

Bayesian Cognitive Modeling

A Practical Course

Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.

Michael D. Lee is a professor in the Department of Cognitive Sciences at the University of California, Irvine.

Eric-Jan Wagenmakers is a professor in the Department of Psychological Methods at the University of Amsterdam.

Bayesian Cognitive Modeling

A Practical Course

MICHAEL D. LEE

ERIC-JAN WAGENMAKERS

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107603578

© Michael D. Lee and Eric-Jan Wagenmakers

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 Reprinted 2015

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01845-7 Hardback ISBN 978-1-107-60357-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

P	гејасе		page x
A	cknou	vledgements	xi
		Part I Getting started	1
1	The	e basics of Bayesian analysis	3
	1.1	General principles	3
	1.2	Prediction	5
	1.3	Sequential updating	6
	1.4	Markov chain Monte Carlo	7
	1.5	Goal of this book	11
	1.6	Further reading	13
2	Get	tting started with WinBUGS	16
	2.1	Installing WinBUGS, Matbugs, R, and R2WinBugs	16
	2.2	Using the applications	17
	2.3	Online help, other software, and useful URLs	32
		Part II Parameter estimation	35
3	Infe	erences with binomials	37
	3.1	Inferring a rate	37
	3.2	Difference between two rates	39
	3.3	Inferring a common rate	43
	3.4	Prior and posterior prediction	45
	3.5	Posterior prediction	47
	3.6	Joint distributions	49
4	Infe	erences with Gaussians	54
	4.1	Inferring a mean and standard deviation	54
	4.2	The seven scientists	56
	4.3	Repeated measurement of IQ	58

٧

vi Contents

_	C	or consider of data analysis	co
5		ne examples of data analysis Pearson correlation	60
	5.1 5.2		60 62
	5.2 5.3	Pearson correlation with uncertainty The lappe coefficient of agreement	65
	5.4	The kappa coefficient of agreement Change detection in time series data	68
	$5.4 \\ 5.5$	Censored data	70
	5.6	Recapturing planes	70
6		ent-mixture models	77
	6.1	Exam scores	77
	6.2	Exam scores with individual differences	79
	6.3	Twenty questions	82
	6.4	The two-country quiz	84
	6.5	Assessment of malingering	88
	6.6	Individual differences in malingering	90
	6.7	Alzheimer's recall test cheating	93
		Part III Model selection	99
7	Bay	yesian model comparison	101
	7.1	Marginal likelihood	101
	7.2	The Bayes factor	104
	7.3	Posterior model probabilities	106
	7.4	Advantages of the Bayesian approach	107
	7.5	Challenges for the Bayesian approach	110
	7.6	The Savage–Dickey method	113
	7.7	Disclaimer and summary	116
8	Cor	mparing Gaussian means	118
	8.1	One-sample comparison	119
	8.2	Order-restricted one-sample comparison	121
	8.3	Two-sample comparison	124
9	Comparing binomial rates		127
	9.1	Equality of proportions	127
	9.2	Order-restricted equality of proportions	129
	9.3	Comparing within-subject proportions	132
	9.4	Comparing between-subject proportions	136
	9.5	Order-restricted between-subjects comparison	139

vii Contents

	Part IV Case studies	143	
10 Me	emory retention	145	
10.1	No individual differences	146	
10.2	Full individual differences	149	
10.3	Structured individual differences	152	
11 Sig	nal detection theory	156	
11.1	Signal detection theory	156	
11.2	Hierarchical signal detection theory	161	
11.3	Parameter expansion	164	
12 Psy	ychophysical functions	168	
12.1	Psychophysical functions	168	
12.2	Psychophysical functions under contamination	172	
13 Ext	176		
	Evidence for optional stopping	177	
13.2	Evidence for differences in ability	180	
13.3	Evidence for the impact of extraversion	184	
14 Μι	14 Multinomial processing trees		
14.1	Multinomial processing model of pair-clustering	187	
14.2	Latent-trait MPT model	190	
15 Th	e SIMPLE model of memory	196	
15.1	The SIMPLE model	196	
15.2	A hierarchical extension of SIMPLE	201	
16 Th	e BART model of risk taking	206	
16.1	The BART model	207	
16.2	A hierarchical extension of the BART model	209	
17 Th	e GCM model of categorization	212	
17.1	The GCM model	212	
17.2	Individual differences in the GCM	216	
17.3	Latent groups in the GCM	218	
18 He	uristic decision-making	224	
18.1		224	
	Stopping	227	
	Searching	230	
18.4	Searching and stopping	234	

viii	Contents		
	19 Number concept development	237	
	19.1 Knower-level model for Give-N	238	
	19.2 Knower-level model for Fast-Cards	245	
	19.3 Knower-level model for Give-N and Fast-Cards	247	
	References	252	
	Index	263	

For Colleen and David, and Helen and Mitchell — Michael

ix

Preface

This book, together with the code, answers to questions, and other material at www.bayesmodels.com, teaches you how to do Bayesian modeling. Using modern computer software—and, in particular, the WinBUGS program—this turns out to be surprisingly straightforward. After working through the examples provided in this book, you should be able to build your own models, apply them to your own data, and draw your own conclusions.

This book is based on three principles. The first is that of accessibility: the book's only prerequisite is that you know how to operate a computer; you do not need any advanced knowledge of statistics or mathematics. The second principle is that of applicability: the examples in this book are meant to illustrate how Bayesian modeling can be useful for problems that people in cognitive science care about. The third principle is that of practicality: this book offers a hands-on, "just do it" approach that we feel keeps students interested and motivated.

In line with these three principles, this book has little content that is purely theoretical. Hence, you will not learn from this book why the Bayesian philosophy to inference is as compelling as it is; neither will you learn much about the intricate details of modern sampling algorithms such as Markov chain Monte Carlo, even though this book could not exist without them.

The goal of this book is to facilitate and promote the use of Bayesian modeling in cognitive science. As shown by means of examples throughout this book, Bayesian modeling is ideally suited for applications in cognitive science. It is easy to construct a basic model, and then add individual differences, add substantive prior information, add covariates, add a contaminant process, and so on. Bayesian modeling is flexible and respects the complexities that are inherent in the modeling of cognitive phenomena.

We hope that after completing this book, you will have gained not only a new understanding of statistics (yes, it can make sense), but also the technical skills to implement statistical models that professional but non-Bayesian cognitive scientists dare only dream about.

MICHAEL D. LEE Irvine, USA ERIC-JAN WAGENMAKERS Amsterdam, The Netherlands

Acknowledgements

The plan to produce this book was hatched in 2006. Since then, the core material has undergone a steady stream of additions and revisions. The revisions were inspired in part by students and colleagues who relentlessly suggested improvements, pointed out mistakes, and attended us to inconsistencies and inefficiencies. We would especially like to thank Ryan Bennett, Adrian Brasoveanu, Eddy Davelaar, Joram van Driel, Wouter Kruijne, Alexander Ly, John Miyamoto, James Negen, Thomas Palmeri, James Pooley, Don van Ravenzwaaij, Hedderik van Rijn, J. P. de Ruiter, Anja Sommavilla, Helen Steingroever, Wolf Vanpaemel, and Ruud Wetzels for their constructive comments and contributions. We are particularly grateful to Dora Matzke for her help in programming and plotting. Any remaining mistakes are the sole responsibility of the authors. A list of corrections and typographical errors will be available on www.bayesmodels.com. When you spot a mistake or omission that is not on the list please do not hesitate to email us at BayesModels@gmail.com.

The material in this book is not independent of our publications in the cognitive science literature. Sometimes, an article was turned into a book chapter; at other times, a book chapter spawned an article. Here we would like to acknowledge our published articles that contain text and figures resembling, to varying degrees, those used in this book. These articles often may be consulted for a more extensive and formal exposition of the material at hand.

Chapter 1: The basics of Bayesian analysis

 Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology, 60, 158–189.

Chapter 6: Latent-mixture models

Ortega, A., Wagenmakers, E.-J., Lee, M. D., Markowitsch, H. J., & Piefke, M. (2012).
 A Bayesian latent group analysis for detecting poor effort in the assessment of malingering. Archives of Clinical Neuropsychology, 27, 453–465.

Chapter 7: Bayesian model comparison

 Scheibehenne, B., Rieskamp, J., & Wagenmakers, E.-J. (2013). Testing adaptive toolbox models: A Bayesian hierarchical approach. *Psychological Review*, 120, 39–64.

хi

хii

Acknowledgements

 Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology, 60, 158–189.

Chapter 8: Comparing Gaussian means

Wetzels, R., Raaijmakers, J. G. W., Jakab, E., & Wagenmakers, E.-J. (2009). How
to quantify support for and against the null hypothesis: A flexible WinBUGS implementation of a default Bayesian t test. Psychonomic Bulletin & Review, 16,
752–760.

Chapter 9: Comparing binomial rates

 Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. *Cognitive Psychology*, 60, 158–189.

Chapter 10: Memory retention

 Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. *Cognitive Science*, 32, 1248–1284.

Chapter 11: Signal detection theory

- Lee, M. D. (2008). BayesSDT: Software for Bayesian inference with signal detection theory. *Behavior Research Methods*, *40*, 450–456.
- Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. *Psychonomic Bulletin & Review, 15*, 1–15.

Chapter 13: Extrasensory perception

- Wagenmakers, E.-J. (2012). Can people look into the future? Contribution in honor of the University of Amsterdam's 76th lustrum.
- Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An agenda for purely confirmatory research. *Perspectives on Psy-chological Science*, 7, 627–633.

Chapter 14: Multinomial processing trees

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (in press).
 Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. *Psychometrika*.

Chapter 15: The SIMPLE model of memory

 Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. *Cognitive Science*, 32, 1248–1284.

xiii

Acknowledgements

Chapter 16: The BART model of risk taking

 van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E.-J. (2011). Cognitive model decomposition of the BART: Assessment and application. *Journal of Mathematical Psychology*, 55, 94–105.

Chapter 17: Generalized context model

- Lee, M. D. & Wetzels, R. (2010). Individual differences in attention during category learning. In R. Catrambone & S. Ohlsson (Eds.), *Proceedings of the 32nd Annual Conference of the Cognitive Science Society*, pp. 387–392. Austin, TX: Cognitive Science Society.
- Bartlema, A., Lee, M. D., Wetzels, R., & Vanpaemel, W. (2012). Bayesian hierarchical mixture models of individual differences in selective attention and representation in category learning. Manuscript submitted for publication.

Chapter 18: Heuristic decision-making

• Lee, M. D. & Newell, B. R. (2011). Using hierarchical Bayesian methods to examine the tools of decision-making. *Judgment and Decision Making*, *6*, 832–842.

Chapter 19: Number concept development

- Lee, M. D. & Sarnecka, B. W. (2010). A model of knower-level behavior in number-concept development. *Cognitive Science*, *34*, 51–67.
- Lee, M. D. & Sarnecka, B. W. (2011). Number knower-levels in young children: Insights from a Bayesian model. *Cognition*, 120, 391–402.