
BDD-Based Algorithms for Packet Classification
Nina Narodytska
VMware Research

Leonid Ryzhyk
VMware Research

Igor Ganichev
Google

Soner Sevinc
Facebook

Abstract—Packet classifiers are the building blocks of modern
networking. A classifier determines the action to take on a
packet by matching its header against a set of rules. Efficient
classification is achieved by using associative memory to perform
the match operation in one clock cycle. This requires compressing
large rule sets to fit in the small associative memory space
available in modern network switches. We propose two symbolic
rule set compression algorithms based on binary decision dia-
grams. Following McGeer and Yalagandula, we formalize the
problem as that of obtaining a sequential cover of the rule
set. We develop a simple BDD-based algorithm for computing
sequential covers, which significantly outperforms state of the
art algorithms in terms of compression ratio—a surprising result
that highlights the unexplored potential of symbolic techniques
in packet classification. Despite this improvement, very large
industrial classifiers are still beyond reach. We decompose such
classifiers into a pipeline of smaller classifiers over subsets of
packet header fields. We then compress each classifier using the
sequential cover technique. Our algorithm is able to compress
industrial rule sets with hundreds of thousands rules to readily
fit in the memory of network switches.

I. INTRODUCTION

Modern datacenter, corporate, and telecom networks imple-
ment a rich set of functions, including firewalling, routing,
load balancing, and service chaining, to name a few. Inside
network switches, these functions are implemented as packet
classifiers, which determine the next action to perform on
the packet (e.g., drop or forward) by matching its headers
against a set of rules, e.g., ”Drop UDP packets sent from
hosts in the 172.16. ∗ .∗ IP subnet with destination port
numbers in the 554–680 range.” Moreover, multi-terabit-per-
second packet processing rates, supported in modern network
switches, require packet classification to complete in a short
and constant time. To this end, switches are equipped with
ternary content-addressable memories (TCAMs), also known
as associative memories, capable of matching a packet against
multiple rules in a single clock cycle.

Due to their high cost and power consumption, TCAMs
remain a limited resource. Current high-end switches are
equipped with thousands to tens of thousands of TCAM
entries. In contrast, real-world packet classifiers may consist of
hundreds of thousands rules. Whenever the rule set does not fit
in the TCAM of a single switch, the network administrator is
left with two options: (1) partition the rule set across multiple
switches, dramatically raising the cost and complexity of
network management, or (2) sacrifice performance by moving
a subset of rules to conventional memory.

Rule set compression mitigates the problem by computing
a smaller rule set equivalent to the original classifier. It can be

used to fit a large classifier in the TCAM of a single switch
or to enable integrated functionality by configuring a single
switch with multiple classifiers.

Rule set compression algorithms represent rules as hy-
percubes in the multidimensional space of packet headers,
seeking to cover the entire classifier with as few cubes as
possible. Since computing an optimal solution to this problem
is NP-hard [1], greedy heuristics are employed to reduce
the search space. Ultimately, finding a small cover within a
reasonable time frame depends on the ability of the algorithm
to efficiently compute unions and intersections of cubes.

Existing algorithms represent cubes explicitly. We argue
that significant speedup can be achieved by symbolically
representing and manipulating sets of cubes as Binary Decision
Diagrams (BDDs) [2]. In fact, simply by compiling the rule
set to a BDD we obtain a compact representation of all its
cubes. Furthermore, BDDs allow efficiently extracting prime
implicants, i.e., cubes that are not contained within any other
cube of the rule set. Based on this observation, we develop two
BDD-based algorithms for rule set compression. Following
McGeer and Yalagandula [3], we formulate the compression
problem as that of computing sequential cover of the rule set.
We propose a BDD-based algorithm for computing sequential
cover. Our algorithm outperforms state of the art rule set
compression algorithms, e.g., where the best known algorithm
achieves 50% compression ratio, we achieve 10x compression.

Next we apply the same approach to three very large real-
world classifiers with hundreds of thousands rules. To the best
of our knowledge, these are the largest rule sets reported in the
literature. We observe that on these rule sets, our algorithm still
does not achieve satisfactory compression ratio. We therefore
propose a new compression algorithm that decomposes the rule
set into a pipeline of packet classifiers, where each classifier
matches on a subset of packet header fields and computes a
tag used as input to the next classifier. Our decomposition is
based on the BDD-based functional decomposition technique
by Lai et al. [4]. We compress each classifier by computing
its sequential cover, as above.

We apply this algorithm to our real-world classifiers and
show that it achieves two to four orders of magnitude com-
pression on these classifiers, reducing them to readily fit into
the TCAM table space of modern switches.

Our contribution is a pair of algorithms that significantly
improve the state of the art in packet classification. To the
best of our knowledge, this work is the first to apply two well-
known logic minimization techniques—symbolic prime cover
computation and functional decomposition—in this space.

II. BACKGROUND

Boolean logic Let (z1, . . . , zl) be a set of Boolean variables.
A literal is a Boolean variable zi or its negation zi. A cube is
a conjunction of literals, e.g., z1z2z3. We denote c (zi1 ,...,zij)

the restriction of cube c on variables (zi1 , . . . , zij), obtained
by eliminating all literals over other variables. A cube c is
an implicant of a boolean function g : Bl → B iff c ⇒
g(z1, . . . , zl); c is a prime implicant iff it cannot be reduced,
i.e., the removal of any literal from c results in a non-implicant.
Packet classification A packet header is a fixed-size bit vector
X = (x1, . . . , xn), where a Boolean variable xi corresponds
to the ith bit of the header. Individual header bits are grouped
into fields, which represent source and destination IP addresses
of the packet, port numbers, etc.: X = (X1, . . . , Xl), where
bitvector Xj is the jth field of the header. A packet classifier
f : Bn → A maps a header into one of a finite set of
actions A, where B = {0, 1}. To encode classifiers to BDDs,
we represent f as a function F : Bn × A → B such
that (F (X,Y) = >) ≡ (f(X) = Y). We assume that
A is encoded using Boolean variables, for example A =
{ACCEPT,DENY } is encoded using a single Boolean.

Classifiers are represented as ordered lists of rules of the
form: R = ((m1, a1), . . . , (mk, ak)), where mj : Bn → B is
a match function that identifies a subset of the header space
and aj ∈ A is the action to perform on the packet when its
header belongs to this subset (note that aj are not required
to be distinct). The corresponding classifier FR picks the first
rule that matches the header:

FR(X,Y) = m1(X) ∧ (Y = a1)

∨ m1(X) ∧m2(X) ∧ (Y = a2) . . .

∨ m1(X) ∧ . . . ∧mk−1(X) ∧mk(X) ∧ (Y = ak)

(1)

To make sure that FR defines a unique action for any header,
the final rule (mk, ak) is a catch-all rule that matches all
headers: mk(X) ≡ >.
Rule languages Network switches equipped with TCAMs are
programmed using rules expressed in ternary form. Consider
a header field Xj = (z1, . . . , zp). A ternary constraint fixes a
subset of bits in Xj , leaving other bits unconstrained, i.e., it is
a cube over Xj . Prefix constraints, frequently used in practice,
are a special case of ternary constraints, that fix a prefix of
the bit vector. A ternary rule is a rule whose match function
is a conjunction of ternary constraints, one for each field Xj ,
j ∈ [1, l]. Equivalently, a ternary rule is a cube over X .

Example 1: Figure 1(a) shows an example ternary rule set
where xi are header variables and y is the action variable.

In writing network policies, network administrators often
use range constraints. A range constraint c1 ≤ Xj ≤ c2
interprets field Xj as an integer value stored using logarithmic
encoding and requires this value to be in the range [c1, c2].
Rules with range constraints can be decomposed into multiple
ternary rules by rewriting each range constraint as a disjunc-
tion of ternary constraints and taking a Cartesian product
across all range constraints in the rule.

x1

x2

x3

x4

x5

y

T

x1 x2 x3 x4 x5 y
0 0 0 0 0 1
0 0 1 1 0 1
1 1 0 0 0 1
1 1 1 1 0 1
0 0 0 0 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 1 1
1 * * * * 0
0 * * * * 0

x1 x2 x3 x4 x5 t
0 0 0 0 * 1
0 0 1 1 * 1
1 1 0 0 * 1
1 1 1 1 * 1
* * * * * 0

(a) (b) (c)

x1 x2 t
0 0 0
1 1 0
* * 1

t x3 x4 x5 y
0 0 0 * 1
0 1 1 * 1
* * * * 0

(d)

cut

v1

v2

x1 x2 x3 x4 x5

t

y

Fig. 1: Running example: (a) original classifier, (b) its BDD
encoding, (c) compressed rule set, (d) decomposition into a
sequence of two classifiers.

Algorithm 1 BDD-based sequential cover computation
1: function SEQCOVER(F)
2: F+ ← F , F− ← F , cover ← ()
3: while F− 6= ⊥ do
4: c← LARGESTCUBE(F−)
5: p← PRIMEIMPLICANT(c, F+)
6: cover ← cover + p
7: F+ ← F+ ∨ p X

8: F− ← F− ∧ p X

9: return cover

Modern network management software supports even richer
policy languages that allow various Boolean combinations
of range and ternary constraints. Such general rules can be
decomposed into ternary rules by flattening their Boolean
structure to Disjunctive Normal Form. Such expansion can
be too expensive in practice and therefore should be avoided.
BDDs A BDD [2] is a compressed canonical representation
of the binary decision tree of a Boolean function in the form
of a directed acyclic graph. Figure 1(b) shows a BDD of the
classifier specified in Figure 1(a).
Problem statement The rule set compression problem can be
defined as follows: given a rule set R, written using any rule
language, compute a minimal ternary rule set R′ such that
FR ≡ FR′ . Computing an optimal solution is NP-hard [1];
therefore in practice we aim to achieve the best possible
compression within a reasonable time frame.

III. COMPRESSION VIA SEQUENTIAL COVER

McGeer and Yalagandula [3] introduced the notion of
sequential cover for rule set compression. A sequential cover
of a classifier F (X,Y) is a set of cubes pj , j ∈ [1, u] over
variables X and Y such that (1) pjs cover the entire classifier:
F (X,Y)⇒

∨
j∈[1,u] pj , and (2) each pj is a prime implicant

of function F (X,Y) ∨
∨

i<j pi X .
This definition is similar to the classical notion of prime

cover, studied in logic synthesis [5]. There is, however, an
important distinction: the second condition above states that
each rule must only agree with F on headers not covered by
previous rules; the rest of the header space is the don’t care set
where the rule can disagree with F . In contrast, all implicants
in a prime cover must agree with F .

Name #R #ExpR#Nodes MDTC Flint
Rules Ratio Time(s) Rules Ratio Time(s)

cernet1 21 21 42 6 0.29 0 7 0.33 0.07
cernet2 39 39 165 37 0.95 0 35 0.90 0.15
cernet3 44 44 31 19 0.43 0 16 0.36 0.06
cernet4 52 52 112 52 1.00 0 18 0.35 0.11
cernet5 175 175 720 167 0.95 0.03 159 0.91 0.42
cernet6 664 664 686 515 0.78 0.05 439 0.66 1.03
cernet7 943 945 5161 881 0.93 0.14 843 0.89 4
cernet8 1491 1491 1664 1363 0.91 0.35 914 0.61 1

TABLE I: CERNET rule sets.
Name #R #ExpR #Nodes Flint

Rules Ratio Time(s)
acl-small 936 1305 1754 100 0.08 5
acl-large 9125 12.32K 15.97K 1385 0.11 267
fw-small 847 3382 6474 1311 0.39 44
fw-large 8737 35.71K 14.64K 6108 0.17 2076
ipc-small 916 1343 8360 566 0.42 33
ipc-large 8623 11.86K 12.91K 981 0.08 606

TABLE II: Synthetic benchmarks (reports means across all
rule sets in each benchmark).

Each pj in the sequential cover of F can be interpreted to
a rule r′j = (m′j , a

′
j), where m′j = pj X and a′j is obtained by

extracting the action from pj Y . The resulting rule set R′ =
((m′1, a

′
1), . . . , (m

′
u, a
′
u)) is equivalent to R. A minimal rule

set is an optimal solution to the rule set compression problem.
Example 2: Figure 1(c) shows a sequential cover of the

classifier in Figure 1(a). Note that the last rule (∗ ∗ ∗ ∗ ∗0)
is not an implicant of the classifier, since not all assignments
of x1 . . . x5 map to action 0. However, it is an implicant of
the classifier with the header space covered by previous rules
added to its don’t care set, since all assignments of x1 . . . x5

not covered by previous rules map to 0.
Algorithm 1 shows our BDD-based algorithm for computing
a sequential cover. It takes a packet classifier F and returns a
subset F− of F not covered by the implicants computed so far,
and a superset F+ that includes the don’t care set covered by
the previous implicants. Sets F , F+ and F− are represented
as BDDs and all operations on them are performed in the BDD
form. The main loop of the algorithm computes a single new
implicant on every iteration by first extracting a largest cube
(i.e., a cube with the smallest number of literals) from F−,
which corresponds to a shortest path from the root to a leaf
of the BDD. It then extends this cube to a prime implicant of
F+ by greedily removing literals from the cube so that the
resulting cube is still in F+. Note that the algorithm is not
guaranteed to produce a minimal sequential cover.
Performance We implemented Algorithm 1 in a tool called
Flint using the CUDD BDD library [6]. We encode packet
classifier FR into a BDD using formula 1. We use the group
sifting [7] dynamic variable reordering heuristic, grouping
variables that belong to the same field, to reduce the size of
the resulting BDD. Due to the sensitive nature of real-world
rule sets, very few of them are publicly available. We therefore
use a mix of synthetic and real-world benchmarks in our eval-
uation. First, we use two datasets from [8]. The first of these
datasets consists of 8 classifiers extracted from the CERNET
network. The second dataset consists of 12 synthetic access
control list (ACL) rule sets generated using the ClassBench
tool [9]. We generate 5 additional synthetic datasets using

ClassBench. These datasets fall into three categories: ACL,
firewall (FW), and IP Chain (IPC). Each dataset consists of 20
rule sets. The header space in all rule sets consists of 5 fields
and 104 bits. Table I compares Flint against MDTC [8], the
most efficient rule set compression algorithm reported in the
literature—on the CERNET dataset. It shows the size of the
original rule set (Rules) and the expanded rule set obtained
by decomposing range constraints into ternary constraints
(ExpRules), the number of nodes in the BDD encoding of the
classifier (Nodes), the compressed rule set size, compression
ratio, and the run time of MDTC (based on [8]) and Flint.
As can be seen from the table, Flint improves the average
compression ratio of MDTC by 21% on average on these rule
sets. Table II reports results for synthetic benchmarks. For
space reasons, we report mean values across all rule sets in
each benchmark. The first row (‘acl-small’) shows results for
the synthetic dataset from [8]. Flint dramatically outperforms
MDTC on this dataset, achieving 13x compression on average,
while Zhu et al. report 0.45 mean compression ratio for
MDTC. The remaining rows show results for the 5 new
synthetic datasets. Flint achieves over 2x compression in all
cases and 5x-13x compression on the large datasets with
> 8000 rules. Next, we apply Flint to three very large real-
world customer rule sets with 70K, 599, and 1952 complex
rules. Many of these rules have complex Boolean structure,
so that their expanded representation, had we constructed it
explicitly, would contain 276K, 64467K, and 194660K rules
respectively. The header space in these rule sets consists of
9 fields and 366 bits. Flint compressed the first rule set into
3636 ternary rules; however on the two other rule sets we
interrupted Flint after generating 200K rules. Clearly, a more
efficient compression technique is required to handle such rule
sets. We develop such a technique in the next section.

IV. COMPRESSION VIA FUNCTIONAL DECOMPOSITION

The following example illustrates the main source of explo-
sion in the number of rules in the real-world rule sets. Consider
a rule (m, a), where m is of the form mX1

∧ mX2
, where

mX1
and mX2

are arbitrary constraints over header fields X1

and X2. Assume that mX1
and mX2

can be decomposed into
i and j cubes respectively. In this case, an optimal ternary
encoding of rule (m, a) may require up to i× j ternary rules.
Alternatively, it can be decomposed into a sequence of two
classifiers that check that header X1 is in mX1

and X2 is
in mX2

respectively. This requires a total of i + j rules.
Furthermore, TCAM tables matching individual header fields
are narrower, and hence require less TCAM memory, than the
monolithic table. This optimization is compatible with modern
network switches, which support both pipelined classifiers and
configurable-width TCAMs [10].

In general, we would like to decompose a classifier f :
Bn → A into a sequence of classifiers fi, i ∈ [1, l] where
fi matches on a single header field Xi and returns a tag
Ti used as input to the next classifier: f(X1, . . . , Xl) ≡
fl(fl−1(. . . f2(f1(X1), X2), . . .), Xl).

Algorithm 2 Decompose classifier f into f1, . . . , fl
1: function DECOMPOSECLASSIFIER(f)
2: g ← f
3: for i = 1 to l− 1 do
4: (fi, g)← DECOMPOSE(g,Xi)

5: fl ← g
6: return (f1, . . . , fl)

Name #R #ExpR #Nodes Flint Flint-DC
(rules) Rules Ratio Time(s)

real-world1 70.25K 275.99K 6830 3636 2680 0.00971 392
real-world2 599 64467.64K 171.60K – 10.71K 0.00017 3118
real-world3 1952 194660.96K 282.68K – 28.03K 0.00014 3995

TABLE III: Large real-world rule sets.

Example 3: Figure 1(d) shows a decomposition of the
classifier in Figure 1(a) into a sequence of two classifiers.
The first classifier summarizes the values of variables x1, x2

using tag t, which is passed as input to the second classifier.
We perform the decomposition iteratively, one field at a

time, as shown in Algorithm 2. The main building block of
the algorithm is the DECOMPOSE procedure that decomposes
a function g(Z1, Z2) into a pair of functions (g1, g2) such
that g(Z1, Z2) ≡ g2(g1(Z1), Z2). Notice that this is exactly
the functional decomposition operation, thoroughly studied in
logic synthesis [11]. We use a classical BDD-based functional
decomposition algorithm by Lai et al. [4], outlined below.

Consider BDD representation G(Z1, Z2,W) of function g
(variables W encode the output of g), ordered with variables
Z1 on top. Consider the cut of the graph below variables
Z1 and the set of boundary nodes v1, . . . , vj , located below
the cut that have incoming edges from nodes above the cut.
Figure 1(b) shows an example cut with boundary nodes v1 and
v2. An assignment of Z1 corresponds to a path from the root of
the BDD to some nodes vi. Assignments that lead to the same
vi are indistinguishable to G and can be encoded using one tag.
Conversely, due to the canonicity of BDDs, assignments that
lead to different vis are not equivalent and are encoded with
distinct tags. Thus, we have partitioned valuations of Z1 into j
equivalence classes. We denote DD(vi) a subgraph of G that
consists of all paths from the root to vi. Converting DD(vi)
into canonical form and replacing vi by terminal node >, we
obtain a BDD for the ith equivalence class.

We introduce fresh variables T , |T | = dlog(j)e, to encode
the j equivalence classes, and add constraints to G to com-
pute the value of T : G′(Z1, T, Z2,W) = G(Z1, Z2,W) ∧∧

i∈[1,j][DD(vi)⇒ (T = i)]. We finally obtain the decompo-
sition of G into G1(Z1, T) = ∃Z2,W. G′(Z1, T, Z2,W) and
G2(T,Z2,W) = ∃Z1. G

′(Z1, T, Z2,W), where G1 computes
the tag that encodes the equivalence class of variables Z1,
whereas G2 evaluates the original function G, using the
equivalence class of Z1 instead of its concrete value. The final
step of our compression procedure, after computing f1, . . . , fl,
is to encode each fi into ternary rules using Algorithm 1.
Performance We applied the decomposition algorithm (Flint-
DC) to the three real-world benchmarks. We decompose fields
in the order in which they appear in the BDD encoding of the
classifier, i.e., the order produced by group sifting. Flint-DC
produces compact ternary rule sets in all three cases (Table III).

The biggest generated rule set contains 28K rules, which fits
readily in the TCAM of modern switches [10]. Due to the lack
of space, we do not report results for smaller rule sets from
Section 3, where Flint-DC performs on a par with Flint. This
indicates that functional decomposition works best for large
rule sets. The following observation explains the effectiveness
of Flint-DC on real-world rule sets. The algorithm depends
on the ability to factor the set of values of a field into few
equivalence classes, one for each boundary node between BDD
layers. While some BDD layers in our rule sets have many
nodes, boundary layers are always very thin. For example, in
our largest rule set, only 6 bits per field were required on
average to encode equivalence classes.

V. RELATED WORK

There exists a body of research on packet classification.
See [9], [12]–[14] for a sample of work in this area. TCAM-
based rule set compression is a special case of the problem,
where the resulting classifier is encoded using ternary rules.
Previous approaches represent sets of rules using lists [15]–
[18] or trees [8], [19]. We show that a BDD-based represen-
tation allows computing more compact rule sets efficiently.
Norige et al. [20] compile classifiers to BDD, but then de-
compile the BDD back into a tree or list representation to per-
form compression. In contrast, our algorithms are fully sym-
bolic, i.e., operate on the BDD representation only. Prakash et
al. [21] use BDDs as intermediate representation in converting
packet classifiers to circuits. Smolka et al. [22] introduce
a variant of BDDs, Forwarding Decision Diagrams, as an
intermediate representation for compiling a high-level network
programming language into OpenFlow. They extract cubes
from FDDs via path enumeration. In contrast, Flint generates
fewer larger cubes by generalizing them to prime implicants.
Meiners et al. compile packet classifiers to FDDs and slice
them into a series of smaller classifiers. The algorithms they
use to decompose and compress classifiers differ from ours.
For example, they construct a separate FDD for each boundary
node and concatenate these FDDs to obtain a classifier. In
contrast, Flint compiles each classifier in the decomposition
into a monolithis BDD and applies prime decomposition to
it. Petrovska et al. [23] proposed a state of the art SAT-based
logic minimization algorithm. In our preliminary experiments,
the algorithm does not scale on large benchmarks.

The notion of sequential cover for rule set compression
was introduced in [3]. We propose an efficient BDD-based
method of computing sequential cover. Chang et al. [24]
proposed an optimized encoding of range constraints into
ternary constraints. This work is complementary to ours and
can potentially be used to replace the simple encoding we use.

VI. CONCLUSION

We developed two algorithms that significantly improve the
state of the art in TCAM-based packet classification. While
most previous solutions rely on specialized data structures and
algorithms, we reduce the problem to standard problems in
logic minimization and solve it using symbolic logic mini-
mization techniques.

REFERENCES

[1] K. Kogan, S. I. Nikolenko, W. Culhane, P. Eugster, and E. Ruan,
“Towards efficient implementation of packet classifiers in sdn/openflow,”
in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, HotSDN 2013, The Chinese University
of Hong Kong, Hong Kong, China, Friday, August 16, 2013 (N. Foster
and R. Sherwood, eds.), pp. 153–154, ACM, 2013.

[2] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[3] R. McGeer and P. Yalagandula, “Minimizing rulesets for TCAM imple-
mentation,” in INFOCOM 2009. 28th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, 19-25 April 2009, Rio de Janeiro, Brazil,
pp. 1314–1322, IEEE, 2009.

[4] Y. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD based decomposition
of logic functions with application to FPGA synthesis,” in Proceedings
of the 30th Design Automation Conference. Dallas, Texas, USA, June
14-18, 1993. (A. E. Dunlop, ed.), pp. 642–647, ACM Press, 1993.

[5] O. Coudert, “Two-level logic minimization: An overview,” Integration,
the VLSI Journal, vol. 17, pp. 97–140, Oct. 1994.

[6] F. Somenzi, “CUDD: CU decision diagram package release 3.0.0..”
[7] R. Rudell, “Dynamic variable ordering for ordered binary decision

diagrams,” in Proceedings of the 1993 IEEE/ACM International Confer-
ence on Computer-Aided Design, 1993, Santa Clara, California, USA,
November 7-11, 1993 (M. R. Lightner and J. A. G. Jess, eds.), pp. 42–47,
IEEE Computer Society / ACM, 1993.

[8] H. Zhu, M. Xu, Q. Li, J. Li, Y. Yang, and S. Li, “MDTC: an
efficient approach to tcam-based multidimensional table compression,”
in Proceedings of the 14th IFIP Networking Conference, Networking
2015, Toulouse, France, 20-22 May, 2015 (R. Kacimi and Z. Mammeri,
eds.), pp. 1–9, IEEE Computer Society, 2015.

[9] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

[10] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. A. Mujica, and M. Horowitz, “Forwarding metamorphosis:
fast programmable match-action processing in hardware for SDN,” in
ACM SIGCOMM 2013 Conference, SIGCOMM’13, Hong Kong, China,
August 12-16, 2013 (D. M. Chiu, J. Wang, P. Barford, and S. Seshan,
eds.), pp. 99–110, ACM, 2013.

[11] R. L. Ashenhurst, “The decomposition of switching functions.,” in
International Symposium on the Theory of Switching, pp. 74 – 116,
1959.

[12] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in SIGCOMM, pp. 135–146, 1999.

[13] P. Gupta and N. McKeown, “Classifying packets with hierarchical
intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, 2000.

[14] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in INFOCOM 2009. 28th IEEE
International Conference on Computer Communications, Joint Confer-
ence of the IEEE Computer and Communications Societies, 19-25 April
2009, Rio de Janeiro, Brazil, pp. 648–656, IEEE, 2009.

[15] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary cams can be smaller,” in Proceedings of the Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS/Performance 2006, Saint Malo, France, June 26-
30, 2006 (R. A. Marie, P. B. Key, and E. Smirni, eds.), pp. 311–322,
ACM, 2006.

[16] A. X. Liu and M. G. Gouda, “Complete redundancy removal for packet
classifiers in tcams,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 4,
pp. 424–437, 2010.

[17] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in tcams,” IEEE/ACM Trans.
Netw., vol. 20, no. 2, pp. 488–500, 2012.

[18] J. Daly, A. X. Liu, and E. Torng, “A difference resolution approach
to compressing access control lists,” IEEE/ACM Trans. Netw., vol. 24,
no. 1, pp. 610–623, 2016.

[19] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: a systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, 2010.

[20] E. Norige, A. X. Liu, and E. Torng, “A ternary unification framework for
optimizing tcam-based packet classification systems,” IEEE/ACM Trans.
Netw., vol. 26, no. 2, pp. 657–670, 2018.

[21] A. Prakash, R. Kotla, T. Mandal, and A. Aziz, “A high-performance
architecture and bdd-based synthesis methodology for packet classifica-
tion,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 22,
no. 6, pp. 698–709, 2003.

[22] S. Smolka, S. A. Eliopoulos, N. Foster, and A. Guha, “A fast compiler
for netkat,” in Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015 (K. Fisher and J. H. Reppy, eds.), pp. 328–
341, ACM, 2015.

[23] A. Petkovska, A. Mishchenko, D. Novo, M. Owaida, and P. Ienne,
“Progressive generation of canonical irredundant sums of products using
a SAT solver,” in Advanced Logic Synthesis (A. I. Reis and R. Drechsler,
eds.), pp. 169–188, Springer, 2018.

[24] Y. Chang, C. Su, Y. Lin, and S. Hsieh, “Efficient gray-code-based
range encoding schemes for packet classification in TCAM,” IEEE/ACM
Trans. Netw., vol. 21, no. 4, pp. 1201–1214, 2013.

