beam bending

- euler bernoulli vs timoshenko -

ellen kuhl
mechanical engineering
stanford university
- uniaxial bending
- timoshenko beam theory
- euler bernoulli beam theory
- differential equation
- examples

kinematic assumptions

[1] width and height $b, h \ll$ length l
[2] forces orthogonal to beam axes

kinematic assumptions

[1] width and height $b, h \ll$ length l
[2] forces orthogonal to beam axes
planar / uniaxial bending
[3] external forces in x - z-plane
[4] cross section symmetric to z-axis
[5] coordinate system in axis of gravity

governing equations of beam theory

- equilibrium

$$
\begin{aligned}
& \frac{\mathrm{d} Q}{\mathrm{~d} x}=-q \\
& Q=\int \tau \mathrm{d} A
\end{aligned}
$$

governing equations of beam theory

$$
M+\mathrm{d} M
$$

- equilibrium

$$
\begin{array}{ll}
\frac{\mathrm{d} Q}{\mathrm{~d} x}=-q & \frac{\mathrm{~d} M}{\mathrm{~d} x}=Q \\
Q=\int \tau \mathrm{d} A & M=\int z \sigma \mathrm{~d} A
\end{array}
$$

governing equations of beam theory

- kinematics

$$
\epsilon=\frac{\mathrm{d} u}{\mathrm{~d} x} \quad \gamma=\frac{\mathrm{d} w}{\mathrm{~d} x}+\frac{\mathrm{d} u}{\mathrm{~d} z}
$$

governing equations of beam theory

- equilibrium

$$
\begin{array}{ll}
\frac{\mathrm{d} Q}{\mathrm{~d} x}=-q & \frac{\mathrm{~d} M}{\mathrm{~d} x}=Q \\
Q=\int \tau \mathrm{d} A & M=\int z \sigma \mathrm{~d} A
\end{array}
$$

- kinematics

$$
\epsilon=\frac{\mathrm{d} u}{\mathrm{~d} x} \quad \gamma=\frac{\mathrm{d} w}{\mathrm{~d} x}+\frac{\mathrm{d} u}{\mathrm{~d} z}
$$

- constitutive equations

$$
\sigma=E \epsilon \quad \tau=G \gamma
$$

kinematic assumptions

[1] the deflection w is independent of z
all points of a cross section undergo the same displacement in z-dirction the beam hight remains unchanged
[2] planar cross sections remain planar
cross sections undergo a deflection w and a rotation $\psi \quad u=\psi(x) z$ sufficiently accurate for slender beams at small strains

moment - angle

- normal stress
$\begin{aligned} \sigma & =E \epsilon=E \frac{\mathrm{~d} u}{\mathrm{~d} x} \\ \sigma & =E \psi^{\prime} z\end{aligned}$
$u=\psi(x) z$
- bending moment

$$
\begin{aligned}
& M=\int z \sigma \mathrm{~d} A=\int z E \psi^{\prime} z \mathrm{~d} A \\
& I=\int z^{2} \mathrm{~d} A \quad \text {...area moment of inertia }
\end{aligned}
$$

- elasticity for bending moment $M=E I \psi^{\prime}$
EI
...bending stiffness
changes in the angle ψ are proportional to the bending moment M
beam theory

shear force - shear strain

- shear stress
$\begin{array}{ll}\tau=G \gamma=G\left[\frac{\mathrm{~d} w}{\mathrm{~d} x}+\frac{\mathrm{d} u}{\mathrm{~d} z}\right] \quad \begin{array}{ll} & w=w(x) \\ \tau & =\psi(x) z\end{array} \\ \tau\left[w^{\prime}+\psi\right] & \end{array}$
- shear force
$Q=\int \tau \mathrm{d} A=\int G\left[w^{\prime}+\psi\right] \mathrm{d} A$
κ...shear factor since $\tau \neq$ const.
- elasticity for shear force

$$
\begin{aligned}
& Q=G A_{\kappa}\left[w^{\prime}+\psi\right] \\
& G A_{\kappa}=\kappa G A
\end{aligned}
$$

...shear stiffness
under shear force Q beam element experiences shear strain $\left[w^{\prime}+\psi\right]$
beam theory

kinematic assumptions

[1] the deflection w is independent of z all points of a cross section undergo the same deflection in z-direction

$$
w=w(x)
$$

[2] planar cross sections remain planar cross sections undergo a deflection w and a rotation ψ

$$
u=\psi(x) z
$$

Stephen Timoshenko [1878-1972]

governing equations for timoshenko beams

- equilibrium

$$
\frac{\mathrm{d} Q}{\mathrm{~d} x}=-q \quad \frac{\mathrm{~d} M}{\mathrm{~d} x}=Q
$$

- constitutive equations

$$
M=E I \psi^{\prime} \quad Q=G A_{\kappa}\left[w^{\prime}+\psi\right]
$$

four equations for shear force Q, moment M, angle ψ, and deflection w
timoshenko beam theory

bernoulli hypothesis

- constitutive equation for shear force $Q=G A_{\kappa}\left[w^{\prime}+\psi\right]$
- bernoulli beam
$G A_{\kappa} \rightarrow \infty$
- for finite shear force Q
$w^{\prime}+\psi=0$
no changes in angle
kinematic assumption replaces const eqn

cross sections that are orthogonal to the beam axis remain orthogonal

kinematic assumptions

[1] the deflection w is independent of z all points of a cross section undergo the same deflection in z-direction

$$
w=w(x)
$$

[2] planar cross sections remain planar cross sections undergo a deflection w and a rotation ψ

$$
u=\psi(x) z
$$

[3] cross sections that are orthogonal to the beam axis remain orthogonal shear force does not induce changes in angle

$$
w^{\prime}+\psi=0
$$

Jacob Bernoulli [1654-1705]

governing equations for bernoulli beams

differential eqn for bending - statically determined systems $\quad w^{\prime \prime}=-\frac{M}{E I}$ integrate twice to obtain deflection w for given M and $E I$
differential eqn for bending - statically indetermined systems $\quad E I w^{I V}=q$
integrate four times to obtain deflection w for given q and $E I=$ const.

boundary conditions

- clamped

$$
w=0 \quad w^{\prime}=0 \quad Q \neq 0 \quad M \neq 0
$$

boundary conditions

- clamped

$$
w=0 \quad w^{\prime}=0 \quad Q \neq 0 \quad M \neq 0
$$

- simply supported

$$
w=0 \quad w^{\prime} \neq 0 \quad Q \neq 0 \quad M=0
$$

boundary conditions

- clamped

$$
w=0 \quad w^{\prime}=0 \quad Q \neq 0 \quad M \neq 0
$$

- simply supported

$$
w=0 \quad w^{\prime} \neq 0 \quad Q \neq 0 \quad M=0
$$

- vertically supported

$$
w \neq 0 \quad w^{\prime}=0 \quad Q=0 \quad M \neq 0
$$

boundary conditions

- clamped

$$
w=0 \quad w^{\prime}=0 \quad Q \neq 0 \quad M \neq 0
$$

- simply supported

$$
w=0 \quad w^{\prime} \neq 0 \quad Q \neq 0 \quad M=0
$$

- vertically supported

$$
w \neq 0 \quad w^{\prime}=0 \quad Q=0 \quad M \neq 0
$$

- free end

$$
w \neq 0 \quad w^{\prime} \neq 0 \quad Q=0 \quad M=0
$$

balkenbiegung

- governing equations for beam bending -

- bernoulli beam

$$
\begin{array}{ll}
Q^{\prime}=-q & M^{\prime}=Q \\
\psi^{\prime}=M / E I & w^{\prime}=-\psi
\end{array}
$$

- 2nd order differential eqn

$$
w^{\prime \prime}=-\frac{M}{E I}
$$

for statically determined systems integrate twice to obtain w

- 4th order differential eqn

$$
E I w^{I V}=q
$$

for statically indetermined stystems integrate four times to obtain w

