝑋) is sufficient for 𝜃 if and only if the conditional 
probability distribution 𝑓(𝑋 | 𝜃) can be factored as:

Sufficient Statistic

f(X | θ) = h(x)gθ(T(x))
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In R, there are four functions for each distribution, 
invoked by adding a prefix to the distribution’s base 
name:
• p for “probability” – the cumulative distribution function (cdf)
• q for “quantile” – the inverse cdf
• d for “density” – the density or mass function 
• r for “random” – generates random numbers from the 

distribution

Examples: rpois, dgamma

Distributions in R

Source:
http://www.johndcook.com/distributions_R_SPLUS.html

• Information on distributions in R: 
http://www.stat.umn.edu/geyer/old/5101/rlook.html

• Some distributions we will use are not provided in base R 
but are available in R packages
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• Statistical models often assume the observations are a random sample from a 
parameterized distribution

• Mathematically, this is represented as independent and identically distributed (iid) 
conditional on the parameter Θ

• The gpdf for an iid sample 𝑋1, … , 𝑋𝑛 conditional on Θ is written as a product of factors:

Independent and Identically Distributed 
Observations: Plate Representation

• A “plate” represents repeated structure
• The RVs inside the plate are iid

conditional on their parents
• In this example, the Xi are iid given Θ
• Joint gpdf for (X,Θ):

g(q)Pi f(xi | q) 
• Conditional gpdf for 𝑋 given Θ:

Pi f(xi | q) 

 
f (x1, x2,…, xn |θ )= f (x1 |θ ) f (x2 |θ )! f (xn |θ )= f (xi |θ )

i=1

n

∏

X1
X2

X3

Θ

Xi
i=1,…,3

“plate”

Θ
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• We can use graphical probability models to:
• Specify complex multivariate distributions compactly
• Visualize dependence relationships, and 
• Perform inference efficiently

• Parametric distributions 
are often used as
building blocks to
construct complex
graphical probability 
models

Multi-Level Models: Graphical Representation

• Birth rates Λk for hospitals k=1, 
…, n are sampled randomly from 
a distribution with parameter A

• Hourly births Xki at hospital k are 
sampled from a Poisson 
distribution with parameter Λk

i=1,…,mk

A

Xki

Λk

A

X11

Λ1

X21 Xn1

Λn…

X11X11
X21X21

Λ2

Xn1Xn1k=1,…,n

A ~ h(α)

Λk ~iid g(λ|α)

Xki ~iid Poisson(λk)



Unit 2v3 - 36 -©Kathryn Blackmond Laskey Spring 2022

• Before applying a parametric model, we should assess its 
adequacy
• Theoretical assumptions underlying the distribution
• Exploratory data analysis
• Formal goodness-of-fit tests

• In your homework I expect you to assess whether the 
parametric model I give you is a good one (sometimes it 
won’t be!)

Is a Parametric Distribution a Good Model?
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• A q-q plot is a commonly used diagnostic tool
• Plot quantiles of data distribution against quantiles of theoretical distribution
• If theoretical distribution is correct, the plot should look approximately like the plot 

of y=x
• Problem: what about unknown parameters?
• Solution: We can estimate parameters from data
• Solution: in the case of a location-scale family, we can plot data quantiles against 

standard distribution (location parameter = 0 and scale parameter = 1)
• If theoretical distribution is correct the plot should look approximately like a straight line
• Slope and intercept of line are determined by scale and location parameters

• Another diagnostic tool is to compare empirical and theoretical counts for 
discrete RV (or discretized continuous RV)

• What other checks for model fit have you encountered?

Some Tools for Exploratory Data Analysis
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Are Birth Weights Normally Distributed?

Data on birth weights of babies born in a Brisbane 
hospital on December 18, 1997

https://rdrr.io/cran/UsingR/man/babyboom.html
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Birth Weights of Boys and Girls
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Are Times Between Births Exponentially Distributed?

The data: times between 
births of babies born in a 
Brisbane hospital on 
December 18, 1997

R notes:
• ppoints function computes probabilities 

for evaluating quantiles
• diff function computes lagged differences
• lines function adds lines to a plot
• qexp function computes exponential 

quantiles
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Do Births Per Hour Follow a Poisson 
Distribution? 

Births
Empirical	
Count

Expected	
Count

0 3 3.84
1 8 7.03
2 6 6.45
3 4 3.94
4 3 1.81
5+ 0 0.93

TOTAL 24 24.00

Comparing empirical to theoretical counts is 
a useful tool for evaluating fit (if the 
expected counts are not too small)

If times (in hours) between births are a random sample from 
an exponential distribution, then counts of births per hour are 
a random sample from a Poisson distribution
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• Plots show empirical (blue) and expected 
(pink) counts from sample of 35 
observations from Poisson distribution 
with mean 20
• Top plot – bin size is 1 unit
• Bottom plot – bin size is 3 units

• When expected counts are small, plots of 
observed and expected counts will not 
look similar

• Common rule of thumb: choose bin size so 
most bins have expected count of at least 5

Frequency Plot is Misleading 
when Expected Counts are Too Small
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• Number of transmission errors per hour is 
distributed as Poisson with parameter λ

• Data on previous system established error rate as 
1.6 errors per hour

• New system has design goal of cutting this rate in 
half to 0.8 errors per hour

• Observe new system for 6 one-hour periods:
• Data:  1, 0, 1, 2, 1, 0

• Questions:
• Have we met the design goal?
• Does the new system improve the error rate?

Example: Modeling 
Transmission Errors

€ 

f (x | λ) =
e−λλx

x!

43
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• We use expert judgment to define prior distribution on a discrete set of values 
• Error rate can be any positive real number
• Later we will revisit this problem with a continuous prior distribution)

• Experts familiar with the new system design said:
• “Meeting the design  goal of 0.8 errors per hour is about a 50-50 proposition.” 
• “The chance of making things worse than current rate 

of 1.6 errors per hour is small but not negligible”

• Expert agrees that the discretized distribution shown
here is a good reflection of his prior knowledge
• Expected value is about 1.0
• Distribution is heavy tailed on the right
• P(Λ≤0.8) = 0.54
• P(Λ≤1.6) = 0.87
• Values of Λ greater than 3 are unlikely enough to ignore

The Prior Distribution (discretized)

44
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Bayesian Inference for Error Rate

45
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• Central tendency
• Posterior mean of L is 0.87 
• Prior mean of L is 0.97; data mean is .83
• Typically posterior central tendency is a compromise between the prior distribution and the 

center of the data
• Variation

• Posterior standard deviation of L is about .33 
• Prior standard deviation of L is about .62
• Typically variation in the posterior is less than variation in the prior (we have more information)

• Meeting the threshold
• Posterior probability of meeting or doing better than design goal is about .58
• Posterior probability that new system is better than old system is about .96
• Posterior probability that new system is worse than old system is less than .02

Features of the Posterior Distribution

46
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• Visual tool for examining Bayesian belief 
dynamics

• Plot prior distribution, normalized 
likelihood, and posterior distribution

• Normalized likelihood:
• Posterior distribution we would obtain if all 

values were assigned equal prior probability
• To calculate, divide likelihood by sum or 

integral over l

Triplot

47
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• Batch processing:
• Use Bayes rule with prior g(θ) and combined likelihood 

f(X1, …, Xn|θ) to find posterior g(θ|X1, …, Xn) 

• Sequential processing:
• Use Bayes rule with prior g(θ) and likelihood f(X1|θ) to find posterior g(θ|X1)
• Use Bayes rule with prior g(θ|X1) and likelihood f(X2|θ) to find posterior g(θ|X1, X2)
• …
• Use Bayes rule with prior g(θ|X1, …, Xn-1) and likelihood f(Xn|θ) to find posterior g(θ|X1, …, Xn)

• The posterior distribution after n observations is the same with both methods

Bayesian Belief Dynamics: 
Sequential and Batch Processing of Observations
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Visualizing Bayesian Belief Dynamics:
Hour-by-Hour Triplots for Transmission Error Data

49
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• The joint gpdf of parameter and data can be expressed in two ways:
• Prior density for parameter times likelihood function
• Marginal likelihood times posterior density for parameter

• Marginal likelihood is (conditional) likelihood integrated over parameter

Fundamental Identity of Bayesian Inference

  f(x|θ)g(θ)= f(x)g(θ |x)

Marginal 
likelihood

Posterior 
density 
functionPrior 

density 
function

Likelihood 
function

𝑓 𝑥 = ∫4 𝑓(𝑥 𝜃 𝑔 𝜃 𝑑𝜇(𝜃)=
5
!
𝑓(𝑥 𝜃 𝑔 𝜃 𝑑𝜃

;
!

𝑓(𝑥 𝜃 𝑔 𝜃

continuous parameter

discrete parameter
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• Before we have seen X, we use the marginal likelihood to predict the value of 𝑋
• When used for predicting 𝑋, the marginal likelihood is called the predictive distribution for 𝑋

• After we see X=x, we divide the joint probability 𝑓(𝑥|𝜃)𝑔(𝜃) by the marginal 
likelihood 𝑓(𝑥) to obtain the posterior probability mass function of 𝜃:

•

• The marginal likelihood 𝑓(𝑥) is the normalizing constant in Bayes Rule – we divide by 𝑓(𝑥) to 
ensure that the posterior probabilities sum to 1

• The marginal likelihood 𝑓 𝑥 = ∑& 𝑓(𝑥|𝜃)𝑔(𝜃) includes uncertainty about both 𝜃
and 𝑥 given 𝜃

• Non-Bayesians sometimes predict future observations using a point estimate of 𝜃
• Predictions using the marginal likelihood are more spread out (include more 

uncertainty) than predictions using a point estimate of 𝜃

Marginal Likelihood

g(θ | x) = f (x |θ )g(θ )
f (x)
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Predicting Future Observations:
Compare Marginal Likelihood with Poisson(E[Λ | observations so far])

mean: 0.97 errors/hour mean: 0.99 errors/hour mean: 0.75 errors/hour

mean: 0.80 errors/hour mean: 1.00 errors/hour mean: 1.00 errors/hour
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• Frequentist view of parameters
• Parameter 𝜃 represents a true but unknown feature of a random data generating process
• It is not appropriate to put a probability distribution on 𝜃 because the value of 𝜃 is not 

random
• Subjectivist view of parameters

• A subjectivist puts a probability distribution on 𝜃 as well as 𝑋$ given 𝜃
• Parametric distributions are a convenient means to specify probability distributions that 

represent our beliefs about as yet unobserved data
• Many subjectivists don’t believe “true parameters” exist

• Frequentists and subjectivists on conditioning
• Frequentists condition on parameter and base inferences on data distribution 
𝑓(𝑥%|𝜃)⋯𝑓(𝑥&|𝜃)
• Even after 𝑋 has been observed it is treated as random

• Subjectivists condition on knowns and treat unknowns probabilistically
• Before observing data 𝑋 = 𝑥, the joint distribution of parameters and data is 
𝑓(𝑥#|𝜃)⋯ 𝑓 𝑥% 𝜃 𝑔(𝜃)

• After observing data, 𝑋 = 𝑥 is known and random variable Θ has distribution 𝑔(𝜃|𝑥#, … , 𝑥%)

Parameters and Conditioning:  
Frequentists and Subjectivists
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IF
• Your beliefs are represented by a probability distribution P over a sequence of events 

X1, X2, … 
• You believe the sequence is infinitely exchangeable (your probability for any 

sequence of successes and failures does not depend on the order of successes and 
failures)

THEN
• You believe with probability 1 that the proportion of successes will tend to a definite 

limit as the number of trials goes to infinity
where Sn = # successes in n trials

• Your probability distribution for Sn is the same as the distribution you would assess if 
you believed the observations were random draws from some unknown “true” value 
of p with probability density function f(p)

Connecting Subjective and Frequency Probability:
de Finetti’s Representation Theorem

P(Sn = k) =
n
k

⎛
⎝⎜

⎞
⎠⎟0

1

∫ pk (1− p)n−k g(p)dp

A sequence a frequentist would call 
random draws from a “true”

distribution is one a Bayesian would 
call exchangeable

Sn
n
→ p as n→∞

P

Xi
i=1,…
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Inference for continuous random variable is limiting case of inference with discretized random 
variable as number of bins and width of bin goes to zero

• Accuracy tends to increase with more bins 
• Accuracy tends to increase with smaller area per bin
• Be careful with tail area of unbounded random variables
• Closed form solution for continuous problem exists in special cases (see Unit 3)

Bayesian Inference for
Continuous Random Variables

• The prior distribution we 
used for the transmission 
error example was obtained 
by discretizing a Gamma 
distribution

• In Unit 3, we will compare 
with the exact result using 
the Gamma prior distribution 
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• A random variable represents an uncertain hypothesis
• Categorical, ordinal, discrete numerical, continuous numerical
• Function from sample space to outcomes (usually real numbers)
• Used to define events

• Probability mass functions, density functions, and cumulative distribution 
functions are tools for defining probability distributions
• We examined measures of central tendency and spread

• Parametric families of distributions are convenient and practical “off the shelf”
models for common types of uncertain processes
• We listed several commonly used parametric families
• We noted that observations are often modeled as randomly sampled from a parametric 

family with unknown parameter
• We applied Bayes rule to infer a posterior distribution for a parameter (using a discretized 

prior distribution)
• We contrasted the subjectivist and frequentist approaches to parameter inference
• We saw that de Finettiʼs exchangeability theorem provides a connection between the 

frequentist and subjectivist views of parameters

Summary and Synthesis


