Bayesian Statistics for Genetics
10b Guided tour of software

Ken Rice

UW Dept of Biostatistics

July, 2017

Off-the-shelf MCMC

Recall the big picture of Bayesian computation;

e2

0, 0,

We want a large sample from some distribution — i.e. the
posterior. It does not matter if we get there by taking

independent samples, or via some form of dependent sampling.
(Gibbs Sampling, here)

Off-the-shelf MCMC

Once we have a big sample...

Sample (points) approximate distribution (contours)

X

Any property of the actual posterior (contours) can be approxi-
mated by the empirical distribution of the samples (points)

Off-the-shelf MCMC

Markov Chain Monte Carlo (MCMC) is the general term for
sampling methods that use Markov Chain processes to ‘explore’
the parameter space; the (many) random process values form
our approximation of the posterior.

But in many settings this ‘walking around’ is mundane; once we
specify the model and priors, the process of getting samples from
the posterior can be done with no original thought — i.e. we can
get a computer to do it.

Some example of this labor-saving approach;

e WIinBUGS (next)
o ... or JAGS, OpenBUGS, NIMBLE and Stan
e INLA — not a Monte Carlo method

The R Task Views on Genetics and Bayesian inference may also
have specialized software; see also Bioconductor.

3

http://www.mrc-bsu.cam.ac.uk/software/bugs/
https://martynplummer.wordpress.com/
http://openbugs.net/w/FrontPage
https://bids.berkeley.edu/research/nimble-numerical-inference-hierarchical-models-using-bayesian-and-likelihood-estimation
http://mc-stan.org/
http://www.r-inla.org/download
https://cran.r-project.org/web/views/Genetics.html
https://cran.r-project.org/web/views/Bayesian.html
http://bioconductor.org/

Bayes: WIinBUGS

W T Started in 1989, the Bayesian analysis Using Gibbs

Y, v, Sampling (BUGS) project has developed software

9 where users specify only model and prior — everything

. else is internal. WinBUGS is the most comprehensive
BUGS yersion.

e The model/prior syntax is very similar to R

e ... with some annoying wrinkles — variance/precision, also
column major ordering in matrices

e Can be ‘called’ from R — see e.g. R2WinBUGS, but you still need
to code the model

Child cancers 'not caused Before we try it on GLMMs, a tiny GLM
by Sellafield’
example (n=1,Y = 4);

Y0 ~ Pois(Eexp(6))
9 ~ N(0,1.797%)
E = 0.25

Bayes: WIinBUGS

One (sane) way to code this in the BUGS language;

model{
Y~dpois(lambda) ...Poisson distribution, like R
lambda <- Exexp(theta) ...syntax follows R
E <- 0.25 ...constants could go in data
theta~dnorm(m,tau) ...prior for 6
m <- 0
tau <- 1/v tau = precision NOT variance!
v <= 1.797%1.797
} ...finish the model
#data
list(Y=4) Easiest way to input data
#inits

list(theta=0) Same list format; or use gen.inits

Bayes: WIinBUGS

Notes on all this; (not a substitute for reading the manuall)

e T his should look familiar, from the models we have been
writing out. In particular ‘~' is used to denote distributions
of data and parameters

e All ‘nodes’ appear once on the LHS; hard work is done on
RHS

e No formulae allowed when specifying distributions

e Data nodes must have distributions. Non-data nodes must
have priors — it's easy to forget these

e Write out regressions ‘by hand’; beta0 + betal*xl + ...

e T his language can't do everything; BUGS does not allow e.g.
Y<<-U+V
U~dnorm(meanu,tauu); V~dt(meanv,tauv,k)

#data
list(Y=...)

Bayes: WinBUGS

From 10,000 iterations, how do we do? (Note ‘MC error’
estimates Monte Carlo error in the posterior mean)

Histogram of WinBUGS output

0.8
I

—— prior
— likelihood
—— posterior

density
0.4 0.6

0.2

0.0
L

theta

node mean sd MC error 2.5% median 97.5%
theta 2.422 0.5608 0.005246 1.229 2.466 3.388

Bayes: WinBUGS

Under the hood, here’'s how WinBUGS ‘thinks’;

@ e o It's a DAG; arrows represent

stochastic relationships (not causal-
ity)
e @ e Some texts use square nodes for
observed variables (Y, here)
e To do a Gibbs update, we need
° to know/work out the distribution
of a node conditional on only its
parents, children, and its children’s
other parents*.

* This set is a node’s ‘Markov blanket’. The idea saves a lot of effort, and

is particularly useful when fitting random effects models.

winBUGS: HWE example

A multinomial example, with a default prior;

Y ~ Multinomial(n,8)
where 8 = (p2,2p(1 —p), (1 —p)?)
p ~ Beta(0.5,0.5).

And a typical way to code it in “the BUGS language’”;

modelq{
y[1:3] ~ dmulti(thetal], n)
thetal[l] <- p*p
theta[2] <- 2*xpx(1-p)
thetal[3] <- (1-p)*(1-p)
p ~ dbeta(0.5, 0.5)

winBUGS: HWE example

We have n = 186,
and Y = (53,95,38).

We will run 3 chains,
starting at p = 0.5,
0.1 and 0.9.

In WinBUGS, input
these by highlighting
two list objects:

Data
1list (y=c(53,95,38) ,n=186)

6,

Q
-

Q _
o

0.6
I

Observed proportions

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Initial values
1list(p=0.5)
1list(p=0.1)
1list (p=0.9)

10

wWinBUGS: HWE example

WinBUGS unlovely but functional in-house output;

untitled1 = Eol™<=
p chains 1:3 ~
0.7
06
05F
04F
T T T T Ll
1 2500 5000 7500 10000
iteration
node mean sd MC error 2.5% median 97.5% start sample
p 0.5405 0.02601 1.586E-4 0.4895 0.5405 0.5914 501 28500
p chains 1:3 sample: 28500
1501
100
50
0.0f

0.4 05 06 0.7

v

The posterior has 95% support for p € (0.49, 0.59), the posterior
mean = posterior median = 0.54. Use coda to get the chain(s).

11

WIinBUGS: less pointy-clicky

Apart from coming up with the model, everything can be
automated, using R’'s R2WinBUGS package;

library("R2WinBUGS")
hweout <- bugs(data=list(y=c(53,95,38),n=186),
inits=1ist(p=0.5, p=0.1, p=0.9),
parameters.to.save=c("p"),
model.file="hweprog.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=FALSE)

e Model code now in a separate
file (hweprog.txt)

e Specify the data and initial values as R structures

e lell R where to
find WinBUGS

e [he output is stored in hweout, an R object — no need to go
via coda

e VWhen debugging, pointy-clicky WinBUGS is still useful

e See next slide for less-clunky graphics

12

WiIinBUGS: less pointy-clicky

> print (hweout, digits=3)
Inference for Bugs model at "hweprog.txt", fit using WinBUGS,
3 chains, each with 10000 iterations (first 500 discarded)
n.sims = 28500 iterations saved
mean sd 2.5 50% 97 .5% Rhat n.eff
0.540 0.026 0.490 0.541 0.590 1.001 28000.000
For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

0.65

Vo TN e
o
o a |
o
o _
S 1 l z I
= <] f‘ N | :
()
1 S i =
B8 0
o
N - o -
S T I I I | I I I |
0 100 200 300 400 0.45 0.50 0.55 0.60
iteration p

13

WIinBUGS: less pointy-clicky

e As well as the Markov blanket idea, WinBUGS uses what it
knows about conjugacy to substitute closed form integrals
in the calculations, where it can. (e.g. using inverse-gamma
priors on Normal variances)

e Otherwise, it chooses from a hierarchy of sampling methods
— though these are not cutting-edge

e Because of its generality, and the complexity of turning a
model into a sampling scheme, don't expect too much help
from the error messages

e Even when the MCMC is working correctly, it is possible
you may be fitting a ridiculous, unhelpful model. WinBUGS’
authors assume you take responsibility for that

Also, while Gibbs-style sampling works well in many situations,
for some problems it’s not a good choice. If unsure, check the
literature to see what's been tried already.

14

WIinBUGS: less pointy-clicky

WinBUGS is no longer updated, but it's pointy-clicky interface
remains a good place to get started. The BUGS language, de-
scribing models, is now used in JAGS, NIMBLE and OpenBUGS.
Here's rjags using the exact same model file we just saw;

> library("rjags")
> jagsl <- jags.model("hweprog.txt", data=list(y=c(53,95,38),n=186))
> update(jagsl, 10000)
> summary(coda.samples(jagsl, "p", n.iter=10000))
Iterations = 11001:21000
Thinning interval = 1
Number of chains =1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
0.5398583 0.0258055 0.0002581 0.0003308
2. Quantiles for each variable:
2.5% 25% 50% 75% 97 .5%
0.4890 0.5225 0.5398 0.5576 0.5895

JAGS uses C, so is easier to extend than WinBUGS.
15

Stan

Stan is similar to
BUGS, WinBUGS,
JAGS etc — but
new & improved:

e Coded in C+-+, for faster updating, it runs the No U-Turn
Sampler — cleverer than WinBUGS' routines

e T he rstan package lets you run chains from R, just like we
did with R2WinBUGS

e Some modeling limitations — no discrete parameters — but
becoming popular; works well with some models where
WinBUGS would struggle

e Basically the same modeling language as WinBUGS — but
Stan allows R-style vectorization

e Requires declarations (like C++) — unlike WinBUGS, or R —
SO models require a bit more typing...

16

http://mc-stan.org/

Stan: HWE example

A Stan model for the HWE example

data {
int y[3];
+
parameters {
real<lower=0,upper=1> p;
+
transformed parameters {
simplex[3] theta;

theta[l] = p*p;
thetal[2] = 2*p*(1-p);
thetal[3] = (1-p)*(1-p);
}
model {
p~beta(0.5, 0.5);
y multinomial (theta) ;
+

e More typing than BUGS!

e But experienced programmers will be used to this overhead

17

Stan: HWE example

With the model stored in HWEexample.stan (a text file) the rest
follows as before;

> library("rstan")

> stanl <- stan(file = "HWEexample.stan", data = 1list(y=c(53,95,38)),
+ iter = 10000, chains = 1)

> print(stanl)

Inference for Stan model: HWEexample.

1 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=5000.

mean se_mean sd 2.5% 25%, 507, 75% 97.5% n_eff
p 0.54 0.00 0.03 0.48 0.52 0.54 0.56 0.60 5000
thetal1] 0.29 0.00 0.03 0.23 0.27 0.29 0.31 0.36 5000
thetal[2] 0.49 0.00 0.01 0.48 0.49 0.50 0.50 0.50 4541
thetal[3] 0.21 0.00 0.03 0.16 0.19 0.21 0.23 0.27 5000
lp__ -192.17 0.02 0.87 -194.71 -192.44 -191.81 -191.57 -191.49 2762

Samples were drawn using NUTS(diag_e) at Tue Jul 26 14:13:31 2016.

e Iterations in the stanl object can be used for other sum-
maries, graphs, etc
e 1p__ is the log likelihood, used in (some) measures of model
fit
18

INLA

We've already seen various examples of Bayesian analysis using
Integrated Nested Laplace Approximation (INLA). For a (wide)
class of models known as Gaussian Markov Random Fields, it
gives a very accurate approximation of the posterior by ‘adding
up’ a series of Normals.

e [his approximation is not stochastic — it is not a Monte Carlo
method

e Even with high-dimensional parameters, where MCMC works
less well/badly, INLA can be practical

e INLA is so fast that e.q. ‘leave-one-out’ & bootstrap
methods are practical — and can scale to GWAS-size analyses

e Fits most regression models — but not everything, unlike
MCMC

e Non-standard posterior summaries require more work than
manipulating MCMC's posterior sample

19

INLA

The inla package in R has syntax modeled on R's glm() function.
And with some data reshaping, our HWE example is a GLM;

>y <- c(53,95,38) # 2,1,0 copies of allele with frequency "p"
> n <- 186
> longdata <- data.frame(y=rep(2:0, y), ni=rep(2, n))
> # non-Bayesian estimate of log(p)/(1-log(p)) i.e. log odds
> glml <- glm(cbind(y,ni-y) ~ 1, data=longdata, family="binomial")
> expit <- function(x){exp(x)/(1+exp(x))}
> expit(coef (glml))
(Intercept)
0.5403226
> expit(confint (glml))
2.5 % 97.5 %
0.4895317 0.5905604
> inlal <- inla(y~1, family="binomial", data=longdata, Ntrials=rep(2,n))
> summary(inlal) $fixed
mean sd 0.02bquant O.5quant 0.975quant mode kld
(Intercept) 0.1616 0.104 -0.0422 0.1615 0.3661 0.1612 O
> expit(summary(inlal)$fixed[,3:5]) # posterior of "p"
0.025quant O0.5quant 0.975quant
0.4894516 0.5402875 0.5905163

For non-default priors, see the examples on the course site.
20

	Off-the-shelf MCMC
	Bayes: WinBUGS
	WinBUGS: HWE example
	WinBUGS: less pointy-clicky
	Stan
	Stan: HWE example
	INLA

