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Motivation
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Smoothing
In the last lecture, we considered hierarchical models that shrunk
estimates towards a central value, with no consideration of the
geography of the areas.

In general, we might expect unknown paramaters of interest in areas
that are “close” to be more similar than in areas that are not “close”.

We would like to encode this observation in a model, in order to
smooth locally in space, in order to provide more reliable estimates in
each area.

This is analogous to the use of a covariate x , in that areas with similar
x values are likely to have similar parameters.

Unfortunately the modeling of spatial dependence is much more
difficult since spatial location is acting as a surrogate for unobserved
covariates.

We need to choose an appropriate spatial model, but do not directly
observe the covariates whose effect we are trying to mimic.
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Spatial Hierarchical Models for Normal Data
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Normal-Normal Spatial Model
Previously, we examined the non-spatial random effects model:

Yik = β0 + δi︸ ︷︷ ︸
Mean of Area i

+εik ,

with δi ∼iid N(0, σ2
δ) – these are the area-specific deviations (the

random effects) from the overall level β0 – and εik ∼iid N(0, σ2
ε ), is the

measurement error.

We extend this model to

Yik = β0 + δi + Si︸ ︷︷ ︸
Mean of Area i

+εik ,

where Si are spatial random effects.

We are separating the residual variability into:
I Unstructured area-level variability δi .
I Spatial area-level variability Si .
I Measurement error εik .
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Normal-Normal Spatial Model

We will not go into detail on prior specification or computation for
spatial models, in the accompanying R notes, we show how INLA

provides a means for computing posterior summary measures, with
sensible prior choices.

For more details on space-time modeling with INLA, see Blangiardo
and Cameletti (2015).
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Spatial Hierarchical Models for Binomial Data
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Binomial-GLMM Spatial Model

We first consider the model

Yi |θi ∼ind Binomial(ni , θi ) (1)

with

log

(
θi

1− θi

)
= β0 + xiβ1 + Si + δi , (2)

where
I the random effects δi |σ2

δ ∼iid N(0, σ2
δ) represent non-spatial

overdispersion,
I Si are random effects with spatial structure.
I We describe two possible forms for the spatial random effects.
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Overview of Spatial Random Effects Models
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Spatial Models Overview

In general, there have been two approaches to modeling spatial
dependence:

I Local conditional modeling: in our context, are usually used for
area data.

I Geostatistical modeling: in our context, are usually used for point
data.
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Spatial Models Overview

The local approach, an early reference to which is Besag (1974), is
based on conditional specifications Si |S−i , where

S−i = (S1, . . . ,Si−1,Si+1, . . . ,Sn).

In general, the only variables in S−i that are relevant are the
neighbors (suitably defined), which we write as Si |Sj , j ∈ ne(i).

In words, what is the distribution of Si , given we know the values
taken by the neighboring random variables Sj , j ∈ ne(i) – known as a
Markov Random Field (MRF) model.
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Spatial Models Overview

The geostatistical approach, see for example Stein (1999), is based
on the specification of the full multivariate distribution of

S = (S1, . . . ,Sn)

Kriging, which is used for prediction in many spatial contexts, may be
derived from a multivariate normal geostatistical model.

For modeling area-level data, we will concentrate on conditionally
specified spatial models1.

1though return to the above model in the last lecture when we consider construction
of a continuous surface
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A Conditional Spatial Model

We need to specify a rule for determining the neighbors of each area.

In an epidemiological context the areas are not regular in shape.

This is in contrast to image processing applications in which the data
are collected on a regular grid.

Hence, there is an arbitrariness in specification of the neighborhood
structure.
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A Conditional Spatial Model

To define neighbors, the most common approach is to take the
neighborhood scheme to be such that two areas are treated as
neighbors if they share a common boundary.

This is reasonable if all regions are (at least roughly) of similar size
and arranged in a regular pattern (as is the case for pixels in image
analysis where these models originated), but is not particularly
attractive otherwise (but reasonable practical alternatives are not
available).
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A Conditional Spatial Model

Various other neighborhood/weighting schemes are possible:

I One can take the neighborhood structure to depend on the
distance between area centroids and determine the extent of the
spatial correlation (i.e. the distance within which regions are
considered neighbors).

I One could also define neighbors in terms of cultural similarity.

In typical applications it is difficult to assess whether the spatial model
chosen is appropriate, which argues for a simple form, and to assess
the sensitivity of conclusions to different choices.
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A Conditional Spatial Model

A common model, due to Besag et al. (1991), is to assign the spatial
random effects an intrinsic conditional autorgressive (ICAR) prior.

Under this specification it is assumed that the spatial random effect is
drawn from a normal distribution whose mean is the mean of the
neighbors’ random effects, with variance proportional to one over the
number of neighbors (so more neighbors, less variability).

Formally,

Si |Sj , j ∈ ne(i) ∼ N
(

Si ,
σ2

s

mi

)
,

where ne(i) is the set of neighbors of area i , mi is the number of
neighbours, and

Si =
1
mi

∑
j∈ne(i)

Sj

is the mean of the spatial random effects of these neighbors.
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A Conditional Spatial Model
The parameter σ2

s is a conditional variance and its magnitude
determines the amount of spatial variation.

Recall, we split the residual variability as

δi + Si .

The variance parameters σ2
ε and σ2

s have different interpretations.

Both are defined on the same scale, but σε has a marginal
interpretation while σs has a conditional interpretation.

Specifically, for area i , the variance of Si is conditional on Sj , j ∈ ne(i).

Hence the variances are not directly comparable ; the random effects
εi and Si are comparable, however (so side-by-side maps of the
contributions are useful).

Bottom line: Larger values of σ2
s are indicative of greater spatial

dependence.
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Normal and Binomial Examples
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Motivating Example: Normal Data
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Figure 1: Comparison of area averages: Posterior medians from non-spatial
model (described in Lecture 3) versus MLEs (left). Posterior medians from
spatial model versus MLEs (right).

The shrinkage is less predictable with the spatial model, which is
because of the local adaptation.
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Motivating Example: Normal Data
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Figure 2: Spatial (left) and non-spatial (left) random effects from the
spatial+IID model.

The IID contribution is much smaller than the spatial contribution.
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Motivating Example: Normal Data
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Figure 3: Non-spatial random effects δi from the non-spatial model (left) and
spatial random effects (right) random effects Si .

The non-spatial model random effects are trying to pick up the spatial
structure!
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Motivating Example: Normal Data
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Figure 4: Estimates of area averages of weight via MLE’s (left) and posterior
medians from spatial model (right).

The extremes are attenuated under the spatial model.
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Motivating Example: Normal Data
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Figure 5: Posterior median estimates of area averages of weight via
non-spatial hierarchical model with β0 + δi (left) and spatial hierarchical
model β0 + δi + Si (right); δi are iid and Si are spatial random effects.

Some differences between the estimates, but relatively minor.
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Motivating Example: Binomial Data
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Figure 6: Spatial (left) and non-spatial (left) random effects from the
spatial+iid model with logit(pi) = β0 + δi + Si ; δi are iid and Si are spatial
random effects.

The majority of the between-area variability is spatial.
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Motivating Example: Binomial Data
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Figure 7: Non-spatial random effects from the non-spatial model (left) and
spatial random effects (right) random effects.

The non-spatial model random effects are trying to pick up the spatial
structure!
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Motivating Example: Binomial Data
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Figure 8: MLEs of area diabetes risk (left) and posterior medians from the
spatial hierarchical model (right).
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Motivating Example: Binomial Data
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Figure 9: Posterior median estimates of area diabetes risk via non-spatial
hierarchical model (left) and spatial hierarchical model (right).

Estimates are very similar!

28 / 37



Motivating Example: Binary Outcome
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Figure 10: Comparison of area averages. Posterior standard deviation versus
standard errors of MLEs on the probability scale, for the non-spatial
hierarchical model (left), and the spatial hierarchical model (right).

The problem of standard errors being estimated as zero is clearly
alleviated, and the two sets of posterior standard deviations are quite
similar.
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Motivating Example: Binary Outcome
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Figure 11: Bias of MLEs, with confidence intervals (left). Bias of posterior
medians, with credible intervals (right).

If we calculate,
1
n

n∑
i=1

|p̂i − pi |,

we get 0.026 (MLE) and 0.018 (Bayes).
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Discussion
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Discussion

If the data are sparse in an area, averages and totals are unstable
because of the small denominators.

More reliable estimates can be obtained by using the totality of data
to inform on the distribution, both locally and globally, of the averages
across the study region.

A GLMM can include spatial dependence relatively easily, with the
ICAR model being particularly popular.
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Discussion

Four levels of understanding for hierarchical models, in descending
order of importance:

I The intuition on global and local smoothing.
I The models to achieve this.
I How to specify prior distributions.
I The computation behind the modeling.

Overall Strategy
I First, calculate empirical means and map them. Also look at map

of standard errors and/or confidence intervals.
I Fit non-spatial random effects models.
I Fit the ICAR+IID spatial model.
I Add in covariates if available.

33 / 37



References

Besag, J. (1974). Spatial interaction and the statistical analysis of
lattice systems. Journal of the Royal Statistical Society, Series B,
36, 192–236.
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Technical Appendix: The Conditional Spatial
Model
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A Conditional Spatial Model
This is a little counterintuitive but stems from spatial models having
two aspects, the strength of dependence and the magnitude of spatial
dependence, and in the ICAR model there is only a single parameter
which controls both aspects.

In the joint model (with covariance σ2
sρ

dij for example) the strength is
determined by ρ and the total amount by σ2

s .

A non-spatial random effect should always be included along with the
ICAR random effect since this model cannot take a limiting form that
allows non-spatial variability.

In the joint model with Si only, this is achieved as ρ→ 0.

If the majority of the variability is non-spatial, inference for this model
might incorrectly suggest that spatial dependence was present.

Prior specification is difficult for the conditional variance is difficult
because it has a conditional rather than a marginal interpretation.

See Fong et al. (2010) for a discussion of prior choice and simulation
for an ICAR model.
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Computation for the Conditional Model

Let Q/σ2
s denote the precision matrix of the ICAR model.

For simplicity, suppose all areas are connected to at least one other
area.

The elements Qij = 0 if Si and Sj are conditionally independent,
i.e., not neighbors.

The elements Qij = −1 if Si and Sj are conditionally dependent,
i.e., neighbors.

The elements Qii = mi , where mi is the number of neighbors of area i .

Hence, most of the elements of Q are zero (so the matrix is sparse)
and this aids greatly in computation, see Rue and Held (2005) for
details.
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Computation for the Conditional Model

The form of the joint ‘density’ is

p(s|Q, σ2
s ) = (2π)−1/2|Q|1/2σ

−(n−1)/2
s exp

(
− 1

2σ2
s

sTQs
)

= (2π)−1/2|Q|1/2σ
−(n−1)/2
s exp

− 1
2σ2

s

∑
i∼j

(si − sj )
2


where i ∼ j means i and j are neighbors.

This is not a true density since it is not proper; Q is singular and has
rank n − 1.

The ICAR model is an example of a Gaussian Markov Random Field.

Note the contrast with the multivariate model in which Σij = 0 if the
marginal covariance between Si and Sj is zero.
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