

BEA WebLogic Workshop™ 8.1 (beta)
JumpStart Guide

Getting Started with BEA WebLogic Workshop 8.1

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 2 of 64

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved
March 1, 2003

Restricted Rights Legend
This document may not, in whole or in part, be photocopied, reproduced, translated, or reduced to any electronic medium or
machine readable form without prior consent, in writing, from BEA Systems, Inc. Information in this document is subject to
change without notice and does not represent a commitment on the part of BEA Systems, Inc.

Trademarks
Copyright © 2003 BEA Systems, Inc. All rights reserved. BEA, Tuxedo, and WebLogic are registered trademarks and BEA
WebLogic Enterprise Platform, BEA WebLogic Server, BEA WebLogic Integration, BEA WebLogic Portal, BEA WebLogic
Platform, BEA WebLogic Express, BEA WebLogic Workshop, BEA WebLogic Java Adapter for Mainframe, and BEA eLink
are trademarks of BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights
reserved by third parties.

BEA Systems, Inc.
2315 N orth Fi rst St reet
San Jose, CA 95131 U.S.A.
Telephone: + 1.408. 570.8000
Facsimile: +1. 408.570.8901
www. bea.com

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 3 of 64

TABLE OF CONTENTS

COPYRIGHT... 2

HOW TO USE THIS GUIDE .. 4

ADDITIONAL EDUCATIONAL RESOURCES .. 4
MORE INFORMATION, DATASHEETS, AND PRODUCT BROCHURES.. 4
EVALUATION SOFTWARE... 4
PRESS RELEASES... 4
DEVELOPER RESOURCES ... 4

BEA WEBLOGIC WORKSHOP 8.1™ PRODUCT OVERVIEW .. 5
VISUAL DEVELOPMENT ENVIRONMENT.. 5
THE RUN-TIME FRAMEWORK .. 7
JAVA CONTROLS ... 9
APPLICATION TYPES IN BEA WEBLOGIC WORKSHOP 8.1™ ... 11

BEA WEBLOGIC WORKSHOP 8.1 JUMPSTART EXERCISES .. 13
INSTALLING BEA WEBLOGIC WORKSHOP™.. 13
THE JUMPSTART EXERCISE SCENARIO – AVITEK ELECTRONICS .. 14
BEA WEBLOGIC WORKSHOP™ PRODUCT EVALUATION STEPS .. 15

EXERCISE #1. GETTING ORIENTED AND SETTING UP SAMPLE DATA ... 16
VISUAL DEVELOPMENT ENVIRONMENT.. 17
AUTOMATED DEPLOYMENT ... 18

EXERCISE #2. BUILDING A CUSTOM JAVA CONTROL.. 20
BUILT-IN JAVA CONTROLS .. 20
CUSTOM JAVA CONTROLS ... 21
ASYNCHRONOUS CONTROLS.. 25

EXERCISE #3. CREATING AN ENTERPRISE-CLASS WEB SERVICE .. 29
SUPPORT FOR ASYNCHRONOUS WEB SERVICES .. 31
AUTOMATED DEPLOYMENT AND TESTING.. 32
LOOSE-COUPLING ... 35

EXERCISE #4. CREATING AN ENTERPRISE-CLASS WEB APPLICATION.. 40
JAVA PAGE FLOW TECHNOLOGY.. 40
AUTOMATED DATA-BINDING .. 45
AUTOMATED DEPLOYMENT AND TESTING.. 48

(BONUS) EXERCISE #5: CREATING A WEB APPLICATION FROM A JAVA CONTROL..................... 53

(BONUS) EXERCISE #6: USING XMLBEANS FOR HANDLING XML IN JAVA 57

BEHIND THE SCENES... 61

CONCLUSION... 62

APPENDIX: BEA WEBLOGIC WORKSHOP 8.1™ SPECIFICATIONS .. 63

NEXT STEPS: PRODUCT INFORMATION AND DEVELOPER RESOURCES ... 63

ABOUT BEA.. 64

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 4 of 64

How To Use This Guide

This JumpStart Guide brings together some essential material that may be helpful as you
prepare to explore and evaluate BEA WebLogic Workshop 8.1 beta. This document
provides an overview of BEA WebLogic Workshop 8.1, a detailed look at its features and
benefits, a discussion on application development with BEA WebLogic Workshop 8.1,
and important information you may need as you evaluate the product. We recommend
you read through this guide before you begin to explore the software itself. BEA has
provided a product demonstration that lets you quickly and comprehensively explore the
capabilities of BEA WebLogic Workshop 8.1 beta. Detailed step-by-step instructions for
these demonstrations are contained within this JumpStart Guide.

In addition to the material covered in this guide, you may want to make use of the wealth
of online resources available to you at the BEA Web site (www.bea.com) including
datasheets, product brochures, white papers, demo software, press releases, and more.

Additional Educational Resources
More Information, Datasheets, and Product Brochures

BEA WebLogic Workshop Product Web site
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/workshop

Evaluation Software

BEA WebLogic Workshop 8.1
 http://commerce.bea.com/showproduct.jsp?family=WLW&major=8.1&minor=-1

Press Releases

Press releases related to BEA and products
www.beasys.com/press/room.shtml

Developer Resources

dev2dev Online, the BEA developer community network

http://dev2dev.bea.com

Listing of BEA WebLogic Workshop-related newsgroups
www.beasys.com/support/newsgroup.shtml

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 5 of 64

BEA WebLogic Workshop 8.1™ Product Overview

BEA WebLogic Workshop 8.1 is a unified, simplified, and extensible development environment
that makes it incredibly easy for all developers, not just J2EE experts, to build enterprise-class,
standards-based applications across the entire BEA WebLogic Platform. BEA WebLogic
Workshop’s unique programming model accelerates software development by providing
simplified abstractions designed to enable all developers to build applications better and
dramatically faster than with traditional programming approaches.

The primary components of Workshop’s innovative programming model are the visual
development environment, run-time framework, and Java Controls.

Visual Development Environment

The WebLogic Workshop 8.1 visual development environment delivers unprecedented ease-of-
use for J2EE application development. The Design View (shown in Figure 1) provides a
graphical depiction of the application being created so that developers can view and visually edit
the application’s interaction with clients and back-end resources. Moreover, the same visual
development environment is shared by all WebLogic Enterprise Platform 8.1 applications,
dramatically reducing the learning curve for building, testing, and debugging custom controls,
Web services, Web applications, portals, and integration applications.

Figure 1. BEA WebLogic Workshop 8.1 Visual Development Environment

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 6 of 64

The WebLogic Workshop programming model is based on intuitive concepts such as controls,
methods, and properties to enable event-based development, thereby eliminating the need for
developers to master complex J2EE APIs and object-oriented programming disciplines. The
underlying mechanism to enable this simplified development mode is the use of annotated Java
code. The WebLogic Workshop visual development environment produces standard Java files
with additional annotations inserted by Workshop (for example, when the developer sets
properties or adds controls) to specify the appropriate run-time application behavior. These
annotations enable the Workshop run-time framework to automatically generate the J2EE
infrastructure components, thereby abstracting the user from the low-level infrastructure plumbing
that would otherwise be required. As a result, developers are free to focus on writing business
logic to solve the business problems at hand.

Developers write Java code using the Source View, as shown in Figure 2. Developers here
have direct access to the source code, including the code annotations, and two-way code editing
features ensure that any changes made in the Design View are instantly reflected in the Source
View, and vice versa. The Source View allows developers to write procedural Java code to
handle methods and events, and assists developers with many productivity-enhancing features
such as code-completion, syntax checking, and auto-import.

Figure 2. Code completion features assist developers in the Source View

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 7 of 64

WebLogic Workshop also features an industrial-strength, multi-language, integrated debugger
empowering developers to easily build, test, and debug applications from the same visual
environment. The BEA WebLogic Workshop 8.1 debugger allows debugging of the deployed
code running in the application server rather than the local Java files, enabling real-time feedback
and higher application quality.

Figure 3: WebLogic Workshop’s integrated debugger in action

Furthermore, WebLogic Workshop 8.1 improves the development experience by including many
IDE enhancements such as source code control integration, an enhanced windowing
environment, complete tool configurability, and shared tools and palettes.

The Run-Time Framework

BEA WebLogic Workshop’s run-time framework provides the abstraction layer between
developers and complex J2EE system infrastructure. Instead of dealing with time-consuming
API-level infrastructure code, component configuration, and deployment details, developers are
free to use the visual development environment to write procedural Java code where necessary
and access advanced functionality through simple, declarative annotations. The WebLogic
Workshop run-time framework interprets the annotated code to generate the appropriate J2EE
code including standard EJB, JMS, and JDBC components. And in this process, the run-time
framework also manages the design and implementation issues associated with J2EE
architectures, so that applications are implemented on reliable, scalable, and secure enterprise-
class architectures.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 8 of 64

Iterative, “Write and Run”
deployment and testing

…Or use
any tool or

IDE

WebLogic Workshop
Run-time Framework

JMS EJBs JDBC

BEA WebLogic Platform 8.1Java Controls

Java Web Service

Java Page Flow

Intuitive Visual
Development Environment

Standard Java
code with

annotations

Iterative, “Write and Run”
deployment and testing

…Or use
any tool or

IDE

WebLogic Workshop
Run-time Framework

JMS EJBs JDBC

BEA WebLogic Platform 8.1

WebLogic Workshop
Run-time Framework

JMS EJBs JDBC

BEA WebLogic Platform 8.1Java Controls

Java Web Service

Java Page Flow

Intuitive Visual
Development Environment

Standard Java
code with

annotations

Figure 4. Connecting the Design-Time and Run-Time components

The WebLogic Workshop run-time framework – a standard J2EE application that runs on top of
BEA WebLogic Server 8.1 – also represents the convergence layer that unifies all WebLogic
Enterprise Platform application types.

BEA WebLogic Workshop's run-time framework abstracts the developer from the intricate details
of developing and deploying enterprise-class applications in the following ways:

• Java Web Service (JWS) File Support: Introduced in WebLogic Workshop 7.0, Web service
applications are developed as JWS files – standard Java files with a set of Javadoc
annotations that allow developers to specify properties and gain access to key Web service
functionality through simple declarative annotations. This approach conveniently eliminates
the need for developers to worry about SOAP marshalling, Java-to-XML binding, WSDL file
creation, underlying bean deployment, and much more. JWS is in the process of being
standardized through JSR (Java Specification Request) 181.

• Java Page Flow (JPF) File Support: WebLogic Workshop 8.1 Web applications are built
with Java Page Flow, a Java innovation that makes it easy for developers to build enterprise-
class Web applications using a visual approach to specify the flow of pages. Developers can
write business logic in actions that can be called from pages in the application. And to greatly
simplify data accessibility, WebLogic Workshop provides tag libraries plus drag-and-drop
wizards to automate data-binding between pages and data elements (including fields, lists,
trees, grids, etc.) from any database, Web service, or Java Control. In addition, the run-time
framework automatically provides support for details such as sessions and state-
management, and ultimately creates Java Page Flow applications on an underlying MVC
(model-view-controller) architecture leveraging Struts.

• Java Controls (JCX/JCS) File Support: Java Controls enable developers to access back-
end enterprise resources through a simplified interface already familiar to many developers.
Instead of calling a series of J2EE API calls, developers can implement methods and handle
events to access information from assets such as databases, external web services and EJB
components. Customization of controls can be performed by simply setting properties. The
run-time framework also makes Java Controls extensible so that all users can write their own

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 9 of 64

custom control. Controls make it easy to build powerful, asynchronous business logic that
can be used from conversational web services and workflows. More details are available in
the next section.

• Portal/Integration Application Extensions: WebLogic Workshop 8.1 Platform Edition
includes framework extensions that enable developers to build, test, and deploy advanced
portal and workflow/EAI/BPM applications in conjunction with BEA WebLogic Portal 8.1 and
BEA WebLogic Integration 8.1, respectively. The Workshop run-time framework offers a
unified architecture leading to a seamless developer experience across all these application
types.

• Support for Asynchronous Communications: Writing the plumbing code for asynchronous
communication and two-way messaging can be tedious and time consuming. WebLogic
Workshop simplifies this process by providing a simple property setting to enable message-
buffering, which automatically creates asynchronous support for Web services or custom
controls. The framework handles the details of managing the queue and abstracts the user
away from the J2EE Messaging APIs. For asynchronous Web services, Workshop provides a
simple conversational metaphor for message exchange with clients. The WebLogic
Workshop framework automatically correlates related messages and manages state over long
running conversations.

• XQuery Mapping and XMLBeans: WebLogic Workshop provides a range of solutions to
ensure true loose-coupling between applications for greater application reliability and
scalability. The XQuery Mapping features allows a developer to visually map data fields, and
the run-time framework automatically handles the complex, underlying data transformations.
Likewise, XMLBeans provides strongly-typed Java object interfaces while preserving full
access to the underlying XML messages. Together these solutions, supported by the
WebLogic Workshop run-time framework, ensure that XML data is always a "first class
citizen."

• “Write and Run” Deployment: WebLogic Workshop provides an enhanced iterative
development model through the run-time framework’s support for one-click automatic
deployment to the BEA WebLogic Enterprise Platform. This enables developers to focus on
ensuring code quality without the concerns of the underlying platform details, rapidly
accelerating the build-and-test cycle and dramatically increasing productivity.

• Automated Test Harness: The run-time framework automatically generates a browser-
based test client for each deployed application to make it easy to verify correct functionality
and eliminate costly bottlenecks in the test cycle. This enables developers to go from writing
code to testing its correctness in seconds.

Java Controls

In WebLogic Workshop 8.1, Java Controls provide developers the ability to easily connect with
existing data, systems, applications, and business logic. Java Controls are visual components
with methods and properties that handle all of the J2EE details in connecting to an external
resource or piece of business logic. Developers interact with controls by handling events and
settings properties. Workshop also makes it easy to build custom controls using the similar,
simplified Java code approach available elsewhere in Workshop. These characteristics empower
developers to declaratively specify behavior and then focus on handling events and calling
methods with standard procedural Java code instead of learning APIs. Moreover, Java Controls
provide best-practices for accessing resources and application logic to ensure that resources are
optimally used.

BEA WebLogic Workshop 8.1 comes with a set of built-in Java Controls including the following:

• Web Service Control lets developers access Web services as local objects without worrying
about any of the lower-level Web service protocol details. The developer need only specify

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 10 of 64

the WSDL file for the target service and the control will automatically prepare the connection
and expose the target service’s methods in the visual development environment. The
Service Control makes it easy to connect to Web services regardless of the implementation
technology, including easy access to .Net-based services.

• Database Control lets developers focus on what they need from a database without having
to worry about the JDBC (Java Database Connectivity) API. Developers can focus on what
they know (SQL statements and Java functions) and Workshop’s run-time framework
automatically handles the underlying plumbing.

• EJB Control enables a team development approach in which the application developer may
use enterprise business logic that already exists, or is being developed by an enterprise
developer. The EJB Control simplifies the EJB programming model and makes a remote EJB
object appear as just another class on which you can set properties and call methods.

• JMS Control allows easy access to message queues and shields the developer from the
details of the Java Messaging Service API. Developers can focus on the content of the
messages being sent and received instead of the machinery around them.

• Timer Control helps developers program in an asynchronous world. The Timer Control can
be used to implement message timeouts, poll web services to determine completion, and
coordinate multiple asynchronous message replies.

• And many more: WebLogic Workshop 8.1 adds many more built-in Java Controls to make it
easy for developers to connect to and use IT assets, including FTP, eMail, Tuxedo, Portal,
Integration Controls, and more.

In addition to the suite of built-in Java Controls mentioned above, BEA WebLogic Workshop 8.1
also makes the Java Controls model extensible so that all users (including ISVs) can build
custom Java Controls – re-usable business logic components that seamlessly plug into the
Workshop development environment. To create a custom Java Control, developers simply use
familiar visual designers to specify the interface (i.e. the methods and events supported), set
properties to dictate run-time behavior, and write the business logic using procedural Java code
to implement these methods.

The extensible nature of Java Controls makes them the ideal model for deploying service-
oriented architectures in which business logic components are created as independent modules
that can be used and re-used to service multiple types of end-user applications. The many
benefits of using Java Controls to promote this type of efficient, modular design for software
reuse include the following:

• Java Controls are able to describe themselves at design-time so that developers can gain a
visual representation of server-side business logic in the familiar Workshop development
environment.

• Java Controls expose a set of simple properties by which a user can implement advanced
run-time functionality such as asynchronous communication, security roles, lifecycle events,
transaction support, etc. Authors of custom controls have the freedom to populate the
Properties sheet for the benefit of the controls’ downstream users.

• Java Controls are easily packaged and distributable as standard JAR files. Moreover Java
Controls are nestable so it is easy for them to become the component of re-use.

• Java Controls enable connectivity to any IT asset, ISV application, or piece of business logic
while preserving the developer’s abstraction from the majority of the infrastructure complexity.
This means developers can largely focus on procedural Java instead of J2EE or other
vendor-specific APIs.

As a result, Java Controls are a compelling way to encapsulate business logic in reusable
components that become the central building blocks for all WebLogic Platform applications.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 11 of 64

Application Types In BEA WebLogic Workshop 8.1™

The visual development environment, run-time framework, and Java Controls together enable
BEA WebLogic Workshop’s simplified programming model. Importantly, this innovative
development approach is unified such that developers need only learn a single programming
model to build and integrate the full suite of WebLogic Platform applications including Web
services, Web applications, portals, and integration applications.

Enterprise-Class Web Services

Enterprise IT professionals recognize that Web services can provide tremendous business value
by reducing infrastructure complexity and managing the costs traditionally associated with
integrating applications across disparate systems and geographies. But to be successful, it is
critical to go beyond the simple, synchronous view of Web services prevalent today. Building and
extending upon Workshop’s strong leadership in Web services, BEA WebLogic Workshop 8.1
provides built-in architectural support for enterprise-class web services – featuring asynchrony,
loose coupling, business-level documents, enhanced security, and reliable messaging. These
characteristics are critically importantly in building a web services architecture capable of
effectively addressing enterprise challenges, such as application integration. Moreover,
WebLogic Workshop offers XQuery mapping and XMLBeans technology, two breakthrough
innovations that will make Java developers an order of magnitude more productive when working
with XML-based data and documents.

In Exercise #3, you will create an enterprise-class Web service, and in Exercise #6, you will gain
exposure to the power of XMLBeans.

Powerful Web Applications

BEA WebLogic Workshop 8.1 introduces a set of visual designers, controls and framework
extensions that enable developers to create powerful server-side applications with dynamic
JSP/HTML user interfaces. Workshop helps developers build dynamic, data-bound pages with
drag-and-drop visual editors, and furthermore, makes it incredibly easy to specify powerful
application functionality via Java Page Flow technology. Java Page Flow provides an abstraction
layer that helps developers assemble enterprise-class Web applications simply by specifying
pages, actions, navigation, and data, without having to worry about complexities such as
sessions, state management, and data-binding. Page Flows are built from the ground up to
support a robust, MVC style architecture, and actually are compiled into standard Java code that
runs on top of the open source Struts framework. BEA WebLogic Workshop 8.1 empowers
developers to use a simplified, visual programming model to build complex, multi-state, data-rich
Web applications that combine business and presentation logic and leverage a common Java
Controls methodology.

In Exercise #4, you will complete a Web application, and in Exercise #5, you will automatically
generate a new Web application directly from a Java Control.

Portals and Integration Applications

Across most IT environments, developers traditionally encounter a heterogeneous tools
environment where disparate tools and skill-sets are required for building and integrating custom
applications versus portal applications and workflow applications. This deficiency has stifled
developer productivity and heightened infrastructure complexity. But now WebLogic Workshop
Platform Edition 8.1 leads the industry by enabling developers to incorporate advanced EAI/BPM
and process portal functionality into custom development projects by unifying workflow,
presentation, and business logic in a single environment using the same programming model. To

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 12 of 64

accomplish this, WebLogic Workshop 8.1 Platform Edition includes framework extensions,
additional controls and visual designers to provide developers the ability to build and integrate all
portal applications and integration applications, in conjunction with WebLogic Portal and
WebLogic Integration, respectively.

The product demonstrations described in this Guide are based on applications supported in the
WebLogic Workshop Application Developer Edition, and thus do not include examples focusing
on WebLogic Portal and WebLogic Integration functionality.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 13 of 64

BEA WebLogic Workshop 8.1 JumpStart Exercises

This JumpStart Guide will lead you through the steps of building enterprise-class applications
with BEA WebLogic Workshop™ 8.1. Along the way, you will become familiar with Java Controls
and use them to access relational databases. You will also build a custom Java Control to
enable asynchronous integration with multiple databases. Finally, you will leverage this custom
control in building both an enterprise-class Web service and an enterprise-class Web application.

In doing the JumpStart exercises, you will experience Workshop’s visual development
environment and the simple, shared programming model it offers. Moreover, you will gain an
appreciation for the Workshop run-time framework and its ability to simplify J2EE development
and deployment. Once the JumpStart Guide has been completed, you will have completed entire
development cycles within minutes - building applications, integrating with external resources,
deploying to enterprise-proven application infrastructure, and testing in real-time.

Building a similar application without the help of BEA WebLogic Workshop 8.1 would
usually take several days – but with WebLogic Workshop 8.1, you should be finished in
under an hour!

Installing BEA WebLogic Workshop™

The JumpStart exercises require that you install both WebLogic Workshop 8.1 beta and the
JumpStart Kit. You will need:

• BEA WebLogic Workshop 8.1 beta – You can install the program from CD or download at:
http://commerce.bea.com/showproduct.jsp?family=WLW&major=8.1&minor=-1

• JumpStart Kit (BEA_WebLogicWorkshop81_JumpStartKit.zip) – Includes this guide as well
as project files required for the JumpStart Exercises. This zip file can be downloaded from
the BEA WebLogic Workshop website at:
http://www.bea.com/framework.jsp?CNT=step_2.htm&FP=/content/new_releases/products/w
orkshop/get_started/

Once you have these files, the process of installing BEA WebLogic Workshop 8.1 and preparing
for the JumpStart Exercises consists of the following steps:

• Double-click on platform810_win32.exe. This starts the BEA WebLogic Platform 8.1
installation program and will install BEA WebLogic Workshop 8.1™.

• Click Next to progress past the Welcome screen

• Read and accept the License Agreement, and select Next to continue

• Select Next while leaving the default choice of c:\bea as your BEA Home Directory

• Select the default selection for “Typical Installation” and click Next

• Select Next while leaving the default choice of C:\bea\weblogic81b as the Product Directory

• Select Next to begin the installation process, which will take approximately 15 minutes

• On the Installation Complete dialog box, clear the checkboxes at the bottom of the screen (no
need to install XMLSpy or use the configuration wizard at this time) and click Done

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 14 of 64

• After the product has been successfully installed, you need to prepare the project files.
Simply unzip the contents of the BEA_WebLogicWorkshop81_JumpStartKit.zip to a new
folder named c:\workshop81demo. After doing this, you should have three files in the
c:\workshop81demo directory:

o BEA_WebLogicWorkshop81_JumpStartGuide (this document)

o demo-orderentry.zip (the application template – no need to unzip this file!)

o purchase-order.xsd (an example schema for use in the exercises)

• You will use these files during the course of the product tutorial. You’re all set to go!

The JumpStart Exercise Scenario – Avitek Electronics

This example involves a fictitious company named Avitek, a major consumer electronics firm.
Avitek has a proprietary, home-grown order management system. Today, only a limited number
of authorized distributors are able to electronically submit product orders to Avitek, with all other
forms of order entry being done manually. Avitek maintains a number of databases and back-
end computing resources that are an integral component of the firm’s operations. Any initiative to
extend the current order management system would be required to leverage the existing IT
infrastructure which has been developed piece-meal over the last twenty years. This need for
application integration had rendered prior attempts at modernization too complex and certainly
too expensive.

Recently, many of Avitek’s major competitors have introduced additional channels of distribution.
To remain competitive in its industry, Avitek must respond by increasing its channel offerings as
well. First, Avitek wants to offer all electronics distributors the opportunity to easily connect with
Avitek’s Order Entry System via standards-based Web services. Second, Avitek desires to
capitalize on the growing demand for e-commerce by offering a hosted Web application that
allows end-users to purchase certain items on-line directly from Avitek. To be successful, Avitek
must ensure that these applications have the following features:

• Standards-based to ensure interoperability with the largest number of distributors

• Flexible to allow changes to the system and the information exchanged between
partners over time

• Integrates with existing data, systems, applications, and business logic required for
executing order management processes

• Designed to accommodate the latency and service disruptions associated with dealing
with legacy systems and external data sources

• Reliable, available, and scalable to meet the demands of its expanding user base and
maintain their industry reputation for quality.

Because Avitek needs to move quickly to build and extend its new Order Entry System, and
many of their key J2EE architects are already busy maintaining the core infrastructure, Avitek is
planning to rely on its existing staff of application developers to build this new system. Since
many of these developers may not be experts in J2EE, the chosen technology platform will need
to be accessible by these developers, but at the same time support the rock-solid reliability,
availability, and scalability that Avitek’s partners and customers demand.

To meet these requirements, Avitek has decided to use BEA WebLogic Workshop 8.1 to help
solve the pressing business problem at hand, and improve the project’s time-to-value. A diagram
of the planned Avitek Order Entry System is provided below in Figure 5.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 15 of 64

In this product tutorial, you will build the Avitek Order Entry System that will help Avitek maintain
and extend its market share in the competitive electronics industry.

Customer
Database

Order
Database

Avitek’s Existing
Infrastructure

Order Entry
Business Logic

Web
Services

Application

Web
Application

Submit Order

Order Confirmation

Web-based
Customers

Business
Partners

Submit Order

Order Confirmation

Customer
Database

Order
Database

Avitek’s Existing
Infrastructure

Order Entry
Business Logic

Web
Services

Application

Web
Application

Submit Order

Order Confirmation

Web-based
Customers

Business
Partners

Submit Order

Order Confirmation

Figure 5. Architecture for Avitek’s envisioned Order Entry System

BEA WebLogic Workshop™ Product Evaluation Steps

This JumpStart Guide will take you through the steps of building an enterprise-class Order Entry
System that will increase Avitek’s business efficiency, customer responsiveness, and market
presence.

In the first exercise, you will become familiar with the Workshop development environment and
set-up the application workspace for the subsequent exercises.

In the second exercise, you will create a custom Java Control that asynchronously integrates with
both the Avitek Customer Database and the Avitek Order Database and also implements the
necessary business logic to perform order management functions.

In the third exercise, you will leverage the custom control you built to create an asynchronous,
secure, and loosely-coupled enterprise-class Web service that empowers Avitek to instantly
expose advanced Order Entry functionality to thousands of potential business partners.

In the fourth exercise, you will again leverage the custom control, but this time to build, test, and
deploy a Web application with dynamic JSP/HTML user interface thereby enabling Avitek to
effectively reach the millions of potential customers who prefer to shop online.

For evaluators interested in further exploring features of BEA WebLogic Workshop, we have also
provided two bonus exercises that highlight additional product capabilities. Exercise 5
demonstrates the ability to quickly build “starter” Web applications from a Java Control – in this
case an application to administer the Avitek Order Database. Exercise 6 demonstrates the
power of XMLBeans for elegantly handling XML data and documents in applications created
using BEA WebLogic Workshop 8.1.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 16 of 64

Exercise #1. Getting Oriented and Setting up
Sample Data

In order to offer a tutorial that allows you to easily experience the full breadth of features and
functionality of BEA WebLogic Workshop 8.1 in an efficient manner, we provide in this JumpStart
Kit an application template that pre-defines several application components which you will extend
into a set of enterprise-class applications constituting Avitek’s improved Order Entry System.

¾ To leverage the Order Entry System template for this tutorial, copy the demo-orderentry.zip
file from the c:\workshop81demo folder to the C:\bea\weblogic81b\workshop\templates
directory. Note that there is no need to extract the components of the demo-orderentry.zip
file – just copy the file in its entirety. If you installed the BEA WebLogic Workshop
application in a BEA home other than c:\bea than adjust the above destination accordingly.

Now you are ready to begin exploring BEA WebLogic Workshop 8.1:

¾ Navigate the Windows Start menu to launch BEA WebLogic Workshop 8.1: Start Menu →
Programs → BEA WebLogic Platform 8.1 Beta → WebLogic Workshop 8.1

¾ The BEA WebLogic Workshop environment will open to display a sample application, but
you will create a new application for the Avitek Order Entry demo.

o First, close down any open projects by selecting File → Close Application.

o Using the menus, select File → New → Application. In the New Application dialog
box that will appear, select Demo: Order Entry Demo Application in the right-side
pane and enter an application name such as AvitekDemo.

o In the Server field, specify c:\bea\weblogic81b\samples\workshop as the domain for
this application, as shown in Figure 6.

o Click Create, and then click Yes on the following dialog box to affirm you want to
create a new directory.

Figure 6: Create a new Workshop application based on the provided Order Entry Demo template

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 17 of 64

¾ Now that the AvitekDemo application has been created based on the Order Entry Demo
template, you can open any of its member files by simply navigating in the Application
Window (top-left corner).

¾ To get started, expand the CRMSystem folder under the AvitekDemoWeb project tree, and
double-click on Admin.jws. This action will open the Admin.jws web service file in the
Design View.

Visual Development Environment

Now is a good time to get acquainted with the WebLogic Workshop 8.1 visual development
environment, as shown in Figure 7. The environment hosts a number of visual designers
corresponding to the application type being created. If you have opened Admin.jws as instructed
above, you are seeing the JWS designer for working with a Web services application. In the
center of the screen is the Design View which provides developers with a graphical
representation of the Web service. The canvas displays the operations available to clients via
arrows on the left-side of the canvas, and Java Controls to interface with back-end resources and
business logic are shown via arrows on the right-side of the canvas. The Design View is
surrounded by a number of dockable and configurable windows to aid the developer’s progress.
For example, the Application Window provides easy access and viewing of resources contained
in the active application and the Property Editor enables the developer to quickly set properties
on the controls and methods.

Figure 7. BEA WebLogic Workshop 8.1 Visual Development Environment

The Avitek Order Entry System will require integrating with two databases: one for customers and
a second for orders. For the purposes of this demonstration, you need to ensure the database
tables are properly established. For your convenience, handy administrative methods to
configure the database resources are provided via the Admin.jws Web services application.

Application Window:
Displays all files and
resources within the
application under
development

Palette Window:
Displays the operations
and elements that are
available for use in the
active designer

Property Editor:
Allows the user to
view and set the
properties for the
currently selected
object on the screen.

Data Palette:
Provides the user
with easy access to
Controls and
methods available in
the active designer

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 18 of 64

¾ To build the database and load the sample data, you need to run Admin.jws by using the
menus to select Debug → Start or by clicking the Start icon in the toolbar. Optionally, you
could select Debug → Start without Debugging for higher performance since you won’t
be requiring the integrated debugger at this time.

Figure 8. Use the toolbar to start the Admin.jws Web service application

¾ If you have not already done so, you will be prompted to start the WebLogic Server, which
you should do now. Note that starting the WebLogic Server may take a few minutes to
complete. (Note: Do not shut down the “Starting WebLogic Server” window as this action
would shut down the server as it is starting up. You may however hide the window by
clicking the Hide button.)

Automated Deployment

After the Admin.jws application is built, it will be automatically deployed to the BEA WebLogic
Server 8.1 and the Workshop Test Browser will automatically appear. This is evidence of
WebLogic Workshop’s automated deployment and integrated testing features that you will have
an opportunity to explore in more detail in Exercise #3.

¾ Create and load the sample databases using the Admin Web service. In the Workshop Test
Browser, invoke the Setup method by clicking on the Setup button as shown in Figure 9.
This method will create and load the Customers and Orders database tables with sample
data that you will use for the duration of the evaluation. The Setup method leverages Java
Controls for connecting with these two databases; you will learn more about Java Controls
in subsequent exercises as well.

o Note: If you are running this example for the second time and want to clean out old
test data, first select the Reset method, then perform the Setup function.

Figure 9. The Workshop Test Browser displays the convenient test client interface

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 19 of 64

¾ After the Setup method has processed, you can trace the actions that were invoked on the
Customer and Order Databases by reading the events described in the Workshop Test
Browser. When finished, close the Workshop Test Browser. Optionally you could click on
the Test Operations link within the test client to execute another Admin.jws Web service
method such as getCustomer or getOrders.

¾ Back in the BEA WebLogic Workshop Design View, close the Admin.jws file (click on the X
in the top-right corner) to clear the workspace, and now you are ready to move on to
building a custom Java Control in Exercise #2.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 20 of 64

Exercise #2. Building a Custom Java Control
Java Controls are a central element in the Workshop programming model and enable developers
to easily connect with existing data, systems, applications, and business logic. Java Controls are
essentially business logic components that have methods, events, and properties and let you
visually and declaratively specify behavior, focus on handling events, and calling methods,
instead of writing complex J2EE API-intensive code.

Built-In Java Controls

To see a Java Control in action, let’s explore the Database Controls for Avitek resources that
were pre-defined in the Order Entry Demo template.

¾ In the Application Window, navigate into the CRMSystem folder and double-click on the
CustomerDB.jcx file. This loads the Avitek Customer Database control in the Design View.

As shown in Figure 10, the CustomerDB control, like all Java Controls, is viewable via a visual
representation in the Design View that shows its methods and events on the left-side of the
canvas.

Figure 10. The CustomerDB Java Control depicted visually in the Design View

To better understand how the database control allows developers to easily leverage any SQL
database without knowing JDBC API commands, try the following:

¾ Double-click on the arrow icon associated with the insertCustomerObject method. This
brings up a dialog box (shown in Figure 11) in which any developer can simply map SQL
parameters to the corresponding Java method definition. This is an example of how a
Java Control can hide the complexities of J2EE from the developer – most application
developers know SQL, but many do not know (or want to know) JDBC. Hit Cancel when
you are done exploring the SQL/Interface Editor.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 21 of 64

Figure 11: Explore the SQL and Interface Editor to map SQL statements to Java methods

The Database Control is one of the standard Java Controls that come pre-packaged with
WebLogic Workshop 8.1. Other built-in Java Controls provide easy access to major enterprise
resources such as EJB components, Web services, and JMS queues. All these controls are
consistent in their ease-of-use and ability to prevent developers from needing to write complex,
object-oriented J2EE infrastructure code to accomplish necessary integration objectives. You
can see the controls that are built-in to Workshop by clicking on the New button in the data
palette.

Custom Java Controls

Beyond the built-in Java Controls, WebLogic Workshop 8.1 offers an extensible controls
architecture so that developers have the ability to create reusable components of business logic
that can integrate with any enterprise resource, ISV application, or piece of business logic.
Custom Java Controls can leverage built-in Java Controls and are themselves nestable and
easily reusable. Moreover, any Java Control can be incorporated in any and all projects
spanning across Web services, Web applications, and other WebLogic Platform applications.

To create a custom Java Control for the CRM System:

¾ Close the CustomerDB control in the Design View. To get started with building a new
control, right-click on the CRMSystem project folder in the Application Window, and select
New → Java Control.

Figure 12. Create a new Java Control.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 22 of 64

¾ In the New Control dialog box, insert the name CRMControl.jcs and click Create. This will
result in a new custom Java Control being displayed in the Design View. Since it has no
components, it just shows up as an empty canvas for now.

The purpose of the new custom Java Control is to provide a single component that will in turn
handle interfacing with existing Avitek database systems that are involved in the order
management process. In particular, any Order Entry system that you build will need to
communicate with the Customer Database and the Order Database. As mentioned above, you
already have access to pre-defined Java Controls that will help facilitate this integration. Once
this control has been built, it can be leveraged easily from any other WebLogic Platform
application.

¾ To start building the CRMControl, you will first add the back-end resources that it will
require. You can do so by simply dragging-and-dropping the CustomerDB.jcx item from the
Application Window on to the CRMControl icon on the Design View canvas.

Figure 13. Drag-and-drop the Customer Database control to the CRMControl canvas

¾ Similarly, drag-and-drop the OrdersDB.jcx item from the Application Window to the
CRMControl canvas.

With just these two simple drag-and-drop operations, you have already completed the process of
integrating your custom CRMControl with Avitek’s databases – without writing a line of code!
The Design View will reflect these additions as shown in Figure 14.

Figure 14. The Design View reflects database control additions to CRMControl

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 23 of 64

Next, you need to specify the methods a client may use to invoke the CRMControl. Workshop
makes this step equally easy by automatically populating the Data Palette window with methods
associated with the Java Controls that have been added to the project. These “pass-through”
methods are immediately available to provide a client with access to any control’s methods.

Figure 15. Listing of “pass-through” methods in the Data Palette

¾ To provide the desired functionality for CRMControl, you need to provide access to three
methods of the Customer Database control: findAllCustomersArray, findCustomerByID,
and insertCustomerObject. Simply find the matching entries in the Data Palette (shown in
Figure 15) and drag each from the Data Palette on to the CRMControl in the Design View.
This provides a quick and easy mechanism to extend the existing functionality available in
the control. These methods can be later customized if additional business logic is required.

The CRMControl will be updated in the Design View as shown below in Figure 16:

Figure 16. Visual depiction of CRMControl after adding “pass-through” methods

In addition to the three pass-through methods, you need to add a new method that allows a client
of the custom CRMControl to submit a new order and do the appropriate processing with the
Customer and Order databases.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 24 of 64

¾ To create a new method, drag the Method icon from the Palette window (lower left corner)
onto the CRMControl in the Design View. Specify the name of the new method as
createOrder.

Figure 17. Implement the createOrder Method with drag-and-drop convenience

The createOrder method will need to accept information about an order and its associated
customer, proceed to create a new customer record in the Customer database if an appropriate
record does not already exist, and finally add the relevant order details into the Order database.
Implementing this desired business logic and integrating with Avitek’s databases will naturally
require some code:

¾ From the Design View, click on the createOrder hyperlink to view this method in the Source
View.

Figure 18. Hyperlinks make it easy to switch from Design View to Source View

¾ The Source View provides a convenient environment for writing the necessary Java code
directly to the source file. You need to add the following code for the createOrder method:

public String createOrder(Customer c, Order o)
{
 java.util.Random r = new java.util.Random();
 if (customerDB.findCustomerByID(c.custId) == null)
 {
 c.custId = r.nextInt(100000);
 customerDB.insertCustomer(c.custId, c.name,
 c.address, c.city, c.state, c.zip, c.areaCode,
 c.phone);
 }
 ordersDB.addOrder(c.custId, r.nextInt(100000),
 o.cameraQty, o.flatScreenQty);
 return "Thank you for your order, " + c.name +
". Order processed for " + o.flatScreenQty +
" Flat Screen TV sets and " + o.cameraQty +
" Digital cameras.";
}

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 25 of 64

When finished typing in the code, the method should appear as shown below:

Figure 19. The createOrder method viewed in the Source View

Note that the functionality required from CRMControl was easily written in a few lines of
procedural Java code and that communicating with the back-end databases was similar to
working with any local Java class; as shown here, the developer can always abstracted from the
low-level J2EE complexity to maximize developer productivity.

Asynchronous Controls

Because Avitek may need to process large volumes of orders simultaneously, you want to make
sure the CRMControl can capture all of these requests reliably, regardless of load. After all, if
Avitek loses order requests, they lose business! A good architectural approach in these
scenarios is to implement an asynchronous solution. For example, rather than having an
external client submit an order request and just wait indefinitely (and possibly unreliably) for order
processing to compete, the CRMControl places all incoming order requests on a reliable queue,
where it is guaranteed to remain until the CRMControl is ready to process the request.

Supporting asynchronous communication is an important component of building scalable and
reliable enterprise-class applications, however it has typically been a very arduous task due to
the need for complex programming and a required understanding of J2EE technologies such as
Message-Driven Beans (MDB) and JMS Queues. Fortunately BEA WebLogic Workshop 8.1
makes implementing asynchrony as simple as setting a property. To demonstrate, you will now
create a new method that will offer all clients asynchronous access to the custom CRMControl.

¾ From the Design View, insert a new method by dragging the Method icon from the Palette
window onto the CRMControl in the Design View. This time, specify the name of the new
method as createOrderAsynch.

¾ With the createOrderAsynch method active (click on the arrow icon associated with the
method if it is not already active), access the Property Editor and simply set the Message-
Buffer Enable property to True as shown in Figure 20.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 26 of 64

Figure 20. Use the Property Editor to enable message-buffering

You will notice that the Design View is automatically updated with a queue icon in front of
createOrderAsynch to indicate that this method will communicate in asynchronous mode.

Figure 21. The Design View adds a queue icon to reflect asynchronous mode

As a result, the createOrderAsynch method can not simply respond to the calling client as the
CreateOrder method did. Instead, you will create a Callback that will allow the CRMControl to
notify the client after createOrderAsynch has finished processing the submitted order.

¾ To create a new callback, drag the Callback icon from the Palette window onto the
CRMControl in the Design View. Specify the name of the new callback as orderResponse.

Figure 22. Create a new Callback by dragging-and-dropping the appropriate icon from the Palette Window

As you did previously with the CreateOrder method, you will need to also provide the business
logic for the createOrderAsynch method.

¾ Switch to the Source View by clicking on the createOrderAsynch hyperlink.

¾ Fortunately the business logic required for createOrderAsynch mirrors the code already
provided for createOrder, so you just need to modify the following two lines of code:

 public void createOrderAsynch(Customer c, Order o)
 {
 callback.orderResponse(createOrder(c,o));
 }

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 27 of 64

After making these edits, you will likely notice that the last line was underlined in red, indicating
that there is an error in the source code, as shown in Figure 23.

Figure 23. The automatic syntax checker provides real-time alerts to source code errors

Workshop’s in-line syntax checking and notification makes it easy for developers to fix mistakes
while they are coding in the same context rather than waiting until compile-time. The reason for
this particular error is that your invocation of the orderResponse callback doesn’t match the
declaration that was automatically created by Workshop when you added the orderResponse
operation in the Design View.

¾ To make this simple fix, scroll down in the Source View to the orderResponse declaration,
and add a parameter named message of type String. When you are done the declaration
will look like this:

 public interface Callback
 {
 void orderResponse(String message);
 }

¾ Switch back to the Design View to see the completed CRMControl.

Figure 24. View the completed CRMControl in the Design View

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 28 of 64

In the few steps above, you have created a distributable and reusable component of business
logic that provides both synchronous and asynchronous access to the Avitek order management
databases. In the following exercises, you will build a Web service and a Web application which
will both take advantage of the CRMControl you just created.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 29 of 64

Exercise #3. Creating an Enterprise-Class Web
Service

The custom CRMControl you implemented in Exercise #2 accepts customer and order
information and does all the necessary back-end processing and database coordination
necessary for Avitek’s systems. However, you have not yet provided a mechanism for external
users to access the CRMControl interface. In this exercise, you will expose the CRMControl’s
functionality via an enterprise-class Web service application that will instantly allow thousands of
business partners to interoperate with Avitek’s Order Entry system.

¾ First, clear the workspace by saving and closing all open files.

¾ To create a new Web service, right-click on the AvitekDemoWeb project icon in the
Application Window, select New → Web Service. Name this web service
orderEntryService.jws.

Figure 25. Create a new Web service named orderEntryService.jws

As you might expect, you will now see a graphical depiction of the orderEntryService application
in the Design View, which for now is just an empty canvas. Generally, if you wished to
incorporate any built-in Java Controls in a Web service application, you could just select the
appropriate control option from the Control Palette. Thanks to your work in the previous exercise,
you will only need to leverage the custom CRMControl in this orderEntryService Web service.

¾ To leverage the CRMControl, select its icon from the Application Window and drag it on to
the orderEntryService canvas in the Design View.

Figure 26. To add access to CRMControl, simply drag its icon on to the orderEntryService.jws canvas

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 30 of 64

The CRMControl now appears on the right-side of the Design View canvas, indicating that it is
available as a resource for the developer to easily leverage.

Figure 27. The Design View shows CRMControl as a back-end resource in orderEntryService.jws

Next, you need to create methods which will be invokable by clients of this Web service
application. Once again, this is made very easy for you because BEA WebLogic Workshop 8.1
automatically generates “pass-through” methods for accessing the CRMControl.

¾ To add the desired methods, simply drag the createOrderAsynch and orderResponse
entries from the Data Palette to the orderEntryService canvas. These pass-through
methods allow for convenient exposure of the CRMControl methods via this Web service
application.

Figure 28. The createOrderAsynch and orderResponse operations are exposed to clients

With the client-facing methods and back-end resources in place, now is a good opportunity to
explore additional features in WebLogic Workshop 8.1 that help to build enterprise-class Web
services. For example, asynchrony, loose coupling, strong message-level security, and reliable
“once and only once” messaging are all very important features for building reliable and scalable
Web services that help customers solve real business problems. Not surprisingly, Avitek would
want to take advantage of some of these advanced architectural features.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 31 of 64

Support for Asynchronous Web Services

In the real world, most Web services applications cannot immediately return a response. They
may need to access a legacy system, contact a third party, or involve a human user. These
operations are asynchronous in nature, so it is important to make support for asynchronous Web
services as easy as possible. With BEA WebLogic Workshop 8.1, making the orderEntryService
asynchronous is as simple as setting a few properties:

¾ With the createOrderAsynch method active in the Design View (if necessary, activate it by
clicking on the arrow icon for the method), access the Property Editor to see the various
customizations available. Set the Message Buffer Enable property to True. This will result
in a queue icon being added to the method’s visual representation.

Figure 29. Use the Property Editor to declaratively specify complex application functionality

As you already saw in the previous exercise, enabling the message-buffer property will cause for
a JMS queue and the associated messaging infrastructure to be implemented at run-time. Note
that in this case, the queue is established between the orderEntryService application and its
clients, whereas in the previous exercise, the CRMControl implemented an asynchronous
method for interaction between the CRMControl and its clients, which in this case is the
orderEntryService application. As a result, there are effectively two levels of asynchrony for
optimal application scalability and efficiency.

¾ With the createOrderAsynch method still active, locate the Conversation section in the
Property Editor, and set the phase to Start. This setting will be reflected with a green
triangle added to the method’s visual representation.

¾ Finally, click on the orderResponse callback in the Design View, and change its
Conversation phase to Finish. This setting will be reflected with a red square added to the
callback’s visual representation.

Figure 30. Use WebLogic Workshop’s conversation metaphor to manage asynchronous communications

These conversation settings are based on Workshop’s conversation metaphor for asynchronous
communications. These settings help the application keep track of messages flowing back and
forth and make sure that all the messages that are part of the same conversation go to the right
place (i.e. the calling client). Moreover, conversations will automatically store any state
associated with the conversation in a robust reliable way (using entity EJBs) – developers simply
need to declare variables in a JWS class to take advantage of this capability. By establishing the

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 32 of 64

conversational nature of these methods using declarative property settings, BEA WebLogic
Workshop 8.1 automatically handles the details of state management, message correlation, and
more.

The BEA WebLogic Workshop™ Property Editor is significant because it does more than just let
developers change simple values in a visual way. Properties like conversation phases and
message buffering expose sophisticated functionality that would normally require writing 40-80
lines of Java code and understanding the JMS and JNDI APIs. Properties make these powerful
J2EE concepts accessible to all developers regardless of J2EE expertise level. To better
understand how Workshop can deliver so much power so simply, you should take a minute to
see how the property settings are captured:

¾ From the Design View, click on the CreateOrderAsynch hyperlink to switch to the Source
View.

Figure 31. The Source View is synchronized for seamless two-way editing

Notice the source code annotations that are located above the method’s declaration, within the
JavaDoc annotations. It is these code annotation that get interpreted by the Workshop run-time
framework at deployment-time; WebLogic Workshop then automatically enables this functionality
in the resulting application by implementing standard J2EE components. This remarkable
capability, coupled with the event-based visual design environment, is what makes it easy for all
developers, not just J2EE experts, to work productively on the WebLogic Enterprise Platform.

It should be noted that WebLogic Workshop does not generate code – the developer never needs
to understand or debug code they have not written. Instead, properties and their resulting
annotations declare functionality that is supported by the run-time framework in a container
approach.

In just these few steps, you have now created a powerful Web service application that Avitek can
immediately deploy to the universe of distributors to enable automated ordering over existing
Internet infrastructure. Note that the innovative WebLogic Workshop programming model and
run-time framework abstracted you from the minutiae of SOAP marshalling, Java-XML mapping,
bean deployment, WSDL file creation, and much more. In this manner, developers are free to
focus on handling events and writing business logic, making them dramatically more productive.

Automated Deployment and Testing

You are now ready to test the orderEntryService:

¾ To automatically deploy and run the Web service, uses the menus to select Debug Æ
Start, or hit the Start icon on the menu bar.

When you start the orderEntryService application, BEA WebLogic Workshop™ 8.1 automatically
compiles and deploys the Web service application to the WebLogic Server. Note that you do not
need to worry about writing deployment descriptors, configuring the underlying application server,
or packaging your application components. Instead, the BEA WebLogic Workshop “Write and
Run” feature enables developers to build and deploy applications quickly, dramatically reducing
the time required for iterative development.

Because Web services typically involve application-to-application communication, testing Web
services at development time has traditionally been tedious and time consuming. In fact,

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 33 of 64

normally you would have to write client-side code to test the web service. But in order to simplify
testing, BEA WebLogic Workshop provides a browser-based interface to test all applications so
functionality can be verified and problems can be quickly identified. The integrated test harness
contributes to WebLogic Workshop’s model for rapid application development.

¾ From within the Workshop Test Browser, click on the Overview tab.

Figure 32. WebLogic Workshop 8.1 generates a test client to quickly test any application

The Overview screen in the Workshop Test Browser automatically provides a basic description of
the Web service and the methods it exposes. It also allows clients to easily download a WSDL
file, source code for a Java Control to access the orderEntryService application, or Java proxy
code to use in any Java environment for building a client for this Web service. Moreover, clicking
on the Console tab will enable the developer to see what types of services and components this
Web service is accessing.

¾ To test the orderEntryService application, select the Test XML tab.

The Workshop Test Browser provides a free-text box that is pre-loaded with the skeleton
structure of the XML message that the orderEntryService expects as incoming order information.

¾ You can either manually type in values into the Workshop Test Browser, or more
conveniently, paste in the sample order information provided for you in the JavaOrder.xml
file. You can locate this file in the Application Window project tree. Click the
createOrderAsynch button.

Figure 33. Submit a sample order for a customer named Bob Smith

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 34 of 64

The test client automatically wraps up the order information into an appropriate SOAP message
as shown in the test client. Embedded in the XML is the sample customer and order information:

Figure 34. The Workshop Test Browser helps track all the messages used in testing the Web service

Recall that the createOrderAsynch method you are testing is asynchronous, and accordingly, it
starts a conversation, as indicated at design-time. Not surprisingly, the Message Log shows that
a new conversation has automatically been started. BEA WebLogic Workshop will automatically
track all related messages under the corresponding Conversation ID, which is visible in your
Message Log as well as in the SOAP headers of the messages being sent.

¾ Hit the Refresh link in the Workshop Test Browser to view any subsequent messages that
have been exchanged between the test client and your Web service during this
asynchronous conversation. Soon, you will see the order confirmation appear from the
orderResponse client callback, as shown in Figure 35.

Figure 35. Asynchronous messages are correlated according to the Conversation ID

¾ After confirming the order is acknowledged in the test client, close the Workshop Test
Browser and return to the WebLogic Workshop visual development environment.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 35 of 64

Loose-Coupling

Another important feature of BEA’s architecture for enterprise-class Web services is loose
coupling. Loosely-coupled applications are flexible and can accommodate change over time,
which is especially important when Web services are used to integrate different applications that
are normally built by different teams using different technologies and platforms. The key to
loose-coupling is to enable a separation between a Web service’s public contract and it’s private
implementation. Since Web services communicate using XML-based documents and WebLogic
Workshop application development is done in Java, it is critical to provide easy, intelligent and
flexible mapping between XML and Java to ensure true loose-coupling.

To help with loose coupling, BEA WebLogic Workshop 8.1 provides deep support for XML
Schema and XQuery, state-of-the-art technologies for working with XML in Java. In the next few
steps, you will incorporate a schema definition that provides the structure and constraints on the
Purchase Order messages that business partners will use to submit automated orders to Avitek.
You will also gain exposure to XQuery technology, which is sometimes referred to as “SQL for
XML” because it provides a robust mechanism to access data directly from XML documents,
much like SQL provides a mechanism for accessing data in traditional databases. Fortunately,
BEA WebLogic Workshop handles for you the complex work of writing custom XQuery
expressions.

¾ You need to first import the appropriate schema file into the AvitekDemo application. In the
Applications Window, right-click on the Schemas folder, and choose Import. Browse to the
purchase-order.xsd file that you previously saved in the c:\workshop81demo folder, and
click Import.

Figure 36. Import the XML Schema Definition (XSD) file to use in XQuery mapping

BEA WebLogic Workshop automatically compiles and interprets the provided schema file to learn
the structure of messages expected for the orderEntryService application. (You can see the
results of this compilation in the Build pane underneath the Design View.)

Next, you will need to provide the “mapping” of the data fields in the incoming XML message to
elements in the Java data structures that will be used to hold the data for the application to
process.

¾ From the Design View of orderEntryService.jws, click on the createOrderAsynch method’s
arrow icon to make this method active.

¾ Scroll down in the Property Editor until you see the XQuery property under the Parameter-
XML heading. Click on the … button to launch the XQuery Editor as shown in Figure 37.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 36 of 64

Figure 37. Use the Property Editor to invoke the XQuery Mapping features

¾ In the left-side pane of the XQuery Editor, expand the tree structure to locate the
createOrderAsynch schema entry as shown in Figure 38. You need to specify this
definition as the “source schema” so highlight it and click Create.

Figure 38. Specify the createOrderAsynch definition as the Source Schema

Next appears a visual mapping tool to visually map fields from the source schema (based on the
chosen schema definition) to the target schema (the parameters defined by the
createOrderAsynch method declaration which are the Customer and Order data structures).
Mapping fields between the two schema is as simple as drawing lines connecting source fields to
target fields:

¾ Connect customer-number first to c.custId and then to o.custID

¾ Connect firstname to c.name and lastname also to c.name

¾ Connect address, city, state, zip, and phone fields to the matching fields in the c data
structure

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 37 of 64

¾ Connect order-number to o.orderID

¾ Connect tv-order:quantity to o.flatScreenQty

¾ Connect camera-order:quantity to cameraQty

When you are finished with these mappings, the XQuery Mapper screen should appear as shown
in Figure 39.

Figure 39. WebLogic Workshop enables visual mapping between Source (XML) and Target (Java)

You can use the visual tool for speed as shown above, or directly access the XQuery source
code by clicking on the XQuery tab. Each of the visual mapping actions is translated into the
matching XQuery expression.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 38 of 64

Figure 40. Workshop provides a code-view of the XQuery expressions underlying the mapping

¾ Select the XQuery tab at the top of the XQuery Mapper window to view the mapping in its
native XQuery format. For aesthetic completeness, insert some whitespace into the name
mapping by specifying a space (“ “) between the first name and last name. The modified
line should read as follows:

<ns1:name>{concat($input/ns0:purchase-
order/ns0:customer/ns0:firstname," ",$input/ns0:purchase-
order/ns0:customer/ns0:lastname)}</ns1:name>

¾ Click OK in the XQuery Mapper tool, and OK in the XQuery Editor to return to the Design
View.

With these additions for ensuring a loosely-coupled Web service, you can now test your revised
orderEntryService Web service application:

¾ As before, uses the menus to select Debug Æ Start, or hit the Start icon on the menu bar.

¾ Click on the Test XML tab. Notice that the XML skeleton provided now is slightly different
from last time. This is because the orderEntryService application is now expecting an XML
message that conforms to the createOrderAsynch schema definition you specified.

¾ For convenience, an XML message conforming to the expected schema has been provided
in the PurchaseOrderMessage.xml file, accessible in the Application Window. Paste the full
contents of this XML message into the SOAP body field of the test client and click
CreateOrderAsynch.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 39 of 64

Figure 41. Submit a sample order for a customer named John Doe

¾ After invoking the asynchronous method, you will need to click the Refresh link in the
Workshop Test Browser to collect subsequent messages in the conversation. Soon, you
should receive the client callback in the Message Log which confirms the order.

Figure 42. The order for John Doe is acknowledged by the orderEntryService application

Congratulations! You just built, deployed, and tested an enterprise-class Web service in a
matter of minutes using BEA WebLogic Workshop 8.1!

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 40 of 64

Exercise #4. Creating an Enterprise-Class
Web Application

In helping Avitek make its Order Entry System accessible to business partners, you’ve
experienced WebLogic Workshop’s capabilities for building powerful, enterprise-class Web
services. Now, turn your attention towards creating a Web application to target the unlimited
number of potential e-commerce customers. Fortunately, thanks to BEA WebLogic Workshop’s
unified development architecture, creating a Web application utilizes the same simplified
programming model as you have already become familiar with from building the custom control
and Web services application in the previous exercises. To get started with this exercise:

¾ If it is still active from the previous exercise, close the Workshop Test Browser to return to
the WebLogic Workshop development environment. Then save and close all open files
including orderEntryService.jws to clear your workspace.

¾ In the Application Window, locate the Controller.jpf file and double-click on its icon to open
the file.

Java Page Flow Technology

The key requirement for using BEA WebLogic Workshop to build server-side applications with
dynamic JSP/HTML user interfaces is understanding a new Java innovation introduced with
WebLogic Workshop 8.1 – Java Page Flow. A Java Page Flow is simply a set of related
JavaServer Pages and a companion Java controller class. A JavaServer Page (JSP) gives you a
convenient way to present dynamically generated content via a web browser. JSPs are able to
provide dynamic content because they are not purely HTML; instead, JSP pages include Java
code that provides the dynamic content. And the Java controller class (denoted by a file’s .JPF
suffix) provides the navigational and behavioral control that spans across the related JSP pages.
These components work together to help build enterprise-class, standards-based Web
applications.

Figure 43. The Flow View provides a visual depiction of the Web application

You should see in front of you the Controller.jpf file being displayed via the default Flow View.
The Controller.jpf file is the Java class that contains the business logic for the Web application

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 41 of 64

you need to complete. This file will include the necessary methods and code annotations to
define the intended behavior of the Web application, including the navigational flow between
pages, the actions (i.e. business logic) executed by pages, and the data shared between pages
in the application. Page Flows can also leverage controls to access existing business logic and
back-end resources. Importantly, the Java Page Flow programming approach provides a way to
elegantly separate presentation code from navigational control logic. Presentation code can be
placed where it belongs – in the JSP files. Navigational control logic can be implemented in each
Java Page Flow’s single configuration file – the JPF file. This separation of functionality offers a
big advantage to development team members because they can make business logic revisions in
a single JPF file, instead of having to search through every JSP file to make multiple updates.

For Avitek’s needs, your goal is to build a web-based Order Entry System that allows customers
to submit product orders. Of course, you will also need to collect the requisite customer
information, handling the cases where a user could be a new customer or an existing customer.
Figure 44 diagrams the expected user experience for the Avitek Order Entry Web application:

Enter New
Customer
Information

Get
Customer

Status

Specify
Which

Customer

Start
Order

Submit
Order

Finish
Order

New

Existing

Enter New
Customer
Information

Get
Customer

Status

Specify
Which

Customer

Start
Order

Submit
Order

Finish
Order

New

Existing

Figure 44. Process flow for the Avitek Web application

To create this Web application, you will benefit from the ability to re-use the CRMControl you
built-in Exercise #2 to handle interfacing with Avitek’s databases. Moreover, several components
of the Web application have been pre-defined for you. In fact, the Flow View of the Controller.jpf
provides a visual depiction of the pre-defined pages and actions, and should resemble the
diagram in Figure 44.

To complete the Order Entry Web application, you will need to add some missing actions and
provide the necessary business logic therein. In particular, notice in the Flow View the missing
links between the WizOne.jsp icon and the WizTwoNew.jsp/WizTwoExisting.jsp icons.

Figure 45. Notice the gaps remaining in the Java Page Flow application

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 42 of 64

These missing links represent the area of the Web application where you will need to focus your
attention. As defined, the WizOne.jsp page allows the user to indicate whether they are a new or
existing Avitek customer:

¾ Locate the WizOne.jsp in the Flow View and double-click on its icon to see how the page is
defined. When finished, close the page by clicking on the X in the top-right corner.

Figure 46. WizOne.jsp allows a user to specify their customer status

Based on the user response provided by the radio button selection, the Web application needs to
process some business logic and determine in which path the user should be taken. This
functionality will be implemented in WizOneAction, which is a method in Controller.jpf that gets
automatically invoked after the user submits a response in the WizOne.jsp page.

¾ Locate the WizOneAction icon in the Flow View, it is adjacent to the WizOne.jsp icon and
should appear fainter than the other icons. To instantiate this action, right-click on the
WizOneAction icon and choose Create.

Figure 47. Activate the WizOneAction element using convenient pop-up menu commands

The next step is to define the Form Bean associated with WizOneAction. A Form Bean is the
mechanism that communicates data between a page (i.e. WizOne.jsp) and its associated Action
(i.e. WizOneAction). Since the WizOne.jsp page allows a user to identify oneself as a “new” or
“existing” customer, you need the Form Bean associated with WizOneAction to hold this piece of
information.

¾ Right-click on the WizOneAction icon, and select Generate Form Bean. This automatically
brings up the Form Bean Editor.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 43 of 64

¾ In the Form Bean Editor, click the New Field icon or otherwise click in the first row of the
table to create a new field. Name the new field customerType and leave the type as the
default String value. Click OK.

Figure 48. Add a String field to the Form Bean to capture the user’s status

The Form Bean is now complete and will convey the customerType value to WizOneAction.
Depending on the value (i.e. new or existing customer), WizOneAction will determine which page
a particular user is taken to next. Accordingly, you need to visually connect the newly created
WizOneAction with the subsequent pages in the application flow.

¾ Draw a link between WizOneAction and WizTwoNew.jsp. This is done by simply clicking
just to the right of the WizOneAction icon (the mouse pointer should change to have a link
underneath the arrow as shown in Figure 49) and drag a link (keep the mouse button
depressed) towards WizTwoNew.jsp. Change the link’s label (in the yellow box) to new.

Figure 49. Visually drag links to connect pages in the Flow View

¾ Similarly, drag a link from WizOneAction to WizTwoExisting.jsp, and label its link as
existing.

Figure 50. The Flow View displays the specified navigational logic

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 44 of 64

As you can see, the Flow View provides an easy and intuitive interface for specifying and viewing
the overall navigational flow of your Order Entry Web application.

¾ With Web applications in WebLogic Workshop 8.1, you can also take advantage of the
Action View by clicking on the corresponding tab near the bottom of the canvas.

Figure 51. The Action View displays the methods and resources in Controller.jpf

The Action View should look very familiar to the Design View you experienced while building the
custom control and the Web service: there are methods on the left-side and resources on the
right-side. With a Web application, the methods represent the Actions that are defined to control
the application’s behavior. Clicking on any Action’s name will take you to the synchronized code
in the Source View:

¾ From the Action View, click on the WizOneAction hyperlink to switch over to the Source
View and view the underlying Java code for this Action.

Figure 52. The code annotations are color-coded for enhanced visibility

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 45 of 64

Notice the code annotations, denoted with @jpf tags, above the WizOneAction method definition
shown in Figure 52. These were automatically inserted by the development environment when
you drew the visual links in the Flow View.

¾ Within the WizOneAction method, you need to replace the single line of default code with
the following lines to determine the type of user being handled and then execute the
appropriate section of the if/else logic branch. When you are finished, the method will
appear as follows:

 /**
 * @jpf:action
 * @jpf:forward name="existing" path="WizTwoExisting.jsp"
 * @jpf:forward name="new" path="WizTwoNew.jsp"
 */

 public Forward WizOneAction(Controller.WizOneActionForm
 form)
 {
 if (form.getCustomerType().equals("existing"))
 {
 custInfo = crmSystem.findAllCustomersArray();
 return new Forward("existing");
 }
 else
 return new Forward("new");
 }

Automated Data-Binding

WizOneAction is now complete. You are almost ready to test the Web application, however there
is one more important task remaining:

¾ Return to the Flow View of Controller.jpf, locate the WizTwoNew.jsp file, and double-click
on it to open it.

You will now see the WizTwoNew.jsp loaded in WebLogic Workshop’s JSP editor. The editor
enables developers to create complex JSP forms using tags and properties, and supports a
Design View that provides drag-and-drop, WYSIWYG functionality. As provided to you, the
WizTwoNew page is nearly empty, so you need to make the necessary additions to the page so
that it can collect information from a new customer; this data will then need to be stored in
Avitek’s databases. Fortunately, WebLogic Workshop makes this easy with drag-and-drop data-
bound forms that can automatically connect user interface elements with back-end resources:

¾ Locate the WizTwoAction icon in the Data Palette and drag it on to the WizTwoNew page in
the Design View.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 46 of 64

Figure 53. The Data Palette aggregates elements associated with the Java Page Flow

¾ This action brings up the Form Wizard.

o In Step 1, leave the default Action as WizTwoAction.

o In Step 3, you will see the data fields which were pre-defined in the Form Bean for
WizTwoAction. Un-check the custID field to indicate that a new customer should not
be able to enter in their own customer number – rather the system will generate this
automatically.

o Click Next.

Figure 54. Select the appropriate fields to include on the form using the Form Wizard

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 47 of 64

¾ The Adjust Fields dialog box allows you to modify the position in which the fields will
appear, as well as the type of user interface element used to collect the data (i.e. textbox,
checkbox, etc.). In this case, to make the order of fields more logical, simply use the arrow
icons to move the Area Code and Phone fields above the Address field. Click Create.

Figure 55. Adjust the fields to the desired position for the form

The JSP editor will update the WizTwoNew.jsp page to display the fields you just added, as
shown in Figure 56.

Figure 56. WebLogic Workshop 8.1 provides a JSP editor with WYSIWYG functionality

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 48 of 64

WebLogic Workshop 8.1 automatically created the data-bound form that you specified in the
Form Wizard, which demonstrates how easy it is to build Web applications in WebLogic
Workshop incorporating data in databases, Web services, or any custom business logic. The
data binding is enabled by an out-of-the-box tag library and even supports complex data like
grids, lists, repeating elements, etc. Beyond the data management, WebLogic Workshop 8.1 will
automatically manage the session, state management, and other complex details so the
developer can maintain focus on the business problem.

Automated Deployment and Testing

This completes the development required for the Avitek Order Entry System Web application so
now you can test the application. Once again, you can take advantage of WebLogic Workshop’s
automated deployment and integrated test harness that makes iterative development a breeze:

¾ Save and close the WizTwoNew.jsp file and return to the Controller.jpf file. Click the Start
icon (or Debug Æ Start without Debugging) to automatically deploy the Order Entry Web
application and bring up the Workshop Test Browser. Note that, as with any Web
application, loading the first view of a JavaServer Page (JSP) takes longer than all future
views because the presentation code is being compiled on the first pass.

¾ From the starting page in the Workshop Test Browser, click Start Entering An Order! to
begin the Avitek Order Entry System.

Figure 57. The entry-page for the Avitek Order Entry System

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 49 of 64

¾ On the first pass-through, identify yourself as a New customer using the radio buttons and
click Next.

Figure 58. The application uses simple UI elements to collect information on the customer’s status

¾ Thanks to the business logic you entered in the WizOneAction method, you will be properly
navigated towards the “new customer” path and will have a chance to enter in your
information. Here you will see the data-bound form that you created on the WizTwoNew
page. Fill in the fields as indicated in Figure 59 and click the WizTwoAction button.

Figure 59. The form collects the relevant information for the new customer in this example

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 50 of 64

¾ Next you will have a chance to specify the quantity of products to order, hit Next, and you
will receive a confirmation page.

Figure 60. The application now collects the appropriate order information

It is that simple for any new customer to come to Avitek’s web-site and start making orders for
televisions and digital cameras! Just to make sure that the customer’s information was handled
properly, let’s walk through the Order Entry System one more time:

¾ Click Start Another Order from the confirmation page.

Figure 61. The application confirms the initial order, and allows the user to start another order

¾ This takes you back to the starting page. Click on Start Entering An Order! as before.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 51 of 64

¾ This time, identify yourself as an Existing customer, and click Next.

Figure 62. In this pass, specify customer status as Existing

¾ You will now see a list of all the customers that are currently in the Avitek Customer
database. You should see a line item for “Billy Bob” (or other name) you added in the
previous steps. Also note that you will see entries for Bob Smith and John Doe, which
correspond to the orders in JavaOrder.xml and PurchaseOrderMessage.xml, respectively,
that were submitted in Exercise #3.

Figure 63. The application displays all the records in the Customer Database

Congratulations – the Order Entry System Web application is complete! BEA WebLogic
Workshop 8.1 makes user-interface development easy because all you needed to do was specify
logic, navigation, and data – the WebLogic Workshop 8.1 run-time framework handles all the low-
level details and helps to boost your productivity.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 52 of 64

In just these four simple exercises, you have successfully built standards-based,
enterprise-class applications that will enable Avitek to be more agile and compete more
effectively. Importantly, you were able to accomplish this impressive objective without
needing any knowledge of J2EE or object-oriented programming disciplines, and still
completed the job in one-tenth the time (or less!) than it would have required without the
benefit of BEA WebLogic Workshop 8.1.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 53 of 64

(Bonus) Exercise #5: Creating a Web Application
From a Java Control

In the previous exercise, you completed the Order Entry System Web application by providing the
missing business logic, flow control, and data-binding information. But what if you wanted to
create a Web application from scratch? More specifically, suppose Avitek would like to create a
Web application that a database administrator could use to access the Orders Database and
perform basic database management tasks such as creating, retrieving, updating, or deleting
records. BEA WebLogic Workshop 8.1 makes it incredibly easy to build a “starter” Web
application with this “CRUD” functionality from any Java Control or table in only a few clicks.

¾ To start, you need to create a new Web application. After saving and closing all open files,
right-click on the AvitekDemoWeb folder and select New → Page Flow.

¾ The Page Flow Wizard will appear. Provide orderAdmin as the Page Flow Name. The
Controller File Name will be automatically adjusted. Click Next.

Figure 64. Create a new Page Flow named orderAdmin

¾ The following step allows you to specify if this new Page Flow is to be built from scratch or
if it is to be based on a Java Control. You will want to use a Database Control (that still
needs to be defined) so select the Database Control radio box and click the New button to
launch the Database Control Wizard.

¾ Provide OrdersAdminDB as the Name and leave the default Data Source
cgSampleDataSource to indicate that you will create a new table in the database that is
embedded with WebLogic Platform. Click Next.

Figure 65. Use the Database Control Wizard to create and configure the new control

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 54 of 64

¾ You want to be able to query and update a data table, so leave the default setting in the top
radio group. And below, select CAJUN as the Schema type, and select ORDERS from the
Table drop-down box.

Figure 66. Specify the CAJUN schema and the ORDERS table as the data of interest

¾ The next step in the Database Control Wizard lets you see the available columns in the
Orders table. These default settings are correct so just select Next.

¾ You would like the new primary keys to be automatically generated by the database (the
default selection) so just click Create to complete the Database Control Wizard.

¾ This returns you to the original Page Flow Wizard dialog box. But now that you have
successfully created the Database Control upon which the new Web application will be
based, you can specify the OrdersAdminDB as the Database Control and click Next.

Figure 67. Return to the Page Flow Wizard, and select OrdersAdminDB as the basis for the new Page Flow

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 55 of 64

¾ Now you have a chance to select the actions that will be permitted in the new OrdersAdmin
application. To reflect the fact that a new order entry would only be generated via the
Order Entry System interfaces you built earlier, the database administrator in this case
shouldn’t have this particular ability so you should disable the Insert New Rows checkbox
as shown in Figure 68. Finally, click Create.

Figure 68. Customize the actions permitted in the new Page Flow application

You will now see the new orderAdminController Page Flow appear in the Flow View:

Figure 69. WebLogic Workshop 8.1 automatically defines the appropriate pages, flows, and actions required

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 56 of 64

As you can see in Figure 69, BEA WebLogic Workshop automatically created the necessary JSP
pages, navigation instructions, and associated actions to provide the Orders Database
administrative functions you specified. Of course, a developer could easily extend this
application as appropriate, but the product of the Page Flows Wizard you just completed is a
fully-functioning Web application that any authorized Avitek user around the world could use to
perform database administration activities on the Orders database.

Not only that, you have created a truly enterprise-class application that natively supports MVC
(model-view-controller) architecture and leverages Struts, but Workshop made it easy enough for
any developer – you don’t have to be an expert in any of these technologies.

¾ To see the new Web application in action, click the Start icon to deploy the application and
invoke the integrated test harness. The first screen to appear will display all the records
currently in the Orders database as shown in Figure 70.

Figure 70. The Grid View displays all the order records in the Avitek Orders database

¾ If you select the Edit link on a particular record, you are taken to the Edit View and have
the ability to modify or delete a record.

Figure 71. The application provides administrators the ability to easily edit or delete existing order records

Congratulations! You have built a full-fledged Web application with core functionality
from an underlying, standard database table in only a few minutes!

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 57 of 64

(Bonus) Exercise #6: Using XMLBeans For
Handling XML in Java

While building the Order Entry Web service in Exercise #3, you leveraged Workshop’s XQuery
Mapping tools to handle the transformation between XML messages and the Java data objects
that are used to process the information. The XQuery mapping approach empowers genuine
loose-coupling – separation of the service’s public contract (i.e. schema definition) from the
internal Java implementation. XQuery mapping is complemented by another important BEA
feature for loose-coupling named XMLBeans.

XMLBeans is an innovative technology that makes it very easy for developers to access and
manipulate XML data and documents in Java by offering convenient Java object-based view of
XML data without losing access to the richness of the original, native XML structure. Access to
the Java class “views” are automatically generated just by submitting the relevant schema
definition, as you already did in a prior exercise. To see XMLBeans in action:

¾ Clear the workspace and then re-open the orderEntryService.jws file in the Design View.

¾ Since you will be replacing the previously implemented XQuery mapping, you need to
delete the previous transformation. The easiest way is to make CreateOrderAsynch the
active method, and click on the XQuery property under the Parameter-XML in the Property
Editor to launch the XQuery Editor.

Figure 72. Use the Property Editor to re-launch the XQuery Mapping Editor

¾ Next, click Delete to remove the existing transformation you created in Exercise #3. Click
OK to return to the Design View.

¾ To incorporate XMLBeans in the createOrderAsynch method, just click on its hyperlinked
name to switch to the Source View.

Figure 73. Click on the hyperlinked method name to switch to Source View

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 58 of 64

¾ Modify the createOrderAsynch method declaration so that instead of taking a Customer and
Order parameter, it takes only a PurchaseOrderDocument parameter. The revised method
definition line should appear as follows:

public void createOrderAsynch(PurchaseOrderDocument podoc)

Notice that when you are typing in this new variable type, you should see a pop-up box indicating
that support for this variable requires importing a new class:

Figure 74. WebLogic Workshop 8.1 includes a convenient Auto-Import feature in the Source View

This is due to Workshop’s auto-import feature to enhance productivity in building modular
applications. Press Alt+Enter to automatically import the appropriate org.openuri.easypo
package (this name was defined in the schema file you imported in Exercise #3). The
PurchaseOrderDocument is a Java type automatically created by Workshop when the Purchase
Order schema is imported and concurrently processed by the embedded XMLBeans compiler.
This Java class is typical in that it includes a number of variables and methods, that together
provide full access to the underlying XML-based purchase order document.

At this point you have two options. One approach would be to create a new control that takes a
PurchaseOrderDocument as its parameter for processing. Or alternatively, you could simply
create and populate one Customer and one Order data structure from the information in the
PruchaseOrderDocument, such that you could re-use the existing createOrder method with the
existing CRMControl. Take this latter approach here for the sake of simplicity.

¾ Insert the following lines of code to use XMLBeans to extract the necessary pieces of
information from the underlying XML to fill-in the important fields of the Customer and Order
data structures. When finished, the method should appear as follows:

 /**
 * @common:operation
 * @common:message-buffer enable="true"
 * @jws:conversation phase="start"
 */
 public void createOrderAsynch(PurchaseOrderDocument podoc)
 {
 Customer c = new Customer();
 Order o = new Order();
 PurchaseOrder po = podoc.getPurchaseOrder();
 c.name = po.getCustomer().getFirstname() + " " +
 po.getCustomer().getLastname();
 c.custId =
 po.getCustomer().getCustomerNumber().intValue();

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 59 of 64

 o.custID = c.custId;
 o.orderID =
 po.getOrderData().getOrderNumber().intValue();
 o.cameraQty =
 po.getOrderData().getCameraOrder().getQuantity();
 o.flatScreenQty =
 po.getOrderData().getTvOrder().getQuantity();
 cRMControl.createOrderAsynch(c,o);
 }

While typing the lines above, you will likely get Auto-Import messages and you may need to
specify for Workshop to import CRMSystem.Customer and CRMSystem.Order.

¾ To test this revised Web service, click the Start icon.

¾ Click the Test XML tab in the Workshop Test Browser.

¾ Get the text from the PurchaseOrderXBean.xml file in the Application Window and copy it
into the SOAP body text-box in the test browser. Click the createOrderAsynch button to
submit the order message.

¾ As before, you should click Refresh to capture the rest of the messages involved in the
asynchronous communication. When the callback.orderResponse item appears in the
Message Log you can see the order confirmation message in the Client Callback.

Figure 75. The test client tracks the asynchronous conversation and shows the order acknowledgement

As you can see, WebLogic Workshop 8.1 makes it easy to use XMLBeans to manipulate the
XML. While this scenario only demonstrated extracting data from the underlying XML document
using the Java interfaces, you could just as easily have traversed the raw XML using a Cursor
API, or have used the suite of “setter” functions to extend or modify the XML message.
Importantly, Workshop automatically ensures that any changes to the XML document is in
compliance with the submitted schema that defines the expected structure. This preservation of
XML fidelity combined with its ease-of-use is the key benefit of using XMLBeans to create
loosely-coupled applications.
To help determine whether XQuery mapping or the XMLBeans approach is correct for your
application, an important consideration is the nature of processing: end-point or way-point. In

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 60 of 64

end-point processing, the program is an end point for the XML. Its job is either to extract from the
XML the information it needs to do its job or else to create an XML document from scratch. The
application can do complex procedural things with the document, and it is acceptable for the
application to discard information in the incoming XML document that it does not need. On the
other hand, in way-point processing, the program acts on an XML document as that document
flows through a process. In this case the program shouldn't be "lossy," since it doesn't know
what functions precede or follow it in the business process. In these cases, preservation of the
full XML fidelity is critical. As you might guess, it is these way-point applications that are
particularly well-suited to XMLBeans whereas end-point applications may only require XQuery
mapping. Often both are acceptable alternatives and the issue becomes one of developer
choice.

Congratulations! You have now completed all the exercises in the JumpStart Guide.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 61 of 64

Behind the Scenes
The ease of creating enterprise-class applications in BEA WebLogic Workshop 8.1™ is only the
beginning. Although you haven’t written a single line of J2EE code, the applications you have
written are running on top of the industry-leading BEA WebLogic Server and taking advantage of
sophisticated J2EE features like entity beans, stateless session beans, JDBC connections, and
JMS queues.

In this product walkthrough you’ve hopefully seen how easy it is to create reasonably
sophisticated applications in BEA WebLogic Workshop 8.1, including custom Java Controls, Web
services, and Web applications. But there is additional power is what you haven’t seen – all the
machinery and J2EE platform features involved in making these applications run. The
applications each takes advantage of EJBs, JMS Queues and other advanced features without
exposing them to the developer at any time. If you need to, you can see many of these
underlying components through the WebLogic Server Administrator’s Console.

After completing these six exercises, it should be apparent that BEA WebLogic Workshop 8.1
makes it easy for all developers to build powerful, standards-based applications, while at the
same time, taking advantage of leading application server features like clustering, caching,
pooling, and message queuing that are otherwise accessible only to a relatively few, highly
trained J2EE developers. With BEA WebLogic Workshop 8.1, you only needed to write the
applications as if everything was a simple Java class.

To do what you just accomplished in this product demonstration without the help of BEA
WebLogic Workshop’s programming model would require years worth of knowledge of APIs like
JNDI, JMS, and JDBC. It would requires detailed knowledge of XML standards such as SOAP
and WSDL, the Struts framework, MVC paradigms, state management, message correlation,
data persistence, XML-to-Java mapping, and much more. Fortunately BEA WebLogic Workshop
abstracts away this infrastructure complexity to let developers solve pressing business problems
and achieve a faster time-to-value.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 62 of 64

Conclusion

BEA WebLogic Workshop 8.1™ is an exciting evolution in the J2EE development arena. By
combining the ability to create powerful, standards-based applications with a simplified
programming model, WebLogic Workshop 8.1 delivers unprecedented productivity to IT
development organizations and accelerates their time-to-value.

In the course of exploring the product demonstration outlined in this JumpStart Guide, you will
have experienced a number of BEA WebLogic Workshop’s important benefits:

Making J2EE accessible and productive: The WebLogic Workshop visual development
environment and run-time framework insulate developers from the inherent complexity of J2EE.
Instead of writing to low-level J2EE APIs, which require years of domain expertise, the WebLogic
Workshop provides simplifying concepts such as controls, properties, and events that let
developers focus on the business logic, not the infrastructure details. This means the enterprise-
proven strength of J2EE is finally available to the majority of developers with skills in visual or
procedural languages, at ten times the productivity of working directly with the low-level J2EE
APIs.

Reducing IT complexity: BEA WebLogic Workshop 8.1 provides developers with a single tool
and a single, simplified programming model for building and integrating any type of application on
BEA WebLogic Enterprise Platform™ 8.1– including Web applications, Web services, Portals,
and Integration applications. This approach streamlines the development organization and lets
developers work on any platform project using the skills they already know. WebLogic Workshop
8.1 also provides an extensible Java Controls methodology to make it easy to leverage existing
IT infrastructure such as databases, legacy applications, and other back-end resources –
empowering developers to accomplish more in less time.

Enhancing project success with enterprise-class applications: BEA WebLogic Workshop 8.1
reduces development risk by implementing applications on scalable, reliable and secure
enterprise-class architecture. The Workshop 8.1 runtime framework automatically creates
applications using standard J2EE components to protect your technology investments and
maintain maximum flexibility.

BEA WebLogic Workshop 8.1 is a unified, simplified, and extensible development environment
that empowers all developers, not just J2EE experts, to build, test, and deploy enterprise-class
applications on the BEA WebLogic Enterprise Platform.

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 63 of 64

Appendix: BEA WebLogic Workshop 8.1™
Specifications

Supported Platforms:

Microsoft Windows XP

Microsoft Windows 2000

Linux – Red Hat Advanced Server 2.1

Sun Microsystems 8 and 9 (run-time only)

HP-UX 11.0 and 11i (run-time only)

Application Server:

BEA WebLogic Workshop 8.1 Application Developer Edition requires BEA WebLogic Server 8.1

BEA WebLogic Workshop 8.1 Platform Edition also requires BEA WebLogic Portal 8.1 and/or BEA
WebLogic Integration 8.1

Next Steps: Product Information and Developer
Resources

For a full range of developer resources, including product subscriptions, up-to-the minute
technical articles, demos and code samples, and more, please visit BEA’s dev2dev developer
portal at http://dev2dev.bea.com

BEA dev2dev is a complete developer program designed to ensure developer success and
complement the productivity and rich development features found in BEA WebLogic Workshop
8.1™.

BEA dev2dev delivers a wealth of expert technical information, tools, training and support for
developers of all levels of technical knowledge and experience. BEA dev2dev Online provides
a single entry point for developers to download software plus a wide range of technical articles
and whitepapers on BEA WebLogic Workshop™ and other BEA technologies, forums and
peer networking, training events and seminars, user group connections, code samples,
publications and more.

Other important developer resources:

- BEA Development Support; http://www.bea.com/support/

- BEA Education Services; http://www.bea.com/education/index.shtml

- BEA Developer Newsgroups; http://www.bea.com/support/newsgroup.shtml

- BEA Certified Developer Program;
http://education.bea.com/training/CertificationProgram.jsp

BEA WebLogic Workshop 8.1 (beta)™ JumpStart Guide Page 64 of 64

About BEA

BEA Systems is the world's leading application infrastructure software company, with more than
13,000 customers around the world including the majority of the Fortune Global 500. The BEA
WebLogic® Enterprise Platform provides the application infrastructure foundation that simplifies
the flow of information, decreases the costs of managing applications, and makes an enterprise
more agile, productive, and connected. BEA's platform is also the de facto standard for more
than 2,100 systems integrators, independent software vendors and application service providers
who partner with BEA to ensure the successful deployment of customer solutions.
Headquartered in San Jose, Calif., BEA has 96 offices in 34 countries and is on the Web at
www.bea.com.

Copyright © 2003 BEA Systems, Inc.

BEA and WebLogic are registered trademarks, and BEA WebLogic E-Business Platform, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Portal, and BEA WebLogic Server are
trademarks of BEA Systems, Inc. All other trademarks are the property of their respective owners.

BEA Systems,Inc.
2315 N orth Fi rst St reet
San Jose, CA 95131 U.S.A.
Telephone: + 1.408. 570.8000
Facsimile: +1. 408.570.8901
www. bea.com

