
Bayesian Statistics for Genetics

10b Guided tour of software

Ken Rice

UW Dept of Biostatistics

July, 2017

Off-the-shelf MCMC

Recall the big picture of Bayesian computation;

θ1 θ1

θ2 θ2

1

3

4

5

1

2

3

4
5

2

We want a large sample from some distribution – i.e. the

posterior. It does not matter if we get there by taking

independent samples, or via some form of dependent sampling.

(Gibbs Sampling, here)

1

Off-the-shelf MCMC

Once we have a big sample...

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

Sample (points) approximate distribution (contours)

x

y

Any property of the actual posterior (contours) can be approxi-

mated by the empirical distribution of the samples (points)

2

Off-the-shelf MCMC

Markov Chain Monte Carlo (MCMC) is the general term for
sampling methods that use Markov Chain processes to ‘explore’
the parameter space; the (many) random process values form
our approximation of the posterior.

But in many settings this ‘walking around’ is mundane; once we
specify the model and priors, the process of getting samples from
the posterior can be done with no original thought – i.e. we can
get a computer to do it.

Some example of this labor-saving approach;

• WinBUGS (next)
• ... or JAGS, OpenBUGS, NIMBLE and Stan
• INLA – not a Monte Carlo method

The R Task Views on Genetics and Bayesian inference may also
have specialized software; see also Bioconductor.

3

http://www.mrc-bsu.cam.ac.uk/software/bugs/
https://martynplummer.wordpress.com/
http://openbugs.net/w/FrontPage
https://bids.berkeley.edu/research/nimble-numerical-inference-hierarchical-models-using-bayesian-and-likelihood-estimation
http://mc-stan.org/
http://www.r-inla.org/download
https://cran.r-project.org/web/views/Genetics.html
https://cran.r-project.org/web/views/Bayesian.html
http://bioconductor.org/

Bayes: WinBUGS

µ τ

Y6

Y5

Y1

Y2

Y3 Y4

θ

Started in 1989, the Bayesian analysis Using Gibbs

Sampling (BUGS) project has developed software

where users specify only model and prior – everything

else is internal. WinBUGS is the most comprehensive

version.

• The model/prior syntax is very similar to R

• ... with some annoying wrinkles – variance/precision, also

column major ordering in matrices

• Can be ‘called’ from R – see e.g. R2WinBUGS, but you still need

to code the model

Before we try it on GLMMs, a tiny GLM

example (n = 1, Y = 4);

Y |θ ∼ Pois (E exp(θ))

θ ∼ N(0,1.7972)

E = 0.25

4

Bayes: WinBUGS

One (sane) way to code this in the BUGS language;

model{
Y∼dpois(lambda) ...Poisson distribution, like R

lambda <- E*exp(theta) ...syntax follows R

E <- 0.25 ...constants could go in data

theta∼dnorm(m,tau) ...prior for θ
m <- 0

tau <- 1/v tau = precision NOT variance!
v <- 1.797*1.797

} ...finish the model

#data

list(Y=4) Easiest way to input data
#inits

list(theta=0) Same list format; or use gen.inits

5

Bayes: WinBUGS

Notes on all this; (not a substitute for reading the manual!)

• This should look familiar, from the models we have been

writing out. In particular ‘∼’ is used to denote distributions

of data and parameters

• All ‘nodes’ appear once on the LHS; hard work is done on

RHS

• No formulae allowed when specifying distributions

• Data nodes must have distributions. Non-data nodes must

have priors – it’s easy to forget these

• Write out regressions ‘by hand’; beta0 + beta1*x1 + ...

• This language can’t do everything; BUGS does not allow e.g.

Y <- U + V

U∼dnorm(meanu,tauu); V∼dt(meanv,tauv,k)
#data

list(Y=...)

6

Bayes: WinBUGS

From 10,000 iterations, how do we do? (Note ‘MC error’
estimates Monte Carlo error in the posterior mean)

Histogram of WinBUGS output

theta

de
ns

ity

−3 −2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

prior
likelihood
posterior

node mean sd MC error 2.5% median 97.5%
theta 2.422 0.5608 0.005246 1.229 2.466 3.388

7

Bayes: WinBUGS

Under the hood, here’s how WinBUGS ‘thinks’;

Y

λ

E θ

m τ • It’s a DAG; arrows represent

stochastic relationships (not causal-

ity)

• Some texts use square nodes for

observed variables (Y , here)

• To do a Gibbs update, we need

to know/work out the distribution

of a node conditional on only its

parents, children, and its children’s

other parents∗.

* This set is a node’s ‘Markov blanket’. The idea saves a lot of effort, and

is particularly useful when fitting random effects models.

8

WinBUGS: HWE example

A multinomial example, with a default prior;

Y ∼ Multinomial(n,θθθ)

where θθθ = (p2,2p(1− p), (1− p)2)

p ∼ Beta(0.5,0.5).

And a typical way to code it in “the BUGS language”;

model{

y[1:3] ~ dmulti(theta[], n)

theta[1] <- p*p

theta[2] <- 2*p*(1-p)

theta[3] <- (1-p)*(1-p)

p ~ dbeta(0.5, 0.5)

}

9

WinBUGS: HWE example

We have n = 186,

and Y = (53,95,38).

We will run 3 chains,

starting at p = 0.5,

0.1 and 0.9.

In WinBUGS, input

these by highlighting

two list objects:

Data # Initial values
list(y=c(53,95,38),n=186) list(p=0.5)

list(p=0.1)
list(p=0.9)

10

WinBUGS: HWE example

WinBUGS unlovely but functional in-house output;

The posterior has 95% support for p ∈ (0.49, 0.59), the posterior
mean = posterior median = 0.54. Use coda to get the chain(s).

11

WinBUGS: less pointy-clicky

Apart from coming up with the model, everything can be
automated, using R’s R2WinBUGS package;

library("R2WinBUGS")
hweout <- bugs(data=list(y=c(53,95,38),n=186),
inits=list(p=0.5, p=0.1, p=0.9),

parameters.to.save=c("p"),
model.file="hweprog.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=FALSE)

• Model code now in a separate
file (hweprog.txt)
• Specify the data and initial values as R structures
• Tell R where to

find WinBUGS
• The output is stored in hweout, an R object – no need to go

via coda

• When debugging, pointy-clicky WinBUGS is still useful
• See next slide for less-clunky graphics

12

WinBUGS: less pointy-clicky

> print(hweout, digits=3)
Inference for Bugs model at "hweprog.txt", fit using WinBUGS,
3 chains, each with 10000 iterations (first 500 discarded)
n.sims = 28500 iterations saved

mean sd 2.5% 50% 97.5% Rhat n.eff
0.540 0.026 0.490 0.541 0.590 1.001 28000.000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

13

WinBUGS: less pointy-clicky

• As well as the Markov blanket idea, WinBUGS uses what it

knows about conjugacy to substitute closed form integrals

in the calculations, where it can. (e.g. using inverse-gamma

priors on Normal variances)

• Otherwise, it chooses from a hierarchy of sampling methods

– though these are not cutting-edge

• Because of its generality, and the complexity of turning a

model into a sampling scheme, don’t expect too much help

from the error messages

• Even when the MCMC is working correctly, it is possible

you may be fitting a ridiculous, unhelpful model. WinBUGS’

authors assume you take responsibility for that

Also, while Gibbs-style sampling works well in many situations,

for some problems it’s not a good choice. If unsure, check the

literature to see what’s been tried already.

14

WinBUGS: less pointy-clicky

WinBUGS is no longer updated, but it’s pointy-clicky interface
remains a good place to get started. The BUGS language, de-
scribing models, is now used in JAGS, NIMBLE and OpenBUGS.
Here’s rjags using the exact same model file we just saw;

> library("rjags")
> jags1 <- jags.model("hweprog.txt", data=list(y=c(53,95,38),n=186))
> update(jags1, 10000)
> summary(coda.samples(jags1, "p", n.iter=10000))
Iterations = 11001:21000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

0.5398583 0.0258055 0.0002581 0.0003308
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.4890 0.5225 0.5398 0.5576 0.5895

JAGS uses C, so is easier to extend than WinBUGS.

15

Stan

Stan is similar to

BUGS, WinBUGS,

JAGS etc – but

new & improved;

• Coded in C++, for faster updating, it runs the No U-Turn

Sampler – cleverer than WinBUGS’ routines

• The rstan package lets you run chains from R, just like we

did with R2WinBUGS

• Some modeling limitations – no discrete parameters – but

becoming popular; works well with some models where

WinBUGS would struggle

• Basically the same modeling language as WinBUGS – but

Stan allows R-style vectorization

• Requires declarations (like C++) – unlike WinBUGS, or R –

so models require a bit more typing...

16

http://mc-stan.org/

Stan: HWE example

A Stan model for the HWE example

data {
int y[3];

}
parameters {

real<lower=0,upper=1> p;
}
transformed parameters {

simplex[3] theta;
theta[1] = p*p;
theta[2] = 2*p*(1-p);
theta[3] = (1-p)*(1-p);

}
model {

p~beta(0.5, 0.5);
y~multinomial(theta);

}

• More typing than BUGS!

• But experienced programmers will be used to this overhead

17

Stan: HWE example

With the model stored in HWEexample.stan (a text file) the rest
follows as before;

> library("rstan")
> stan1 <- stan(file = "HWEexample.stan", data = list(y=c(53,95,38)),
+ iter = 10000, chains = 1)
> print(stan1)
Inference for Stan model: HWEexample.
1 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=5000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
p 0.54 0.00 0.03 0.48 0.52 0.54 0.56 0.60 5000
theta[1] 0.29 0.00 0.03 0.23 0.27 0.29 0.31 0.36 5000
theta[2] 0.49 0.00 0.01 0.48 0.49 0.50 0.50 0.50 4541
theta[3] 0.21 0.00 0.03 0.16 0.19 0.21 0.23 0.27 5000
lp__ -192.17 0.02 0.87 -194.71 -192.44 -191.81 -191.57 -191.49 2762

Samples were drawn using NUTS(diag_e) at Tue Jul 26 14:13:31 2016.

• Iterations in the stan1 object can be used for other sum-
maries, graphs, etc
• lp is the log likelihood, used in (some) measures of model

fit

18

INLA

We’ve already seen various examples of Bayesian analysis using

Integrated Nested Laplace Approximation (INLA). For a (wide)

class of models known as Gaussian Markov Random Fields, it

gives a very accurate approximation of the posterior by ‘adding

up’ a series of Normals.

• This approximation is not stochastic – it is not a Monte Carlo

method

• Even with high-dimensional parameters, where MCMC works

less well/badly, INLA can be practical

• INLA is so fast that e.g. ‘leave-one-out’ & bootstrap

methods are practical – and can scale to GWAS-size analyses

• Fits most regression models – but not everything, unlike

MCMC

• Non-standard posterior summaries require more work than

manipulating MCMC’s posterior sample

19

INLA

The inla package in R has syntax modeled on R’s glm() function.
And with some data reshaping, our HWE example is a GLM;

> y <- c(53,95,38) # 2,1,0 copies of allele with frequency "p"
> n <- 186
> longdata <- data.frame(y=rep(2:0, y), ni=rep(2, n))
> # non-Bayesian estimate of log(p)/(1-log(p)) i.e. log odds
> glm1 <- glm(cbind(y,ni-y) ~ 1, data=longdata, family="binomial")
> expit <- function(x){exp(x)/(1+exp(x))}
> expit(coef(glm1))
(Intercept)

0.5403226
> expit(confint(glm1))

2.5 % 97.5 %
0.4895317 0.5905604
> inla1 <- inla(y~1, family="binomial", data=longdata, Ntrials=rep(2,n))
> summary(inla1)$fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.1616 0.104 -0.0422 0.1615 0.3661 0.1612 0
> expit(summary(inla1)$fixed[,3:5]) # posterior of "p"
0.025quant 0.5quant 0.975quant
0.4894516 0.5402875 0.5905163

For non-default priors, see the examples on the course site.

20

	Off-the-shelf MCMC
	Bayes: WinBUGS
	WinBUGS: HWE example
	WinBUGS: less pointy-clicky
	Stan
	Stan: HWE example
	INLA

