Bayesian Theory and Computation

Lecture 3: Monte Carlo Methods

Cheng Zhang
School of Mathematical Sciences, Peking University
March 19, 2021
－We saw previously that in certain situations，the posterior distribution has a closed form（e．g．，when the prior is conjugate），and the integrals are tractable．
－For many other problems，however，finding the posterior distribution and obtaining the expectation are far from trivial．
－Remember that even for the case of simple normal distribution with two parameters，the posterior didn＇t have a closed form unless we were willing to use noninformative priors or tie the variance of the mean to the variance of the data．
－In the following few lectures，we focus on problems where the posterior distribution is not analytically tractable．
－For this，we need to learn about Monte Carlo methods and Markov chain stochastic processes．
－Suppose we are interested in estimating $I(h)=\int_{a}^{b} h(x) d x$
－If we can draw iid samples，$x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ uniformly from (a, b) ，we can approximate the integral as

$$
\hat{I}_{n}=(b-a) \frac{1}{n} \sum_{i=1}^{n} h\left(x^{(i)}\right)
$$

－Note that we can think about the integral as

$$
(b-a) \int_{a}^{b} h(x) \cdot \frac{1}{b-a} d x
$$

where $\frac{1}{b-a}$ is the density of $\operatorname{Uniform}(a, b)$
－In general，we are interested in integrals of the form $\int_{\mathcal{X}} h(x) f(x) d x$ ，where $f(x)$ is a probability density function
－Analogous to the above argument，we can approximate this integral（or expectation）by drawing iid samples $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ from the density $f(x)$ and then

$$
\hat{I}=\frac{1}{n} \sum_{i=1}^{n} h\left(x^{(i)}\right)
$$

－Based on the law of large numbers，we know that

$$
\lim _{n \rightarrow \infty} \hat{I}_{n} \xrightarrow{p} I
$$

－And based on the central limit theorem

$$
\sqrt{n}\left(\hat{I}_{n}-I\right) \rightarrow \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2}=\operatorname{Var}(h(X))
$$

－Let $h(x)=\mathbf{1}_{B(0,1)}(x)$ ，then $\pi=4 \int_{[-1,1]^{2}} h(x) \cdot \frac{1}{4} d x$
－Monte Carlo estimate of π

$$
\begin{gathered}
\hat{I}_{n}=\frac{4}{n} \sum_{i=1}^{n} \mathbf{1}_{B(0,1)}\left(x^{(i)}\right) \\
x^{(i)} \sim \operatorname{Uniform}\left([-1,1]^{2}\right)
\end{gathered}
$$

Monte Carlo estimate of π (with 90% confidence interval)

－Convergence rate for Monte Carlo： $\mathcal{O}\left(n^{-1 / 2}\right)$

$$
p\left(\left|\hat{I}_{n}-I\right| \leq \frac{\sigma}{\sqrt{n \delta}}\right) \geq 1-\delta, \quad \forall \delta
$$

often slower than quadrature methods $\left(\mathcal{O}\left(n^{-2}\right)\right.$ or better $)$
－However，the convergence rate of Monte Carlo does not depend on dimensionality
－On the other hand，quadrature methods are difficult to extend to multidimensional problems，because of the curse of dimensionality．The actual convergence rate becomes $\mathcal{O}\left(n^{-k / d}\right)$ ，for any order k method in dimension d
－This makes Monte Carlo strategy very attractive for high dimensional problems
－Monte Carlo methods require sampling a set of points chosen randomly from a probability distribution
－For simple distribution $f(x)$ whose inverse cumulative distribution functions（CDF）exists，we can sampling x from f as follows

$$
x=F^{-1}(u), \quad u \sim \operatorname{Uniform}(0,1)
$$

where F^{-1} is the inverse CDF of f
－Proof．

$$
p(a \leq x \leq b)=p(F(a) \leq u \leq F(b))=F(b)-F(a)
$$

－Exponential distribution：$f(x)=\theta \exp (-\theta x)$ ．The CDF is

$$
F(a)=\int_{0}^{a} \theta \exp (-\theta x)=1-\exp (-\theta a)
$$

therefore，$x=F^{-1}(u)=-\frac{1}{\theta} \log (1-u) \sim f(x)$ ．Since $1-u$ also follows the uniform distribution，we often use $x=-\frac{1}{\theta} \log (u)$ instead
－Normal distribution：$f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$ ．Box－Muller Transform

$$
\begin{aligned}
X & =\sqrt{-2 \log U_{1}} \cos 2 \pi U_{2} \\
Y & =\sqrt{-2 \log U_{1}} \sin 2 \pi U_{2}
\end{aligned}
$$

where $U_{1} \sim \operatorname{Uniform}(0,1), \quad U_{2} \sim \operatorname{Uniform}(0,1)$

PEKING UNIVERSITY
－Assume $Z=(X, Y)$ follows the standard bivariate normal distribution．Consider the following transform

$$
X=R \cos \Theta, \quad Y=R \sin \Theta
$$

－From symmetry，clearly Θ follows the uniform distribution on the interval $(0,2 \pi)$ and is independent of R
－What distribution does R follow？Let＇s take a look at its CDF

$$
\begin{aligned}
p(R \leq r) & =p\left(X^{2}+Y^{2} \leq r^{2}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{r} t \exp \left(-\frac{t^{2}}{2}\right) d t \int_{0}^{2 \pi} d \theta=1-\exp \left(-\frac{r^{2}}{2}\right)
\end{aligned}
$$

Therefore，using the inverse CDF rule，$R=\sqrt{-2 \log U_{1}}$
－If it is difficult or computationally intensive to sample directly from $f(x)$（as described above），we need to use other strategies
－Although it is difficult to sample from $f(x)$ ，suppose that we can evaluate the density at any given point up to a constant $f(x)=f^{*}(x) / Z$ ，where Z could be unknown （remember that this make Bayesian inference convenient since we usually know the posterior distribution only up to a constant）
－Furthermore，assume that we can easily sample from another distribution with the density $g(x)=g^{*}(x) / Q$ ， where Q is also a constant
－Now we choose the constants c such that $c g^{*}(x)$ becomes the envelope（blanket）function for $f^{*}(x)$ ：

$$
c g^{*}(x) \geq f^{*}(x), \quad \forall x
$$

－Then，we can use a strategy known as rejection sampling in order to sample from $f(x)$ indirectly
－The rejection sampling method works as follows
1．draw a sample x from $g(x)$
2．generate $u \sim \operatorname{Uniform}(0,1)$
3．if $u \leq \frac{f^{*}(x)}{c g^{*}(x)}$ we accept x as the new sample，otherwise， reject x（discard it）
4．return to step 1

Rejection Sampling

Rejection sampling generates samples from the target density， no approximation involved

$$
\begin{aligned}
p\left(X^{R} \leq y\right) & =p\left(X^{g} \leq y \left\lvert\, U \leq \frac{f^{*}\left(X^{g}\right)}{c g^{*}\left(X^{g}\right)}\right.\right) \\
& =p\left(X^{g} \leq y, U \leq \frac{f^{*}\left(X^{g}\right)}{c g^{*}\left(X^{g}\right)}\right) / p\left(U \leq \frac{f^{*}\left(X^{g}\right)}{c g^{*}\left(X^{g}\right)}\right) \\
& =\frac{\int_{-\infty}^{y} \int_{0}^{\frac{f^{*}(z)}{c g^{*}(z)}} d u g(z) d z}{\int_{-\infty}^{\infty} \int_{0}^{\frac{f^{*}(z)}{c g^{*}(z)}} d u g(z) d z} \\
& =\int_{-\infty}^{y} f(z) d z
\end{aligned}
$$

－Assume that it is difficult to sample from the $\operatorname{Beta}(3,10)$ distribution（this is not the case of course）
－We use the Uniform $(0,1)$ distribution with $g(x)=1, \forall x \in[0,1]$ ，which has the envelop proporty： $4 g(x)>f(x), \forall x \in[0,1]$ ．The following graph shows the result after 3000 iterations

Advanced Rejection Sampling

Rejection sampling becomes challenging as the dimension of x increases．A good rejection sampling algorithm must have three properties
－It should be easy to construct envelops that exceed the target everywhere
－The envelop distributions should be easy to sample
－It should have a low rejection rate

Squeezed Rejection Sampling

－When evaluating f^{*} is computationally expensive，we can improve the simulation speed of rejection sampling via squeezed rejection sampling
－Squeezed rejection sampling reduces the evaluation of f via a nonnegative squeezing function s that does not exceed f^{*} anywhere on the support of $f: s(x) \leq f^{*}(x), \forall x$
－The algorithm proceeds as follows：
1．draw a sample x from $g(x)$
2．generate $u \sim \operatorname{Uniform}(0,1)$
3．if $u \leq \frac{s(x)}{c g^{*}(x)}$ ，we accept x as the new sample，return to step 1

4．otherwise，determine whether $u \leq \frac{f^{*}(x)}{c g^{*}(x)}$ ．If this inequality holds，we accept x as the new sample，otherwise，we reject it．
5．return to step 1

Squeezed Rejection Sampling

Remark: The proportion of iterations in which evaluation of f is avoided is $\int s(x) d x / \int e(x) d x$

－For a continuous，differentiable，log－concave density on a connected region of support，we can adapt the envelope construction（Gilks and Wild，1992）
－Let $T=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of k starting points．
－We first sample x^{*} from the piecewise linear upper envelop $e(x)$ ，formed by the tangents to the log－likelihood ℓ at each point in T_{k} ．

PEKING UNIVERSITY

－To sample from the upper envelop，we need to transform from log space by exponentiating and using properties of the exponential distribution
－We then either accept or reject x^{*} as in squeeze rejection sampling，with $s(x)$ being the piecewise linear lower bound formed from the chords between adjacent points in T
－Add x^{*} to T whenever the squeezing test fails．
－For more complex distributions，we can use a Markov chain process to generate samples（which would not be independent anymore）and approximate the target distribution．
－This method is known as Markov chain Monte Carlo （MCMC）technique．
－However，we first need to discuss Markov chains and stochastic processes in general．
－Stochastic processes is a family of random variables， usually indexed by a set of numbers（time）．A discrete time stochastic process is simply a sequence of random variables， $X_{0}, X_{1}, \ldots, X_{n}$ defined on the same probability space
－One of the simplest stochastic processes（and one of the most useful）is the simple random walk
－Consider a simple random walk on a graph $G=(\Omega, E)$ ． The stochastic process starts from an initial position $X_{0}=x_{0} \in \Omega$ ，and proceeds following a simple rule：

$$
p\left(X_{n+1} \mid X_{n}=x_{n}\right) \sim \operatorname{Discrete}\left(\mathcal{N}\left(x_{n}\right)\right), \forall n \geq 0
$$

where $\mathcal{N}\left(x_{n}\right)$ denotes the neighborhood of x_{n}

- Consider a sequence of iid random variables $\left\{Z_{i}\right\}$ such that $p\left(Z_{i}=1\right)=p, p\left(Z_{i}=-1\right)=1-p$. A one dimension
random work process can be defined as
$X_{0}=a, X_{n}=a+Z_{1}+\cdots+Z_{n}$.
- The distribution of X_{n}

$$
p\left(X_{n}=a+k\right)=\binom{n}{(n+k) / 2} p^{(n+k) / 2}(1-p)^{(n-k) / 2}
$$

Two random walks on a 20×20 grid graph

－The above simple random walk is a special case of another well－known stochastic process called Markov chains
－A Markov chain represents the stochastic movement of some particle in the state space over time．The particle initially starts from state i with probability $\pi_{i}^{(0)}$ ，and after that moves from the current state i at time t to the next state j with probability $p_{i j}(t)$
－A Markov chain has three main elements：
1．A state space \mathcal{S}
2．An initial distribution $\pi^{(0)}$ over \mathcal{S}
3．Transition probabilities $p_{i j}(t)$ which are non－negative numbers representing the probability of going from state i to j ，and $\sum_{j} p_{i j}(t)=1$ ．
－When $p_{i j}(t)$ does not depend on time t ，we say the Markov chain is time－homegenous
－Chain rule（in probability）

$$
p\left(X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right)=\prod_{i=1}^{n} p\left(X_{i}=x_{i} \mid X_{<i}=x_{<i}\right)
$$

－Markov property

$$
p\left(X_{i+1}=x_{i+1} \mid X_{i}=x_{i}, \ldots, X_{0}=x_{0}\right)=p\left(X_{i+1}=x_{i+1} \mid X_{i}=x_{i}\right)
$$

－Joint probability with Markov property

$$
p\left(X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right)=\prod_{i=1}^{n} p\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right)
$$

fully determined by the transition probabilities
－Consider the 2000 US presidential election with three candidates：Gore，Bush and Nader（just an illustrative example and does not reflect the reality of that election）
－We assume that the initial distribution of votes（i．e．， probability of winning）was $\pi=(0.49,0.45,0.06)$ for Gore， Bush and Nader respectively
－Further，we assume the following transition probability matrix

	Gore	Bush	Nader
Gore	0.94	0.05	0.01
Bush	0.05	0.95	0
Nader	0.05	0.01	0.94

A probabilistic graph presentation of the Markov chain

－If we represent the transition probability a square matrix P such that $P_{i j}=p_{i j}$ ，we can obtain the distribution of states in step $n, \pi^{(n)}$ ，as follows

$$
\pi^{(n)}=\pi^{(n-1)} P=\ldots=\pi^{(0)} P^{n}
$$

－For the above example，we have

$$
\begin{aligned}
\pi^{(0)} & =(0.4900,0.4500,0.0600) \\
\pi^{(10)} & =(0.4656,0.4655,0.0689) \\
\pi^{(100)} & =(0.4545,0.4697,0.0758) \\
\pi^{(200)} & =(0.4545,0.4697,0.0758)
\end{aligned}
$$

－As we can see last，after several iterations，the above Markov chain converges to a distribution， （ $0.4545,0.4697,0.0758$ ）
－In this example，the chain would have reached this distribution regardless of what initial distribution $\pi^{(0)}$ we chose．Therefore，$\pi=(0.4545,0.4697,0.0758)$ is the stationary distribution for the above Markov chain
－Stationary distribution．A distribution of Markov chain states is called to be stationary if it remains the same in the next time step，i．e．，

$$
\pi=\pi P
$$

Stationary Distribution

－How can we find out whether such distribution exists？
－Even if such distribution exists，is it unique or not？
－Also，how do we know whether the chain would converge to this distribution？
－To find out the answer，we briefly discuss some properties of Markov chains
－Irreducible：A Markov chain is irreducible if the chain can move from any state to another state．
－Examples
－The simple random walk is irreducible
－The following chain，however，is reducible since Nader does not communicate with the other two states（Gore and Bush）

	Gore	Bush	Nader
Gore	0.95	0.05	0
Bush	0.05	0.95	0
Nader	0	0	1

－Period：the period of a state i is the greatest common divisor of the times at which it is possible to move from i to i ．
－For example，all the states in the following Markov chain have period 3 ．

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

－Aperiodic：a Markov chain is said to be aperiodic if the period of each state is 1 ，otherwise the chain is periodic．
－Recurrent states：a state i is called recurrent if with probability 1，the chain would ever return to state i given that it started in state i ．

	Gore	Bush	Nader
Gore	0.94	0.05	0.01
Bush	0.05	0.95	0
Nader	0.05	0.01	0.94

－Positive recurrent：a recurrent state j is called positive recurrent if the expected amount of time to return to state j given that the chain started in state j is finite
－For a positive recurrent Markov chain，the stationary distribution exists and is unique
－Reversibility：a Markov chain is said to be reversible with respect to a probability distribution π if $\pi_{i} p_{i j}=\pi_{j} p_{j i}$
－In fact，if a Markov chain is reversible with respect to π ， then π is also a stationary distribution

$$
\begin{aligned}
\sum_{i} \pi_{i} p_{i j} & =\sum_{i} \pi_{j} p_{j i} \\
& =\pi_{j} \sum_{i} p_{j i} \\
& =\pi_{j}
\end{aligned}
$$

since $\sum_{i} p_{j i}=1$ for all transition probability matrices
－This is also known as detailed balance condition．
－We can define a Markov chain on a general state space \mathcal{X} with initial distribution $\pi^{(0)}$ and transition probabilities $p(x, A)$ defined as the probability of jumping to the subset A from point $x \in \mathcal{X}$
－Similarly，with Markov property，we have the joint probability

$$
p\left(X_{0} \in A_{0}, \ldots, X_{n} \in A_{n}\right)=\int_{A_{0}} \pi^{(0)}\left(d x_{0}\right) \ldots \int_{A_{n}} p\left(x_{n-1}, d x_{n}\right)
$$

－Example．Consider a Markov chain with the real line as its state space．The initial distribution is $\mathcal{N}(0,1)$ ，and the transition probability is $p(x, \cdot)=\mathcal{N}(x, 1)$ ．This is just a Brownian motion（observed at discrete time）

ϕ－irreducibility and ϕ－aperiodicity

－Unlike the discrete space，we now need to talk about the property of Markov chains with a continuous non－zero measure ϕ ，on \mathcal{X} ，and use sets A instead of points
－A chain is ϕ－irreducible if for all $A \subseteq \mathcal{X}$ with $\phi(A)>0$ and for all $x \in \mathcal{X}$ ，there exists a positive integer n such that

$$
p^{n}(x, A)=p\left(X_{n} \in A \mid X_{0}=x\right)>0
$$

－Similarly，we need to modify our definition of period
－A distribution π is a stationary distribution if

$$
\pi(A)=\int_{\mathcal{X}} \pi(d x) p(x, A), \quad \forall A \subseteq \mathcal{X}
$$

－As for the discrete case，a continuous space Markov chain is reversible with respect to π if

$$
\pi(d x) p(x, d y)=\pi(d y) p(y, d x)
$$

－Similarly，if the chain is reversible with respect to π ，then π is a stationary distribution
－Example．Consider a Markov chain on the real line with initial distribution $\mathcal{N}(1,1)$ and transition probability $p(x, \cdot)=\mathcal{N}\left(\frac{x}{2}, \frac{3}{4}\right)$ ．It is easy to show that the chain converges to $\mathcal{N}(0,1)$（Exercise）
－Ergodic：a Markov chain is ergodic if it is both irreducible and aperiodic，with stationary distribution π
－Ergodic Theorem．For an ergodic Markov chain on the state space \mathcal{X} having stationary distribution π ，we have：（i） for all measurable $A \subseteq \mathcal{X}$ and π－a．e．$x \in \mathcal{X}$ ，

$$
\lim _{t \rightarrow \infty} p^{t}(x, A)=\pi(A)
$$

（ii）$\forall f$ with $\mathbb{E}_{\pi}|f(x)|<\infty$ ，

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} f\left(X_{t}\right)=\int_{\mathcal{X}} f(x) \pi(x) d x, \quad \text { a.s. }
$$

In particular，π is the unique stationary probability density function for the chain
－P．J．Davis and P．Rabinowitz．Methods of Numerical Integration．Academic，New York， 1984.
－W．R．Gilks and P．Wild．Adaptive rejection sampling for Gibbs sampling．Applied Statistics，41：337－348， 1992.

