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Motivation

Small area estimation (SAE) is an important endeavor since many
agencies require estimates of health, economic indices, education
and environmental measures in order to plan and allocate resources
and target interventions.

SAE is an example of domain (sub-population) estimation.

“Small” here refers to the fact that we will typically base our inference
on a small sample from each area (so it is not a description of
geographical size).

In the limit there may some areas in which there are no data.
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Small Area Estimation
Consider a study region partitioned into n disjoint and exhaustive
areas, labeled by i , i = 1, . . . ,n.

As a concrete example, suppose we are interested in a particular
condition so that the response is a binary outcome, Yik , for
k = 1, . . . ,Ni , individuals in area i .

Based on samples that are collected in the areas1, the aim of SAE
include estimation of:

I The population totals:

Ti =

Ni∑
k=1

Yik .

I The prevalence of the condition in each area:

θi =
1
Ni

Ni∑
k=1

Yik =
Ti

Ni
.

1though some areas may contain no samples
5 / 50



Background reading on SAE

The classic text on SAE is Rao (2003), with a more recent edition
(Rao and Molina, 2015); not the easiest book to read, and little
material on spatial smoothing models.

An excellent review of SAE is Pfeffermann (2013).

The SAE literature distinguishes between direct estimation, in which
data from the area only is used to provide the estimate in an area,
and indirect estimation, in which data from other areas is used to
provide the estimate.
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Inference for SAE
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Design based inference based on weighted estimators
Suppose we undertake a complex design and obtain outcomes yik in
area i , k ∈ si , where si is the set of samples that were in area i .

Along with the outcome, there is an associated design weight wik .

Under the design-based approach to inference, it is common to use
the weighted estimator of the prevalence:

P̂i =

∑
k∈si

wik yik∑
k∈si

wik
.

There is an associated variance, that acknowledges the design, V̂i .

This variance estimate may be obtained analytically, or through
resampling techniques such as the jackknife.

Asymptotically (that is, in large samples):

P̂i ∼ N(Pi ,Vi).
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Direct Estimation

The simplest approach is to simply map the direct estimates P̂i .

To assess the uncertainty, one may map the lower and upper ends of
(say) a 90% confidence interval:

P̂i ± 1.645×
√

V̂i .

If the samples in each area are large, so that V̂i is small, then this
approach works well.

Hence, as usual, we would like to carry out some form of smoothing,
but in the case of complex survey sampling, how should we proceed?
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Design effects

The cluster design leads to a loss of information.

The so-called estimated design effect is

di =
V̂i

P̂i(1− P̂i)/ni
,

and summarizes the information loss.

Define the effective sample size as

ñi =
ni

di
=

P̂i(1− P̂i)

V̂i
.
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Smoothed Direct Estimation

Let θ̂i be the weighted estimator, then consider

θ̂i = logit P̂i = log

(
P̂i

1− P̂i

)
,

which is on the whole of the real line.

“Data” Model2:
θ̂i ∼ N(θi , V̂i),

where Vi , its variance, is known.

Prior Random Effects Model:

θi = β0 + εi ,

where the random effects εi ∼iid N(0, σ2
ε ).

2We are taking the data as the estimator
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Smoothed Direct Estimation

This is very similar to the normal-normal model we saw in Lecture 3.

Fay and Herriot (1979) suggested this hierarchical model, in a
landmark paper.

This model acknowledges the design and also smooths, and it is
straightforward to add spatial random effects.
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Smoothed Direct Estimation
The spatial version of the model has:

“Data” Model:
θ̂i ∼ N(θi , V̂i),

where V̂i is known variance.

Prior Model:
θi = β0 + εi + Si ,

with
I εi ∼ N(0, σ2

ε ).
I Si ∼ ICAR(σ2

s ).

Adding a term x T
i β to the prior model allows covariate relationships to

be investigated.

This model has been investigated and applied with simulated and real
data in (Chen et al., 2014; Mercer et al., 2014) and (in a space-time
setting) in Mercer et al. (2014, 2015) and Li et al. (2018).
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Simple SAE Models with Simulated Data
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SAE for DHS like Data

We simulate a set of data to mimic a simple DHS type design in
which we stratify on 8 regions using the Kenya geography.

Data are simulated using a 2-stage cluster design.

To be concrete, we name the variable “Tobacco Use”.

We create a design object and then obtain weighted (direct)
estimates of logit in each area yi along with a design-based variance
estimate V̂i for i = 1, . . . ,n = 8 regions.
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SAE for DHS like Data
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Figure 1: Weighted (direct) estimates of tobacco use versus naive
proportions that ignore the design.
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SAE for DHS like Data
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Figure 2: Standard errors of weighted estimates of tobacco use versus
standard errors of naive estimates that ignore the design.

The standard errors of the weighted estimates are larger, because
they acknowledge the design, in particular, the clustering.

17 / 50



SAE for DHS like Data
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Figure 3: Histogram of design effects (left) and effective sample sizes versus
sample sizes ni .

Effective sample sizes are quite a lot smaller, due to clustering.
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Simulated DHS Example
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Figure 4: Maps of true proportion of tobacco use (left), the direct estimates
(middle) and the posterior medians from the smoothed direct model (right).
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Simulated DHS Example

SD(direct estimates) SD(posterior median)
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Figure 5: Maps of uncertainty from direct estimates (left), the posterior
estimates from the smoothed direct model (right).
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SAE for DHS like Data
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Figure 6: Weighted (direct) estimates of tobacco use with confidence
intervals (left) and posterior mean estimates of tobacco use with credible
intervals (right).
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Discussion
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Discussion

Direct smoothed estimates builds on the strengths of weighted
estimates and spatial smoothing models.

In the limit the weighted estimates will dominate, which is exactly
what we want!
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Technical Details: Traditional SAE
Approaches
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Traditional SAE Approaches

Here we present some material on more standard SAE.

We assume the study region can be partitioned into i = 1, . . . ,n
sub-regions (domains) with Ni being the population of the domain,
which may or not be known.

A survey is carried out and ni is the sample size in domain i ; if the
survey was not designed to fix the sample size ni for domain i then it
is a random variable with respect to the randomization distribution
and we need to consider ratio estimation.

Unless specified otherwise, we assume that ni is random.

Let Ui and Si , i = 1, . . . ,n, be the index sets for the units of the
population and the sample respectively in domain i with
U = U1 ∪ · · · ∪ Un and S = S1 ∪ · · · ∪ Sn.
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Notation

The population mean in domain i is

yUi
=

∑
k∈Ui

yk

Ni
.

We define

zk =

{
1 if k ∈ Ui
0 if k /∈ Ui

uk = yk zk =

{
yk if k ∈ Ui
0 if k /∈ Ui

so that zk is just an indicator of whether unit k lies within domain i
and uk is the value of y for such units.

zk is random when ni is not fixed in advance.
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Notation

Then
I tu =

∑N
k=1 uk is the population total in domain i .

I uU = tu
N is the population total in domain i divided by N (so this is

not the domain mean).
I tz =

∑N
k=1 zk = Ni is the population size in domain i .

I zU = Ni
N is the fraction of the total population in domain i .
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Direct estimation without auxiliary information

A direct estimator is one in which response data y from the domain
only are used.

An indirect estimator uses responses from other domains.

The population average in domain i can be written as a ratio of totals:

yUi
=

tu
tz

= B

=
uU

zU
=

∑
k∈U uk/N
Ni/N

=

∑
k∈Ui

yk

Ni
.
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Direct domain estimation
We have, under SRS,

uS =

∑
k∈S uk

n

zS =
ni

n
.

The ratio domain direct estimator is:

ŷ i =
t̂u
t̂z

= B̂

=
uS

zS
=

∑
k∈S uk/n
ni/n

=

∑
k∈Si

yk

ni
.

This ratio estimator is biased (since ni is assumed random) but the
bias goes to zero with increasing ni .

This is because E[ni/n] = E[Ni/N] and so both numerator and
denominator are unbiased.
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Direct domain estimation
Since the ratio estimator is

ŷ i = B̂ =
t̂u
t̂z
,

the variance estimator (we emphasize, under SRs) is,

v̂ar(ŷ i) =
(

1− n
N

) n
n2

i

(ni − 1)s2
yi

n − 1

≈
(

1− n
N

) s2
yi

ni
(1)

where

s2
yi =

∑
k∈Si

(yik − ŷ i)
2

ni − 1
.

An asymptotic 95% confidence interval is ŷ i ± 1.96× s.e.(ŷ i).

This confidence interval has a randomization interpretation, so 95%
of the intervals we construct from samples S will contain the fixed (but
unknown) yU .
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Direct domain estimation

For general (i.e. not SRS) sampling we refer to Särndal et al (1992,
Section 10.3).

When Ni is unknown, the domain mean estimator is

ŷ i =
1

N̂i

∑
k∈Si

wk yk ,

where wk = 1/πk and
N̂i =

∑
k∈Si

wk .
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Direct domain estimation

To estimate the domain total when Ni is unknown

t̂yi =
∑
k∈Si

wk yk .

To estimate the domain total when Ni is known

t̃yi = Ni × ŷ i =
Ni

N̂i

∑
k∈Si

wk yk .

Variance estimators are given in Särndal et al (1992, Section 10.3).
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Direct domain GREG with study auxiliary information

The problem with using the direct ratio estimators is that the variance
may be large in areas with low ni , as in (1).

When auxiliary variable is available, this may be used to define a new
estimator; suppose we have a single variable x for which the total is
known, across all domains, tx , and we have a HT estimator t̂x .

In general, GREG with multiple x values and a linear regression
model may be utilized; we describe some special cases.

A ratio estimator is
t̂ dir,rat1
i = t̂i ×

tx
t̂x
, (2)

where t̂i is the usual HT estimator.

This is a direct domain estimator because y values only from the
domain are used, though the total x , tx from all domains are used.
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Direct domain GREG with study auxiliary information

This estimator is approximately unbiased, if the overall sample size n
is large (because t̂x → tx ) , and design consistency occurs as the
domain sample size ni increases.

See Rao and Molina (2015, Section 2.4.2) describe GREG
estimators, and give a number of special cases including (2).

Notice that the same adjustment is made to every area.
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Example: Smoking by county in Washington State

As an example suppose we wish to estimate the number of current
smokers across the 39 counties of Washington State, based on a
survey.

For each individual in the survey, information is collected on yk , k ∈ S,
a binary indicator of current smoking status, along with xk , the income
and the basic demographics (age and gender).

Suppose we know the total income of residents in Washington State,
tx ; then (2) may be directly applied with t̂x =

∑
k∈s wk xk being the

estimated total income from the sample.
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Direct domain GREG with study auxiliary information
Suppose now we have auxiliary information on the population sample
sizes across (usually demographic) groups g, g = 1, . . . ,G; this is a
special case of the direct estimator.

A post-stratified estimator (Rao and Molina 2015, Section 2.4.2) is

t̂ dir,ps1
i =

G∑
g=1

N.g
N̂.g

∑
k∈Sig

wk yk =
G∑

g=1

N.g
N̂.g

t̂ig . (3)

where
I Sig is the set of samples falling in post-stratification group g of

domain i ,
I t̂ig is the estimate of the total for y in domain i and group g (note

that t̂i =
∑

g t̂ig), and

I N̂.g =
∑

k∈S.g
wk .

This estimator is approximately unbiased (and is design consistent)
but the variance can be large since the adjustments between domain
i and the whole region may be large.
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Example: Smoking by county in Washington State

Suppose we know the population totals for Washington State by 18
age bands and gender, N.g ,g = 1, . . . ,G = 36.

In county i , to use (3), we would estimate:
I the total number of smokers by stratum g, t̂ig =

∑
k∈sig

wk yk , this
may have high variability as |sig | = nig may be small,

I the population total by group g, across the state,is estimated by
N̂.g =

∑
k∈s.g wk .
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Direct domain GREG with domain auxiliary information

To reduce the bias we may use domain-specific auxiliary information,
as described in (Rao and Molina 2015, Section 2.4.3).

A ratio estimator is
t̂ dir,rat2
i = t̂i ×

txi

t̂xi
, (4)

where t̂i is the HT estimator, and the second adjustment term is now
area (domain) specific.

This gives an area-specific adjustment.

This is a direct domain estimator since it uses y (and x values) only
from the domain.

38 / 50



Direct domain GREG with domain auxiliary information

A post-stratified estimator is

t̂ dir,ps2
i =

G∑
g=1

Nig

N̂ig
t̂ig , (5)

where N̂ig =
∑

k∈Sig
wk .

The adjustment term,
Nig

N̂ig
,

is now area-specific, and uses stratified population totals in area i .
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Example: Smoking by county in Washington State

For (4), suppose we know the income totals by county (from the
census, for example), txi , and we then estimate t̂xi =

∑
k∈si

wk xk .

As another (post-stratified) example, for (5), suppose we know the
population totals for Washington State by 18 age bands and gender
and by domain (county), Nig ,g = 1, . . . ,G = 36.

In area i we would then estimate:
I the total number of smokers by stratum g, t̂ig =

∑
k∈sig

wk yk ,

I the population total by group g, in area i , N̂ig =
∑

k∈sig
wk .
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Technical Details: Indirect Domain Estimation
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Synthetic estimation

Now we consider indirect estimators, and begin with synthetic
estimation, as described in (Rao and Molina 2015, Section 3.2).

The simplest synthetic estimator of a domain mean for area i does
not use auxiliary information and is

ŷ
syn,basic1

i =
t̂y
N̂
, (6)

which is the mean over the complete study region.

Large bias will result in domains within which the means deviate from
the overall mean, i.e. in which it is not true that yUi

≈ yU .

The variance of the estimator will be very small, however.
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Synthetic estimation

One possibility is to consider a larger region r that contains i rather
than the complete study region and use

ŷ
syn,basic2

i =
t̂y (r)

N̂(r)
, (7)

which is approximately design unbiased if yUi
≈ yU(r).

These estimators are not design consistent, though the MSE may be
relatively small, if the regional sample size is large.

This is a very basic form of spatial smoothing.
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Example: Smoking by county in Washington State

For (6), we would estimate the total number of smokers in Washington
State, t̂y =

∑
k∈s wk yk , and the total population size N̂ =

∑
k∈s wk .

For (7), we could split Washington State into (say) contiguous regions
based on predictors of smoking.

For example, we could group together contiguous urban and rural
counties (this categorization could be based on population density, or
percent of farmland,...).

We would estimate the total number of smokers in region r ,
t̂y (r) =

∑
k∈s(r) wk yk , where s(r) is the set of indices of samples in

region r and the total population size N̂(r) =
∑

k∈s(r) wk .
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Synthetic estimation

With auxiliary information consisting of known totals in domain i , x i ,
the synthetic estimator is

t̂ syn,reg

i = x T
i B̂, (8)

where

B̂ =

 n∑
i=1

∑
k∈si

wik x T
ik x ik

−1
n∑

i=1

∑
k∈si

wik x T
ik y ik , (9)

is the WLS estimator over all of the units who provide responses, and
wik are the design weights.

This estimator is not design unbiased.
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Synthetic estimation

The design bias of t̂ syn,reg

i is approximately x T
i B − ti , where

B =

 n∑
i=1

∑
k∈Ui

x T
ik x ik

−1
n∑

i=1

∑
k∈Ui

x T
ik y ik , (10)

is the population regression coefficient.

The bias will be small if the domain specific regression coefficient

Bi =

∑
k∈Ui

x T
ik x ik

−1 ∑
k∈Ui

x T
ik y ik ,

is close to B.
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Synthetic estimation

A special case is the ratio estimator

t̂ syn,rat
i = t̂y ×

txi

t̂x
. (11)

Another special case is the post-stratification estimator

t̂ syn,ps
i =

G∑
g=1

Nig

N̂.g
t̂.g . (12)

These estimators have low variance since information from all
domains is used, but the bias may be large.

Notice that, in contrast to the direct GREG estimators described
previously, these forms are adjusting a global response estimate,
using domain specific auxiliary information.

47 / 50



Example: Smoking by county in Washington State

For (8), suppose we have domain-specific totals on income
x i = [1, txi ]

T, along with individual income levels in the sample; the
latter are used to estimate the population regression coefficient (9).

To examine whether Bi is close to B we could calculate

B̂i =

∑
k∈si

wk x T
ik x ik

−1 ∑
k∈si

wk x T
ik y ik ,

and see how close these estimates are to B̂ (though the former may
have large uncertainty).
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Example: Smoking by county in Washington State

For (11), we use the total incomes in domain i and the estimated
income across the whole state t̂x =

∑
k∈s wk xk , along with the

estimated total smokers across the state t̂y =
∑

k∈s wk yk .

For (12), we use the total population in domain i and stratum g, Nig
and the estimated stratum g population across the whole state
N̂.g =

∑
k∈s wk , along with the estimated total stratum g population

across the state t̂.g =
∑

k∈sg
wk .
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Composite estimators

The direct estimator is approximately unbiased but will have large
variance if ni is small, while the synthetic estimator may have large
bias but has small variance.

This suggests the composite estimator:

y comp
i = φi × y dir

i + (1− φi)× y syn
i .

Rao and Molina (2015, Section 3.3) discusses how φi may be
estimated, by attempting to minimize the MSE of y comp

i .

Next we will consider model-based approaches in which a formal
method is used to balance using data from domain i , and the totality
of data.
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