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Drug/Vaccine Design
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° Accelerate the discovery of promising designs



Nanoporous Materials Design
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organic inorganic
linkers ~ nodes MOF

° Sustainability applications
“ Storing gases (e.g., hydrogen powered cars)

“ Separating gases (e.g., carbon dioxide from flue gas of
coalfired power plants)

“ Detecting gases (e.g., detecting pollutants in outdoor air)



Sustainable Hardware Design for Data Centers
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America’s Data Centers Are Wasting Huge High-performance and Energy-
Amounts of Energy efficient manycore chips

By 2020, data centers are projected to consume roughly 140
billion kilowatt-hours annually, costing American businesses
$13 billion annually in electricity bills and emitting nearly 150
million metric tons of carbon pollution

Report from Natural Resources Defense Council:.
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-I1B.pdf



Auto ML and Hyperparameter Tuning
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° Accuracy of models critically depends on hyper-parameters

“ Optimization algorithm, learning rates, momentum, batch
normalization, batch sizes, dropout rates, weight decay, data
augmentation,



A/B Testing to Configure Websites
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Making Delicious Cookies
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Bayesian Optimization for a Better Dessert

Greg Kochanski, Daniel Golovin, John Karro, Benjamin Solnik,

Subhodeep Moitra, and D. Sculley
{gpk, dgg, karro, bsolnik, smoitra, dsculley}@google.com; Google Brain Team

Abstract

We present a case study on applying Bayesian Optimization to a complex real-world
system; our challenge was to optimize chocolate chip cookies. The process was
a mixed-initiative system where both human chefs, human raters, and a machine
optimizer participated in 144 experiments. This process resulted in highly rated
cookies that deviated from expectations in some surprising ways — much less sugar
in California, and cayenne in Pittsburgh. Our experience highlights the importance
of incorporating domain expertise and the value of transfer learning approaches.



Making AlphaGo Better
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Bayesian Optimization in AlphaGo

Yutian Chen, Aja Huang, Ziyu Wang, loannis Antonoglou, Julian Schrittwieser,
David Silver & Nando de Freitas

DeepMind, London, UK
yutianc@google.com

Abstract

During the development of AlphaGo, its many hyper-parameters were tuned with
Bayesian optimization multiple times. This automatic tuning process resulted in
substantial improvements in playing strength. For example, prior to the match
with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate
from 50% to 66.5% in self-play games. This tuned version was deployed in the
final match. Of course, since we tuned AlphaGo many times during its develop-
ment cycle, the compounded contribution was even higher than this percentage. It
is our hope that this brief case study will be of interest to Go fans, and also provide
Bayesian optimization practitioners with some insights and inspiration.



Neuroscience and Brain Analytics
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Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

10



Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Cannot afford
exhaustive search

11



Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Trial and Error?

12



Common Attributes of the Search Problem

° Search Space: Many candidate choices (inputs)

° Objective function: Need to perform an expensive
experiment to evaluate the objective value of any input

° Optimization problem: find the candidate input with
highest objective function value

Can we do better than
trial-and-error?

13



Accelerate Search via Bayesian Optimization

° Efficiently optimize expensive black-box functions

x" = argmax f(x)

W

f(x)

Function evaluation

input

- Black-box queries (aka experiments) are expensive

14



Bayesian Optimization: Key ldea

° Build a surrogate statistical model and use it to
intelligently search the space

“ Replace expensive queries with cheaper queries
“ Use uncertainty of the model to select expensive queries

@atistical model M\ 4 Acquisition function )
; optimization

Xnext = arg r}clea)?( AF (M, x)

]
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Expensive function evaluation

f (Xnext) (_.“‘7 Anext
- /
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Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
J optimization

; Xnext = arg r;lea)?( AF (M, x)

-, . Y,

Y

4 N

Expensive function evaluation

f (Xnext) (_.‘(— Xnext
\ )

° Statistical model (e.g., Gaussian process)

° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



BO Dimensions: Input Space

° Continuous space

“ All variables of input x are continuous

° Discrete / Combinatorial space

~ Sequences, trees, graphs, sets, permutations etc.

° Hybrid space

“ x = mixture of x,; (discrete) and x, (continuous) variables

17



BO Dimensions: Input Space

° Continuous space

“ All variables of inp

Most of the focus of
existing BO work

° Discrete / Combinatorial space

~ Sequences, trees, graphs, sets, permutations etc.

° Hybrid space

“ x = mixture of x,; (discrete) and x, (continuous) variables
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BO Dimensions: No. of Objectives

° Single objective
“ For example, finding hyperparameters to optimize accuracy

°* Multiple objectives

DRUG Drug Discovery &
DISCOVERY . -
Development-Timeline
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Cost \.

Credit: MIMA healthcare 19
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BO Dimensions: No. of Objectives

° Single objective

“ For example, fin
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BO Dimensions: No. of Fidelities

° Single-fidelity setting
“ Most expensive and accurate function evaluation

° Multi-fidelity setting
“ Function evaluations with varying trade-offs in cost and accuracy
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BO Dimensions: No. of Fidelities

° Single-fidelity setting

“ Most expensive and a

Most of the focus of
existing BO work

° Multi-fidelity setting

“ Function evaluations with varying trade-offs in cost and accuracy
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BO Dimensions: Constraints

° Unconstrained setting

4 all inputs are valid

° Constrained setting

Drugs/Vaccin
DRUG Drug Discovery & UgS/ accines

S Development-Timeline that are safe
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CLINICAL TRIALS FDA il

~6.5 YEARS ~7 YEARS ~1.5 YEARS
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BO Dimensions: Constraints

° Unconstrained setting

4 all inputs are valid

Most of the focus of
existing BO work

° Constrained setting

DRUG Drug Discovery &
DISCOVERY . .
Development-Timeline

PRECLINICAL

CLINICAL TRIALS FDA Gl

Drugs/Vaccines
that are safe

~6.5 YEARS ~7 YEARS ~1.5 YEARS
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Outline of the Tutorial

° Background on GPs and Single-Objective BO
° Bayesian Optimization over Combinatorial Spaces

° Bayesian Optimization over Hybrid Spaces

Break

° Multi-Fidelity Bayesian Optimization
* Constrained Bayesian Optimization
* Multi-Objective Bayesian Optimization

°* Summary and Outstanding Challenges in BO

25



Background on Gaussian Processes
and
Single-Objective Bayesian Optimization
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Bayesian Optimization: Key ldea

° Build a surrogate statistical model and use it to
intelligently search the space

“ Replace expensive queries with cheaper queries
“ Use uncertainty of the model to select expensive queries

@atistical model M\ 4 Acquisition function )
optimization
/\/—\ ] Xnext = arg max AF (M, x)
xXEX
p— / - /
4 )

Expensive function evaluation

f (Xnext) (_."‘7 Anext
N /




Bayesian Optimization: lllustration

[ lpred var === pred mean = = =truyth @  evaluations P

Credit: Ryan Adams

https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut8 adams_slides.pdf
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Bayesian Optimization: lllustration
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Bayesian Optimization: lllustration




Bayesian Optimization: lllustration
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El(x)

Bayesian Optimization: lllustration
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Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
optimization
T TN ] Xnext = arg max AF (M, x)
xXEX
P— / - Y,
4 N

Expensive function evaluation

f(Xnext) < .“ —— “next
N J

° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
optimization
T TN ] Xnext = arg max AF (M, x)
xXEX
P— / - Y,
4 N

Expensive function evaluation

f(Xnext) < .“ —— “next
N J

° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



BO needs a Probabilistic Model

°* To make predictions on unknown input

° To quantify the uncertainty in predictions

/\/\

° One popular class of such models are Gaussian
Processes (also called GPs)

13



Gaussian Processes: What and Why?

Non-parametric, ‘Bayesian

4 4

and ‘Kernel driven model

4

Principled S.pecificj,ation of
Flexibility uncertainty prlo.r beliefs .about
. . rich function
estimation classes

14



Gaussian Process

° Stochastic process definition

~ Given any set of input points {x4, x5, ..., X,,, }, the output
values follows a multi-variate Gaussian distribution

[f Cen)s £ (22D, £ (x3), e, f ()| ~ NV (O, 2)

° The covariance matrix 2 is given by a kernel function
! . _
k(x,x"),ie, X = k(xl-,xj)
~ Kernel captures the similarity between x and x’l!!
“ GPs are fully characterized by the kernel function!?]

Footnotes

1. For people aware of SVMs, it is the same kernel function.

2. Technically, there is also the mean function, but it is not as interesting for most
applications. 15



Gaussian Process: Inference

* Inference: Given training data {(x,, y,), (x5, v5), ... (x,,V..)},
the prediction for an unseen point x”*

Prediction(x™) ~ N (yv",0")
y* = k*Kly
o* = k(x*, x*)— k* Kk

k* = [k(x", x ), k(x", x,), ..., k(x", x, )]

Kij = k(x;, x;)
16



Gaussian Process: Training

° Training procedure: searching for (kernel) hyper-
parameters by optimizing the marginal log-likelihood

1 1 n
logp(y) = —=YTK~1Y — =log det(K) — >

> > log 2w

° Choice of kernel k(x,x") is critical for good performance

“ Allows to incorporate domain knowledge (e.g., Morgan
fingerprints in chemistry)

“~ Matern kernel is a popular choice for continuous spaces

17



Gaussian Process: Two Views

° Function space view: distribution over functions

“ Function class is characterized by kernel

Prior

Posterior

/\/—\

°* Weight space view: Bayesian linear regression in

kernel’s feature space

fx) =w'z(x)

k(x,x")=<7t(x),7(x") >

18



Gaussian Processes: Challenges and Solutions

* Scalability: naive time complexity O(n3)

1 1 n
logp(y) = —=YTK~1Y — ~logdet(K) — >

> > log 2w

“ Solution: Sparse Gaussian processes

°* Non-Gaussian likelihoods
“ No closed form expression, e.g., classification setting
“ Solution: Approximate inference

19



Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
optimization
T TN ] Xnext = arg max AF (M, x)
xXEX
P— / - Y,
4 N

Expensive function evaluation

f(Xnext) < .“ —— “next
N J

° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



Acquisition Function

° Intuition: captures utility of evaluating an input

° Challenge: trade-off exploration and exploitation
“ Exploration: seek inputs with high variance
“ Exploitation: seek inputs with high mean

truth, f(x)
L observations {(x;, yi)}
% acquired (Xp+1,Yn+1)

> pure
exploitation

pure
exploration

El

Xn+1

21



Acquisition Function: lllustration

== = truth, f(x) == = truth, f(x)
= model, y(x) &% observations {(x; yi)}
i Vi ired (Xn+1,Yn+1)
- &% observations {(x;, y)} —— % acquire n
77N / \

pure N\
exploitation )

pure
exploration

El

Xn+1

22



Acquisition Function: Examples

Upper Confidence Bound (UCB)

“ Selects input that maximizes upper confidence bound

AF(x) = y*(x) + B o™ (x)

Expected Improvement (El)

“ Selects input with highest expected improvement over the
incumbent

Thompson Sampling (TS)

“ Selects optimizer of a function sampled from the surrogate
model’s posterior

Knowledge Gradient

23



Information-Theoretic Acquisition Functions

* Key principle: select inputs for evaluation which provide
maximum information about the optimum

° Concretely, pick observations which quickly decrease the
entropy of distribution over the optimum

AF (x) = Expected decrease in entropy

AF(x) = H(a | D) — E,[H(a|D U {x, y}
= Information Gain(a; y)

° Design choices of a leads to different algorithms

24



Information-Theoretic Acquisition Functions

° Design choices of a leads to different algorithms

AF (x) = Expected decrease in entropy
AF(x) = H(a | D) — E,[H(a|D U {x, y}
= Information Gain(a; y)

° « as input location of optima x~

~ Entropy Search (ES) / Predictive Entropy Search (PES)
“ Intuitive but requires expensive approximations

° o as output value of optima y”~

“~ Max-value Entropy Search (MES) and it’s variants
“ Computationally cheaper and more robust

25



Non-Myopic / Lookahead Acquisition Functions

° Myopic acquisition functions (e.g., El) reason about
immediate utility

°* Non-myopic variants consider BO as a MDP and reason
about longer decision horizons

/

D1 — s D”2

D|— — | D% \ D™,




Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rrgca}xut_l(x’ID U{x,y}]

Bellman
Recursion

27



Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rrgca}xut_l(x’ID U{x,y}]

° Challenge: curse of dimensionality

ug (x|D) = uy (x|D) + E, [max{u(x,|Dy) + Eys [max{u(xz|Dy) ... ]3]

28



Non-Myopic / Lookahead Acquisition Functions

°* Non-myopic variants consider BO as MDP and reason
about longer decision horizons

ug(x|D) = uy (x|D) + E, [rgca}xut_l(x’ID U{x,y}]

° Challenge: curse of dimensionality

ug (x|D) = uy (x|D) + E, [max{u(x,|Dy) + Eys [max{u(xz|Dy) ... ]3]

°* Some solutions
“ Multi-step lookahead policies with approximations
“ Rollout based approximate dynamic programming

29



Bayesian Optimization: Three Key Elements

éatistical model M\ 4 Acquisition function )
optimization
T TN ] Xnext = arg max AF (M, x)
xXEX
P— / - Y,
4 N

Expensive function evaluation

f(Xnext) < .“ —— “next
N J

° Statistical model (e.g., Gaussian process)
° Acquisition function (e.g., Expected improvement)

° Acquisition function optimizer (e.g., local search)



Acquisition Function Optimizer

° Challenge: non-convex/multi-modal optimization problem

°* Commonly used approaches
“ Space partitioning methods (e.g., DIRECT, LOGO)
“ Gradient based methods (e.g., Gradient descent)

“ Evolutionary search (e.g., CMA-ES)

31



BO Software: BoTorch

° Scalability via automatic differentiation
~ PyTorch/GpyTorch

°* Monte-Carlo acquisition functions

“ Express acquisition functions as expectations of utility
functions

“ Compute expectations via Monte-Carlo sampling

“ Use the reparameterization trick to make acquisition functions
differentiable

° Other software: Trieste (based on TensorFlow)

° Not actively maintained: GPyOpt, Spearmint

32



Questions ?
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Bayesian Optimization
over Combinatorial Spaces



Application #1: Drug/Vaccine Design

DRUG Drug Discovery &
DISCOVERY . .
Development-Timeline

. PRECLINICAL

CLINICAL TRIALS

Credit:
MIMA healthcare

~6.5 YEARS ~7 YEARS ~1.5 YEARS
> P >

° Accelerate the discovery of promising designs



Application #2: Nanoporous Materials Design

*/’iﬁ%+'.+

organic inorganic
linkers ~ nodes MOF

° Sustainability applications
“ Storing gases (e.g., hydrogen powered cars)

“ Separating gases (e.g., carbon dioxide from flue gas of
coalfired power plants)

“ Detecting gases (e.g., detecting pollutants in outdoor air)



Combinatorial BO: The Problem

° Goal: find optimized combinatorial structures

e
el

Drug design Hardware design
& & 5 Material design

°* Many other science and engineering applications



Combinatorial BO: The Problem

° Given: a combinatorial space of structures X (e.g.,
sequences, graphs) and an expensive black-box
function f(x € X) to evaluate each structure x € X

° Find: optimized combinatorial structure x*

x" = argmax f(x)

° Evaluation: number of function evaluations to
(approximately) optimize f(x)



Combinatorial BO: Challenges

° Goal: find optimized combinatorial structures

Drug design Hardware design

Material design

* Challenges
“ Evaluating each candidate design is expensive
“ Large combinatorial space of designs (e.g., sequences, graphs)



Combinatorial BO: Technical Challenges

éatistical model M\ 4 Acquisition function )
) optimization (AFO)

Y

Xnext = arg r,?ea)?( AF (M, x)

-, . Y,

Y

4 N

Expensive function evaluation

i — g
N /

° Effective modeling over combinatorial structures (e.g., sequences, graphs)

* Solving hard combinatorial optimization problem to select next structure




Definition of Combinatorial Space

° Space of binary structures X = {0,1}"

“ Each structure x € X be represented using n binary variables
X1, Xo, ey X

° Categorical variables

“ x; can take more than two candidate values

° How to deal with categorical variables?
“ Option 1: Encode them as binary variables (a common practice)
“ Option 2: Modeling and reasoning over categorical variables



Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...



Aside: Combinatorial BO vs. Structured Prediction

° Structured prediction (SP) [Lafferty et al., 2001] [Bakir et al., 2007]

“ Generalization of classification to structured outputs (e.g.,
seqguences, trees, and graphs)

m POS tagging, parsing, information extraction, image segmentation
“ CRFs, Structured Perceptron, Structured SVM

* Complexity of cost function vs. tractability of inference

“ Simple cost functions (e.g., first-order) and tractable inference
“ Complex cost functions (e.g., higher-order) and heuristic inference
“ Learning to search for SP [Daume’ et al., 2009] [Doppa et al., 2014]

° Key Difference: Small data vs. big data setting

10



Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...

11



BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition function

° Acquisition function optimization

“ Binary quadratic program

Xnext = arg max bTx +xTAx
x€{0,1}4

12



BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition fu

May not be sufficient

° Acquisition function optimization to capture desired
dependencies

“ Binary quadratic program

Xpexe = arg max bTx +xTAx
x€{0,1}4

13




BOCS Algorlthm [Baptista et al., 2018]

° Linear surrogate model over binary structures

“fxeX)=6".¢(x)

~ ¢(x) consists of up to Quadratic (second-order) terms

A P(x) = [Xq1, X9y ey X gy X1 X, X1. X3y eeny Xg—q1-X g ]

°* Thompson sampling as acquisition function

Cannot handle

° Acquisition function optimization | declarative constraints

- Binary quadratic program for valid structures

Xpexe = arg max bTx +xTAx
x€{0,1}4

14




Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

°* Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...
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SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

~ works natu
“ Prediction/Unc

° Expected impr
\

Uncertainty estimates
can be poor

\

/

for categorical variables
‘qty (= empirical mean/variance over trees)

n function

° Hand-designed local search with restarts for AFO

16



SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

“ works naturally for categorical variables

~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO

S

Can potentially get
stuck in local optima
N

~

)

17



COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Expected improvement as acquisition function

° Local search with random restarts for AFO

18



COMBO Algorithm [0h et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]

“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Combinatorial graph representation [0Oh et al., 2019]

ol A oBA
eBA

ol A o
oBA

ol A
Each vertex is a
candidate structure
x €X
ol A

19



COMBO Algorithm [0h et al., 2019]

GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Combinatorial graph representation [Oh et al., 2019]

“ Graph Cartesian product of subgraphs

ol A ol A ® [ ] A
emA omA
>
omA oR4 ¢ - *
omA omA Gy G G3




COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]

a RequiMntation of the input space X
\

Cannot use SOTA acquisition
functions if we cannot sample
functions from GP posterior

- /

°* Expected improvement as acquisition function

° Local search with random restarts for AFO



COMBO Algorithm [0h et al., 2019]

°* GP with diffusion kernel [Kondor and Lafferty 2002]
“ Requires a graph representation of the input space X

KW,V) = exp(=BL(G))

°* Expected improvement as acquisition function

° Local search with random restarts for AFO
I

Can potentially get
stuck in local optima

J 22




Combinatorial BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ BOCS [Baptista et al., 2018]

° Complex statistical models and heuristic search for AFO
“ SMAC [Hutter et al., 2011] and COMBO [0h et al., 2019]

° Complex statistical models and tractable/accurate AFO
“ L2S-DISCO [Deshwal et al., 2020] and MerCBO [Deshwal et al., 2021]

“~ Reduction to continuous BO [Gémez-Bombarelli et al., 2018]...

23



MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xnext = arg max bTx+xTAx
x€{0,1}4

24



MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xpexe = arg max bTx +xTAx
x€{0,1}4
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MerCBO: Acquisition Function

* Mercer features allow sampling functions from GP posterior

° Missing puzzle to leverage prior acquisition functions
“ Thompson Sampling (TS)
“ Predictive Entropy Search (PES)
“~ Max-value Entropy Search (MES)

A

BO for discrete
spaces

BO for continuous
spaces

26



MerCBO: Mercer Features

27



MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) @ L(Gs3)

@ is Kronecker sum operator

28




MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) & L(G3)

@ is Kronecker sum operator

O [Hammack et al., 2011] Given two graphs G and G, with the eigenspace
of their Laplacians being {14, U} and {4,, U, } respectively, the

eigenspace of L(G; [-

G,) is given by {1, x A,,U;® U,}.
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MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

 Graph Laplacian L(G) decomposes over those of sub-graphs
L(G) = L(G,) & L(Gy) & L(G3)

@ is Kronecker sum operator

O [Hammack et al., 2011] Given two graphs G and G, with the eigenspace
of their Laplacians being {14, U} and {4,, U, } respectively, the

eigenspace of L(G; [-

G,) is given by {1, x A,,U;® U,}.

d Each G; has eigenvalue {0,2} and eigenvectors {[1, 1], [1, -1]}
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MerCBO: Mercer Features

° Key ldea: exploit the structure of combinatorial graph G to
compute its eigenspace in closed-form

° Eigenvalue set: {0, 2, ..., 2n}

~ jth eigenvalue occurs with (7}) multiplicity

° Eigenvector set: Hadamard matrix (H) of order 2™
_ r,r .
Hi; = (—1)\Teri)
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MerCBO: Mercer Features

2n-1
K(x1,x2) = z e Pl ([x1]) uj([x2])

=0

2n—1
K(x1,x2) = z e BAi _q<rix1> _q<rix>
i=0

K(xq,x2) = p(x1)" p(x7)

() = (VePhi —172>)
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MerCBO: Mercer Features

2"-1
i=0

K(x1,x2) = ¢(x1)" p(x7)
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MerCBO Algorithm [Deshwal et al., 2021]

° Same surrogate model as COMBO

“ GP with discrete diffusion kernel and graph representation

°* Thompson sampling as acquisition function

“ Mercer features allow sampling functions from GP posterior

° Acquisition function optimization
“ Binary quadratic program
“ Parametrized submodular relaxation (PSR) solver

Xnext = arg max bTx+xTAx
x€{0,1}4
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MerCBO: Acquisition Function Optimization

_ T T
Xnext = ATy xé?o?i(}n b'x+x"Ax

° Parametrized Submodular Relaxation (PSR) solver

“ Construct a A-parametrized submodular relaxation

<
Solve using min.
graph cut algorithms

“ Optimize the relaxation over A

hp, () +x"A"x < ha, (x) + xTA™x < ...

Inspired by work on prescriptive price optimization [Ito and Fujimaki, 2016] 35




MerCBO Results #1: Order of Features

° Second-order features provide the best trade-off

“ Tractability and good overall BO performance

g - —— TS w/ 2nd order
- TS w/ 3rd order
g —— TS w/ 4th order
™ 07
>
o S
>
Z 4
2.
@) ;5.
1-
0

50 100 150 200 250
Number of BO iterations
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MerCBO Results #1: Order of Features

° Second-order features provide the best trade-off

“ Tractability and good overall BO performance

Objective value

le—1 LABS

—— TS w/ 2nd order
—0.251 TS w/ 3rd order

—1.75 - o T~—

50 100 150 200 250
Number of BO iterations

37



MerCBO Results #2: Comparison with State-of-the-art

°* MerCBO outperforms prior methods

— MerCBO — BOCS
8 COMBO  —— SMAC
[0)
S 7
©
> 6
-
-
e
c
= 4
—
3-
2 . . : : :
50 100 150 200 250

Number of iterations 38



MerCBO Results #2: Comparison with State-of-the-art

°* MerCBO outperforms prior methods

le—1 LABS (dimension = 50)
0.0
— MerCBO —— BOCS
—0.2 —— COMBO —— SMAC
Y _04
T e
> 0.6
g 0.8
E b
c —-1.0
= 1.2
— . I
_\M{\ | ILI |
—1.4 R

50 100 150 200 250
Number of iterations 39



MerCBO for Biological Sequence Design

° Design of optimized biological structures such as DNA
and proteins have many medical applications

40



Biological Sequence Design: Three Desiderata

° Diversity

“ uncover a diverse set of structures

° Parallel experiments

~ Select a batch of structures for evaluation in each round

° Real-time accelerated design

“ Use parallel experimental resources to accelerate optimization

41



MerCBO Results #3: Real-time acceleration

° TS is better than El for real-time accelerated design

o decd ARX_L343Q R1
' —— TS w/ batch 1

—6.5 - TS w/ batch 5
o — TS w/ batch 20
=) —7.0 - —— TS w/ batch 50
rg === p-El w/ batch 1
O —-7.5 === p-El w/ batch 5
> p-El w/ batch 20
g —8.0 --= p-El w/ batch 50
=

—-8.5
O 0.87

—9.04{ VOO0 TSSSSSSSSISS S ta - —

__________ 0993 —092-_____ -0.92
—-9.5

0 2500 5000 7500 10000 12500 15000 17500
Number of time steps (for 500 BO iterations)




MerCBO Results #3: Real-time acceleration

°* TS improvement over El increases with batch size

—6.0

—6.5 -

Objective value

et ARX L343Q R1

—7.0 1

TS w/ batch 1
TS w/ batch 5
TS w/ batch 20
TS w/ batch 50
p-El w/ batch 1
p-El w/ batch 5
p-El w/ batch 20
p-El w/ batch 50

-9.92

0 2500 5000 7500 10000 12500 15000 17500

Number of time steps (for 500 BO iterations)
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MerCBO Results #4: Diversity of sequences

° TS is better than El for diversity of sequences

ARX_L343Q R1

14
Q —— TS w/ batch 5 —== p-El w/ batch 5
U 12 - —— TS w/ batch 20 —-== p-El w/ batch 20
% - TS w/ batch 50 === p-El w/ batch 50
+ ~
1= e T T —
o B e Dt e DT
c 8
&
g 07
(o)
I 4 | w
c Dl TP I L SO
0
2 -
=
______________ e T ™ i B e e T
0 1 1 1 T 1 1
0 100 200 300 400 500

Number of BO iterations
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MerCBO Results #4: Diversity of sequences

°* TS improvement over El increases with batch size

ARX_L343Q R1

14

Q —— TS w/ batch 5 —== p-El w/ batch 5
U 12 - —— TS w/ batch 20 —-== p-El w/ batch 20
% - TS w/ batch 50 === p-El w/ batch 50
+ ~
1= e T T —
o B e Dt e DT
c 8
&
g 07
(o)
I 4 | w
c Dl TP I L SO
0

2 -
=

______________ e T ™ i B e e T
0 1 1 1 T 1 1
0 100 200 300 400 500

Number of BO iterations
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Learning to Search Framework [Deshwal et al., 2021]

°* Use machine learning to improve the accuracy of search

“ Continuously update the search control knowledge using the
training data generated from the previous search experience

Search for good starting
states via learned H
[ Rank Learning ]

EEE——— Algorithm
: Updated heuristic
: /kf\ function H

O

Selected
starting state

Search using AF heuristic
from the selected state

New training n @00 @0 V(I

: data T, 0—@—-@® 0@ V(T,)
ﬂ—/_\' Tm .—».—». .—». V(T

Aggregate training data

46




Learning to Search Framework [Deshwal et al., 2021]

° Defines a new family of search-style BO approaches

° Can work with any complex statistical model and
acquisition function

° Can handle complex domain constraints to select
“valid”” structures for evaluation

47



Reduction to Continuous BO [GOmez-Bombarelli et al., 2018]...

°* Key ldea: Convert discrete space into continuous space

° Train a deep generative model (VAE) using unsupervised
structures

ATy A 7 S
Latent o P }
—p - oy A0 sas
Space & e

Encoder Decoder

°* Perform BO in the learned continuous latent space

“ Surrogate modeling and acquisition function optimization in
latent space (vs. combinatorial space)
48



Reduction to Continuous BO [csmez-Bombarelii et al., 2018]...

°* BO in the learned latent space

Latent space Z ‘

next

f Enext) l

{e re}
l

( Gaussian process \

Model M

¢ -

CD(Znext)

Decoder @

s

Y

N

Acquisition function
optimization

~

Znext = arg rgleazx AF (M, x)

)
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Reduction to Continuous BO [csmez-Bombarelii et al., 2018]...

°* BO in the learned latent space

Latent space Z ‘

S -

— PoN= @ T 4 P
Xnext = P(Znext) — O 0y --. 70—
A\ -

f Genext) l

l

Decoder @

Decoded structure

Gaussian process
Model M

may not be valid

N

/

N )
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Reduction to Continuous BO [GOmez-Bombarelli et al., 2018]...

°* BO in the learned latent space

f (Xnext) l
{o re}
[
\ Gaussian process
Model M
Latent space Z p

"

Decoder @

Decoded structure
may not be valid

/

N )

°* Some recent work to address this challenge

~ @Griffiths R.-R. and Hernandez-Lobato J. M.: Constrained Bayesian optimization for

Automatic Chemical Design Using Variational Autoencoders, Chemical Science, 2019
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Reduction to Continuous BO [csmez-Bombareli et al., 2018]..

°* BO in the learned latent space

Decoder @

S -

Xnext = (D(Znext)

f@mﬂ)l

{o re} o
|

Gaussian process
Model M
Latent space Z :

Acquisition function
optimization

Znext = arg Teaé’( AF(M, x)

° Challenges
o Doesn’t (explicitly) incorporate information about decoded structures

o Surrogate model may not generalize well for small data setting
52



Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importance weights to training data proportional
to their objective function value

53



Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importad
to their object

AN

Computationally
expensive

~

g data proportional
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Improve Latent Space
via Weighted Retraining (rripp et al., 2020)

° Periodically retrain the deep generative model

° Assign importance weights to training data proportional
to their objective function value

Overall approach is not
effective for small-data setting
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Uncertainty-guided Latent Space BO (notin et al,, 2021]

° Leverage the epistemic uncertainty of the decoder to
guide the optimization process

° Importance sampling-based estimator for uncertainty
guantification over high-dimensional discrete structures

° No retraining of deep generative model is needed
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LADDER Algorithm [Deshwal and Doppa, 2021]

Combinatorial space X Decoder @

) b L\ >
e a fg-",‘,ﬁ AN S S
ST 0 e 0 e RN 7
— B o R R
C’ ":"*‘ o S AR 4
AN li:'hi‘ QN 5
. \) i N 1/ \

AW 0D
Xnext = q)(znext) —dL ; ; o
f(xnext) l

Structure-coupled {0 %, f (}ﬁ)} ®

kernel

Model M

/Gaussian rocess \
\ ' 4 Acquisition function )

optimization

A 4

Znext = ATg Max AF (M, x)

\ )

Latent space Z
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LADDER Algorithm [Deshwal and Doppa, 2021]

Combinatorial space X’

Decoder @

Structure-coupled {. B f (iﬁ)} ®

kernel l
\ Gaussian process — .
Acquisition function

Model M ST
optimization

Znext = Arg Max AF (M, x)

Latent space Z

* Key ldea: Combines the complementary strengths of deep generative
models and structured kernels for better surrogate modeling

58



Structure-Coupled Kernel

* Structure-coupled kernel (¢) combines
o Continuous kernels over latent space Z (e.g., Matern)
o Structured kernels (e.g., generic/hand-designed strings, graphs)

* Key Idea

O Extrapolate eigenfunctions of the latent space kernel matrix L with
basis functions from the structured kernel k

c(z,z)=k.K LK 'k,

* Generalized Nystrom Extension [Ref]
* k acts like a smooth extrapolating kernel

59



Latent Space BO Results #1

* LADDER outperforms latent space BO real benchmarks

Best value found

(o))

w

i-Y

w

N

'—I
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o
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Number of iterations
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- | ADDER (Fingerprints}
- Naive LSBO (CMA)
—— Naive LSBO (L-BGFS)
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Number of iterations
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Latent Space BO Results #2

* LADDER is competitive or better than state-of-the-art methods

Best value found
(8] [o)]

N

=

Y

w

- LADDER (String}

w— Naive LSBO w/ retraining
= DbAS

= FB-VAE

=== CEM-PI

— RWR

—waaﬁ&

o

20

40 60 80 100
Number of iterations

Arithmetic expression task
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—— DbAS
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— RWR

—3.50
0

20
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Number of iterations

Chemical design task



Code and Software

MerCBO: https://github.com/aryandeshwal/MerCBO

LADDER: https://git

hub.com/aryandeshwal/LADDER

BOPS: https://githu

n.com/aryandeshwal/BOPS

COMBO: https://git

hub.com/QUVA-Lab/COMBO

°* SMAC: https://github.com/automl/SMAC3
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https://github.com/aryandeshwal/BOPS
https://github.com/QUVA-Lab/COMBO
https://github.com/automl/SMAC3

Questions ?
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Bayesian Optimization
over Hybrid Spaces



BO Over Hybrid Spaces: The Problem

° Goal: find optimized hybrid structures via expensive
experiments

“ x = mixture of x; (discrete) and x, (continuous) variables

o, AT
B o T
Yy

O
A v

Microbiome design Material design Hyper-parameter tuning / Auto ML

°* Many other science, engineering, industrial applications



Hybrid BO: Technical Challenges

~

éatistical model M\ 4 Acquisition function
' optimization (AFO)

Y

Xnext = arg r,?ea)?( AF (M, x)

]
= '
- ’
S ]
S .

Y

~

4 Expensive function evaluation

i — g
N /

° Effective modeling over hybrid structures (capture complex interactions
among discrete and continuous variables)

° Solving hard optimization problem over hybrid spaces to select next
structure




Hybrid BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ MiVaBO [Daxberger et al., 2019]

° Complex statistical models and heuristic search for AFO

“ SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al.,
2021]

° Complex statistical models and tractable/accurate AFO

4 Reduction to continuous BO: GEBO [Ahn et al.,, 2022]



Hybrid BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ MiVaBO [Daxberger et al., 2019]

° Complex statistical models and heuristic search for AFO

“ SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al.,
2021]

° Complex statistical models and tractable/accurate AFO

4 Reduction to continuous BO: GEBO [Ahn et al.,, 2022]



MiVaBO [Daxberger et al., 2019]

° Linear surrogate model over binary structures

~fxeX)=0".¢x)
“ ¢(x) consists of continuous (random Fourier features),

discrete (BOCS representation for binary variables), and mixed
(products of all pairwise combinations) features

°* Thompson sampling as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)



MiVaBO [Daxberger et al., 2019]

° Linear surrogate model over binary structures

~fxeX)=0".¢(x)
- qb(x) consists of continuous (random Fourier features),

OCS representation for binary variables), and mixed
irwise combinations) features

May not be sufficient to capture

® Thompson desired dependencies

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)



MiVaBO [Daxberger et al., 2019]

° Linear surrogate model over binary structures

~fxeX)=0".¢x)
“ ¢(x) consists of continuous (random Fourier features),

discrete (BOCS representation for binary variables), and mixed
(products of all pairwise combinations) features

°* Thompson sampling as acquisition function

° Alternatingsearch for acquisition function optimization

“ Step 1: Se

“ Step 2: S¢

“ Repeat (i

\_

sgarch fora

Can potentially get
stuck in local optima

b-space

pace using output of Step #1
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Hybrid BO: Summary of Approaches

° Trade-off complexity of model and tractability of AFO

° Simple statistical models and tractable search for AFO

“ MiVaBO [Daxberger et al., 2019]

°* Complex statistical models and heuristic search for AFO

“ SMAC [Hutter et al., 2011], HyBO [Deshwal et al., 2021] , BO-FM [Oh et al.,
2021]

° Complex statistical models and tractable/accurate AFO

4 Reduction to continuous BO: GEBO [Ahn et al.,, 2022]



SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model
~ works naturally for categorical/continuous variables
~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO

10



SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

~ works natu
“ Prediction/Unc

° Expected impr
\

Uncertainty estimates
can be poor

\

/

for categorical variables
‘qty (= empirical mean/variance over trees)

n function

° Hand-designed local search with restarts for AFO
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SMAC Algorithm [Hutter et al, 2010, 2011]

°* Random forest as surrogate model

“ works naturally for categorical variables

~ Prediction/Uncertainty (= empirical mean/variance over trees)

° Expected improvement as acquisition function

° Hand-designed local search with restarts for AFO

S

Can potentially get
stuck in local optima
N

~

)
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HVBO Algorlthm [Deshwal et al., 2021]

° GP surrogate model with additive diffusion kernels

° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)

13



HyBO Algorithm [peshwal et al., 2021]

° GP surrogate model with additive diffusion kernels

“ Exploits the general recipe of additive kernels [Duvenaud et al., 2011]

~ |nstantiation w/ discrete & continuous diffusion kernels

“ Bayesian treatment of the hyper-parameters

’CHYB —

m-+n

92

p

>

Y
p=1

i1, ip d=1

kz-d(xz-d,a';

/
id

)
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HVBO Algorlthm [Deshwal et al., 2021]

° GP surrogate model with additive diffusion kernels
° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1

“ Repeat (if needed) »
~

Can potentially get
stuck in local optima
N J
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Best function value

o0]
o

Hybrid BO: Experimental Results #1

100 1

(e}
o

Function 1
— Cont-BO — CoCaBO
— TPE —— HyBO w/o Marg
—— SMAC —— HyBO
0 25 50 75 100 125 150 175 200

Number of iterations

Best (log) function value

Pressure Vessel Design

20 40 60 80 100
Number of iterations

* HyBO performs significantly better than prior methods
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Hybrid BO: Experimental Results #2

Function 1 35 Function 2
| —}— SMAC —}— SMAC
25 —}— CoCaBO 30 1 —}— CoCaBO
HyBO —t— HyBO
20 — e 254 ,
—I———_________| T T——— :‘______|
20
15 'ﬂé
= — : Y . 154 ° —_—
10 A ! ' —
10 A
5 5
0 T T T T T T 0 T T T T T T
100 120 140 160 180 200 100 120 140 160 180 200
Trainina set size Trainina set size

* HyBO’s better BO performance is due to better surrogate model
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BO-FM Algorithm [ohetal, 2021]

° GP surrogate model with frequency modulation kernels

° Expected improvement as acquisition function

° Alternating search for acquisition function optimization
“ Step 1: Search over continuous sub-space
“ Step 2: Search over discrete sub-space using output of Step #1
“ Repeat (if needed)

18



BO-FM Algorithm [ohetal, 2021]

° GP surrogate model with frequency modulation kernels

° Key idea: Generalize the COMBO kernel [oh et al., 2019] by
parametrizing via a function of continuous variables

ememper tne

K=UTexp(—BZ)U L COMBO kernel

K=UTf( X, XU

° Requirement on f for K to be a positive definite kernel

“ f should be positive definite w.r.t X, X,
19



Code and Software

° HyBO: https://github.com/aryandeshwal/HyBO

°* SMAC: https://github.com/automl/SMAC3

20
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https://github.com/automl/SMAC3

Questions ?
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Multi-Fidelity
Bayesian Optimization

£



Cost

'\\-0
.’
\

Application #1: Auto ML and
Hyperparameter Tuning

':‘\0 X
"'o mﬁﬁ"/ ‘

-eisy“"“mar-

'\‘ "'.
0\'4:,

Cost vs. Accuracy trade-offs in
evaluating hyperparameter
configurations

A

Accuracy

epochs epochs



Application #2: Hardware Design via Simulations

Cost vs. Accuracy trade-offs in
evaluating hardware designs

N

Tolerence Tolerence

A

>

Simulation
Cost
Simulation

Accuracy




Multi-Fidelity BO: The Problem
Cost - , @
s8 8 2.

Discrete fidelity Continuous fidelity

Cost

° Cost vs. accuracy trade-offs for function approximations

° Continuous-fidelity is the most general case

“ Discrete-fidelity is a special case

° Goal: (approximately) optimize the highest-fidelity

function by minimizing the resource cost of experiments

4




Multi-Fidelity BO: Key Challenges

° Intuition: use cheap (low-fidelity) experiments to gain
information and prune the input space; and use costly
(high-fidelity) experiments on promising candidates

°* Modeling challenge: How to model multi-fidelity
functions to allow information sharing?

° Reasoning challenge: How to select the input design and
fidelity pair in each BO iteration?



Multi-Fidelity GPs for Modeling

° Desiderata: model relationship/information sharing
between different fidelities

° Solution: multi-output GPs with vector-valued kernels

k(lx, 23, 1x', f}) = k(x, x kg (2, )

° Provides a prediction u and uncertainty o for each
input and fidelity pair



El Extension for Multi-Fidelity BO

° Multi-fidelity expected improvement (MF-El)
“ Extension of El for multi-fidelity setting
“ Applicable for discrete-fidelity setting

El(x,z) = E|max(t — y/)| cov|y?, y'|Cs/C,

° Acquisition function optimization
m Enumerate each fidelity z and find the best x fixing z



Information-Theoretic Extensions
for Multi-Fidelity BO

AF(x) = H(a | D) — Ey[H(a|D U{x,y})]
= Information Gain(a; y)

° Design choices of o leads to different algorithms

° o as input location of optima x~

~ Entropy Search (ES) / Predictive Entropy Search (PES)

“ Intuitive but requires expensive approximations

° o as output value of optima y~

“~ Max-value Entropy Search (MES) and it’s variants
“ Computationally cheaper and more robust



Information-Theoretic Extensions
for Multi-Fidelity BO

AF(x,z) = H(a | D) — Ey[H(a|D U {x,z,y})]

Information Gain per Unit Cost(a; y)

° Design choices of o leads to different algorithms

° o as input location of optima x~

“ MF-Predictive Entropy Search (MF-PES)

“ Intuitive but requires expensive approximations

° o as output value of optima y~

“ MF Max-value Entropy Search (MF-MES)
“ Computationally cheaper and more robust



Continuous-Fidelity BO: BOCA Algorithm

° Two step procedure to select input x and fidelity z
separately

° Selection of input x
~ Optimize UCB (y/ (x) + B ¢/ (x)) of highest fidelity

° Selection of fidelity z
~ Reducing fidelity space: Z; = {f} U {z: az(xopt) >v(2)}
“If Z; is not empty, select the cheapest fidelity from it
“ Otherwise, select the highest-fidelity

10




Code and Software

° Multi-fidelity modeling

-~ https://mlatcl.github.io/mlphysical/lectures/05-02-
multifidelity.html

° BOTorch
- https://botorch.org/tutorials/discrete multi fidelity bo

11
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Questions ?
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Bayesian Optimization
with
Black-Box Constraints

£



Application #1: Drug/Vaccine Design

Drugs/Vaccines
DRUG Drug DiSCOVEI‘V & that are safe

DISCOVERY . .
Development-Timeline

PRECLINICAL

CLINICAL TRIALS

Credit:
MIMA healthcare

~6.5 YEARS ~7 YEARS ~1.5 YEARS
> P >

° Accelerate the discovery of promising designs



Application #2: Nanoporous Materials Design

*/ﬁ]%+'.+

organic inorganic
linkers nodes

Materials that are

* Sustainability applications SnithEsizelEE

“ Storing gases (e.g., hydrogen powered cars)

“ Separating gases (e.g., carbon dioxide from flue gas of
coalfired power plants)

“ Detecting gases (e.g., detecting pollutants in outdoor air)



BO with Black-Box Constraints: The Problem

" Blackbox
X Experiment

®

~

C1(x)

J

> f(x)

CL(x)

Objective and constraints
evaluation of design x

° Goal: find the approximate optima from the constrained
input space by minimizing the total cost of experiments




BO with Black-Box Constraints: Key Challenges

°* Modeling challenge: how to model black-box constraints?

~ @GP models will work

° Reasoning challenge: How to select the input design
guided by the learned models in each BO iteration?

“ Especially, when no valid inputs (i.e., satisfies constraints) were
found from past experiments



Constrained Expected Improvement (c-El)

°* Model each constraint with an independent GP

* Suppose y*/ is the best function value from the valid
inputs (i.e., satisfies constraints) from past experiments)

“ Assign zero improvement to all invalid inputs

El.(x) = EIQOI P (& (x) = 0)

°* When past experimental data does not contain
valid inputs: y*/ is not defined

El.(x) = ;2 P(Gi(x) = 0)




Constrained Predictive Entropy Search (PESC)

a(x) = H(x"|D) — E,[H(x"|D U (x,y))]

° Approximating conditioned predictive distribution
“ First part has a closed-form solution
“ Second part approximated using expectation propagation

a(x) = log (07 (x)) + XK., log (02, () —
= (Zhelog (0, (i) ) + 56y log (02, Celi)




Constrained Max-value Entropy Search (CMES)

a(x) = H(y"|D) — Ey[H(y"|D U (x,¥))]

° Truncated multivariate distribution approximation
“ Closed-from expression

“ |ssue: can result in negative values

° Lower bound approximation
“ Closed-from expression and overcomes negative values issue

“~ Maximizes the probability of selecting a valid input point when
no feasible path is sampled



Constrained Max-value Entropy Search: Results

Gramacy Hartmann6
100 100+ -
a a
(v} L L (3]
D 10—2 \-\! J_ D 10—2 I
2 2
I \ =
= 107 — = 107
—= EIC == CMES == PESC
—}— TSC == CMES-IBO
10°° - - - ' ' 10°6 ' - ' '
0 5 10 15 20 25 30 0 20 40 60 80
lteration

100 120
lteration



Software and Code

° PESC: github.com/HIPS/Spearmint/tree/PESC

10



Questions ?
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Multi-Objective
Bayesian Optimization

£



Application #1: Drug/Vaccine Design

DRUG Drug Discovery &

DISCOVERY D I t T- I'
evelopment-limeline @ Effectiveness j

FDA &

PRECLINICAL
CLINICAL TRIALS
Safety j

—
= Cost
~6.5 YEARS . ~7 YEARS :‘}5 ‘I’EAES —

Credit: MIMA healthcare

° Accelerate the discovery of promising designs



Application #2: Hardware Design for Datacenters

High-performance and Energy-
efficient manycore chips

\ Planar interconnect
(Metal wires)
America’s Data Centers Are Wasting Huge Performance j

Amounts of Energy

By 2020, data centers are projected to consume roughly 140

billion kilowatt-hours annually, costing American businesses : 12 j
$13 billion annually in electricity bills and emitting nearly 150 Rehab]’hty

million metric tons of carbon pollution

Report from Natural Resources Defense Council:.
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-I1B.pdf Power



Multi-Objective Optimization: The Problem

4 Expensive Blackbox Functions )
fi)

Electronic Design Hyper Parameter

. Materials Design )
x - Automation Tuning/Auto-ML
= (@

Candidate design fr)
/ Objective evaluations

of design x

° Goal: Find designs with optimal trade-offs by minimizing
the total resource cost of experiments



Multi-Objective Optimization: Key Challenge

X -

Candidate design

4 Expensive Blackbox Functions )

Electronic Design Materials Design Hyper Parameter
Automation Tuning/Auto-ML

=%
?éi/é

%57

fieo
fre)
Objective evaluations
of design x

° Optimize multiple conflicting objective functions



Multi-Objective Optimization: The Solution

* Set of input designs with optimal trade-offs called the
optimal Pareto set y~

° Corresponding set of function values called optimal
pareto front Pareto front Y~

Optimal
areto front Y*
° Pareto hypervolume

1 e @ o measures the quality of
- ® a Pareto front
= o © &
= o)
=l o

@ o °

function f,



Single => Muulti-Objective BO

° Challenge #1: Statistical modeling

“ Typically, one GP model for each objective function (tractability)

° Challenge #2: Acquisition function design
“ Capture the trade-off between multiple objectives

(

Functions

o

Acquisition function
Optimization

a :77

GP,

V:"ylr.‘);‘z\\

xs = argmax a.(x,GPy, GP,)|[*

J

N
Learning S

Statistical Models N

GP,

GP,

—-—
\ — - - A
——
-—
— -

Evaluation of Blackbox

Objective function f,

e

Estimated
Pareto Front Y,

® o

@

Objective function f;

Optimal
areto Front Y*




Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
“ ParEGO [knowles et al., 2006] and MOBO-RS [Paria et al., 2019]

Hypervolume improvement

“ EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al.,
2008], gEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]

Wrapper methods via single-objective acquisition functions

“ USeMO [Belakaria et al., 2020]

Information-theoretic methods

“ €-PAL [zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO
[Belakaria et al., 2019]



Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
~ ParEGO [knowles et al., 2006] and MOBO-RS [Paria et al., 2019]

Hypervolume improvement

“ EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al.,
2008], gEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]

Wrapper methods via single-objective acquisition functions
“ USeMO [Belakaria et al., 2020]

Information-theoretic methods

“ €-PAL [zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO
[Belakaria et al., 2019]



Reduction via Random Scalarization

° Reduce the problem to single objective optimization

° PareGO [Knowles et al., 2006]

“ BO over scalarized objective function using El

k
FO)= ) 4 fi )
=1

“ Scalar weights are sampled from a uniform distribution

° MOBO-RS [Paria et al., 2019]

“ Optimize scalarized objective function over a set of scalar
weight-vectors using a prior specified by the user

10



Reduction via Random Scalarization

° PareGO [Knowles et al., 2006]

“ BO over scalarized objective function using El

k
OO = ) difi ()
=1

“ Scalar weights are sampled from a uniform distribution

° MOBO-RS [Paria et al., 2019]

“ Optimize scalarized objective function over a set of scalar

weight-vectors using a prior specified by the user

»

Hard to define the scalars or

can lead to sub-optimal results

-

~

specify priors over scalars, which

/
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Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
“ ParEGO [knowles et al., 2006] and MOBO-RS [Paria et al., 2019]

Hypervolume improvement

“ EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al.,

2008], gEHVI [Daulton et al., 2020], DGEMO [Lukovic et al. 2020]

Wrapper methods via single-objective acquisition functions

“ USeMO [Belakaria et al., 2020]

Information-theoretic methods

“ €-PAL [zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO

[Belakaria et al., 2019]
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Hypervolume Improvement Approaches

° EHI: Expected improvement in PHV [Emmerich et al., 2008]

° SUR: Probability of improvement in PHV [picheny et al., 2015]

®* SMSego [ponweiser et al., 2008]

“ Improves the scalability of PHV computation by automatically
reducing the search space

° C]EHVl [Daulton et al., 2020]

“ Differentiable hypervolume improvement

13



qEHVI Algorithm [Daulton et al., 2020]

* Parallel EHVI via the Inclusion-Exclusion Principle

]

[l
+

“ Practical since g is usually small
“ The computation of all intersections be parallelized

“ The formulation simplifies computation of overlapping

hypervolumes
14



qEHVI Algorithm [Daulton et al., 2020]

° Differentiable Hypervolume Improvement

“~ Sample path gradients via the reparameterization trick
“ Unbiased gradient estimator

A

E[Vxagenvi(X)] = Vea gy (X)

15



1.5

1.0

log HV Difference

0.0

gEHVI Algorithm (pauiton et at., 2020)

Vehicle Crash Safety

—}— Sobol
== EHVI
—}— gEHVI

== qParEGO

0

20

.............|m|m||||,1|.mll

—— TS-TCH

~}— PESMO
—}— SMS-EGO

40 60
Function Evaluations

80

100

2.0

1.5

log HV Difference
=

0.0

Branin-Currin

—— Sohal —— TS-TCH

—4— EHVI === PESMO

= qEHVI — SMS—EGD\.
—— qParlEGO

0 20 40 60 80 100
Function Evaluations
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Hypervolume Improvement Approaches

° EHI: Expected improvement in PHV [Emmerich et al., 2008]
° SUR: Probability of improvement in PHV [picheny et al., 2015]

®* SMSego [ponweiser et al., 2008]

“ Improves the scalability of PHV computation by automatically
reducing the search space

— ™

* qEHVI [paulton etal,, 2020] Can potentially lead to more
~ Differentiable hypervg exploitation behavior resulting in
sub-optimal solutions

- /




Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
~ ParEGO [Knowles et al., 2006] and MOBO-RS [Paria et al., 2019]

Hypervolume improvement

“ EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al.,

2008] , QEHVI [Daulton et al., 2020]

Wrapper methods via single-objective acquisition functions

“ USeMO [Belakaria et al., 2020]

Information-theoretic methods

“ €-PAL [zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO

[Belakaria et al., 2019]
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USGMO Framework [Belakaria et al., 2020]

( Multiple ) ﬁtatistical Modeh Acquisition Function Choice )
plackbox Learning AF (e.g EI,LCB,PI,TS
Functions (e.g ’ Al Z
’ x*rj:]_=f= % A 4

~ J _ IR Construct constrained )
M, Cheap MO problem
’ x5 = M, |Min {AF(Ml'x)'AF(MZ"‘)
> —> ﬁmg X s.tcy,Cz Y,
— J

F
x*| Selected input

v

Uncertainty Maximizatioh / Cheap MO Solver \

g - - [ ] ®
ﬂ Point with Max
— Uncertainty Pareto set —
= | ]
S / ) Q
g g o
] ® R
< <
L) —
° Pareto Set

\ AF (M, x) / \ AF (M, %) /




USEMO Framework [Belakaria et al., 2020]

~

( Multiple ) / Statistical Models\ ( Acquisition Function Choice
Blackbox Learning
Functions \AF (e.g EI,LLCB,PI1,TS Z

(" Construct constrained )
My Cheap MO problem

1. . [AF(M,,x), AF(My,x
S.tCl,Cz y

-x.=(<,](‘2={‘<h

L

x*| Selected input

ﬂncertainty Maximizatioh / Cheap MO Solver \
@

b Point with Max ®
Uncertainty Pareto set °

* J [ ] [ ]

4 . I
[ ]

° \\
C Pareto Set

\ Ar / \ AF (M, x) /

AF(My, x)
AF(M,, x)

° Allows us to leverage acquisition functions from single-
objective BO to solve multi-objective BO problems
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USGMO Framework [Belakaria et al., 2020]

( Multiple ) Statistical Models ( Acquisition Function Choice
Blackbox Learning
Functions \AF (e.g EI,LLCB,PI,TS ...)

How to (automatically) select
AF configurations to create
effective MOBO algorithms?

N

] 1 R !
[ 4
My
v [
[

-x.=(<,](‘2={‘<h

L

x*| Selected input

~

J

ﬂncertainty Maximizatioh /\

* Point with Max
Uncertainty

Pareto set

® e
e
® [ ]
< . o
®
®
Pareto Set

\ AF (M1, x) / \ AF (M, %) /

AF(My, x)
AF(M3, x)

° Allows us to leverage acquisition functions from single-
objective BO to solve multi-objective BO problems

21




Multi-Objective BO: Summary of Approaches

Reduction to single-objective via scalarization
“ ParEGO [knowles et al., 2006] and MOBO-RS [Paria et al., 2019]

Hypervolume improvement

“ EHI [Emmerich et al., 2008] , SUR [Picheny et al., 2015] , SMSego [Ponweiser et al.,

2008] , QEHVI [Daulton et al., 2020]

Wrapper methods via single-objective acquisition functions

“ USeMO [Belakaria et al., 2020]

Information-theoretic methods

“ €-PAL [zuluaga et al., 2013] , PESMO [Hernandez-Lobato et al., 2016] , MESMO

[Belakaria et al., 2019]
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E‘PAL Algorithm [Zuluaga et al., 2013]

° Classifies candidate inputs into three categories using
the learned GP models
“ Pareto-optimal
“ Not Pareto-optimal
“ Uncertain

° In each iteration, selects the candidate input for
evaluation to minimize the size of uncertain set

° Accuracy of pruning depends critically on € value

23



E‘PAL Algorithm [Zuluaga et al., 2013]

° Classifies candidate inputs into three categories using

the learned GP models

“ Pareto-optimal
Limited applicability as it

works only for discrete set of
candidate inputs

“ Not Pareto-optimal
“ Uncertain

~

° In each iteration, selects the candidate input for
evaluation to minimize the size of uncertain set

° Accuracy of pruning depends critically on € value

24



PESMO Algorithm [Hernandez-Lobato et al., 2016]

* Key Idea: select the input that maximizes the
information gain about the optimal Pareto set y*

°* Reminder: Set of input designs with optimal trade-offs
is called the optimal Pareto set y~

25



PESMO Algorithm [Hernandez-Lobato et al., 2016]

° Key ldea: select the input that maximizes the
information gain about the optimal Pareto set y~

a(x) = I({x,y} x| D)
=H(x*|D) —E,[H(x" |[D U {x,y})]
= H(y|D,x) —E,[Hy |D,x,x")]

26



PESMO Algorithm [Hernandez-Lobato et al., 2016]

° Key ldea: select the input that maximizes the
information gain about the optimal Pareto set y~

a(x) =I1({x,y} x| D)
=H(x*|D) —E,[H(x" |D U {x,y})]

:M— [ 1D, x, X))
o

Equivalent to expected
reduction in entropy over
the pareto set y*

\_ /
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

° Key ldea: select the input that maximizes the
information gain about the optimal Pareto set y~

a(x) = I({x,y} x| D)
=H(x*|D) —E,[H(x" |[D U {x,y})]
=HID,x) —Ey[H |D,x,x")]

-

Due to symmetric property

of information gain
\_ J
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

° Key ldea: select the input that maximizes the
information gain about the optimal Pareto set y~

a(x) = 10X, yhjx

X

D)

=H(x*|D) —E,[H(x" |[D U {x,y})]
= H(y|D,x) —E,[H |D,x,x")]

-

\_

Entropy of factorizable
Gaussian distribution

AN

)
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PESMO Algorithm [Hernandez-Lobato et al., 2016]

° Key ldea: select the input that maximizes the
information gain about the optimal Pareto set y~

/ input dimension d

a(x) =I1({x,y} x| D)
= H(x*|D) —E,[H(x" |D U {x,y})]

= H®y|D,x) —|E,«[H(y |D,x, x")]

-

\_

Requires computationally
expensive approximation using
expectation propagation

)
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MESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information
gain about the optimal Pareto front Y~

°* Reminder: Set of function values corresponding to the
optimal Pareto set y™is called the optimal Pareto front Y~

Optimal

areto front Y~
@ ® )
@

function f; 31

function f,
(©
@
o—




M ESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information
gain about the optimal Pareto front Y~

a(x) = I(ix, y}3|Y'|D)
= HY"|D) —Ey[H(Y" |D U {x,y})]

= H(y|D,x) —Ey[H(y |D,x,Y")]
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MESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information
gain about the optimal Pareto front Y~

a(x) = I(ix, y}3|Y'|D)
=H{"|D) —Ey[H(Y" |D U {x,y})]

_ x) — Ey-[H(y |D,x,Y")]
I

Equivalent to expected
reduction in entropy over

the pareto front Y"
N J
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MESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information
gain about the optimal Pareto front Y~

a(x) = I(ix, y}3|Y'|D)
= HY"|D) —Ey[H(Y" |D U {x,y})]

= H(y|D,x) — Ey<[H(y |D,x,Y")]

.

Due to symmetric property

of information gain
\_ J
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MESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information

gain about the optimal Pareto front Y~

a(x) = 1(1x, ¥},

Y*

D)

= H(Y"|D) —E,[H(Y" [D U {x,y})]
= H(y|D,x) — Ey[H(y |D,x,Y")]

-

\_

Entropy of factorizable
Gaussian distribution

AN

)
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MESMO Algorithm [Belakaria et al., 2019]

° Key ldea: select the input that maximizes the information

gain about the optimal Pareto front Y~

o Output dimension k K d

a(x) = I(ix, y}3|Y'|D)
= H"|D) —Ey[H(Y" |D U {x,y})]

= H(y|D,x) —|Ey<[H(y |D,x,Y")]

-

\_

P—

Closed form using properties of entropy
and truncated Gaussian distribution

)
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MESMO Algorithm [Belakaria et al., 2019]

a(x) =H(y|D,x) —Ey<[H(y D, x,Y")]

° The first term is the entropy of a factorizable k-dimensional
Gaussian distribution P(y |D, x)

K(1+In(2m))
——= + ¥ 1In(g; (x))

H(y|D,x) =

37



MESMO Algorithm [Belakaria et al., 2019]

a(x) =H(y|D,x) —

Ly * [H(y ‘D, X, Y*)]

°* We can approximately compute the second term via
Monte-Carlo sampling (S is the number of samples)

k 1 k
Ev-[H(Y ID,x,Y)] = 3 ¥, H(y ID,x,Y;)
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MESMO Algorithm [Belakaria et al., 2019]

°* Approximate computation via Monte-Carlo sampling

X 1 X
IEY*[H(y |D,.X',Y )] zg Z§=1 H(y |D1x1YS)

°* Two key steps
“ How to compute Pareto front samples Y ?

“~ How to compute the entropy with respect to a given Pareto
front sample Y;'?

39



MESMO Algorithm [Belakaria et al., 2019]

°* Approximate computation via Monte-Carlo sampling

X 1 X
IEY*[H(y |D,.X',Y )] zg Z§=1 H(y |D1x1YS)

° How to compute Pareto front samples Y ?

“ Sample functions from posterior GPs via random Fourier
features

~ Solve a cheap MO problem over the sampled functions f; ... f
to compute sample Pareto front

40



MESMO Algorithm [Belakaria et al., 2019]

°* How to compute the entropy with respect to a given
Pareto front sample Y ?

Y ={vl, .. v}withvt = {v', ..., vk},
yj < y]’-ks = max{vl1 , ...,vjl} vj e{l,.., K}

“~ Decompose the entropy of a set of independent variables into a
sum of entropies of individual variables

“ Model each component y; as a truncated Gaussian distribution

41



MESMO Algorithm [Belakaria et al., 2019]

°* How to compute the entropy with respect to a given
Pareto front sample Y ?

v = {vl, .. v} withvt = {v', ..., vk},
Vi Sy, = max{v11 , ...,v}} vj e{l,.., K}

H(y |D,x,Ys) ~ Y5 H(y;| D, x, ¥} )

42



MESMO Algorithm [Belakaria et al., 2019]

° Final acquisition function

ik

a(x) ~

Ys=1 X

K

ysj (x)¢ (YSJ (x))

j=1

2<I>(yg(x)) — Ind (Vs] (x))]

[ Closed form }

where ij (x) =

Vig—Hhj ()

aj(x)

,  and ® are the p.d.f and

c.d.f of a standard normal distribution
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MESMO Algorithm [Belakaria et al., 2019]

Multiple
Blackbox
functions

e

Xt, V1

Posterior Estimation
of GPs

Monte Carlo
Sampling

GP; sampled
function

fi

G P; sampled
function

f2

® ...
L

I
x; | Selected input vector

Objective function f;

Maximize Information Gain
a(x,)=I({x,y Y |D)
Sampled

Pareto front ¥

Estimated
Pareto front ¥,_;
® o
@
(]

Objective function f;

Sampled
Pareto fronts
Y

|

-~

Computing Sample Pareto
fronts via Cheap MO

Sampled
Pareto front Y7

Sampled function f,
@
@

Sampled function f;
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MOBO Experiments and Results #1

Network on Chip Design Compiler Settings Optimization
4.0 i S
lf —+— Parego 13.30 |
—— sMsego
3.5
—+— EHI
r—-l o 13.27 Ll
3.0 PESMO-1 |
l L PESMO-10 4
2.5 B —— PESMO-100 13.24 \
—+— MESMO-1

—— MEsMO-10

=
W8]
N
=
=

R> Indicator
D
o

Log Hypervolume Difference

—— MESMO-100 l —
| ¥ | T
1.5 !
13.18 : H
1.0 \_\\_\l
.
13.15 A -
0-5 - -—
0070720 40 60 80 100 13.12 - . . .
0 25 50 75 100

Iterations (t) Iterations (t)

* MESMO is better than PESMO
°* MESMO converges faster

* MESMO is robust to the number of samples (even a single samplezll)5




MOBO Experiments and Results #2

600

500

400

Acquisation optimization time
=
)

d=5

—— ParEgo
—— SMSego
PESMO-1

PESMO-10
—}— MESMO-1
—}— MESMO-10

e

2 3 a 5 6
Number of Objective functions

°* MESMO is highly scalable when compared to PESMO

°* MESMO with one sample is comparable to ParEGO

* Time for PESMO and SMSego increases significantly with the
number of objectives
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Multi-Objective Bayesian Optimization
With
Black-Box Constraints

47



MOBO with Black-Box Constraints: The Problem

" Blackbox )
X Experiment fi | €100

@& [

y fre) | CLeo

Objectives and constraints

evaluation of design x

° Goal: find the approximate (optimal) constrained Pareto
set by minimizing the total resource cost of experiments
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MOBO with Black-Box Constraints: The Problem

Amazon Prime Air
autonomous unmanned
aerial vehicle (UAV)

° Electrified aviation power system design for UAVS [gelakaria

et al., 2021]

“ Multiple Objectives: total energy and mass

~ Safety constraints: thresholds for motor temperature and
voltage of cells
49



MESMOC Algorithm [Belakaria et al., 2021]

° Extension of MESMO for constrained setting

[ Closed m
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MESMOC Algorithm [Belakaria et al., 2021]

° Solves a cheap MOO over sampled functions (fi, ,ﬁ; )
constrained by sampled constraints ( ¢3, ...,C; )

Yy « argmax( fi, ..., fx )
XEy

st. (1 =0,..,¢, =0)

° Acquisition function optimization constrained by
predictive mean of constraints

X; < arg max a;
XEY

s.t. (e, (x) =0, ..., 14, (x) =0)
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MESMOC Experiments and Results

1210

9.05 |
|
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8.80 1+ . | .
0 500 1000 1500

Number of Function Evaluations

°* MESMOC finds near-optimal Pareto front in ~250 evaluations
out of ~168,000 designs (<1%)

° 95% of the inputs selected by MESMOC are valid, while the best
among baselines was only 39%
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Multi-Objective Bayesian Optimization
With
Multi-Fidelity Function Evaluations
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Multi-Fidelity Multi-Objective BO: The Problem

Discrete fidelity Continuous fidelity

° Continuous-fidelity is the most general case

“ Discrete-fidelity is a special case

° Goal: find the approximate (optimal) Pareto set by
minimizing the total resource cost of experiments
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Multi-Fidelity Multi-Objective BO: Key Challenges

3
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° How to model functions with multiple fidelities?

° How to join Already covered }u and fidelity-vector
pair in each BO iteration?

°* How to progressively select higher fidelity experiments?
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iMOCA Algorithm [Belakaria et al., 2021]

Key Ildea: Select the input and fidelity-vector that
maximizes information gain per unit resource cost about
the optimal Pareto front Y~

a(x,z) =1({x,y,2},Y*|D)/C(x, z)

= (H(y|D,x,z) —Ey:[H(y |D,x,2,Y")])/C(x, 2)
= (Z;{:l In (\/ 21e Oy (x, Zj))
— - Y5 X H(y| Dx 2y, 7)) C(x, 2)

C(xzj) . . .
—— N IS the normalized cost over different functions
C(x,z )

J

where C(x,z) = Zﬁ-{zl
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iMOCA Algorithm [Belakaria et al., 2021]

¢ Assumption: Values at lower fidelities are smaller than maximum
value of the highest fidelity y; < vje{1,.., K}

° Truncated Gaussian approximation (Closed-form)

;) g;)
L s ok ool @)
a(x,z) = —— Yo Nizq [ ~~ — In® ()/ )]
C(x,z)S <5 J Zq)(yS(g])) S
: fsl*—,u :
Where ys(g’)z G_g, , ¢ and @ are the p.d.f and c.d.f of a standard
9j

normal distribution
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IMOCA Algorithm [Belakaria et al., 2021]

° Challenges of large (potentially infinite) fidelity space
“ Select costly fidelity with less accuracy
“ Tendency to select lower fidelities due to normalization by cost

* iIMOCA reduces the fidelity search space using a scheme
similar to the BOCA algorithm
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iIMOCA Algorithm [Belakaria et al., 2021]

Multiple Blackbox functions
with continuous fidelities

8
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Monte Carlo
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g1(x,27) = f,(x)
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Log Hypervolume Difference

iIMOCA Experiments and Results

Analog circuit design
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° iIMOCA performs better than all baselines

° Robust to the number of samples

° Both variants of iMOCA converge at a much lower cost
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iIMOCA Experiments and Results

° Cost reduction factor
“ Although the metric gives advantage to baselines, the results in

the table show a consistently high gain ranging from 52% to 85%

Name BC ARS  Circuit Rocket
Cn 200 300 115000 9500

C 30 100 55000 2000

g 85% 66.6% 52.1%  78.9%

Table: Best convergence cost from all baselines Cp, Worst
convergence cost for iMOCA C, and cost reduction factor G.
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Software and code

github.com/HIPS/Spearmint/tree/PESM
github.com/belakaria/MESMO
github.com/belakaria/USeMO
botorch.org/tutorials/multi_objective_bo
github.com/yunshengtian/DGEMO
github.com/belakaria/MESMOC
github.com/belakaria/MF-OSEMO
github.com/belakaria/iMOCA
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Questions ?
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Summary and Open Challenges in BO



Outline of the Tutorial

° Background on GPs and Single-Objective BO
° Bayesian Optimization over Combinatorial Spaces

° Bayesian Optimization over Hybrid Spaces

Break

° Multi-Fidelity Bayesian Optimization
* Constrained Bayesian Optimization
* Multi-Objective Bayesian Optimization

°* Summary and Outstanding Challenges in BO




Open Challenges in BO

° High-dimensional BO

“ Need more effective approaches for high-dimensional spaces

° BO over Combinatorial Structures

“~ How to combine domain knowledge, kernels, and (geometric)
deep learning to build effective surrogate models?

“ Effective methods to select large and diverse batches?

° BO over Hybrid Spaces
“~ Methods to sample functions from GP posterior?
“ Effective latent space BO methods?



Open Challenges in BO

° Constrained BO

“ Need more effective approaches for input spaces, where no.
of invalid inputs >> no. of valid inputs

° BO over Nested Function Pipelines

“ Relatively less explored problem

° BO with Resource Constraints
“ Real-world experiments need resources and setup time
“ Critical for BO deployment in science and engineering labs
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