

Bayesian Monitoring of A Longitudinal Clinical Trial Using R2WinBUGS

Annie Wang, PhD; Narinder Nangia, PhD Abbott Laboratories

The R User Conference 2010, useR! 2010 Gaithersburg, Maryland, USA July 21, 2010

Outline

- Review of WinBUGS and R2WinBUGS
- Decision Problem in Early Drug Development
- An Algorithm to Use Totality of Data
 - Use only patients who have completed final assessment
 - Imputation of incomplete data at an interim stage
 - Use a longitudinal model with a dose-response (DR) model
- Evaluation of Probability of Success for Decision-Making
 - DR modeling using Normal Dynamic Linear Model (NDLM)
- Summary

WinBUGS

- WinBUGS (Bayesian inference Using Gibbs Sampling) is a software for Bayesian analysis of complex statistical models using Markov chain Monte Carlo (MCMC) methods.
- Implementation of Bayesian model using WinBUGS
 - Difficult to get nice graphical or text output for results reporting
 - Need to run the BUGS code several times in the analysis of clinical trials data – especially in monitoring of clinical trials
 - Need to have the capability to run a BUGS program by calling WinBUGS from R through R2WinBUGS

- An R package originally written by Andrew Gelman.
- Calls WinBUGS through R, summarizes inference and convergence in table and graph, and saves simulation results (sims.array or sims.matrix) for easy access in R.
- The results can be used for further analyses by the facilities of the coda (Output Analysis and Diagnostics for MCMC) and boa (Bayesian Output Analysis Program for MCMC) packages.
- Same computational advantages of WinBUGS with statistical and graphical capabilities of R.

How R2WinBUGS works?

- Make model file
 - Model file must contain WinBUGS syntax.
 - Can either be written in advance or by R itself through the write.model() function.
- Initialize
 - Both data and initial values are stored as lists.
 - Create parameter vector with names of parameters to be tracked.
- Run
 - bugs() function
 - Extract results from sims.array or sims.matrix, which contain MCMC simulated posterior distribution for each parameter.

Decision Problem in Early Drug Development

- First (proof of concept [POC] or early dose-ranging) study is designed based on preclinical data
 - Study is designed at best with "guesstimate" of treatment effect
- At the end of POC/early dose-ranging trial, efficacy and safety information is available on a small number of patients

- Significance testing is not useful (too little data!)

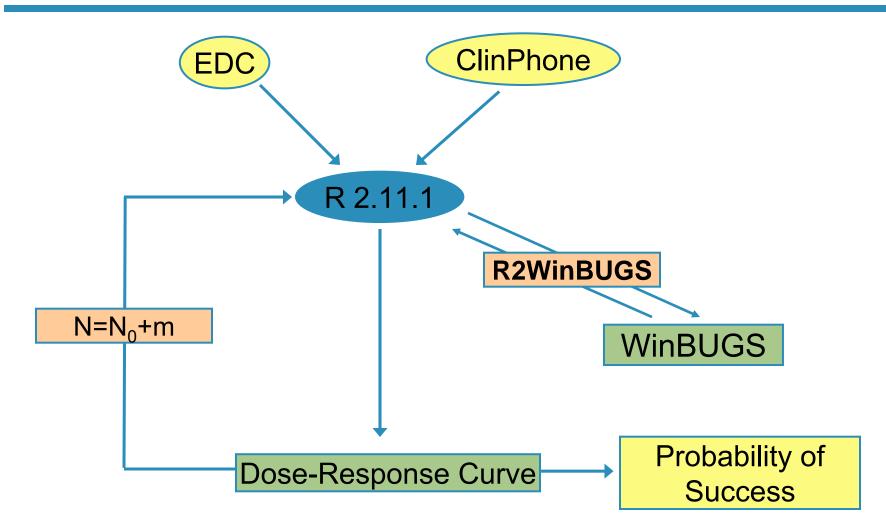
• The key question: Should we continue development, terminate the project, or put it on hold?

Traditional Approach to Early Drug Development

- Design POC study with little or no knowledge of effect size
 - Sample size chosen to demonstrate difference vs. placebo
 - May not include active control
 - If active control included, probably underpowered
- Ignore the Target Product Profile (TPP)
 - Does the drug work? vs. Will the drug achieve both regulatory and commercial needs?

Alternative Approach to Early Drug Development

- Continuously update estimate of treatment effect
 - More interim analyses may improve efficiency
- Assess whether compound will meet TPP
 - Use all data available from POC study and other sources to update the probability of achieving TPP
- Use modeling and simulations to predict results of ongoing or future trials
- Bayesian approach using transparent assumptions subject to discussion and ratification



Alternative Approach

- Exploit totality of accumulated data/knowledge in a Bayesian framework and evaluate the probability of success for a drug candidate in meeting TPP.
- Develop an algorithm that provides
 - An estimate of probability of success at an interim stage to plan for further development or an opportunity to stop the study for futility
 - An estimate of probability of success in a phase III study if the study is not stopped early for futility

An Algorithm using R and WinBUGS

Case Study

- Patient population: Patients diagnosed with mild-to-moderate Alzheimer's disease
- Treatment period: 12 weeks
- Assessments at Baseline (BL), Weeks 4, 8 and 12, labeled as Y_1 , Y_4 , Y_8 , and Y_{12} .
- Treatment arms: Placebo and 6 doses of the experimental add-on drug, 5 mg, 10 mg, 15 mg, 20 mg, 30 mg and 35 mg.
- Doses are labeled as *d* =1 (Placebo), 2, 3, 4, 5, 6 and 7.
- Primary endpoint: Change from baseline in Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog) total score after 12 weeks of treatment. A negative change is considered beneficial.
- A normal dynamic linear model (NDLM) is used to characterize DR curve for the primary endpoint.

Analysis Options

- Interim Analysis
 - Only limited data available for DR modeling
 - Use all the data available on all patients with at least one post-BL assessment.
 - Impute yet to be observed data using a longitudinal model (very complex when integrated with a DR Model).
 - DR Model (with or without a longitudinal model) can be implemented in R using WinBUGS through R2WinBUGS.
 - In an alternate setting, interim analysis includes only patients who have completed final assessment.
- At the end of the study (only when study is not stopped early for futility)
 - Complete data is available for evaluating dose-response.
 - DR model can be implemented as in the interim analysis case.
 - Estimate probability of success in Phase III using all prior data and current study data.

Imputation of Incomplete Data at An Interim Stage

- When interim analyses are conducted, some subjects have complete data, but others have incomplete or partial information.
- A simple regression model is used to impute the value of Y₁₂ given the last observed values of Y₁, Y₄, Y₈, or Y₁, Y₄.
- Let $Y_{t'i}^{d}$ be the ADAS-Cog score at time point *t* for subject *i* on dose *d*.
 - Given Y_1 , Y_4 and Y_8 ,

$$Y_{_{12,i}}^{d} | Y_{_{1,i}}^{d}, Y_{_{4,i}}^{d}, Y_{_{8,i}}^{d} \sim N(b_{_{0d}} + b_{_{1d}}Y_{_{1,i}}^{d} + b_{_{4d}}Y_{_{4,i}}^{d} + b_{_{8d}}Y_{_{8,i}}^{d}, \sigma^{2})$$

- Given Y_1 and Y_4 ,

$$Y^{d}_{_{12,i}} \mid Y^{d}_{_{1,i}}, Y^{d}_{_{4,i}} \sim N(b_{0d} + b_{1d}Y^{d}_{_{1,i}} + b_{4d}Y^{d}_{_{4,i}}, \sigma^{2})$$

– Non-informative prior on b_{0d} , b_{1d} , b_{4d} , b_{8d} and σ^2 ,

$$b_{jd} \sim N(0, 1000)$$
 for $j = 0, 1, 4, 8$
 $\sigma^2 \sim Inverse \, Gamma(0.01, 1000)$

NDLM

For subject *i* on dose *d*,

• Observation equation:

$$Y_{12,i}^{d} - Y_{1,i}^{d} \sim N(\theta_{d}, \sigma^{2})$$

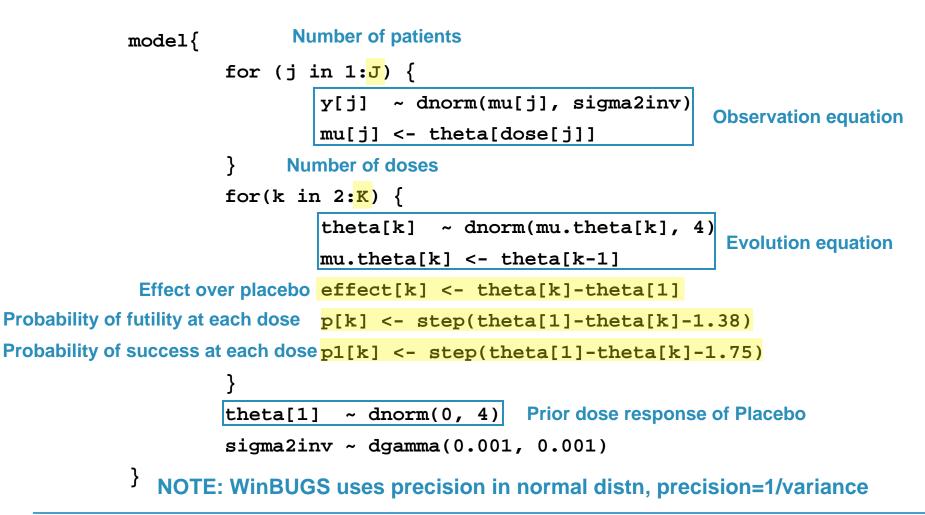
$$\sigma^{2} \sim Inverse \, Gamma(0.001, 1000) \longrightarrow \begin{array}{l} \text{Vague prior on} \\ \text{sampling} \end{array}$$

• Evolution (system) equation:

$$\begin{array}{l} \theta_{d} \sim N(\theta_{d-1}, \tau^{2}) \\ \theta_{1} \sim N(0, \tau^{2}) & \longrightarrow & \begin{array}{l} \text{Prior on dose} \\ \text{response of Placebo} \end{array}$$

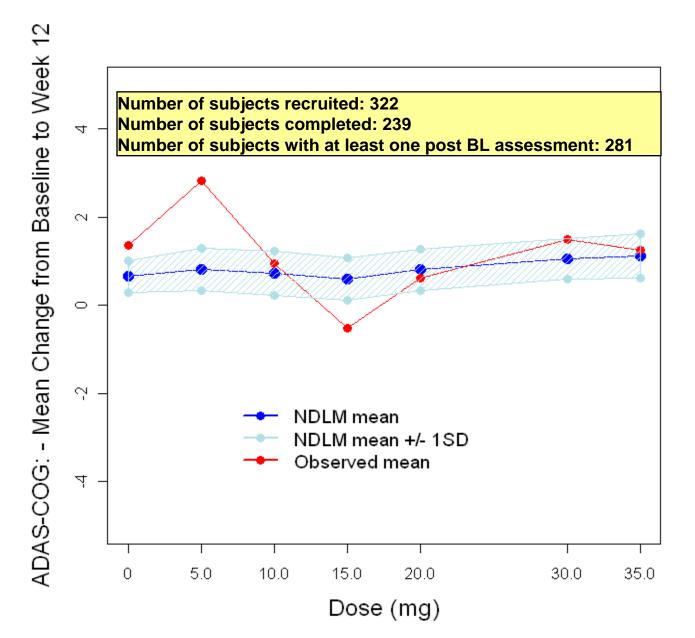
where the drift factor τ is assumed to be 0.5. The larger the τ , the less constraint of relationship between neighboring doses.

precision

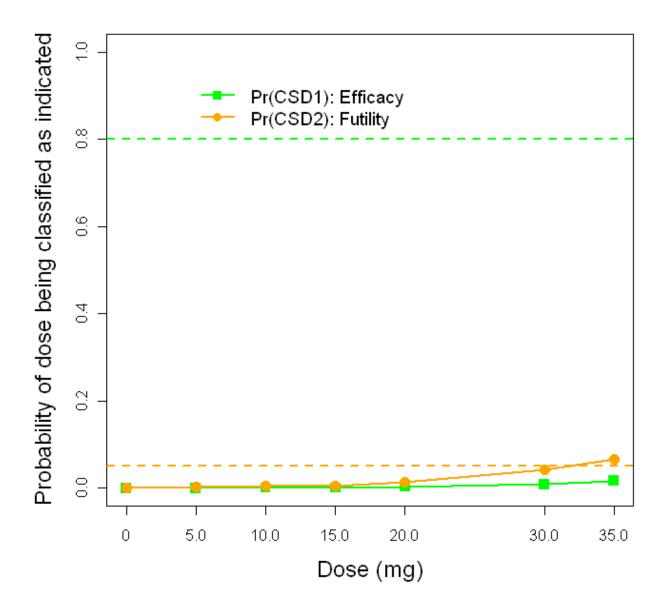

Criteria for Success and Failure

Success if $P[(\theta_{d^*} - \theta_1) \ge 1.75] \ge 0.80$ for some dose d* CSD1: $(\theta_{d^*} - \theta_1) \ge 1.75$

Futility if P[($\theta_d - \theta_1$) ≤ 1.38] ≥ 0.95 for all doses d CSD2: ($\theta_d - \theta_1$) ≤ 1.38



BUGS Code for fitting NDLM for DR



Case 1 - Use Only Patients Who Had Completed Final Assessment

DR Curve – NDLM with N=239 Completers

Probability of Success NDLM with N=239 Completers

Case 2 - Imputation of Incomplete Data at An Interim Stage

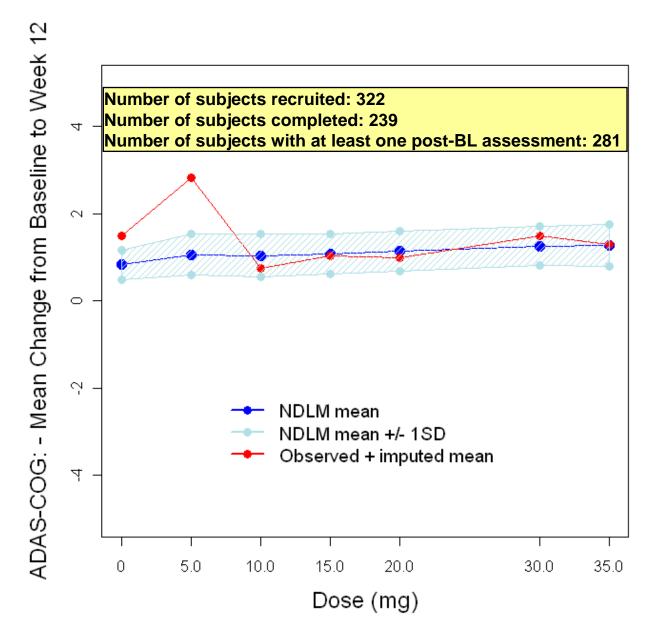
Observed data for 35 mg dose

subjid	trtcd	trtn	y1	y4	y8	y12
30111	F	7	15	20	19	14
30501	F	7	16	7	11	13
30509	F	7	26	22	24	17
30516	F	7	28	19	13	19
30601	F	7	36	32	30	31
30613	F	7	18	12	NA	NA
30614	F	7	8	NA	NA	NA
30901	F	7	13	14	8	5
31107	F	7	30	29	30	29
31204	F	7	13	20	14	15
31206	F	7	20	20	20	21
31208	F	7	16	12	15	11
31603	F	7	19	19	17	12
31701	F	7	21	12	9	4
31705	F	7	6	10	10	11
31809	F	7	27	30	29	NA
•						
			_			

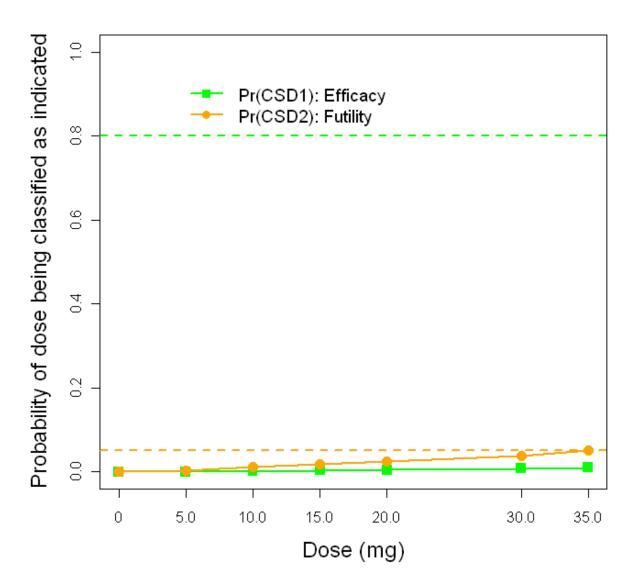
	ຣ	suk
Completer		30
Having Y ₁ , Y ₄ , Y ₈		30
Having Y_1 and Y_4		30
Removed		30
		30
		30
		30
Posterior		31
mean for each		31
missing Y ₁₂		31
		31
		31
		31
		31
		31
	²¹⁰	S
1	010 1	
-	900	

Observed + imputed

					<u> </u>				
	subjid	trtcd	trtn	y1	y12				
	30111	F	7	15	14.000000				
Y ₈	30501	F	7	16	13.000000				
I Y ₄	30509	F	7	26	17.000000				
	30516	F	7	28	19.000000				
	30601	F	7	36	31.000000				
	30613	F	7	18	11.512219				
	30901	F	7	13	5.000000				
ior	31107	F	7	30	29.000000				
each	31204	F	7	13	15.000000				
Y ₁₂	31206	F	7	20	21.000000				
	31208	F	7	16	11.000000				
	31603	F	7	19	12.000000				
	31701	F	7	21	4.000000				
	31705	F	7	6	11.000000				
	31809	F	7	27	29.318484				
	• •								
	Subject 31809			Subject 30613					
	8-		8-		\bigwedge				
		8 - 3							
	20 25 30 35 40								
Posterior distribution of missing									
i osterior distribution of missing									


12

R2WinBUGS



Longitudinal Models and Bayesian Imputation

DR Curve – Longitudinal Model and NDLM: N=281

Probability of Success Longitudinal Model and NDLM: N=281

Summary

- Bayesian approach facilitates decision-making in early drug development using totality of data at an interim stage in a clinical trial.
- Evaluation of probability of success require complex computations, which can be easily handled these days using R and WinBUGS through R2WinBUGS.
- Dose-response model exploits relationship among adjacent doses and longitudinal model exploits relationship among observed responses at different time point for a dose.
- Our algorithm can also be applied for fitting other dose-response models.

