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Abstract

In this thesis, a Bayesian framework for model selection and parameter estimation is

reported to tackle strongly nonlinear systems using a set of observational data. The

model selection task involves estimating the posterior probabilities of each proposed

model based on a set of observations. To evaluate the probability of a model, the

evidence is computed using the Chib-Jeliazkov method that makes use of Metropolis-

Hastings Markov Chain Monte Carlo samples of the posterior distribution of the pa-

rameters. The parameter estimation algorithm entails a state estimation procedure

that is carried out by non-Gaussian filters. The probability density function of the

system state is nearly Gaussian even for strongly nonlinear models when the measure-

ments are dense. The Extended Kalman filter can then be used for state estimation.

When the measurements are sparse and noisy, the nonlinearity in the model or mea-

surement operator introduces non-Gaussian features in the system state. In this case,

the performance of the Extended Kalman filter becomes unsatisfactory pointing out

the need of non-Gaussian filters for state estimation. In this investigation, the En-

semble Kalman filter (EnKF) and Particle filter (that uses EnKF for the proposal

density) handle the non-Gaussian state estimation problem. The methodology is il-

lustrated with two numerical examples, namely (a) the Double-Well system having

multiple equilibrium (fixed) points, (b) a nonlinear mass-spring-damper system hav-

ing multiple types of nonlinearities such as freeplay, cubic stiffness and hysteresis.
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Chapter 1

Introduction

1.1 Motivation

In many engineering fields a robust model is necessary to provide accurate predic-

tions. These models need to adequately capture the behaviour of the system that

is often nonlinear in nature. For instance, the fluid-structure interactions are often

treated with the assumption that both structure and aerodynamics behave linearly.

Using the overarching principle of superposition, the assumption of linearity ren-

ders the computational simulations efficient, but may introduce serious deficiencies.

This assumption implies conservatism in design. Ignoring nonlinear effects may have

dramatic consequences. The solar powered Helios aircraft crash is one example [2].

Strong nonlinearities are present in deployable structures used in concerts and sta-

diums due to the looseness of joints. Such joint looseness induces frictional forces

and clearances and may invalidate the (linear) model for structural dynamics intro-

duced, for instance, due to crowd movement [3]. Limit cycle oscillations are present

in aeronautical structures due to structural and aerodynamic nonlinearities [4, 5].

Advances in sensor technology like miniaturization and data compression algo-

rithms open up the possibility of blending large amounts of observational data making

Bayesian inference a general tool to quantify nonlinearity and reduce uncertainty.
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The thesis involves understanding the interplay between nonlinearity and uncer-

tainty. In modelling and simulation, the effect of modelling and measurement un-

certainties must be considered for robust predictions. For instance, modelling uncer-

tainty in a structure can arise from variations of the material properties, inaccurate

modelling of the constitutive property of the material, imperfect knowledge of the

boundary conditions and unmodelled physics [6]. Due to the uncertainty in the sys-

tem, the model updating becomes a statistical inference problem.

1.2 Objectives

This thesis builds on the Bayesian model selection and parameter estimation frame-

work developed by Khalil et al.; Sandhu (2012); Sandhu et al. (2013) [4, 7, 8]. The

parameters of each proposed model are first estimated in the form of a joint probabil-

ity distribution. The joint posterior distribution of the parameters is approximated

by Metropolis-Hastings (MH) MCMC samples. The optimal MH proposal is obtained

using an adaptive proposal distribution [9]. The evidence of each proposed model is

estimated using Chib-Jeliazkov method [10]. The Bayesian framework includes a state

estimation procedure handled by the Extended Kalman filter (EKF). The Bayesian

framework has been validated both numerically and experimentally [7]. The Ensem-

ble Kalman filter (EnKF) is used instead of EKF for parameter estimation of the

Duffing system in [11]. The parameters are also estimated using a particle filter with

an EnKF proposal (PF-EnKF) by augmenting the state vector with the parameters.

The performance of EnKF with MCMC is superior to that of PF-EnKF alone. For

accurate state estimates, EKF requires that the probability density function of the

state is Gaussian or nearly Gaussian. A nonlinear model or measurement operator

may lead to non-Gaussian features in the system state. The performance of EKF is

satisfactory when the measurements are dense even in the case of strongly nonlinear
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systems [4,7,8]. Due to the assimilation of dense observations, the state pdf becomes

nearly Gaussian even for nonlinear systems. For sparse measurements, nonlinearities

in the model and measurement operators lead to a non-Gaussian pdf of the system

state. The objective of this thesis is to extend the Bayesian model selection and

parameter estimation algorithm to handle the case of sparse data when the system

states are non-Gaussian.

1.3 Thesis Overview

Chapter 2 provides a concise literature review of the common form of nonlinear-

ities encountered in structural dynamics, system identification of nonlinear prob-

lems, Bayesian model selection and parameter estimation. Chapter 3 introduces the

Bayesian framework for model selection and parameter estimation. Chapter 4 de-

scribes the non-Gaussian state estimation problem, including numerical illustration

of the performance of various nonlinear filters. Chapter 5 demonstrates the appli-

cations of the Bayesian inference algorithm for two strongly nonlinear systems: (a)

a Double-Well system having multiple fixed points and (b) a nonlinear oscillator

having cubic, freeplay and hysteretic nonlinearities. Conclusion and future research

directions are provided in Chapter 6.

1.4 Implementation

This section gives a brief overview of the implementation of the algorithms presented

in this thesis. The code is first implemented using MATLAB then in C++ using the

Amardillo C++ library [12]. To enhance the performance of the code, the algorithms

are coded in a parallel fashion. The MCMC algorithm uses both shared and dis-

tributed memory systems using Message Passing Interface with Open MPI [13]. The
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state estimation algorithm for EnKF and PF-EnKF is also parallelized using Open

MPI to reduce the execution time.

The code is executed on a Linux Cluster running OpenSUSE 11.1 consisting of

22 nodes of two 3.0 Ghz Xeon processors having 8 cores each and 326 GB of memory

per node.



Chapter 2

Literature Review

2.1 Nonlinearities in structural dynamics

This section reviews the typical sources of nonlinearities that commonly arise in the

dynamics of civil and aerospace structures. The types of nonlinearities considered are

geometric, freeplay and hysteretic nonlinearities (e.g. [14]).

Geometric nonlinearity arises when a structure undergoes large displacement. A

simple pendulum provides an example of such nonlinearity. The equation of motion

for a single degree of freedom pendulum is θ̈ + g
L
sin(θ) = 0. For small angular dis-

placement, sin(θ) ≈ θ. However, for large displacement, this assumption no longer

holds due to nonlinearity stemming from sin(θ) [15]. Such form of geometric nonlin-

earity can be modelled by a cubic spring in which the force developed by the gravity

is fs = klu+knlu
3. Freeplay nonlinearity belongs to the family of nonlinearity caused

by boundary conditions. Freeplay is characterized by a bilinear force-displacement

diagram and commonly encountered in aircraft structures due to loose hinges and

attachments [3, 16]. The hysteretic nonlinearity arises, for instance, from the loose

rivets or friction in the connection [17,18].

5
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2.2 Nonlinear system identification

In engineering science, robust predictive models that capture the relevant physical

characteristics of the system are generally required. The process of calibrating the

parameters of such models based on measurements is called system identification. An

engineer should not model the data, but rather the information contained in the data

by minimizing the effect of noise [19]. A high order Fourier series or a high order

polynomial could fit the data perfectly, but be inadequate for robust predictions [19].

The general approach to nonlinear system identification consists of three steps.

The first step is the detection which aims to determine if nonlinear behaviour is

present. If such behaviour is present, the second stage consists or determining where

nonlinearities occur, what type of nonlinearities are present and ultimately their re-

spective form. For instance, the Duffing oscillator is an example of nonlinear restoring

force in the form of a polynomial. The last step is to determine the parameters of the

nonlinear expressions. To estimate these parameters, several methods are available

such as least-square or nonlinear optimization algorithms [20].

Numerous system identification methods have been developed for nonlinear sys-

tems. Following [15], these methods can be classified into several categories, such

as linearisation, time and frequency-domain methods, time-frequency analysis, black-

box modelling. This classification is not exhaustive and further categorizations could

be made such as parametric and non-parametric methods [15].

The first category of nonlinear system identification is the linearisation methods.

The general approach of these methods is to use approaches developed for linear

system. One such technique is equivalent linearisation for weakly nonlinear dynamic

systems having random excitation [21]. The drawback of this method is that it cannot

be applied to strongly nonlinear random oscillators.
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The restoring force surface introduced by [22,23] in which the systems characteris-

tics are expressed in terms of orthogonal functions. This method is simple but requires

that the displacement, velocity and acceleration data are available at each degree of

freedom. Recent extensions to this method have been reported for nonlinear system

identification in the absence of input measurements by [24]. Another technique is

NARMAX (Nonlinear autoregressive-moving-average with eXogeneous input) which

provides a description of a stationary stochastic process with one polynomial for the

auto-regression and another polynomial for the moving average [25,26].

2.3 Bayesian Model Selection

At its heart, Bayesian model selection makes use of Bayes’ theorem which blends prior

knowledge of the system with observational data. In Bayesian statistical modelling,

the prior distribution and the likelihood function contain the prior of the system

and information contained in observational data. There are various approaches to

prescribe the prior distribution depending on the level of knowledge such as diffuse

prior, Jeffrey’s prior, conjugate prior, informative prior, etc. [27] The prior distribution

can have a major impact on any Bayesian estimation procedure. The effect of the

prior distribution will be discussed in detail in this investigation. With the posterior

distribution obtained from the combination of the likelihood function and the prior,

one can make an inference on the model parameters.

Bayesian approach is also useful to compare the suitability of plausible models.

The model selection problem defines a numerical measure of the evidence in favour of

a model among other models [28]. The ratio of the evidence of two models is called

the Bayes factor, providing a measure on how strong the data favours a model over

another model. However, when comparing multiple models, another approach is to

estimate the probability of each model in a given model set [28–30]. Furthermore,
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this approach can adequately deal with uncertainties associated with our limited

knowledge of the system.

2.4 Parameter Estimation

Given a model, parameter estimation is the task of evaluating those parameters.

The frequentist approach estimates the parameters by minimizing a cost function.

For example, the maximum likelihood estimation approach selects the parameters

that maximize the likelihood of the data. In this approach, the point estimates

of the parameters are used for prediction. The Bayesian approach, on the other

hand, treats these parameters as random variables that are described by their joint

probability density function. This joint distribution is obtained using Bayes’ theorem.

The major drawback of the Bayesian approach is that the evaluation of the posterior

density may require a costly sampling method like MCMC.



Chapter 3

Bayesian Inference for Model Selection

and Parameter Estimation

Bayesian inference is defined as the process of fitting a probability model to data

where the results are in the form of a probability distribution of the parameters of

the model and its predictions [31].

In this investigation, Bayesian inference is used for model selection and parameter

estimation. Two categories of model selection are considered; (a) the information-

theoretic approach and (b) the Bayesian approach. Following the introduction of

model selection methodologies, the parameter estimation technique is described.

3.1 Model selection

The objective of this section is to introduce model selection. The focus of this chapter

is to provide a brief overview of Bayesian model selection methodologies. A concise

description of information-theoretic model selection approach is also provided in order

to contrast Bayesian and information-theoretic approaches.

Model selection involves identifying one or more optimal models from a set of

plausible models through a trade-off between the average data fit and the model

9
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complexity [6–8,28–30].

The Bayesian model selection involves computing the posterior probability of each

proposed model. Clearly, this approach relies on the data and proposed models. If

the observations used for model selection do not capture some relevant physics of the

system, the selected models will not be adequate for understanding the system and

for making predictions. There are several approaches to model selection.

3.1.1 Information theoretic approach

The information-theoretic method of model selection is a frequentist approach to

compare the proposed models by assigning a score using the parameter estimates

obtained by maximizing the likelihood method [32].

For each model M, the maximum likelihood estimate (MLE) φMLE of the param-

eters is obtained by maximizing the likelihood function p(D|φ,M) where D is the

data. The most common approaches are the Akaike Information Criterion (AIC) [33]

and the Bayesian Information Criterion (BIC). The AIC is non-Bayesian and can

be seen as an extension of Fisher’s maximum likelihood method [34]. BIC, devel-

oped by Schwarz [35], is an asymptotic approximation of the evidence p(D|M). It

only holds good for large data sets and unique MLE of model parameters [34]. Kass

and Raftery [36] showed that BIC tends toward simpler models while AIC favours

more complex models. The next equations are the formal definition of AIC and BIC

respectively when J data points are available [32,33,35].

AICi = −2
J

j=1

ln (p(dj|φMLE,Mi)) + 2k (3.1)

BICi = −2
J

j=1

ln (p(dj|φMLE,Mi)) + 2k ln(J) (3.2)
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The first term in the equations represents the data fit and the second term is a

penalty term for model complexity. The penalty is based on the number of parameters

k in the model for AIC and additionally the number of data points J for BIC. As

mentioned previously, AIC and BIC criteria require a large data set. In this thesis,

the effect of data sparsity is investigated making AIC and BIC impracticable for these

cases.

3.1.2 Bayesian model selection

Another method of model selection is the Bayesian approach. Figure 1 presents the

general approach to model selection. For each proposed model, the parameters are

estimated in the form of a posterior distribution. From that posterior parameter

probability distribution, the evidence of each model can be calculated. Finally the

probability of each model is computed using the evidence.

Using a set of J available measurements D = {d1, ...,dJ}, the relative probability
of each N models proposed is estimated. Models can be proposed based on the

relevant physical laws that govern the system [28, 32, 37, 38]. Using Bayes’ theorem,

the probability of each model given the available data and the set of N proposed

models M is defined by [34]

P (Mi|D,M) =
p(D|Mi)P (Mi|M)

N
j=1

p(D|Mj)P (Mj|M )

, (3.3)

where p(D|Mi) is the evidence (or the marginal likelihood) of model Mi given by the

data D and P (Mi|M) is the prior probability of model Mi. The prior can be taken

as 1
N

if no prior knowledge is available that would favour one model over another. To

keep notation simple, the model set M is implicit in the following equations.

Using Bayes’ theorem, the evidence of the modelMi can be computed as [29,30,39]
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Propose N models

M2M1
... MN

Parameter
estimation

Parameter
estimation

Parameter
estimation

Estimate
evidence

Estimate
evidence

Estimate
evidence

Calculate posterior
probability of each model

Figure 1: High-level flowchart of the model selection process.

p(D|Mi) =
p(D|φ,Mi)p(φ|Mi)

p(φ|D,Mi)
, (3.4)

where p(D|φ,Mi) is the likelihood, p(φ|Mi) the parameters prior distribution and

p(φ|D,Mi) is the posterior probability density function (pdf) of the parameters.

Estimation of the evidence

A component of the model selection approach is the parameter estimation as evident

from Eq. (3.4). The evidence can be expressed as

p(D|Mi) =


p(D|φ,Mi)p(φ|Mi)dφ. (3.5)
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In most cases, there are no analytical solutions to Eq. (3.5). If the number of param-

eters is high, a numerical solution may also be challenging. The integral of Eq. (3.5)

can be approximated by the Monte Carlo method [30] in which the evidence becomes

p(D|Mi) =
1

N

N
s=1

p(D|φ,Mi)p(φ|Mi). (3.6)

The N samples are drawn from the prior parameter distribution p(φ|Mi). It

might not be possible to use this method if the parameter distribution is complex or

noninformative. Furthermore, the region of high probability from which the samples

are drawn often does not coincide with the high probability region of p(D|φ,Mi),

leading to a poor estimate [30].

Another solution is to use a multi-level sampling technique developed to estimate

the evidence. A sequence of related pdfs is generated in which the first pdf is the prior

p(φ|Mi) and the last pdf is the posterior parameter distribution. The samples are

generated using the Transition MCMC method (TMCMC) [40]. The major drawback

is the high number of samples required for each of the intermediate pdfs and the

difficulty to handle noninformative priors.

Another solution is to compute the evidence by using Eq. (3.4) at a given φ = φ∗

using the Chib-Jeliazkov method [10]. Friel [41] compared different techniques to

estimate the evidence. The fastest method is the Laplace approximation. This ap-

proximation requires that the posterior distribution must be adequately approximated

by a Gaussian distribution. The Chib-Jeliazkov method is the second most efficient

method reviewed. The posterior distribution does not need to be unimodal. In the

case of sparse data, the posterior distribution tends to have non-Gaussian features.

Hence, this method will be adopted to compute the evidence as it provides accurate

estimates.
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Effect of the parameters prior distribution

A critical aspect of the Bayesian approach is the inclusion of prior information. The

results of model selection is affected by the parameter prior distribution p(φ|Mi)

even when the number of measurements available is large [34, 36, 42]. For example,

in the case of large diffuse priors, the simpler models will always be selected. On

the other hand, using only the likelihood tends to select the more complex model

leading to overfitting the data [30]. The prior penalizes complex models [30, 39, 43].

For each proposed models, prior distributions are needed for each parameters. In

the case of a model where each parameter has a physical interpretation (i.e. the

stiffness, the damping, the mass, etc.) one may often have prior information about

these parameters. In the case of a statistical model where the physical meaning of

parameters is not clear, it is more challenging. The effect of the prior on the evidence

can be clearly seen in Eq. (3.4). The better the data-fit, the higher the evidence.

Generally, as the model complexity increases, p(φ∗|D,Mi) tends to be lower. As

this value decreases, the evidence decreases and thus penalizes complex models. In

the case of noninformative prior, complex models are not penalized.

Some work has been done to tackle this issue by Bishop [43] and Oh [39] to

parametrize the priors in automatic relevance determination. The standard devia-

tion of the prior distribution is selected to control the trade-off between the model

complexity and the data-fit error.

If a noninformative prior density of modelMi p(φ|Mi) is defined by h(φ|Mi)
ci

where

ci =

h(φ|Mi)dφ. Therefore, p(φ

∗|Mi) =
1
ci
. In that case, Eq. (3.4) becomes

p(D|Mi) =
p(D|φ,Mi)

p(φ|D,Mi)

1

ci
. (3.7)

If all the models have the same number of parameters, one can assume ci = C.

When calculating the probability of each model, the constant will not influence the
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result. However, in the case of model with different number of parameters, it is

problematic to make the same assumption. A correction factor can be added based

on the number of parameters of a model and the dimension of the data. Following

[44], the term selected for this paper is ci = J
kn
2 where k is the number of parameters

of a model, α controls the impact of the number of parameters and J is the number

of data points considered. The correction factor is equivalent to changing the prior

probability of the proposed models.

Bayesian model averaging

Bayesian model averaging can be used to make robust predictions [30, 34] using the

results of model selection. The posterior robust predictive pdf is based on the posterior

probability of each modelM in the model setM containing N models. To predict the

pdf of a quantity of interest x, the Total Probability Theorem can be used as [30,34]

p(x|D,M ) =
N
j=1

p(x|D,Mj)P (Mj|D,M ) (3.8)

where P (Mj|D,M ) is the posterior probability of model Mj found through the

model selection process. The posterior pdf given by each model is weighted by its

posterior probability. The posterior pdf of the value of interest can be found through a

Monte Carlo simulation using the MH samples representing the posterior distribution

of the parameters [34]

p(x|D,Mj) ≈
1

G

G
g=1

p(x|φg,D,Mj). (3.9)
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3.2 Parameter Estimation

3.2.1 State Space Models

In this investigation, the mathematical representation of the systems is given by the

stochastic ordinary differential equation. The discrete state space representation of a

general nonlinear system is given by [1, 4, 45]

xk+1 = gk (xk,fk, qk) (3.10)

where gk is the model operator, fk is a deterministic input, qk is the stochastic input

and xk is the state vector of the system at time step k. The stochastic input may

represent the random forcing, modelling error or a combination of both. Bayesian

inference offers the ability to combine prior knowledge about the model with obser-

vations characterized by the following equation [4, 45]

dj = hj(xd(j), εj) (3.11)

where dj is the j-th observation vector at time step k = d(j) and εj is the mea-

surement noise. In this thesis, the measurements are simulated. The uncertainty in

the measurement model is represented by a measurement error The number of ob-

servations available may not be the same as the number of time integration points.

The mapping function d(·) links the state xk of the system with the corresponding

observation. Figure 2 illustrates that relationship.

For instance, the second measurement d2 is available at time instant t3 (i.e. k =

3,d(2) = 3).
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t0 t1 t2 t3 t4 t5
...

tk
...

tN

x0 x1 x2 x3 x4 x5 ... xk ... xN

td(1) td(2) td(3) td(j) td(J)... ...

d1 d2 d3 dj dJ... ...

Figure 2: Discrete time domain, adapted from [1].

3.3 Bayesian Inference

To estimate the evidence, three quantities need to be evaluated: p(D|φ∗,Mi),

p(φ∗|Mi) and p(φ∗|D,Mi). The prior distribution is either known or unknown.

For unknown prior distribution, one may decide to apply a correction factor as dis-

cussed in the last chapter. In this section a strategy will be developed to evaluate

those distributions.

Following [46], the joint posterior pdf of the state x and parameter φ vector of a
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given model Mi with a set of measurements D = {d1,d2, ...,dj, ...,dJ} is

p(x1, ...,xd(J), ...,xk,φ|d1, ...,dJ) ∝ p(φ)

d(1)
k=1

p(xk|xk−1,φ)

 p(d1|xd(1),φ)

... d(J)
k=d(J−1)+1

p(xk|xk−1,φ)

 p(dJ |xd(J),φ) K
k=d(J)+1

p(xk|xk−1,φ)

 . (3.12)

The marginal distribution of the parameter vector is

p(φ|d1, ...,dJ) ∝ p(φ)

d(1)−1
k=1

∞
−∞

p(xk|xk−1,φ)dxk

 ∞
−∞

p(xd(1)|xd(1)−1,φ)p(d1|xd(1),φ)dxd(1)

... d(J)−1
k=d(J−1)+1

∞
−∞

p(xk|xk−1,φ)dxk

 ∞
−∞

p(xd(J)|xd(J)−1,φ)p(dJ |xd(J),φ)dxd(J) K
k=d(J)+1

∞
−∞

p(xk|xk−1,φ)dxk

 . (3.13)

Introducing Mi, the above equation can be concisely written as

p(φ|d1, ...,dJ ,Mi) ∝ p(φ|Mi)
J

j=1

∞
−∞

p(xd(j)|xd(j)−1,φ,Mi)p(dJ |xd(j),φ,Mi)dxd(j).

(3.14)

Combining Eqs. (3.14) and (3.4), an expression of the parameter posterior pdf
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becomes

p(φ|D,Mi) =
1

p(D|Mi)
p(φ|Mi)

J
j=1

∞
−∞

p(xd(j)|xd(j)−1,φ,Mi)p(dJ |xd(j),φ,Mi)dxd(j).

(3.15)

The likelihood is therefore evaluated as follows

p(D|φ,Mi) =
J

j=1

∞
−∞

p(dj|xd(j),φ,Mi) p(xd(j)|xd(j)−1,φ,Mi)  
state estimation

dxd(j) (3.16)

In equation (3.14), the posterior ordinate can be evaluated up to proportionality

because the normalizing constant of the posterior pdf, namely the evidence, is not

known. Hence, a Markov Chain Monte Carlo sampling technique will be used to

sample from the posterior distribution.

To estimate the likelihood, a state estimation procedure is required. More details

on the evaluation of this integral are presented in the next chapter. To evaluate

the posterior ordinate at φ = φ∗, Chib-Jeliazkov [10] method is used. This method

requires Metropolis-Hastings samples of the posterior distribution. The next figure

shows the parameter estimation algorithm and how those samples are obtained.

As seen in the state estimation box, the MH algorithm requires the ratio of the

posterior pdf evaluated at two different points. Since they share the same normaliza-

tion constant, Eq. (3.14) is sufficient for MCMC. The next section will introduce the

Markov Chain Monte Carlo algorithm used.

3.3.1 Markov Chain Monte Carlo

In the Bayesian framework, a high dimensional integral is required to obtain the

posterior distribution. The dimension of that integral relates to the number of pa-

rameters. Depending on the distribution, no analytical solution may exist and the
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MCMC

State Estimation Problem

Initialize parameters
Set φ = φ0

Do parallel search for maxima

Do Burn-In

Propose a new sample
φ∗ = N (φj,Σ)

Evaluate p(φ∗|D,Mi)
p(φj |D,Mi)

(see Eq.(3.15))

Sample r ∼ U(0, 1)

If p(φ∗|D,Mi)
p(φj |D,Mi)

< r

φj+1 = φ∗ else
φj+1 = φj

Is j < N?

end

yes

noj = j + 1

Figure 3: Flowchart of the parameter estimation procedure.

numerical evaluation of the integral is challenging. Markov Chain Monte Carlo meth-

ods are used to bypass this integral. These methods sample directly from the posterior

distribution by constructing a Markov chain.

A sequence of random vector {x0,x1, ...,xN} is called a first-order Markov chain

if vector i only depends on the previous vector i− 1 such that [47,48]

p(xi+1 = y|xi = z, ...,x0 = a) = p(xi+1 = y|xi = z). (3.17)



21

The transition kernel, denoted p(xi+1 = y|xi = z), is homogeneous when it is

independent of i. In this case the transition kernel is denoted by

p(xi+1 = y|xi = z) = A(y, z) ∀ i. (3.18)

The transition kernel must satisfy [49]

A(y, z) ≥ 0∀y, z ∈ S and


A(y, z)dz = 1. (3.19)

There are three properties that Markov chain should meet to ensure their effec-

tiveness: irreducibility, aperiodicity and reversibility [50,51]. A Markov chain is said

to be irreducible when all state of the chain can be reached from any starting position

in any number of iterations. This requires that the transition kernel is greater than

0 for all state sequences. A Markov chain is aperiodic when there are no periodic

oscillations between two states. The last property is reversibility. A Markov chain

is reversible if the transition kernel of the chain and its respective reversed chain are

the same. The probability of jumping from y to z is the same as jumping from z to

y.

p(xi+1 = y|xi = z) = p(xi = z|xi+1 = y) (3.20)

A Markov chain satisfies the detailed balance condition if and only if it is a re-

versible Markov chain [51]

A(y, z)π(y) = A(z,y)π(z). (3.21)

If the above equation is satisfied, the chain has a stationary distribution π and is

reversible with respect to π.

The Markov chain must sample from the stationary distribution π(·). If a chain



22

satisfies the three aforementioned properties, the chain will reach the stationary dis-

tribution after a burn-in period regardless of the starting position [47, 48, 52]. The

stationary distribution satisfies


π(z)A(z,y)dz = π(y). (3.22)

Metropolis-Hastings Algorithm

In the problem of Bayesian inference, the posterior distribution is known up to pro-

portionality if the normalizing constant is unknown. Metropolis-Hastings (MH) al-

gorithm permits sampling of the target distribution when the distribution is known

up to proportionality using a simple transition kernel. From a starting point y, a

candidate point z is proposed from a proposal pdf q(y, z). The candidate point is

accepted with probability

α(y, z) = min


1,

π(z)q(z,y)

π(y)q(y, z)


. (3.23)

If the proposal distribution is symmetric, q(y, z) = q(z,y), the acceptance prob-

ability becomes

α(y, z) = min


1,

π(z)

π(y)


. (3.24)

The transition kernel is

A(y, z) = α(y, z)q(y, z). (3.25)

To satisfy the detailed balance condition,

A(y, z)π(y) = A(z,y)π(z)

α(y, z)q(y, z)π(y) = α(z,y)q(z,y)π(z). (3.26)



23

The challenge in this method is to find a good proposal distribution q(·, ·) that

maximizes the efficiency of the chain. An automatic process to find the optimal

proposal is presented next.

Adaptive Random-Walk Metropolis-Hastings

A form of Random-Walk Metropolis-Hastings MCMC will be used in which the pro-

posal distribution is a Gaussian distribution centred at the current position of the

chain with a given variance. The adaptation provides the optimal variance of the

Gaussian proposal distribution. The burn-in algorithm is presented in Fig. 4.

The adaptation is performed using the past history of the chain [9,53]. The pro-

posal of a new sample of the Markov chain is normally distributed with a mean being

the previous sample and a covariance matrix based on the covariance of the previous

chain. The length of each adapted chain is based on the number of parameters and

the strength of the nonlinearity of the system. The current position of the chain is

xa,k where a indicates the chain number in the adaptation procedure. A new sample

y is proposed from

y ∼ N (xk, Ct). (3.27)

The covariance of the proposal Ct is based on the covariance of the previous chain

t− 1

Ct = sdCOV (x1,x2, ...,xN). (3.28)

A scaling factor sd is used [54]

sd =
2.382

d
(3.29)

where d is the dimension of the target distribution. If the posterior distribution is

unimodal, it maximizes the efficiency of the chain [54].
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State Estimation Problem

Initialize parameters
Set φ = φ0

and Σ = σ2
0I

Propose a new sample
φ∗ = N (φj,Σ)

Evaluate p(φ∗|D,Mi)
p(φj |D,Mi)

(see Eq. (3.15))

Sample r ∼ U(0, 1)

If p(φ∗|D,Mi)
p(φj |D,Mi)

< r

φj+1 = φ∗ else
φj+1 = φj

Is j < N?

Is burn-in
completed?

end

Tune the proposal
Σ = sdCOV ({φ1,φ2, ...,φN})

yes

yes

no

noj = j + 1
j = 1

Figure 4: Flowchart of the burn-in procedure.

Delayed Rejection

Delayed rejection is modification made to MH where if a sample is rejected, a new

sample can be proposed. Consider a Markov chain at the position xk = y. The

candidate point z1 generated from q1(y, ·) and accepted with probability

α1(y, z1) = min


1,

π(z1)q1(z1,y)

π(y)q1(y, z1)


= min


1,

N1

D1


. (3.30)



25

In the case of rejection, instead of setting xk+1 = y, a second candidate point z2

is proposed. The second state depends on the current position of the chain y but also

on the value that was rejected. The acceptance probability of the second stage is

α2(y, z1, z2) = min


1,

π(z2)q1(z2, z1)q2(z2, z1,y)[1− α1(z2, z1)]

π(y)q1(y, z1)q2(y, z1, z2)[1− α1(y, z1)]


= min


1,

N2

D2


(3.31)

where q2 is another proposal density. Delaying rejection can be iterated up to i-th

times and the acceptance probability of the i-th stage is [55]

αi(y, z1, ...,zi) =min(1,
π(zi)q1(zi, zi−1)q2(zi, zi−1, zi−2)...qi(zi, zi−1, ...,y)

π(y)q1(y, z1)q2(y, z1, z2)...qi(y, z1, ...,zi)

[1− α1(zi, zi−1)][1− α2(zi, zi−1, zi−2)]...[1− αi−1(zi, ...,z1)]

[1− α1(y, z1)][1− α2(y, z1, z2)]...[1− αi−1(y, z1, ...,zi)]
)

(3.32)

= min


1,

Ni

Di



where qi denotes the proposal density of the i-th stage. The acceptance probability

preserves the reversibility property of the chain. Delayed rejection can be stopped at

any step.

Multiple strategies can be used when implementing DR. The number of trials can

be fixed or a p-coin can be tossed after each rejection and if the outcome is head

another point is then proposed [55].

Concluding remarks on MCMC methods

ARWMH and DR were used for model selection. Other techniques like Adaptive

Metropolis [53] and Delayed Rejection Adaptive Metropolis [55] were implemented

by the writer. It was found that there was no performance gain in using DRAM over

ARWMH for the problems considered in this investigation. Delayed rejection was
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sometimes necessary during burn-in when the proposal was too large to avoid the case

where the rejection ratio was 100% making it impossible to adapt. These findings

are reported in the literature [55]. In dimensions up to 20, no major differences are

noticed in the results between these algorithms. ARWMH is used in this thesis for

this reason, in addition to its simplicity in implementing Chib-Jeliazkov for evidence

computation as discussed next.

3.3.2 Chib-Jeliazkov method

The evidence is estimated using Chib-Jeliazkov method [10]. The posterior ordi-

nate is estimated using Metropolis-Hastings samples of the posterior distribution

p(φ|D,Mi). From the parameter estimation procedure, M posterior samples have

been generated {φ1,φ2, ...,φM} with a proposal density q(φ′,φ).

Using Eq. (3.23), the acceptance probability is

α(φ,φ′|D,Mi) = min


1,

p(φ′|D,Mi)q(φ
′,φ)

p(φ|D,Mi)q(φ,φ′)


. (3.33)

From Eq. (3.25), the transition kernel is

p(φ,φ′|D,Mi) = α(φ,φ′|D,Mi)q(φ,φ
′). (3.34)

To satisfy the detailed balance condition, Eq. (3.34) must respect

p(φ,φ′|D,Mi)p(φ|D,Mi) = p(φ′,φ|D,Mi)p(φ
′|D,Mi). (3.35)

Substituting Eq. (3.34) into (3.35), the detailed balance equation becomes

α(φ,φ′|D,Mi)q(φ,φ
′)p(φ|D,Mi) = α(φ′,φ|D,Mi)q(φ

′,φ)p(φ′|D,Mi). (3.36)
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Eq. (3.36) is valid for any φ′. In that case, one can select φ′ = φ∗. Substituting

φ′ = φ∗ and integrating both sides of the equation, one gets [7, 56]


α(φ,φ∗|D,Mi)q(φ,φ

∗)p(φ|D,Mi)dφ =


α(φ∗,φ|D,Mi)q(φ

∗,φ)p(φ∗|D,Mi)dφ.

(3.37)

The posterior ordinate p(φ∗|D,Mi) can be taken out of the integral because it is

a constant. Writing Eq. (3.37) in terms of the posterior ordinate, one gets

p(φ∗|D,Mi) =


α(φ,φ∗|D,Mi)q(φ,φ

∗)p(φ|D,Mi)dφ
α(φ∗,φ|D,Mi)q(φ∗,φ)dφ

. (3.38)

The numerator integral is in terms of the parameters from the posterior distri-

bution while the denominator integral is in terms of the parameters from the fixed

proposal distribution q(φ∗,φ).

A pdf can be approximated by N samples with

p(x) ≈ 1

N

N
s=1

δ(x− xs). (3.39)
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Applying this definition to the posterior distribution and the fixed proposal dis-

tribution in Eq. (3.38),

p(φ∗|D,Mi) ≈


α(φ,φ∗|D,Mi)q(φ,φ

∗)
1

N

N
s=1

δ(φ− φs)dφ
α(φ∗,φ|D,Mi)

1

M

M
j=1

δ(φ− φj)dφ

(3.40)

≈

1

N

N
s=1


α(φ,φ∗|D,Mi)q(φ,φ

∗)δ(φ− φs)dφ

1

M

M
j=1


α(φ∗,φ|D,Mi)δ(φ− φj)dφ

(3.41)

≈

1

N

N
s=1

α(φs,φ
∗|D,Mi)q(φs,φ

∗)

1

M

M
j=1

α(φ∗,φj|D,Mi)

. (3.42)

Using the definition of the acceptance probability in Eq. (3.23), the previous equa-

tion becomes

p(φ∗|D,Mi) ≈

1

N

N
s=1

min


1,

p(φ∗|D,Mi)q(φ
∗,φs)

p(φs|D,Mi)q(φs,φ∗)


q(φs,φ

∗)

1

M

M
j=1

min


1,

p(φj|D,Mi)q(φj,φ
∗)

p(φ∗|D,Mi)q(φ∗,φj)

 . (3.43)

Eq. (3.43) can be simplified. In this work, the number of draws for the denominator

and numerator is the same (N = M). Furthermore, the proposal distribution q(·, ·)
is Gaussian and symmetric. The simplified equation used to estimate the posterior

ordinate is

p(φ∗|D,Mi) ≈

N
s=1

min


1,

p(φ∗|D,Mi)

p(φs|D,Mi)


q(φs,φ

∗)

N
j=1

min


1,

p(φj|D,Mi)

p(φ∗|D,Mi)

 (3.44)

where the ratios of posterior ordinates are evaluated using Eq. (3.14). To evaluate

this ratio, a state estimation procedure is carried out as discussed in the next chapter.



Chapter 4

State estimation

4.1 Introduction

In the previous chapter, the parameter estimation procedure is formulated. It was

shown that the parameters posterior distribution includes a state estimation proce-

dure. In this chapter, different state estimation algorithms are described. An example

demonstrates the performance of the filters against the strength of nonlinearities.

From the previous chapters, we restate the modelling and measurement equations

as

xk+1 = gk (xk,fk, qk) , (4.1)

dj = hj(xd(j), εj). (4.2)

The filtering procedure is divided into two main steps. The first step is the

forecast. In the forecast step, the pdf of the system state is marched in time

using a model representing the physics of the system of the form seen in Eq. (4.1).

The update step consists of blending an incoming observation of the system with

the current knowledge using Eq.(4.2). A general overview of the state estimation

procedure is shown in Fig. 5.
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Initialize filter

Observation
available?

Evaluate integral (Eqs.
4.14, 4.26 or 4.42)

and accumulate result

UpdateForecast

State
estimation
completed?

end

yes

no

yes

no

Figure 5: Flowchart of the state-estimation procedure.

For the nonlinear state estimation, the Extended Kalman filter (EKF), Ensemble

Kalman filter (EnKF) and Particle filter using EnKF for its proposal density are

considered in this investigation.
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4.2 Extended Kalman Filter

Details of the EKF are widely available (i.e. [1, 4, 45, 57–60] ) but a brief description

will be presented next for completeness. EKF linearizes the nonlinear model and

measurement operators in Eqs. (4.2,4.1). In the forecast step, the physics of the

system is considered through the model operator. The next state of the system is

predicted using the previous state and the proposed model. In the update stage,

the predicted state is combined with an incoming observation. The Kalman gain

matrix achieves the balance between the predicted state and the incoming observation.

For the following, the measurement noise is ϵj ∼ N (0,Γj) and the model noise is

qk ∼ N (0,Qk).

When an observation is available, the update step takes place [59,60]

Cj =
∂h(xd(j), εj)

∂xd(j)


xd(j)=xf

d(j)
,εj=0

(4.3)

Dj =
∂h(xd(j), εj)

∂εj


xd(j)=xf

d(j)
,εj=0

(4.4)

Kd(j) = P f
d(j)C

T
j


CjP

f
d(j)C

T
j +DjΓjD

T
j

−1

(4.5)

xa
d(j) = xf

d(j) +Kd(j)(dj − h(xf
d(j),0)) (4.6)

P a
d(j) = (I −KjCj)P

f
d(j). (4.7)

The forecast is given by [59,60]

Ak =
∂g(xk,fk, qk)

∂xk


xk=xf

k ,qk=0

(4.8)

Bk =
∂g(xk,fk, qk)

∂qk


xk=xf

k ,qk=0

(4.9)

xf
k+1 = gk(xk,fk,0) (4.10)

P f
k+1 = AkP

a
k A

T
k +BkQkB

T
k . (4.11)
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The integral of Eq. (3.16) can be performed analytically since the integral involves

the product of the likelihood p(dj|xd(j),φ,Mi) and the current pdf of the system state

p(xd(j)|xd(j)−1,φ,Mi). The likelihood can be written as follows

p(dj|xd(j),φ,Mi) = N (dj|hj(xd(j),0),Γj). (4.12)

The current pdf of the system state is also normally distributed

p(xd(j)|xd(j)−1,φ,Mi) = N (xd(j)|xd(j)−1,P
f
d(j)). (4.13)

The likelihood function is Eq. (3.16) becomes

p(D|φ,Mi) =
J

j=1

∞
−∞

N (xd(j)|xd(j)−1,P
f
d(j))N (dj|hj(xd(j),0),Γj). (4.14)

When the conditional pdf of the state is weakly non-Gaussian or Gaussian, the Ex-

tended Kalman filter (EKF) can efficiently estimate p(xd(j)|xd(j)−1,φ,Mi) [4]. How-

ever, EKF fails when the distribution becomes strongly non-Gaussian, for instance,

exhibiting multiple modes due to the presence of multiple equilibrium points in the

dynamical model. A non-Gaussian filter like the Ensemble Kalman filter or a particle

filter is necessary.

4.3 Ensemble Kalman Filter

The Ensemble Kalman filter addresses two major limitations of EKF. The first one is

the use of an approximate closure and the second limitation is the computational cost

of carrying the error covariance matrix in large dimensional space [1]. The closure

stems from the fact that higher-order moments in the error covariance are discarded

leading to an unbound variance growth in some cases. In the Ensemble Kalman filter
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(EnKF), the initial state ensemble matrix is generated by drawing samples from the

prior pdf of the initial state vector. When a measurement is available, the update

takes place as [46]

dj,i = h(xf
d(j),i, ϵj,i) (4.15)

d̄j =
1

N

N
i=1

dj,i (4.16)

x̄f
d(j) =

1

N

N
i=1

xf
d(j),i (4.17)

Pxd =
1

N − 1

N
i=1

(xf
d(j),i − x̄f

d(j))(dj,i − d̄j)
T (4.18)

Pdd =
1

N − 1

N
i=1

(dj,i − d̄j)(dj,i − d̄j)
T (4.19)

Kd(j) = PxdP
−1
dd (4.20)

xa
d(j),i = xf

d(j),i +Kd(j)(dj − dj,i). (4.21)

Each sample is then propagated in time using the full nonlinear model in Eq. (3.10)

xf
k+1,i = g(xa

k,i,fk, qk,i). (4.22)

The forecast mean of the state vector is

x̂f
k =

1

N

N
i=1

xf
k,i. (4.23)

The conditional distribution of the state can be approximated by [61,62]

p(xd(j)|xd(j)−1,φ,Mi) ≈
1

N

N
s=1

δ(xk − xf
k,s). (4.24)
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Using Eq. (4.24), the likelihood function in Eq. (3.16) becomes [46]

p(D|φ,Mi) =
J

j=1

∞
−∞

p(xd(j)|xd(j)−1,φ,Mi)p(dj|xd(j),φ,Mi)dxd(j)

≈
J

j=1

∞
−∞

1

N

N
s=1

δ(xk − xf
k,s)p(dj|xd(j),φ,Mi)dxd(j)

≈
J

j=1


1

N

N
s=1

p(dj|xf
d(j),s,φ,Mi)dxd(j)


. (4.25)

(4.26)

EnKF demonstrates superiority over the Extended Kalman filter for strongly non-

Gaussian systems as it avoids the linearization of the model and measurement opera-

tors. For strongly non-Gaussian systems, the Gaussian update step adopted from the

Extended Kalman filter shown in Eq. (4.20) may sometimes lead to unwieldy results

in EnKF [46].

4.4 Particle Filter using an EnKF proposal

The particle filters are fully non-Gaussian [62]. For EnKF, each sample has a weight

of 1/N. For the particle filter (PF), the particles have varying weights which corre-

spond to their likelihood, the proposal distribution and their previous position. The

prediction step is the same for the particle filter and the EnKF filter. The difference is

the update step. In the update step, the weight of each particle is modified according

to the following relation [62,63]

wd(j),i ∝ wd(j)−1,i

p(dj|xd(j),i)p(xd(j),i|xd(j)−1,i)

q(xd(j),i|xd(j)−1,i,dj)
(4.27)



35

where p(dj|xd(j),i) is the likelihood, p(xd(j),i|xd(j)−1,i) is the prior and

q(xd(j),i|xd(j)−1,i,dj) is the proposal distribution. Various proposal distribu-

tions are reported in the literature [46, 62]. In this thesis, two different distributions

are presented. If the proposal distribution is the same as the prior distribution, the

particle filter is called bootstrap filter [62,64]. The weight update equation becomes

wd(j),i ∝ wd(j)−1,ip(dj|xd(j),i). (4.28)

As q(xd(j),i|xd(j)−1,i,dj) = p(xd(j),i|xd(j)−1,i), the effect of the last measurement

dj is not used to update the state of the particle in the bootstrap filter. Another

option is to select the proposal given by an EnKF filter. The proposal retains some

nonlinearity in contrast to a Gaussian proposal from EKF or UKF. Furthermore,

EnKF, depending on the ensemble size, can be more efficient than EKF since all the

particles share the same proposal. For the EnKF based proposal, the particles are

nudged using the new observation before updating the particle weights.
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The update step of the particle filter with EnKF proposal is [46]

dj,i = h(xf
d(j),i, ϵj,i) (4.29)

d̄j =
N
i=1

wd(j)−1,idj,i (4.30)

x̄f
d(j) =

N
i=1

wd(j)−1,ix
f
d(j),i (4.31)

Pxd =
1

1−
N
i=1

w2
d(j)−1,i

N
i=1

wd(j)−1,i(x
f
d(j),i − x̄f

d(j))(dj,i − d̄j)
T (4.32)

Pdd =
1

1−
N
i=1

w2
d(j)−1,i

N
i=1

wd(j)−1,i(dj,i − d̄j)(dj,i − d̄j)
T (4.33)

Kd(j) = PxdP
−1
dd (4.34)

xa
d(j),i = xf

d(j),i +Kd(j)(dj − dj,i) (4.35)

w̃d(j),i = wd(j)−1,ip(dj|xa
d(j),i)

N
l=1

wd(j)−1,l
1

|Hf |
K(H−1

f (xf
d(j),l − xa

d(j),i))

N
l=1

1
N

1
|Ha|K(H−1

a (xa
d(j),l − xa

d(j),i))

(4.36)

wd(j),i =
w̃d(j),i

N
i=1

w̃d(j),i

. (4.37)

where K(·) is a Gaussian kernel and Ha and Hf are the bandwidth matrix for the

proposal and the prior respectively. Following [65], these matrix are proportional to

the square root of the ensemble covariance matrix and the constant of proportionality



37

is the multivariate form of Scott’s rule [66]. The bandwidth matrix are defined as

Ha = N
−1
n+4


1

N − 1

N
i=1

(xa
d(j),i − x̄a

d(j))(x
a
d(j),i − x̄a

d(j))
T

 1
2

(4.38)

Hf = N
−1
n+4

eff

 1

1−
N
i=1

w2
d(j)−1,i

N
i=1

wd(j)−1,i(x
f
d(j),i − x̄f

d(j))(x
f
d(j),i − x̄f

d(j))
T


1
2

(4.39)

where n is the dimension of the state vector and Neff is the effective ensemble size

defined in Eq.(4.43). For forecast, the full nonlinear model in Eq. (3.10) is applied to

each particle

xf
k+1,i = g(xa

k,i,fk, qk,i). (4.40)

The probability density function is approximated by the weighted particles as

p(xd(j)|xd(j)−1,φ,Mi) ≈
N
s=1

wd(j),sδ(xd(j) − xd(j),s). (4.41)

By using the previous equation, the integral of Eq. (3.16) can be evaluated as

follows [4]

p(D|φ,Mi) =
J

j=1

∞
−∞

p(xd(j)|xd(j)−1,φ,Mi)p(dj|xd(j),φ,Mi)dxd(j)

≈
J

j=1

∞
−∞

N
s=1

wd(j),sδ(xd(j) − xd(j),s)p(dj|xd(j),φ,Mi)dxd(j)

≈
J

j=1

N
s=1

wd(j),sp(dj|xd(j),s,φ,Mi). (4.42)

Degeneracy is a common problem with particle filters [62]. It is the phenomenon

where the particles are clustered in the high probability region. The particles in

the low probability region have zero weight. A measure of this phenomenon is the
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effective ensemble size described with [67]

Neff =
1

N
i=1

w2
d(j),i

. (4.43)

One way to reduce the degeneracy is to increase the number of particles which

may not always be possible. Another way is to resample when the effective ensemble

size is below a certain threshold. Several resampling algorithms are available [63,68].

In this work, the multinomial resampling [68,69] has been successfully used.

4.4.1 Resampling algorithm

The multinomial resampling algorithm is as follows [46,68,69]:

1. Draw N independent samples from the uniform distribution U(0, 1)
2. Obtain the cumulative density of the weights

vj =

j
l=1

wk,l (4.44)

3. Move the particles

for m = 0 to N do

Find n such that vn ≤ um < vn+1

Copy the nth particle into the new ensemble

end for

4. Reset all the weights to 1/N

The resampling algorithm can be executed after each update iteration or when the

effective sample size shown in Eq. (4.43) falls below a certain threshold. A common

one is Neff/3 [70]. If all weights are equal, Neff is the same as the ensemble size N .
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The effective ensemble size decreases as the particles becomes more degenerate. The

resampling step is necessary for the good operation of the particle filter. Use of the

particles after a resampling operation lead to a poor estimate, as the higher weighted

particles are duplicated. This results in a loss of diversity that overestimates the high

probability regions [68].

4.4.2 Performance

The major drawback of the PF-EnKF is its computational cost. To reduce the execu-

tion time, the distributed implementation of the filter is critical in this investigation

to exploit high performance computing. The next table summarizes the simulation

time needed for one evaluation of the posterior pdf in Eq. (3.14) for a particle filter

with 1000 particles. There are 2001 predict operations, 101 update operations, 101

integrals evaluation and the necessary resampling.

Table 1: Execution time of the state estimation procedure using PF-EnKF

Number of cores Particles per cores Time [s]

1 1000 12.49

2 500 6.36

4 250 3.35

5 200 2.95

8 125 1.82

10 100 1.57

20 50 1.09

25 40 0.95

40 25 0.77

50 20 0.87

100 10 1.08

125 8 1.24
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The simulation time decreases with an increasing number of cores. When the

number of particles per core is smaller than 25, the simulation time increases with

the number of cores. This is due to the communication cost between all the cores.

The results of parameter estimation and model selection are tied to the state

estimation procedure of the different filters. The next section presents a problem

where the impact of nonlinearity is easily realized and serves as a benchmark to

compare the different filters.

4.5 Example: Hidden state estimation

The following example is based on a problem presented by Evensen in [1]. Consider

a system defined by the following model

x = g(α, q) where q ∼ N (0,Q). (4.45)

The state of the system is x and is function of the unknown parameter α. The

algorithm described in the previous chapters can be used to estimate α by sampling

from the parameter posterior distribution using a MCMC chain. There is another

way to estimate this parameter. By augmenting the state vector with the parameter,

one could use a filter to estimate both the state and the parameter at the same time.

This second approach is faster but may not be as robust. The state vector augmented

with the parameter is

u =


x

α

 . (4.46)

The goal of this example is to gain insight into the update steps of various nonlinear
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filters. The parameter of the system has a Gaussian error α′

α = αo + η where η ∼ N (0,P f ). (4.47)

Two cases are considered for the function g(α, q). The first case is linear and the

second case is nonlinear.

1. x = α + q

2. x = cos(α) + q

The state x is measured using d = h(x, ε) where ε ∼ N (0,Γ). Two measurements

operators will be considered:

1. d = x+ ε

2. d = cos(x) + ε

The goal of this example is to compare the probability density function of the

state given a measurement of d = −0.5 provided by a full Bayesian analysis and the

filters previously introduced in this chapter. Using Bayes’ theorem, the posterior pdf

is

p(u|d) ∝ e
−0.5


(d−h(x,0))2

Γ
+
(α−αi)

2

P f +
(x−g(α,0))2

Q


(4.48)

where the normalizing constant can be estimated by evaluating the volume under the

surface.

The results of the parameter and state estimation are shown in Figs. 6-9. The

EnKF, the bootstrap filter and PF-EnKF use 2000 particles. Figure 6 presents the

joint posterior pdf of u and the marginal distribution of x and α when the model

and the measurement operators are linear. The results are quite similar no matter

which filters are used. The bootstrap filter estimate has a higher variance than its

PF-EnKF counterpart. This can be explained by the fact that the update step of
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(e) PF-EnKF filter

Figure 6: Posterior pdf using various filters for case I-I.

the proposal distribution of the bootstrap filter does not include the measurement

d = −0.5. Hence, a higher number of particles are required to have the same level of

accuracy as PF-EnKF. In Fig. 7, the parameters are estimated when the measurement

operator is nonlinear and the model operator remains linear.
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Figure 7: Posterior pdf using various filters for case I-II.

The parameter α is unimodal and appropriately estimated by all filters even

though the joint distribution is multimodal. The state x is best estimated by PF-

EnKF. The estimate of EnKF is unimodal and the estimate of the bootstrap filter
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does not correctly model the tail of the distribution. Contrary to EKF, EnKF es-

timate encompasses the true distribution of x. In the Fig 8, the same exercise is

repeated but with linear measurement and a nonlinear model operator.
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Figure 8: Posterior pdf using various filters for case II-I.
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Even though the model operator is nonlinear, the joint pdf of the state and pa-

rameter distribution is unimodal and nearly Gaussian. Finally, Fig. 9 presents the

results when the model and measurement operators are nonlinear.
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Figure 9: Posterior pdf using various filters for case II-II.

The same observations can be made when the model operator is linear and the
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measurement operator is nonlinear. EKF tracks the highest mode and EnKF blends

multiple modes together. EnKF is well suited as a proposal for the particle filter since

the posterior distribution support encompasses the true distribution of the parame-

ters.



Chapter 5

Numerical application

5.1 Validation

The state estimation procedure will be validated in a simple linear system with addi-

tive Gaussian model and measurement noises where the Extended Kalman filter, the

Ensemble Kalman filter and the particle filter using EnKF proposal results will be

compared.

Consider the linear dynamical system driven by Gaussian white noise W (t) of the

form

ẋ = W (t). (5.1)

Eq (5.1) can be rewritten as

xk+1 = xk +


∆tqk where qk ∼ N (0, 1). (5.2)

If xk can be represented by a Gaussian pdf, xk+1 is also normally distributed as the

addition of two Gaussian random variables is also Gaussian. The Extended Kalman

filter, having the same form as the Kalman filter in this case, will provide optimal

state estimation and can be used to validate the other filters.

47
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The measurement equation is

dj = xd(j) + ϵj where ϵj ∼ N (0, 0.05). (5.3)

The log of the evidence for the same set of data is recorded in table 2.

Table 2: Evidence of simple linear system

State Estimation ln (p(D|M))

EKF (KF) 126.69

PF-EnKF 126.62

EnKF 126.61

Next we carry out a simple model selection problem. The effect of the number of

measurements on the evidence is investigated. Using the system shown in Eq. (5.2)

and the measurement equation of (5.3), the proposed models are

M1 : ẋ = σW (t), (5.4)

M2 : ẋ = a1 + σW (t), (5.5)

M3 : ẋ = a2 + σW (t), (5.6)

M4 : ẋ = a1 + a2x+ σW (t), (5.7)

(5.8)

where W (t) is a Gaussian white noise process. The discretized form of each proposed



49

model is

M1 : xk+1 = xk + σ
√
∆tqk, (5.9)

M2 : xk+1 = xk + a1∆t+ σ
√
∆tqk, (5.10)

M3 : xk+1 = xk + a2xk∆t+ σ
√
∆tqk, (5.11)

M4 : xk+1 = xk + a1∆t+ a2xk∆t+ σ
√
∆tqk, (5.12)

(5.13)

where ∆t = 0.01 and qk ∼ N (0, 1).

There is no prior distribution available for the parameters. In other words

p(φ|Mi) ∝ 1. The effect of the correction factor for noninformative prior will also be

studied. The correction factor is 1
J1.5ki

where ki is the number of parameters of Mi

and J is the number of data points available. The natural logarithm of the evidence

for different number of data points is shown in Fig. 10.
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Figure 10: Natural logarithm of the evidence vs the number of data points for
noninformative prior (left) and noninformative prior with the correction factor

(right)

The selected model for the case of noninformative prior with no correction factor is

M4 with probability close to 1 which is independent of the number of measurements
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points. For the case of noninformative prior with a correction factor, the selected

model when the number of measurement points is below 21 is M4, otherwise the

correct model (M1) is selected with high probability. There are two conclusions that

can be drawn from this exercise. The evidence strongly depends on the number of

data points and the use of an noninformative prior without a correction factor tends

to select the complex model.

5.2 Double-Well System

For numerical illustration, we consider a double-well system excited by white noise

W (t) given by the following equation: [71–73]

ẋ(t) = 4x(t)− 4x(t)3 + 0.6W (t). (5.14)

The system has two stable fixed points at x = ±1 and an unstable fixed point at

x = 0. Its motion is similar to that of a particle oscillating between two wells (see

Fig. 11). The system is also analogous to a massless shallow arch that can snap

between two configurations. Using the Euler-Maruyama method [74], the discretized

form of Eq. (5.14) is

xk+1 = xk + 4 ·∆t(xk − x3
k) + 0.6

√
∆tqk, (5.15)

where qk ∼ N(0, 1). The following linear measurement equation is used

dj = xd(j) + εj where εj ∼ N(0, 0.08). (5.16)
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Figure 11: Double well potential.

For the model selection exercise, the candidate models are defined as follows

M1 : ẋ = αx+ 0.6W (t) + σmWm(t) (5.17)

M2 : ẋ = αx+ βx3 + 0.6W (t) + σmWm(t) (5.18)

M3 : ẋ = αx+ βx3 + γx5 + 0.6W (t) + σmWm(t) (5.19)

where Wm(t) defines a unit white noise process that represent the modelling error.

W (t) and Wm(t) are mutually independent. The optimal model will be selected using

the model selection algorithm which involves estimating the parameters α, β, γ and

σm for a given model. The magnitude of the stochastic forcing is known.

Three cases using different set of data will be considered. In all cases, the system

is simulated for 20 seconds with ∆t = 0.01 s. In Case 1, 101 data points are available

and measurements contain data in both well. In Case 2, 101 points are available
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but the measurements are only available in one well. Finally in Case 3, 21 measure-

ments points are available in both wells. EnKF and PF-EnKF have 1250 particles

initially sampled from a Gaussian distribution N (1.0, 0.5). The stationary MCMC

chain contains 100, 000 samples.

5.2.1 Case 1

Figure 12 shows one realisation with the measurements used for model selection.

The real signal represents the position of the particle. The measurements track the

position of the particle. It also presents the result of a state estimation procedure

using the filters with the given parameters α = 4, β = −4, γ = 0 and σm = 0 in

Eq. (5.15).
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Figure 12: State estimation with the measurements used for model selection for
Case 1.

The EKF, EnKF and PF-EnKF can all track the signal given the amount of data

available. The histogram of the measurements is shown in Fig. 13. Evidently, the
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data capture the dynamics from both wells.
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Figure 13: Histogram of the measurements used for model selection for Case 1.

The marginal distributions of the parameters of each model are plotted in Fig. 14.

The panels in the left, middle and right columns display the parameter posteriors

when EKF, EnKF and PF-EnKF are used as the state estimators respectively. The

dashed black line represents the true value of the parameters (α = 4, β = −4, γ = 0)

used to generate the signal. The strength of the noise is always positive.

The variance of the parameter posteriors increases with the model complexity. The

posterior parameter pdfs obtained by EnKF and PF-EnKF are similar. Due to the

Gaussian approximation, EKF results differ from those obtained by the non-Gaussian

filters.

In table 3, the 95% highest posterior density intervals (HPDI) are displayed. For

M2 the true value of α and β is contained in the HPDI for EnKF and PF-EnKF but

not for EKF.
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Figure 14: Marginal parameter pdf for Case 1: (a) the left column with EKF state
estimator, (b) the middle column with EnKF state estimator, (c) the right column

with PF-EnKF state estimator.

Table 3: 95% highest posterior density interval of the marginal distribution of the
parameters for Case 1.

M1 M2 M3

EKF

α(4) [−0.60,0.06] [0.40,3.84] [−3.26,4.16]

β(−4) [−4.90,−0.72] [−7.44,19.79]

γ [−20.85,2.46]

σm [0.00,0.46] [0.00,0.88] [0.00,1.47]

EnKF

α(4) [−0.60,0.06] [0.65,5.35] [−3.45,4.04]

β(−4) [−5.58,−0.80] [−3.87,14.07]

γ(0) [−10.31,0.33]

σm [0.00,0.45] [0.00,0.81] [0.01,0.84]

PF-EnKF

α(4) [−0.61,0.06] [0.64,5.35] [−3.08,4.49]

β(−4) [−5.60,−0.77] [−4.23,13.84]

γ(0) [−10.19,0.45]

σm [0.00,0.46] [0.00,0.81] [0.01,0.86]

The next table displays the Maximum a posteriori estimates (MAP) of the
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marginal distribution of the parameters. The MAP of the parameters is similar for

EKF, EnKF and PF-EnKF except for the third model. The MAP estimates of the

second model are less biased compared to the other proposed models.

Table 4: MAP of the marginal distribution of the parameters for Case 1.

M1 M2 M3

EKF

α(4) −0.26 1.49 0.58

β(−4) −1.97 0.23

γ(0) −1.41

σm 0.06 0.47 0.61

EnKF

α(4) −0.25 2.10 0.15

β(−4) −2.16 4.67

γ(0) −4.36

σm 0.08 0.48 0.50

PF-EnKF

α(4) −0.28 2.10 0.31

β(−4) −2.27 4.55

γ(0) −3.78

σm 0.07 0.45 0.52

Using the parameter posterior samples, the evidence is estimated for each model.

The corresponding probability of each model is calculated for two cases of noninfor-

mative prior: (a) without the correction factor and (b) with the correction factor.

Table 5: Model probability using EKF for state estimation

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 9.90% 90.10%

noninformative (with correction factor) 12.86% 86.37% 0.77%

Table 6: Model probability using EnKF for state estimation

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 3.98% 96.02%

noninformative (with correction factor) 9.55% 88.35% 2.10%

Table 7: Model probability using PF-EnKF for state estimation

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 3.04% 96.96%

noninformative (with correction factor) 7.21% 89.96% 2.83%
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When no correction factor is applied, the complex model is selected. Using the

correction factor, the probability of the first and second model increases. The second

model is the most probable, being the true model that generated the data.

The expected spring force is estimated using Bayesian model averaging. In Fig. 15,

the different estimates of the spring force versus the displacement are plotted when

different state estimators are used. Note the scales are different in (a) and (b). When

no correction factor is applied, the estimates of the spring force have a large bias for

displacements greater than 2. Using the results of model selection with a correction

factor provides a better estimate of the spring force.
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Figure 15: Expected spring force of the Double-Well system for Case 1 using the
model selection results without correction (a) and with correction (b).

5.2.2 Case 2

The effect of data distribution is studied in this case. The same number of data points

is used as in Case 1. In contrast to the first case, the data contains dynamics around

the right well (i.e. the fixed point at 1). State estimation is satisfactory with all the

filters as shown in Fig. 16.

The histogram in Fig. 17 again shows that all the measurements are near the

equilibrium point at x = 1.
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Figure 16: State estimation with the measurements used for model selection for
Case 2
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Figure 17: Histogram of the measurements used for model selection for Case 2.

The parameter pdfs are shown in Fig. 18. Compared to Case 1, the pdfs are more

biased and uncertain as the measurements do not capture all the dynamics of the

second equilibrium point at x = −1.

Similarly to Case 1, the HDPI and the MAP are shown in the tables 8 and 9

respectively.
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Figure 18: Marginal parameter pdf for Case 2: (a) the left column with EKF state
estimator, (b) the middle column with EnKF state estimator, (c) the right column

with PF-EnKF state estimator.

Table 8: 95% highest posterior density interval of the marginal distribution of the
parameters for Case 2.

M1 M2 M3

EKF

α(4) [−0.45,0.11] [23.69,100.21] [−11.42,238.15]

β(−4) [−113.17,−22.79] [−356.98,102.45]

γ(0) [−100.93,145.02]

σm [0.00,0.33] [0.14,2.75] [0.02,2.52]

EnKF

α(4) [−0.46,0.10] [5.91,75.74] [44.77,175.59]

β(−4) [−75.86,−6.08] [−238.36,−41.84]

γ(0) [0.05,62.14]

σm [0.00,0.32] [0.52,1.97] [0.00,1.74]

PF-EnKF

α(4) [−0.45,0.13] [11.68,108.91] [43.74,174.73]

β(−4) [−106.32,−9.33] [−231.57,−31.39]

γ(0) [−11.94,57.22]

σm [0.00,0.33] [0.11,1.95] [0.00,1.78]

The HDPI has increased compared to Case 1. The true value of the parameters
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does not reside in these intervals except for γ. The MAP estimates are highly biased.

Table 9: MAP of the marginal distribution of the parameters for Case 2.

M1 M2 M3

EKF

α(4) −0.15 77.30 72.11

β(−4) −83.73 −130.07

γ(0) 15.76

σm 0.04 1.92 1.76

EnKF

α(4) −0.17 49.17 156.22

β(−4) −47.80 −193.72

γ(0) 37.20

σm 0.05 1.42 1.01

PF-EnKF

α(4) −0.15 52.02 147.83

β(−4) −51.46 −182.86

γ(0) 26.82

σm 0.05 1.51 0.32

The next tables present the results of model selection.

Table 10: Model probability using EKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 0.41% 99.59%

noninformative (with correction factor) 0.00% 80.57% 19.43%

Table 11: Model probability using EnKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 2.22% 97.78%

noninformative (with correction factor) 0.00% 95.85% 4.15%

Table 12: Model probability using PF-EnKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 4.52% 95.48%

noninformative (with correction factor) 0.00% 97.96% 2.04%

When there is no correction factor, the more complex model is selected. When the

correction factor is applied, the correct model is selected albeit with a lower certainty
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for EKF. Model selection approach still selected the correct model. However, the

parameter estimates have significant inaccuracy compared to the previous case. This

fact highlights the importance of the quality of the measurements.

In Fig. 19, the estimate of the spring force is shown using the model selection

results of Case 2. Note the scales are different in (a) and (b). The estimates have

a larger bias than in the previous case. The effect of the correction factor is more

drastic since the estimated force without the correction factor changes direction at

large deflections.
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Figure 19: Expected spring force of the Double-Well system for Case 2 using the
model selection results without correction (a) and with correction (b).

5.2.3 Case 3

The last case considered is analogous to Case 1 but contains fewer data points (i.e.

21 data points). Figure 20 presents the measurements used and highlights the effect

of data sparsity on state estimation.

The EKF fails to track the jump from one well to the other. Given that state

estimation fails, one can reasonably expect that the parameter estimates and model

selection algorithm will also fail. PF-EnKF and EnKF can successfully track the

jump despite sparse measurements. Fig. 21 shows that the data capture the dynamics
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Figure 20: State estimation with the measurements used for model selection for
Case 3.

around both stable equilibrium points at x± 1.
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Figure 21: Histogram of the measurements used for model selection for Case 3.

The marginal distributions of the parameters are shown in Fig. 22. The param-

eter estimates with EKF as the state estimator are highly biased and have a large

uncertainty. The true value of the parameters does not reside in the support of the

corresponding marginal pdf. Given that the state estimation is erroneous, the param-

eter estimates are not representative of the information contained in the data. When
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state estimation is performed by the non-Gaussian filters, the variance of estimates

are smaller and the true value of the parameters resides in the support of their pdf.
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Figure 22: Marginal parameter pdf for Case 3: (a) the left column with EKF state
estimator, (b) the middle column with EnKF state estimator, (c) the right column

with PF-EnKF state estimator.

The HPDI is shown in table 13. The range of those values is higher than the one

shown in Table 3. This is expected because there is more uncertainty in the analysis

given that less information can be extracted from the measurements.
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Table 13: 95% highest posterior density interval of the marginal distribution of the
parameters for Case 3.

M1 M2 M3

EKF

α(4) [−0.87,0.12] [99.41,110.98] [160.04,174.47]

β(−4) [−123.50,−83.19] [−389.31,−324.48]

γ(0) [97.53,146.75]

σm [0.00,0.84] [0.00,3.65] [0.00,0.68]

EnKF

α(4) [−0.79,0.09] [2.37,44.11] [1.24,75.96]

β(−4) [−46.79,−3.42] [−123.52,10.05]

γ(0) [−4.62,21.60]

σm [0.00,0.76] [0.44,2.17] [0.43,2.23]

PF-EnKF

α(4) [−0.76,0.10] [2.05,45.34] [31.30,155.52]

β(−4) [−49.20,−6.36] [−209.17,−38.26]

γ(0) [0.34,33.07]

σm [0.00,0.73] [0.43,2.16] [0.07,2.13]

The MAP estimates do not coincide with the true values of the parameters and

are biased.

Table 14: MAP of the marginal distribution of the parameters for Case 3.

M1 M2 M3

EKF

α(4) −0.26 102.30 164.62

β(−4) −98.59 −345.72

γ(0) 113.26

σm 0.24 0.53 0.34

EnKF

α(4) −0.25 22.44 46.81

β(−4) −33.94 −52.85

γ(0) 5.16

σm 0.14 1.37 1.65

PF-EnKF

α(4) −0.29 25.08 89.06

β(−4) −37.02 −156.78

γ(0) 18.47

σm 0.06 1.40 1.63

Finally, the results of model selection for Case 3 are presented.

Table 15: Model probability using EKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 99.94% 0.06%

noninformative (with correction factor) 5.23% 94.77% 0.00%
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Table 16: Model probability using EnKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 1.74% 98.26%

noninformative (with correction factor) 0.06% 94.69% 5.25%

Table 17: Model probability using PF-EnKF for state estimation.

Prior Pr(M1|D) Pr(M2|D) Pr(M3|D)

noninformative (without correction factor) 0.00% 3.12% 96.88%

noninformative (with correction factor) 0.06% 96.97% 2.97%

In this case EKF selects the correct model whether a correction factor is applied or

not. As the state estimation procedure shown in Fig. 20 is erroneous, the parameter

estimates in Fig. 22 are incorrect. Hence model selection results are not meaningful

in this case of sparse data. In the case of EnKF and PF-EnKF, the correct model is

selected when the correction factor is applied.

In Fig. 23, the estimated spring force is shown for Case 3. The use of EKF as state

estimator does not provide good estimate of the spring force. Compared to Case 1,

these estimates are highly biased.
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Figure 23: Expected spring force of the Double-Well system for Case 3 using the
model selection results without correction (a) and with correction (b).
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5.3 Nonlinear Mass-Spring-Damper System

In this section the parameter estimation algorithm will be applied to a mass-spring-

damper system containing various types of nonlinearities.

5.3.1 Nonlinearities

The types of nonlinearities considered are cubic stiffness, freeplay (backlash) and

hysteresis [3, 16–18]. Cubic stiffness has the following mathematical representation

fc = klu+ knlu
3 (5.20)

where fc is the restoring force, u is the displacement and kl and knl are the linear

and nonlinear stiffness coefficients. The nonlinear stiffness knl can be positive or

negative. If it is positive, at high displacement the restoring force due to the nonlinear

term will be greater than its linear counterpart. As the displacement increases, the

effect of the nonlinear part becomes significant. Such system is said to have hardening

characteristics. Examples of such systems are plates and beams undergoing large

deflection [3]. The nonlinear stiffness term is negative when the effective stiffness

decreases with the displacement. Such system is said to exhibit softening stiffness

characteristics. The buckling of beams and plates may be modelled by a softening

spring over a limited range [3]. The next figure is an idealized representation of an

hardening spring.

Freeplay is a specific form of piecewise linear stiffness. In aeroelastic systems,

freeplay nonlinearity can occur due to worn-out hinges and loose rivets [16]. The

combination of freeplay nonlinearity with other types of structural and aerodynamic

nonlinearities in the structure and in the aerodynamic can change the system response.
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The mathematical representation of freeplay [3, 16–18] is

ff =


kf (u− δf ) if u > δf

0 if − δf ≤ u ≤ δf

kf (u+ δf ) if u < −δf

. (5.21)

Figure (25) is the graphical representation of freeplay.

The last form of nonlinearity considered in this investigation is hysteresis [17,18].

It is defined by three variables, δh, ah and f0. Contrary to the cubic stiffness and

freeplay, this type of nonlinearity is dependent on the direction of the deflection. For
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positive deflection, the restoring force is given by

fh =


kh(u− ah) + f0 if u < ah

f0 if ah ≤ u ≤ (δh + ah)

kh(u− ah − δh) + f0 if u > (δh + ah)

. (5.22)

For negative deflection, the restoring force becomes

fh =


kh(u+ ah)− f0 if u > −ah

−f0 if − (ah + δh) ≤ u ≤ −ah

kh(u+ ah + δh)− f0 if u < −(ah + δh)

(5.23)

where f0 =
1

2
kh(2ah + δh). Figure 26 is the graphical representation of hysteresis.
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Figure 26: Idealized hysteresis force-displacement diagram.

In Fig. 27, a force-displacement diagram shows the combination of the three non-

linearities.

The force-displacement diagrams for all three types of nonlinearities and their

combination (as in Fig. 27) are also shown in Fig. 28.

A single degree of freedom exhibiting the aforementioned nonlinearities is investi-

gated next. The dynamics of the nonlinear system is defined by

mü+ cu̇+ fs(u) + ff (u) + fh(u, u̇) = Tcos(ωt) + σW(t) (5.24)

where m and c are the mass and damping coefficient, T and ω are the amplitude

and frequency of the deterministic forcing, σ is the strength of the modelling noise

and W (t) is the white noise process with unit strength. The discrete state-space
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Figure 27: Idealized combination of hysteresis, cubic stiffness and freeplay
force-displacement diagram.

representation of this system is

xk+1 =


x1,k +∆tx2,k

x2,k −
∆t

m
(fs + ff + fh + cx2,k)

+
∆t

m


0

Tcos(ωtk)

+
1

m
qk (5.25)

where

xk =

uk

u̇k

 (5.26)

and

qk ∼ N


0
0

 ,Qk

 and Qk =

0 0

0 σ2∆t

 (5.27)
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Figure 28: Force-displacement diagram of all nonlinearities.

5.3.2 Case 1

For the first experiment, the response is generated using Eq. (5.24) with ∆t = 0.01 s,

m = 1kg, w = 1.5rad/s, T = 0.5N, kl = 1N/m, knl = 1N/m3, kh = N/m, kf = N/m,

c = 0.3Ns/m, δh = 1.5m, δf = 0.2m and σ = 0. The position of oscillator is recorded

but not its velocity.

dk =


1 0


xk + εk where εk ∼ N(0,Γ) (5.28)

The response is simulated for 30 seconds. Fig. 29 presents a case where the sig-

nal to noise ratio is high and the measurements are sparse. The variance of the
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measurements is Γ = 0.05. We assume that kl = kh = kf .
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Figure 29: One realisation of the mass-spring-damper system with the generated
measurements.

The parameters of the system are estimated using the measurements presented

in Fig. 29. The posterior pdfs of the parameters are shown in Fig. 30. The state

estimation procedure is tackled by a PF-EnKF using 1250 particles. The stationary

MCMC chain contains 50,000 samples.

The true values of the parameters fall inside the supports of the pdfs. The bias

in the estimates is evident for all parameters except the cubic stiffness. The size of

the plateau δf for freeplay is bimodal.

Next we consider the cases when kl,kh and kf are no longer restricted to be equal.

The strength of measurement noise is varied in order to investigate its influence on

the parameter estimation.
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Figure 30: Posterior pdfs of the parameters of the true model when state estimation
is tackled by PF-EnKF.

5.3.3 Case 2

In the first case, Γ is assumed to be 0.005. Figure (31) shows one realization of

the system with the corresponding measurements. The strength of the forcing T is

assumed to be 3.

In Fig. 32, the posterior pdfs of the parameters are shown.

Due to low noise in the measurements, the bias of the estimates is significantly

reduced. The marginal posterior pdf of kl has some non-Gaussian features, but its

true value falls within the high probability region. The pdf of the cubic stiffness knl

is Gaussian and its mean coincides with the true value of knl. Similarly to kl, the

posterior pdf of the freeplay stiffness kf has some non-Gaussian features, but the true

value also lies in the high probability region. The pdf of δf has two modes and the

true value is close to one mode. The pdf of the hysteresis stiffness is Gaussian and has
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Figure 31: One realisation of the mass-spring-damper system with the generated
measurements with a variance of 0.005.
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Figure 32: Posterior pdfs of the parameters of the true model when state estimation
is tackled by PF-EnKF and the variance of the measurements is 0.005.

almost no bias. The marginal pdf of δh has some non-Gaussian properties and its mode

is close to the true value. The marginal pdf of ah has two modes and the true value

is close to the second mode. Finally the damping is adequately estimated with low

bias and uncertainty. To evaluate the effect of measurement sparsity, the parameters
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of the model are estimated using 101 measurement points. The measurements are

shown in Fig. 33.
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Figure 33: One realisation of the mass-spring-damper system with the generated
measurements with a variance of 0.005.

The results of parameter estimation are shown in Fig. 34.

The uncertainty and the bias in the estimates are larger due to the decreasing

amount of data available. The estimates of the stiffness parameters have some non-

Gaussian features but are unimodal. The strength of the modelling error σ has dou-

bled. Reducing the number of measurement points and increasing the measurement

uncertainty have similar effects.
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Figure 34: Posterior pdfs of the parameters of the true model when state estimation
is tackled by PF-EnKF and the variance of the measurements is 0.005.

5.3.4 Case 3

The measurement noise is increased to Γ = 0.02. The measurements are shown in

Fig. 35. The marginal posterior pdfs of the parameters are shown in Fig. 36.
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Figure 35: One realisation of the mass-spring-damper system with the generated
measurements with a variance of 0.02.
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Figure 36: Posterior pdfs of the parameters of the true model when state estimation
is tackled by PF-EnKF and the measurement variance is 0.02.

The observations used for parameter estimation contain more noise than the previ-

ous case. This fact leads to unsatisfactory results. The linear stiffness kl, the freeplay

stiffness kf are bimodal and their true value are close to the tail of the pdfs. The

estimate of the cubic stiffness knl has higher bias than the previous case, but still

falls within the region of high probability. The hysteresis stiffness kh pdf is unimodal.

The true value lies in the support of the pdf. The damping coefficient has more

uncertainty than the previous case. The freeplay plateau δf is poorly estimated as

the true value is outside the support of the pdf. Finally, δh and ah marginal pdfs are

non-Gaussian but their true value is in the support of the pdf. The variance of the

modelling noise is stronger than in the previous case. To increase the quality of the

estimates, more measurements are needed.
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Model selection is not carried out for this system due to extremely high compu-

tational time required using the available high performance computational facilities

used in this investigation. Some areas of the algorithm that require fine-tuning to

shorten the simulation time are briefly summarized in the conclusion.



Chapter 6

Conclusion

In this thesis, the Bayesian framework for model selection and parameter estimation

developed by Khalil et al.; Sandhu (2012); Sandhu et al. (2013) [4, 7, 8] has been

extended to handle strong nonlinearities in the state pdf of the system. In the frame-

work proposed by Khalil and Sandhu, EKF is used for state estimation. There are

two major limitations of using EKF. First, the state of the system is assumed to

be Gaussian. In the presence of dense data, the state of the system remains nearly

Gaussian even in the presence of strong nonlinearities. However, in the case of sparse

data, the pdf of the system state cannot be approximated by a Gaussian distribution

in the presence of nonlinearities. Second, EKF can only handle additive Gaussian

noise in the model and measurement operators. In this thesis, the state estimation is

carried out using EnKF or PF-EnKF. These non-Gaussian filters do not suffer from

the two aforementioned limitations of EKF. Although EnKF cannot handle strong

nonlinearities like the PF-EnKF, it has a lower computational cost due to a simpler

update step. EnKF outperforms EKF as it can handle stronger nonlinearity by avoid-

ing the linearization of the model and measurement operators. The choice of the filter

depends on the sparsity of data and the strength of the nonlinearities in the system.

The contributions of this work can be summarized as follows. The algorithmic

contribution lies in the application of EnKF and PF-EnKF for the state estimation

78
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procedure in the general Bayesian framework of model selection and parameter esti-

mation. These non-Gaussian filters are necessary for Bayesian model selection and

parameter estimation for strongly nonlinear systems when the available data is sparse

and noisy. The thesis also contributes to the application of the Bayesian model selec-

tion and parameter estimation framework. The first application contribution involves

a validation of the framework for model selection and parameter estimation of the

Double-Well system. This system exhibits three equilibrium points. The use of EnKF

and PF-EnKF as state estimators for parameter estimation is necessary due to the

non-Gaussian features of the system state. When the measurements are sparse, EKF

fails to provide accurate state estimates due to strongly non-Gaussian system state.

The second contribution lies in the successful estimation of the parameters of a sin-

gle degree of freedom nonlinear mass-spring-damper system in the presence of cubic,

freeplay and hysteretic nonlinearities.

The major limitation of the Bayesian framework using EnKF and PF-EnKF filters

is the computational cost. The cost is reduced by a parallel implementation of PF-

EnKF and EnKF. The MCMC algorithm is embarrassingly parallel as each core

can run an independent Markov chain. Further tuning of the code is necessary to

further improve the computational efficiency. This code tuning may include the use

of GPUs (Graphical processing units). Once the computation cost is sufficiently

reduced, the model selection of the mass-spring-damper presented in Chapter 5 will

be performed. Some fine-tuning of the kernel density estimate algorithm used to

estimate the prior and proposal distributions during the update step of PF-EnKF

may be necessary. It is critical element of the update step of the particle filter. In

high dimensional space, the cost can become prohibitive. Finally, model selection and

parameter estimation of a multi-degree-freedom airfoil using experimental data from

a wind tunnel experiment will be carried out. The system will include both structural

and aerodynamic nonlinearities.
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