

BEARING TRAINING MANUAL

Nachi's Complete Line of Ball and Roller Bearings

Deep Groove Ball Bearings

Open, Sealed, Shielded 10 mm to 200 mm Bore Diameters Series: 6800, 6900, 6000, 6200, 6300

Single Row and Double Row 10 mm to 150 mm Bore Diameters Series: 7000, 7200, 7300, 7900 Series: 5200, 5300

Angular Contact Ball Bearings

Super Precision Bearings

10 mm to 150 mm Bore Diameters (ABEC 7)
Ball Screw Support (TAB)
Small Ball (BNH)
Double Row Cylindrical (NN3000)

Cylindrical Roller Bearings

Steel, Brass, or Nylon 10 mm to 200 mm Bore Diameters N, NU, NJ, NUP Configurations Series: 200, 2200, 300, 2300

Inch & Metric Tapered Roller Bearings

Interchangeable Metric Design 20 mm to 100 mm Bore Diameters Series: 30200, 30300 Series: 32000, 32200, 32300

Double-Row Spherical Roller Bearings

Steel or Brass Cage, and Vibrating Screen Designs 25 mm to 320 mm Bore Diameters Series: 22200, 23200, 21300, 22300, 23000 Series: 23100, 23900, 24000, 24100

Spherical Roller Thrust Bearings

Steel or Brass Cage 60 mm to 300 mm Bore Diameters Series: 29300, 29400

Nachi Training Manual - Index

	1.	Introduction to Nachi America Inc. • History	2
	2.	Basic Bearing Parts, Ball vs. Roller	4
		 Deep Groove Ball Bearing and Ceramic 	8
		 Angular Single and Double Row 	11
		 Machine Tool 	13
Sales		 Cylindrical Roller 	15
		 Spherical Roller 	17
Section		 Tapered Roller Bearings 	19
		 Spherical Thrust 	20
	3.	Basic Bearing Selection	
		 Materials 	21
		 Manufacturing 	22
		 Clearance 	23
		 Lubricant 	25

Engineering Section

4.	Engineering Practice	
	 Lubrication 	31
	 Shaft & Housing Fits 	37
	 Shaft and Housing Tables 	41
5.	Mounting Procedures	
	 Cylindrical Bore 	45
	 Tapered Bore 	51
6.	Bearing Selection	
	 Conditions 	55
	• Life	57
	• Loads	59
7.	Special Bearing	
	 Machine Tool Bearing 	65
	Shaker Screen	77
8.	Bearing Failures	
	 Failure Analysis 	79

Cutting Tools

Bearings

Specialty Steel

NΔCHi

Broaching Machines

1920's Nachi Fujikoshi started manufacturing hacksaw blades with high

quality steel in Toyama Japan.

1930's Steel mill started operation.

High Speed, Alloy Tool and Bearing Steels. Saw Blades, Drills, Taps, End Mills, and Hobs.

Creation of Ball Bearing Plant, and Machine Tool Plant.

1940's Expansion Period for current business and future business.

Broach bars and broaching Equipment are introduced.

Roller Bearings added to bearing product line.

1950's Became a comprehensive machine manufacturer.

Shaper and shaver cutters, Christmas Tree Broaches. First in Japan to Manufacture of Spherical Roller Bearings.

Began production of **Hydraulic Equipment**.

Production of high performance products.

1960's Advancements in Carbide tools.

Bearings supplied for Jet Engines and Bullet Train.

Production of Hydraulic Pumps and Valves. Organized **Heat Treatment Technology**.

Established Nachi America Inc.

Established Machine Tools & Hydraulic Div.

Began production of Industrial Furnaces & Coating Equipment.

1970's Export Internationally.

Precision Roll Forming Machines.

Powered High Speed Steels. Develop Hydro-Logic systems.

Automotive Air Conditioner Bearings.

Gear Cutting & Forming Tools

Robotics

Furnace

Broach Machine

Wheel Bearings (high speed train)

Precision Machine

1980's Established **Robot & Precision Machinery Division**

Promote shift of production to overseas plants

Creations of **Precision Machinery Division** Grinding Equipment

Introduction of Coated Tools Welding and Painting Robots Needle Bearings for CVJ

Awarded **TPM Award** (Total Productive Maintenance)

Hydraulic Wheel Motors

Supplying Hardened Bar (Drill blanks)

Vacuum Heat Treated Furnaces

1990's Mechatronics (Combining Engineering Curriculums)

Automotive Hydraulics Division

Awarded **Deming Prize** Product Handling Robots Radial Bearing Redesign

Spherical Roller Bearing Redesign

Development of High Speed Specialty Steels

Improvement in Coating Technologies

2000's Expand Global Business

Refinement of Specialized Cutting Tools High Speed Broaching Equipment Sealed Ball Screw Support Bearings Hydraulics for Mobile Equipment High Performance Bearing Steel

Expanded Aqua Flat Drill Series

Added Gear Shape Machining Center

Expanded Lineup of Extremely High Speed Robots Increased Local Bearing Production in Multiple Countries

Spherical Roller Bearing Re-design

Drills

Coating Equipment

2010's

Hydraulic Equipment

Robotics

Solenoid Valves

What is a Bearing?

The American Bearing Manufacturers Association, ABMA, defines a bearing as any mechanical component used to reduce friction and guide motion.

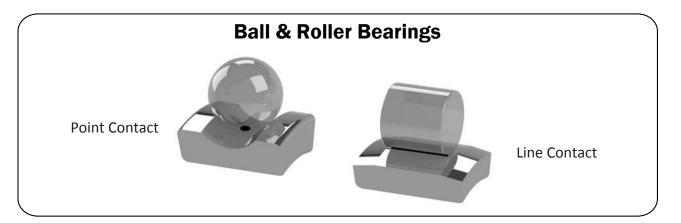
Half of the six simple machines have shafts which rotate.

As the shafts spin faster and as the loads increase, sliding friction causes the simple shaft supports to operate too hot.

LeverWheelInclined PlaneWedgeScrewPulley

Anti-Friction Bearings are the solution as they operate with much less friction, resulting in lower operating temperatures and are capable of accepting heavy loads.

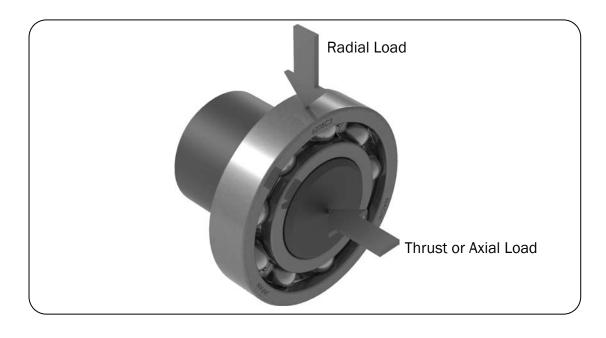
Bearings have Four Components


Material

Bearing rings and rolling elements are normally manufactured from AISI 52100 Vacuum Degassed Bearing Steel. AISI 52100 is the most commonly used steel for anti-friction bearings. SUJ2 is the Japanese equivalent in steel. Nachi has our own steel mill in Toyama Japan. We use steel from our plant or from other Japanese Steel Plants. The secret in bearing steel is in the cleanliness rating as our bearing steels are in the range of 6 parts per million or better. This makes the parts less susceptible to failure, thus extending our bearings' lives.

Retainers or cages are manufactured in several ways. Some are steel stampings, others are steel stampings held together with rivets, some are machined brass, others are fiberglass reinforced molded nylon. The retainer design and material type is offered to enhance the performance of the specific type of bearing.

Bearing Types


Bearings are divided into two groups - **Ball and Roller**. The balls in ball bearings transfer the loads over very small areas on the raceways; we describe this as point contact. The rollers in roller bearings transfer the loads over larger areas with the raceways; we describe this as line contact.

Point Contact enables ball bearings to operate at high speeds since the rolling friction is very low. However, the point contact limits the amount of load the bearing can accept. So ball bearings can operate faster, but with lighter loads.

Line Contact causes more friction which limits the operating speed of roller bearings. The larger contact areas also increases the load carrying ability of roller bearings. So roller bearings operate slower with heavier loads.

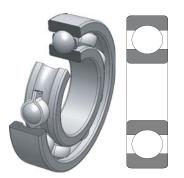
Types of Loading

Radial bearings are primarily designed for carrying radial loads. A **radial load** is a pressing force that is perpendicular to the shaft. A **thrust** or **axial load** is a force that is parallel to the shaft.

Bearing Types

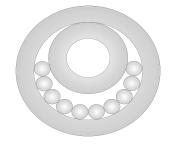
1. Ball Bearings

Bearing T	уре	High Speed	Loading Orientation	Application	Page
Deep Groove	Sealed Shield Open	•••	← 1→	Electric Motors Hydraulic Motors Gear Box Reducers Brakes Centrifugal Pumps Positive Displacement Clutches Light Duty Grinding	8
	15° - 25°	••••	•	Machine Tool Spindle Bearings Rotary Joints Superchargers	13
Angular	30° - 40°	•••	← I	Air Knives, Medical Centifugal Pumps Vertical Hollow Shaft Motors	11
Angular Contact	60°	••		Compressors Ball Screw Support Bearings	14
	15° - 25°	••••		Machine Tool Spindle Bearings Rotary Joints Superchargers	13
Duplex Mounted	30° - 40°	•••	\leftarrow^{T}	Air Knives Vertical Hollow Shaft Motors Pumps, Compressors	11
Angular Contact	60°	••		Ball Screw Support Bearings Medical	14
Double Row Angular Contact	20° 30°	••	↑	Clutches Brakes Pulleys Pumps Gear Box	12


Bearing Types

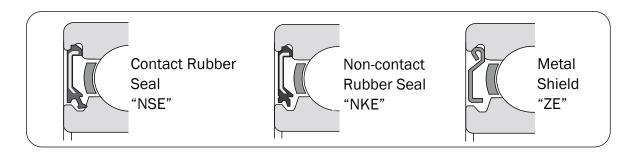
2. Roller Bearings

Bearing Type	High Speed	Loading Orientation	Application	Page
Expansion	••	1	Gear Box Pumps Motors Transmissions	15 16
Cylindrical Roller Bearing		—	Compressors	
Tapered Roller Bearing	••	1	Gear Box Pumps Transmissions Grinders	19
	••	1	Centrifugal & Positive Displacement Pumps Fans	17
Double Row Spherical Roller Bearing Misalignment Capabilities -	Mounted Un	its for Fabricated I	Gear Box Hammer Mills Shaker Screens ndustrial Equipment	18
Spherical Roller Thrust Bearing Misalignment Capabilities	•	†	Centrifugal Pumps Underground Trenching Plastic Extruding Earth Boring Equipment Municipal Vertical Shaft Pump Motors	20


Deep Groove Ball Bearings

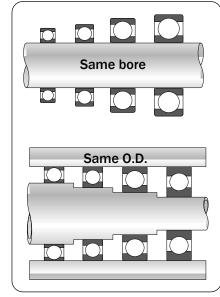
The deep groove ball bearing is the most commonly used bearing in the world today. Nachi's design has a ball which is about 60% of the cross section of the bearing. This design with the larger balls is the high capacity design.

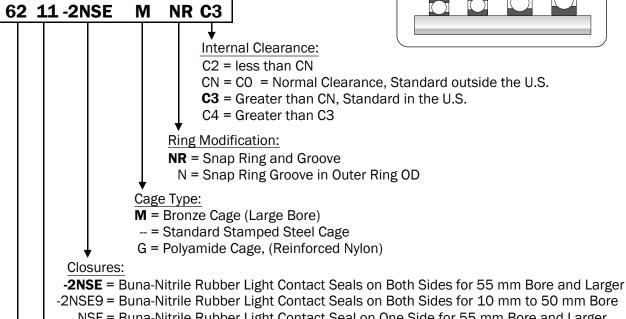
These are Conrad radial ball bearings. The balls are loaded in between the inner ring and outer ring. The outer ring is pushed out of round and the


inner ring will pass down between the balls. The balls can now be spaced out and the retainer installed. Most world class bearing manufacturers use the big ball design, and since the Conrad design will permit a maximum number of balls most major manufacturers will have around the same capacity. The higher the capacity the longer the bearing life.

The capacity of a bearing will be the same regardless if is open, has seels, or shields. All three bearings will accept the same load and produce the same life. The three bearings will have different speed limits. Speed limits are determined by how hot the bearing will operate. The higher the

speed the higher the operating temp. The open bearing has the highest speed limit. The shielded bearing will come in second, as the grease in the bearing is contained and will generate some additional temperature. The seals in the sealed bearing contact the inner ring and this contact will generate the most additional heat so the sealed bearings have the lowest speed limits of the three. Speed limits are in the catalog and are for reference as all applications are not the same and if the bearing operating temperature can be reduced the bearing can operate faster. Maximum bearing operating temperature is 250° F. (120° C)


Nachi's design utilizes a groove in the inner ring and the seal contacts the side of the groove. Standard material for seals is Buna - Nitrile Rubber.


Deep Groove Ball Bearings

Bearings are like building blocks. We have many size ball bearings which have the same bore size. As the cross section of the ball bearing gets larger the bearing can handle heavier loads, with slower speed limits than the thinner bearings.

Bearings can also have common OD sizes. Again, the bearings with the larger cross-sections will handle the heavier loads and slower speeds.

Bearings can have common OD, bores and widths across bearing types.

NSE = Buna-Nitrile Rubber Light Contact Seal on One Side for 55 mm Bore and Larger

NSE9 = Buna-Nitrile Rubber Light Contact Seal on One Side for 10 mm to 50 mm Bore

ZZE = Metal Shields on Both Sides

ZE = Metal Shield on One Side

-2NKE = Buna-Nitrile Rubber Non-Contact Seals on Both Sides for 55 mm Bore and Larger

-2NKE9 = Buna-Nitrile Rubber Non-Contact Seals on Both Sides for 10 mm to 50 mm Bore

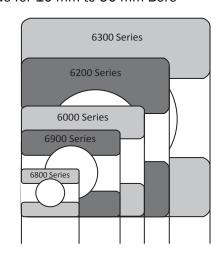
NKE = Buna-Nitrile Rubber Non-Contact Seal on One Side for 55 mm Bore and Larger

NKE9 = Buna-Nitrile Rubber Non-Contact Seal on One Side for 10 mm to 50 mm Bore

-- = Open Bearing (No Seals or Shields)

Bore Size:

 $11 = Bore Code \times 5$ is Bore Size in mm = $11 \times 5 = \emptyset55$ mm

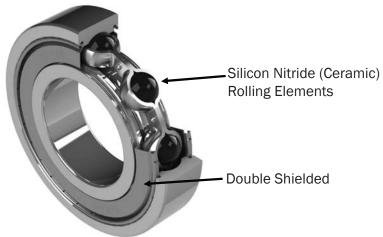

Exceptions: 00 = Ø10 mm $01 = \emptyset 12 \text{ mm}$ $02 = \emptyset 15 \text{ mm}$

 $03 = \emptyset 17 \text{ mm}$

Bearing Type and Dimension Series:

6 = Single Row Deep Groove Ball Bearing

2 = Available Series 6800, 6900, 6000, 6200 & 6300



Ceramic Hybrid Deep Groove Ball Bearings

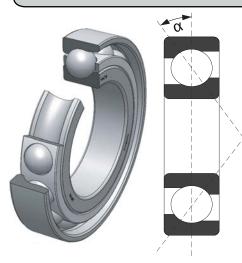
The primary application for Ceramic Hybrid Deep Goove Ball bearings is for electric current isolation in electric motors, traction motors, and power generation equipment. These bearings are also used for high speed industrial equipment applications such as routers, lathes, and CNC machinery.

Due to the Silicon Nitride, or ceramic, rolling elements being smaller rotating mass, the limiting speed is 1.25 times faster than that of a comparable bearing size with standard steel rolling elements.

The standard configuration for these bearings is double steel shielded and Exxon Polyrex® EM grease.

Ceramic Hybrid versus All Steel Deep Groove Ball Bearing Comparison

Ceramic Hybrid	Dynamic Load Capacity (N)	Static Load Capacity (N)	Limiting Speed (rpm)	
SH6-6203ZZEC3	9,550	4,300	22,500	
SH6-6204ZZEC3	12,800	6,500	20,000	
SH6-6205ZZEC3	14,000	7,900	16,300	
SH6-6206ZZEC3	19,500	11,300	13,800	
SH6-6207ZZEC3	25,700	15,300	12,300	
SH6-6208ZZEC3	29,100	17,900	10,900	
SH6-6209ZZEC3	32,500	20,500	9,800	
SH6-6210ZZEC3	35,000	23,200	8,900	
SH6-6211ZZEC3	43,500	29,300	8,000	
SH6-6212ZZEC3	52,500	36,000	7,500	
SH6-6213ZZEC3	57,000	40,000	6,900	
SH6-6214ZZEC3	62,000	44,000	6,400	


All Steel	Dynamic Load Capacity (N)	Static Load Capacity (N)	Limiting Speed (rpm)	
6203ZZEC3	9,550	4,800	18,000	
6204ZZEC3	12,800	6,600	16,000	
6205ZZEC3	14,000	7,900	13,000	
6206ZZEC3	19,500	11,300	11,000	
6207ZZEC3	25,700	15,300	9,800	
6208ZZEC3	29,100	17,900	8,700	
6209ZZEC3	32,500	20,500	7,800	
6210ZZEC3	35,000	23,200	7,100	
6211ZZEC3	43,500	29,300	6,400	
6212ZZEC3	52,500	36,000	6,000	
6213ZZEC3	57,000	40,000	5,500	
6214ZZEC3	62,000	44,000	5,100	

Ceramic Hybrid	Dynamic Load Capacity (N)	Static Load Capacity (N)	Limiting Speed (rpm)
SH6-6305ZZEC3	23,600	12,100	15,000
SH6-6306ZZEC3	26,700	15,000	12,500
SH6-6307ZZEC3	33,500	19,200	11,000
SH6-6308ZZEC3	40,500	24,100	9,800
SH6-6309ZZEC3	53,000	32,000	8,800
SH6-6310ZZEC3	62,000	38,000	8,000
SH6-6311ZZEC3	71,500	44,500	7,300
SH6-6312ZZEC3	82,000	52,000	6,800
SH6-6313ZZEC3	92,500	59,500	6,100
SH6-6314ZZEC3	104,000	68,000	5,800
SH6-6315ZZEC3	113,000	77,000	5,400
SH6-6316ZZEC3	123,000	86,500	5,000

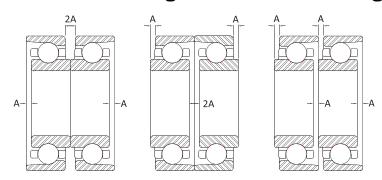
All Steel	Dynamic Load Capacity (N)	Static Load Capacity (N)	Limiting Speed (rpm)	
6305ZZEC3	23,600	12,100	12,000	
6306ZZEC3	26,700	15,000	10,000	
6307ZZEC3	33,500	19,200	8,800	
6308ZZEC3	40,500	24,100	7,800	
6309ZZEC3	53,000	32,000	7,000	
6310ZZEC3	62,000	38,000	6,400	
6311ZZEC3	71,500	44,500	5,800	
6312ZZEC3	82,000	52,000	5,400	
6313ZZEC3	92,500	59,500	4,900	
6314ZZEC3	104,000	68,000	4,600	
6315ZZEC3	113,000	77,000	4,300	
6316ZZEC3	123,000	86,500	4,000	

Angular Contact Ball Bearings

Single Row

The single row angular contact ball bearing was designed to support thrust loads in one direction and radial loads. The thrust capacity is achieved by a higher shoulder on one side of the outer ring. The direction of the load through the balls forms an angle, α , known as the contact angle. The thrust capacity increases with the contact angle. Contact angles are 15°, 25°, 30° or 40° depending on the bearing type.

Axial Internal Clearance

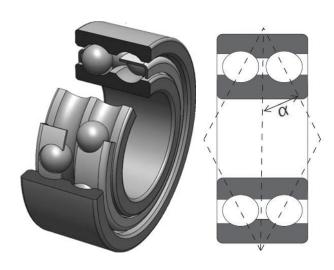

Incl.

 2A (µm)

Bore (mm)

Over

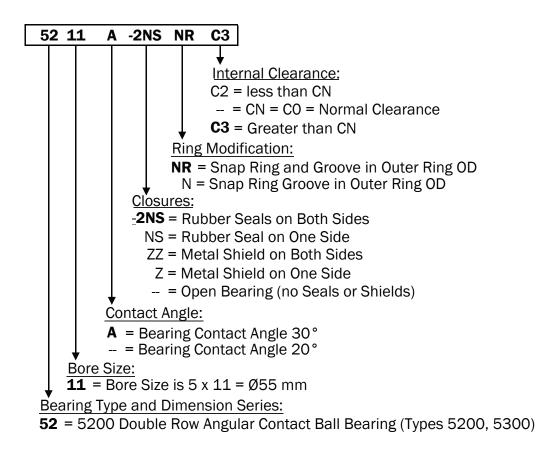
Universal Ground Angular Contact Ball Bearings



Bearings with the suffix "U" can be used in pairs. The inner ring and the outer ring have identical widths. This permits the bearings to be arranged in any combination such as back to back, face to face or tandem pairs.

								50
70	- 4 4	1	_				1	65
12	11	L	В	M	Ų	<u>C3</u>		80
						_,♥. ,		100
						Axiai	Internal Clearance:	120
					\forall	C 3 =	Greater than CN	140
					Rir	ng Cor	<u>figuration:</u>	
				\downarrow	U =	= Univ	ersal Ground Rings for Universal Moun	ting
				Cag	е Тур	oe:		
				M =	- Ma	chinec	l Brass Retainer	
				Y =	• Mol	ded Po	olyamide Retainer	
			\downarrow	=	: Stai	mped	Steel Retainer	
			Čor	ntact A	ngle	:		
			B =	Beari	ing C	- ontact	: Angle 40°	
							: Angle 30°	
		A	/C =	Bear	ing C	ontact	t Angle 25°	
	Ţ		C =	Beari	ing C	ontact	: Angle 15°	
	Bo	re S	size:					
\downarrow	11	. = E	Bore	Size i	s 5 x	11 =	Ø55 mm	
Bea	ring	ξ Тур	e ar	nd Dim	nensi	on Se	ries:	

Angular Contact Ball Bearings



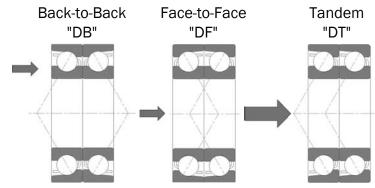
Double Row

Double row angular contact ball bearings correspond, in principle, to two single row angular contact ball bearings with either a 20° or a 30° contact angle in the back-to-back arrangement. Double row bearings are narrower than two of the same bearing size.

Double row angular contact ball bearings are used for radial loads, and can also carry thrust in either direction. Their radial load-carrying capacity is not double the corresponding single row bearing but is 1.55 times the single row bearing for a 20° contact angle and 1.47 times for a 30° contact angle.

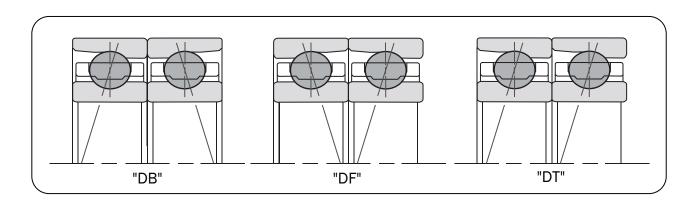
Double row angular contact bearings can be supplied open, sealed or shielded. Clearance Ranges for angular contact bearings are dependent on series. Angular contact machine tool bearings are normally supplied with negative clearance, commonly referred to as preload. Pump bearing designation, BMU, has C3 axial clearance. Double row angular contact bearings have the same radial internal clearances as deep groove ball bearings.

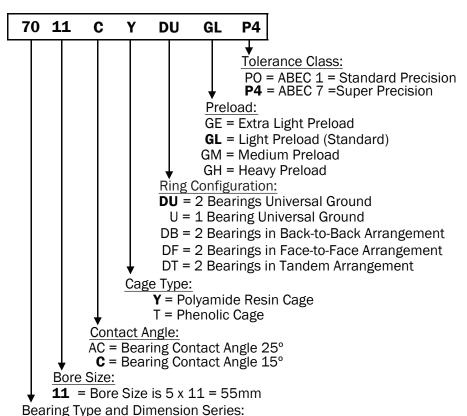
Machine Tool Bearings


Angular Contact Ball Bearings for the Machine Tool Industry are broken into two categories: Spindle Bearings & Ball Screw Support Bearings. Both types of bearings are manufactured to P4 or P5 precision classifications.

ISO	Normal Class	Class 6	Class 5	Class 4	Class 2
JIS	P0	P6	P5	P4	P2
DIN	P0	P6	P5	P4	P2
ABMA	ABEC1	ABEC3	ABEC5	ABEC7	ABEC9

Spindle bearings are normally stocked as universal pairs or universal singles. Universal bearings can be arranged into any configuration.


Spindle Bearings

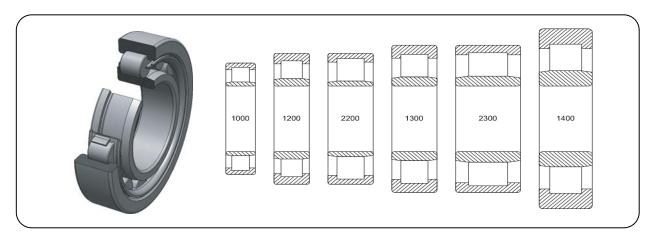

When bearing are used in duplex sets, or pairs, the bearings need to be special or matched sets. Bearings are very stiff and for both bearings to accept the loads evenly the bearings should be matched.

We stock some angular contact bearings as universal ground indicating the width of the rings in the bearings are identical and these bearings can be used in any of the three arrangements.

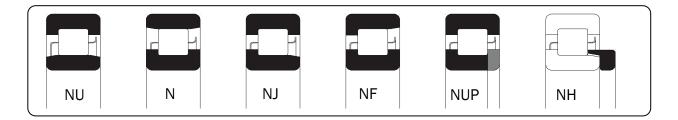
Single row angular contact bearings are supplied open, only ball screw support bearings have optional seals. Clearance ranges for single row angular contact bearings are dependent on bearing series. Angular Contact Machine tool bearings are normally supplied with negative clearance commonly referred to as preload.



70 = 7000 Angular Contact Ball Bearing (Types 7900,7000,7200)

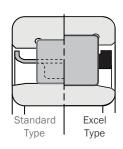

Ball Screw Support Bearings **35 TAB** DU 2LR GM P4 07 **Tolerance Class:** PO = ABEC 1 = Standard Precision **P4** = ABEC 7 = Super Precision Ring Modification: GL = Light Preload (Standard) **GM** = Medium Preload (Standard) GH = Heavy Preload Closures: **2LR** = Rubber Seals on Both Sides 2NKE = Non-Contact Seals on Both Sides 2NSE = Contact Seals on Both Sides -- = Open Ring Configuration: **DU** = 2 Bearings Universal Ground U = 1 Bearing Universal Ground DB = 2 Bearings in Back-to-Back Arrangement DF = 2 Bearings in Face-to-Face Arrangement DT = 2 Bearings in Tandem Arrangement **Diameter Series: 07** = Indicator of Base 70mm OD. This bearing is 72 mm. Bearing Type: **TAB** = Ball Screw Support Bearing (Bearing Contact Angle 60°) Bore Size:

35 = Bore size is 35 mm.



Cylindrical Roller Bearings

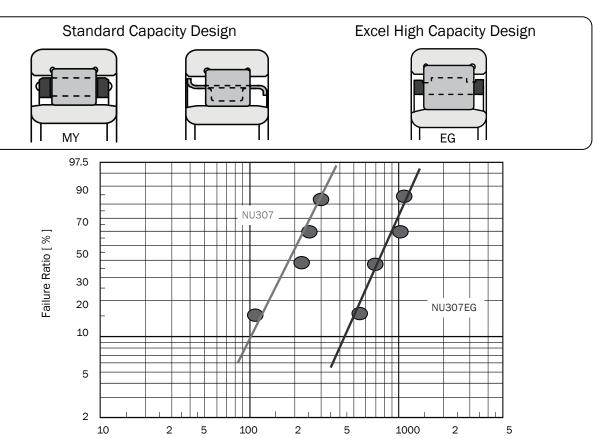
Cylindrical roller bearings are designed to accept heavy radial loads. We show six families of parts for each bore size. The boundary dimensions match radial ball bearings.

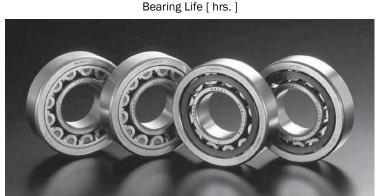


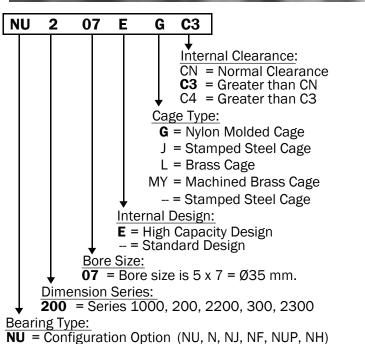
For each size there are many ring configurations (types) as shown below. The type depends on the ribs on the inner and outer ring. The most common types are the NU and NJ. NU has two ribs on the outer ring and no ribs on the inner ring, this type cannot accept thrust load. This configuration is often used a an espansion bearing. The NJ has two ribs on the outer ring and one rib on the inner ring, this type can accept a small thrust load in one direction.

For each size and configuration there are two designs. The Standard Design and the Large Roller High Capacity Design. In addition to configurations and type, there are various retainer designs.

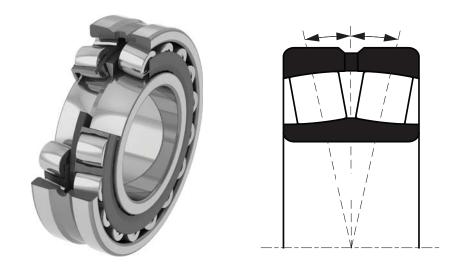
Larger Diameter Rollers increase the capacity of the bearing which increases bearing life.

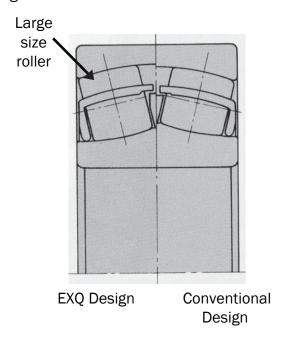



Cage Material


		Stan	ıdard	Excel Series		
Symbol		=	MY	EG	EJ	EL
Cage Material		Steel	Brass	Nylon	Steel	Brass
	Big Roller	Δ	Δ	0	0	0
بو	Low viscosity Oil	Δ	0	0	Δ	0
Feature	High Temperature	0	0	×	0	0
Fe	Low Noise	0	0	0	0	0
	Low Cost	0	0	0	0	Δ
	: Excellent	◯ : Good		∑ : Fair	→ : Poor	

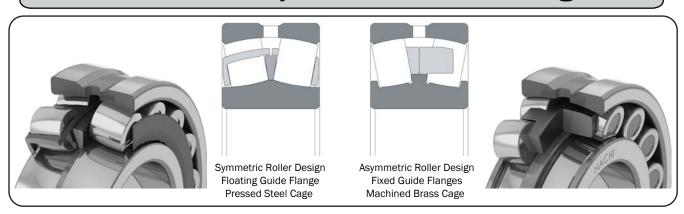
15

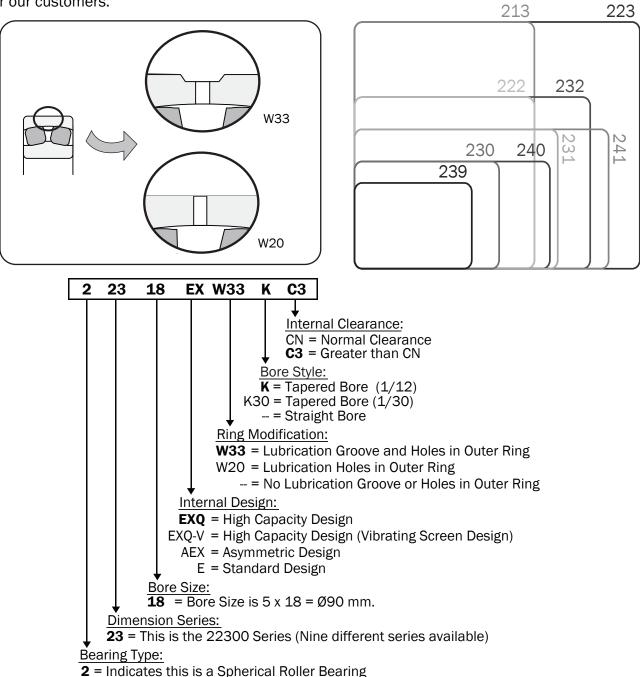



Double Row Spherical Roller Bearings

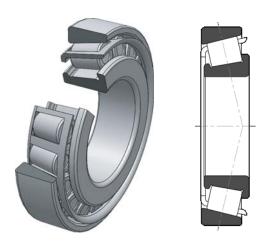
Double Row Spherical Roller Bearings are the work horse of the industry. Their spherical shaped outer ring and barrel shaped rollers permits this bearing to operate with 2° of misalignment with no reduction in bearing life.

For the last two decades Nachi has had the highest load ratings in the world. Bearing life is directly related to Load Ratings. Larger diameter rollers relates to less stress, less stress relates to longer bearing life. Stamped steel retainer coupled with floating aligning ring permits longer length rollers.


All Nachi Spherical Roller Bearings are heat stabilized so the bearings can operate to 400° F with no reductions in Bearing Life.


A special variation of spherical roller bearings for vibrating screen applications is detailed on Page 77 of this training guide.

Double Row Spherical Roller Bearings

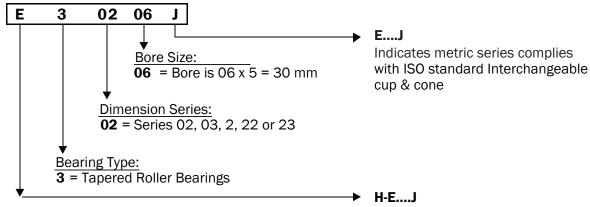


Most of the Spherical Roller Bearings brought into North America have W33 relube grooves and holes. Nachi offers nine series of Spherical Roller Bearings which permits the best bearing selection for our customers.

Inch and Metric Tapered Roller Bearings

Thin section, high strength, stamped steel cages maximize the lubrication flow, which improves the lubrication factor resulting in longer bearing life.

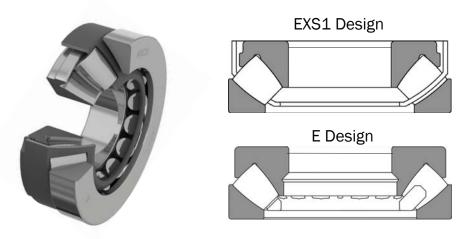
Bearing Features:


Advanced inner ring rib design provides:

- Superior roller guidance for better efficiencies
- Sliding motion between the inner ring flange and the roller end is the primary heat generation source. We have optimized the design of this critical area to reduce heat build up.

All contacting bearing components are made from the cleanest Japanese steels. These materials increase the life of the bearings over conventional steel.

Metric Series: 30203 - 30220 30303 - 30314 32004 - 32022 32205 - 32218 32304 - 32311



Contact Nachi for information on our Inch Series Tapered Roller Bearings

H indicates the bearing rings are manufactured from case carburized steel for higher loading.

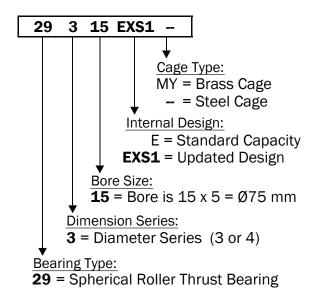
Spherical Roller Thrust Bearings

150% to 200% Increase in Bearing Life:

Maximizing the roller diameter, effective length, and number of rollers yields the highest possible dynamic load capacity design. Our new EXS1 design allows for this dramatic increase in bearing life.

Faster Speed Capability:

We developed a new stamped steel retainer to increase lubricant flow and enhance our design to improve the sliding motion between the inner ring flange and roller ends. This reduces heat generation by 10% and increases the limiting speeds by 10%.


Quieter Operation and Reduced Vibration Level:

We implemented a unique super finish process and improved roller roundness and raceway accuracy, which reduced noise and vibration level by more than 40% over other manufacturers bearings.

Size Range:

EXS1 Series 29317 to 29326 EXS1 Series 29412 to 29430

E Series 29328E to 29360E E Series 29432E to 29456E

Bearing Materials

Material

Rolling bearings are manufactured from special steel alloys that possess high strength, wear resistance, dimensional stability, excellent fatigue resistance and freedom from internal defects.

The bearing rings and rolling elements are usually fabricated from vacuum-degassed, high carbon, chrome bearing steel that is hardened to 60-63 Rockwell C. The most common alloy is designated AISI 52100 through-hardened steel, which is capable of operating temperatures up to approximately 250° F (120° C). This same material can further be 'heat stablized' to endure operating temperatures up to 400° F (200° C). Operating bearings above these temperature limits will reduce the hardness of the steel and result in significantly reduced bearing life.

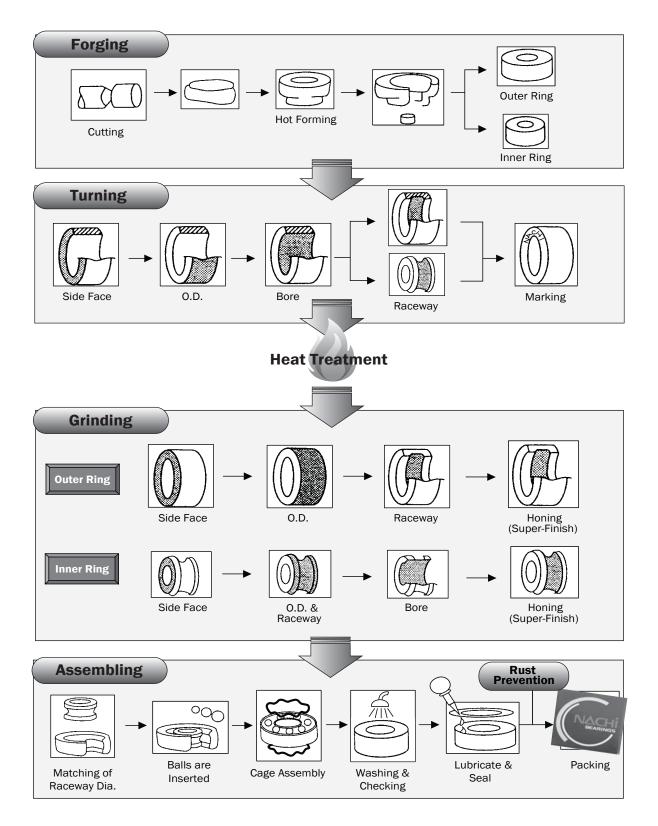
Some larger bearing types can also be produced with case hardened steel where only the surface is hardened. The use of this steel limits the chances of fracture leading to catastrophic failure.

The selection of retainer material is equally important. Many bearing materials may be used such as brass, steel, polymers, and composites. In general, the maximum temperature limits for the retainers exceed those of the bearing.

Seals and shields are often incorporated into many bearing types. Shields are usually made of low-carbon steel and in most cases do not pose a controlling temperature limitation. Seal materials are Buna-Nitrile Rubber (NBR), which has a temperature limit of 250° F (120° C), Polyacrylic Rubber (ACM) can be used up to 300° F (150° C), and Viton Fluoroelastomer (FPM) can withstand temperatures up to 400° F (200° C).

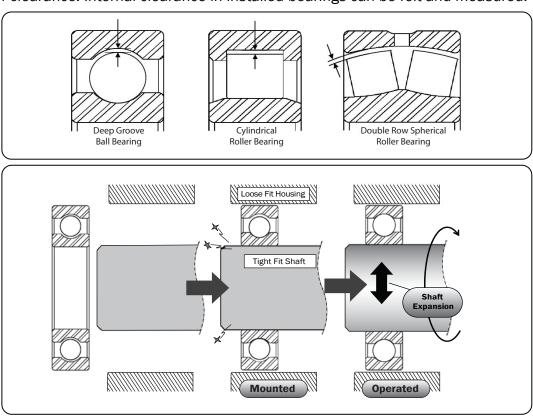
Manufacturing

Bearing rings are made from solid bars, seamless tubing, or forged rings. The exact process is dependent on bearing ring dimensions and order quantity. Balls and rollers are cold or hot headed from wire or bar stock depending on size.


The individual components are turned to rough size, hardened and drawn in an atmosphere controlled furnace. All components are ground to final size. Grinding consists of Face Grinding, External Grinding, Internal Grinding and Honing.

All of the steps during assembly are dependent on bearing type.

Bearing Manufacturing


The steel for standard Ball & Roller Bearings is heat stabilized to operate up to 250° F (120° C) Spherical Roller Bearings rings are heat stabilized to operate up to 400° F (200° C).

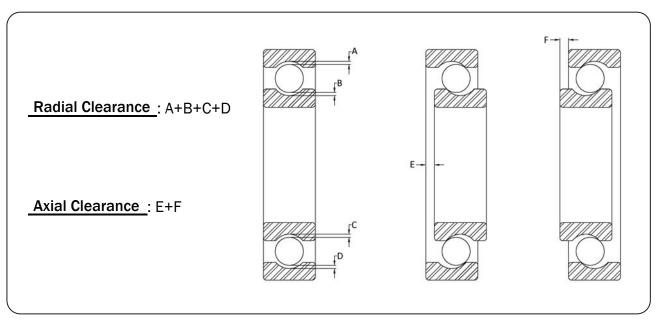
Internal Clearance


Ball and Roller Bearings, unmounted, have internal clearance. This clearance is an actual air gap between the rolling elements and raceways. As bearings are mounted and pressed onto shafts some of this air gap is removed. As bearings operate, the shaft is normally hotter than the housing, causing a thermal unbalance which results in more clearance removal. Bearings operate best with a small amount of clearance. Internal clearance in installed bearings can be felt and measured.

Country standards (ABMA, JIS, DIN) and international standards (ISO) for clearance ranges are the same. These clearance ranges will vary depending on type of bearing (Radial or Angular) and (Ball or Roller)

Unit: 0.001 mm

	Radial Clearance for Radial Ball Bearings									
Bearing Bore (mm)		C	2	C	CN		С3		C4	
Over	Inc	Min	Max	Min	Max	Min	Max	Min	Max	
10	18	0	თ	З	18	11	25	18	33	
18	24	0	10	5	20	13	28	20	36	
24	30	1	11	5	20	13	28	23	41	
30	40	1	11	6	20	15	33	28	46	
40	50	1	11	6	23	18	36	30	51	
50	65	1	15	8	28	23	43	38	61	
65	80	1	15	10	30	25	51	46	71	
80	100	1	18	12	36	30	58	53	84	
100	120	2	20	15	41	36	66	61	97	
120	140	2	23	18	48	41	81	71	114	
140	160	2	23	18	53	46	91	81	130	
160	180	2	25	20	61	53	102	91	147	
180	200	2	30	25	71	63	117	107	163	



Application determines how much internal clearance should be in each bearing. This dictates how much clearance a bearing should have before installation. C2 Clearance is for slow application. CN is the standard clearance for the world. C3 is for high speeds and is standard in America. C4 is for high speeds and hot applications.

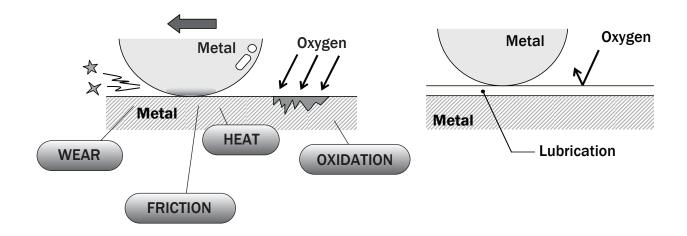
Internal Clearance

The table values are radial internal clearance. Radial ball bearings will have about 10 times the amount of axial clearance as radial clearance. The axial clearance is what can be felt when holding a bearing in hand and twisting the inner ring to the outer ring. Double row angular contact ball bearings have about 3 times the amount of axial to radial clearance.

Unit: 0.001 mm

	UIIII. U.UUI IIIIII											
			Radia	l Clea	rance	ance for Spherical Roller Bearing						
	Bearing		C	2	CN		C3		C4		C5	
	Bore	(mm)										
	Over	Inc	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	30	40	15	30	30	45	45	60	60	80	80	100
	40	50	20	35	35	55	55	75	75	100	100	125
	50	65	20	40	40	65	65	90	90	120	120	150
Bore	65	80	30	50	50	80	80	110	110	145	145	180
	80	100	35	60	60	100	100	135	135	180	180	225
ght	100	120	40	75	75	120	120	160	160	210	210	260
Straight	120	140	50	95	95	145	145	190	190	240	240	300
Str	140	160	60	110	110	17	170	220	220	280	280	350
	160	180	65	120	120	180	180	240	240	310	310	390
	180	200	70	130	130	200	200	260	260	340	340	430
	200	225	80	140	140	220	220	290	290	380	380	470
	225	250	90	150	150	240	240	320	320	420	420	520
	250	280	100	190	190	260	260	350	350	460	500	570
	280	315	110	190	190	280	280	370	370	460	500	630

Clearance values are published in our Nachi catalogs and on our website (www.nachiamerica.com) Our website will also convert radial clearance to axial clearance for each bearing size. Roller bearings require more clearance than ball bearings so the clearances in roller bearings are larger. In general, the clearance ranges for ball bearings overlap while the clearance ranges for roller bearings do not.


NΔCHi

Lubrication

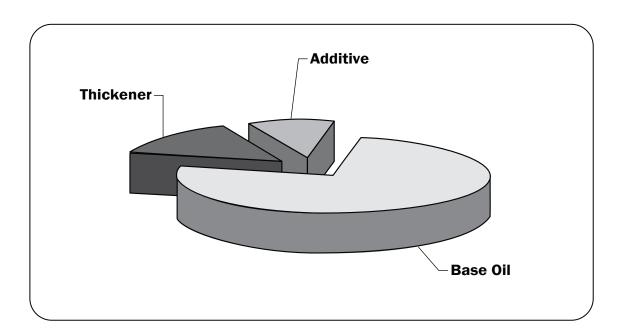
Why is it Important to Lubricate Bearings?

Five Basic Functions of Lubrications:

- Reduce Friction
- Reduce Wear
- Reduce Temperature
- Minimize Corrosion
- Seal Out Contamination

Bearings cannot survive without Lubricant

Two Basic Types of Lubricant: Grease & Oil


Grease:

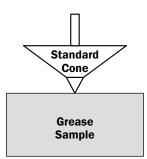
Grease is a very effective method for lubricating bearings because it has several advantages:

- Convenience factory sealed and greased bearings require no maintenance
- Cost Effective a sealed and greased bearing reduces the number of parts
- · Grease is easier to contain than oil
- Grease acts as a seal preventing the entry of contaminants inside the bearing

The American Society for Testing and Materials (ASTM) defines grease as: "a lubricant of fluid-to-firm consistency produced by thickening a liquid lubricant with a stable, homogenous dispersion of a solid-phase thickener and containing such additives as required to impart special characteristics.

In general terms, it is oil blended with a base thickener to give it some consistency. Additives are often blended in to improve characteristics, such as preventing rust or improving wear resistance.

Greases are described in terms of the materials used to formulate them and their physical properties. The type of base oil, oil viscosity, thickener type, and thickener content are the formulation properties. Other physical properties such as consistency or penetration, torque resistance, dropping point, evaporation loss, and water washout are determined using standardized tests. There are thousands of greases available on the market with a vast array of formulations and performance characteristics. The results of these tests help determine when a specific grease is better suited for an application over another grease.


Grease Properties

Viscosity

An important property of every grease is the base fluid viscosity. Viscosity is the measurement of a fluid's resistance to flow. Laboratory measurements of viscosity use the force of gravity to produce flow through a standard size tube at a controlled temperature. This measurement is called kinematic viscosity. The common units for kinematic viscosity are **centistokes** (cSt) or **saybolt universal seconds** (SUS). A higher base oil viscosity provides increased film thickness and load carrying capacity, while increasing friction and heat which reduces the maximum allowable operating speed.

Penetration

Penetration is a measure of the consistency of the grease. Consistency is defined as the degree to which a grease resists deformation under the application of force. Basically, it is a measure of the stiffness or hardness of the grease. Penetration is the depth (in tenths of a millimeter) that a standard cone penetrates a sample of the grease at standard conditions of weight, time and temperature.

NLGI Consistency Grades

The National Lubricating Grease Institute (NLGI) has a numerical scale for classifying the consistency of grease by the ASTM worked penetration. In order of increasing hardness, the consistency numbers are:

NLGI Consistency Grade	Penetration	Comparison	
000	475 ~ 445	Ketchup	
00	430 ~ 400	Applesauce	
0	385 ~ 355	Brown Mustard	
1	340 ~ 310	Tomato Paste	
2	295 ~ 265	Peanut Butter	
3	250 ~ 220	Vegetable Shortening	
4	205 ~ 175	Frozen Yogurt	
5	160 ~ 130	Smooth Paste	
6	115 ~ 85	Cheddar Cheese Spread	

This is the lowest temperature at which a grease passes from a semisolid to a liquid state under the conditions of the test. This is determined when the first drip of the grease falls from the opening of a standardized cup. This is an indication of whether a grease will flow from a bearing at operating temperatures. The dropping point of a grease is well above the maximum useable temperature of the grease.

Popular Bearing Greases:

Grease			Operating				Perf	ormance Prope	rties			
Name	Base Oil	Thickener	Temp	Color	Water Resistance	High Speed	Noise	High Temp	Load Resistance	Torque	Low Temp	Example
Exxon Polyrex EM	Mineral Oil	Polyurea	-13~338 °F (-25~170 °C)	Blue			\bigcirc		\bigcirc			Electric Motor
Chevron SRI2	Mineral Oil	Polyurea	-22~302 °F (-30~150 °C)	Dark Green	\bigcirc	\bigcirc	\triangle	\bigcirc	\bigcirc			Magnetic Clutch
Shell Dollium BRB	Mineral Oil	Polyurea	-22~302 °F (-30~150 °C)	Purple	\bigcirc	\bigcirc		\bigcirc				Transmission
Shell Alvania #2	Mineral Oil	Lithium	-20~250 °F (-29~121 °C)	Amber	\bigcirc		\bigcirc					General Machinery
Shell Alvania EP2	Mineral Oil	Lithium	-20~250 °F (-29~121 °C)	Reddish Brown	\bigcirc				0			Industrial Laundry Washer
Kyodo Yushi MTSRL	Ester Oil	Lithium	-40~302 °F (-40~150 °C)	Light Brown	\bigcirc					\bigcirc	\bigcirc	Electric Motor
Exxon Unirex N3	Mineral Oil	Lithium	-40~400 °F (-40~204 °C)	Green								Idler Pulley
Kluber Isoflex NBU15	Synthetic Ester/Mineral Blend	Barium Complex	-40~266 °F (-40~130 °C)	Light Beige								Machine Tool Spindle
Mobil Grease 28	Di Ester Oil	Bentonite	-67~356 °F (-55~180 °C)	Red	\bigcirc						\bigcirc	Cold Climate Machine

: Excellent	: Good	∕ : Fai
\odot		$\overline{}$

Nachi Standard Greases:

For Sealed And Shielded Single Row Deep Groove Ball Bearings

Grease Name	POLYREX EM	ALVANIA #2	MULTEMP SRL
Nachi Grease Code	XM	AV2	MTSRL
Manufacturer	Exxon	Shell	Kyodo Yushi
NLGI Consistency Grade	2	2	3
Color	Blue	Amber	Light Brown
Thickner	Polyurea	Lithium Soap	Lithium Soap
Base oil	Mineral Oil	Mineral Oil	Ester
Operating Temperature Range ° C	-25~170 (-13~338°F)	-25~130 (-13~266°F)	-40~150 (-40~302°F)
Base Oil Viscosity @ 40° C (cSt)	115	98	26
Base Oil Viscosity @ 100° C (cSt)	12.2	9.7	5.1
Penetration (60-strokes)	284	287	250
Dropping Point ° C	288 (550° F)	185 (365° F)	190 (374° F)
Resistance to Load	Normal	Normal	Normal
Water Resistance	Excellent	Excellent	Excellent
Shearing Stability	Excellent	Excellent	Excellent
Noise Level	Good	Normal	Excellent

Grease Compatibility

Beware of Mixing Different Greases!

A critical motor keeps failing, even though the bearings have been replaced and lubricated according to the motor manufacturer's specifications. What is happening?

The motor repair shop removes one shield from the bearing and adds grease in the end bell of the motor to help seal out dirt, but the grease the motor shop adds is not the same grease that is already in the bearing and they are incompatible! When two greases are mixed the results may be disastrous.

What Happens When Greases are Incompatible?

When two incompatible greases are mixed, one of two things can happen - either the mixture hardens and will not release any of the oil, or the opposite effect, the mixture softens and releases all of the oil. In either case, the end result is basically the same - there is no means to effectively lubricate the bearing.

How is Grease Compatibility Determined?

Two different tests are conducted to determine if greases are compatible. First a 50/50 mixture of the two greases is analyzed at a worked penetration of 60 strokes to see if the new grease stays within the same NLGI consistency grade limits. If the first test is successful, a second and more demanding roll stability test is run. This involves running a heavy cylindrical roller at 165 rpm. The worked penetrations of the samples are measured before and after the roll test. The compatibility is determined by evaluating each of the greases individually, as well as for mixtures at 25%/75%, 50%/50%, and 75%/25% of the two greases of interest. The penetrations are measured and the results are plotted to illustrate the blending and shearing effects on the greases and mixtures. The grease compatibly is determined by comparing the measured worked penetration results after the test to the theoretical (calculated) results expected for the mixture. The compatibility assessments are based on the following approximate limits on the difference between the measured and calculated penetrations.

Compatible	0 to 30 points of change
Borderline	31 to 60 points of change
Incompatible	61 or more points of change

Grease Compatibility Matrix:

C = COMPATIBLE B = BORDERLINE I = INCOMPATIBLE	Aluminum Complex	Barium	Calcium	Calcium 12-hydroxy	Calcium Complex	Clay	Lithium	Lithium 12-hydroxy	Lithium Complex	Polyurea
Aluminum Complex	X	I	I	С	I	I	I	I	С	I
Barium	I	X	I	С	I	I	I	I	I	I
Calcium	I	I	X	С	I	С	С	В	С	I
Calcium 12-hydroxy	С	С	С	Х	В	С	С	С	С	I
Calcium Complex	I	I	I	В	X	I	I	I	С	С
Clay	I	I	С	С	I	X	I	I	I	I
Lithium	I	I	С	С	I	I	X	С	С	I
Lithium 12-hydroxy	I	I	В	С	I	I	С	X	С	I
Lithium Complex	С	I	С	С	С	I	С	С	X	I
Polyurea	I	I	I	I	С	I	I	I	I	X

We have examined the test results and found that in almost all cases the mixed grease had a significant enough change to bring it down to a NLGI grade 1. It is our field experience that any mixing of grease does have an effect on bearing performance. The most noticeable problem is a dramatic increase in noise level. Shortened service life in severe duty motors has been documented as well.

How Much Grease?

One of the most common misconceptions that cause a high number of bearing failures is that a bearing needs to be completely packed full. Many people have been taught 'the more grease, the better. We have even heard of cases where people do not feel bearing manufacturers use enough grease in sealed and shielded ball bearings, so they remove one seal or shield and pack the bearing with more grease. These misconceptions are completely false. Over-lubricating the bearings forces the bearing to work harder. The best analogy we have heard is comparing running in water that is up to your ankles or running in water that is up to your neck. Which is harder? Obviously, the higher the water, the harder you have to work to move through it. This is the same for bearings. The more grease, the harder the bearing has to work to over come the friction of the excess grease.

• Nachi Standard grease-fill for sealed and shielded ball bearings is 20% to 30% full.

Too much grease can cause excess friction, thereby overheating the bearing and causing premature failure. Only a small amount of grease is required to lubricate a bearing in motion. When a bearing is in motion, most of the grease is pushed to the side (channeling) leaving a thin film of oil between the raceways and rolling elements. When using open bearings, pack the bearing as follows:

When the shaft speed is:

50% or less of the bearings cataloged limiting speed \sim pack 1/2 to 2/3 full Greater than 50% of the bearings cataloged limiting speed \sim pack 1/3 to 1/2 full

Grease Lubrication

Relubrication guidelines for grease lubricated bearings in horizontal shaft motors with continuous operation

Pooring	Ounces	Bearing	Ounces	Relubrication Interval					
Bearing Size	of	Size	of	900	1200	1800	2700	3600	
GIZO	Grease	0120	Grease		N	lotor Speed (rpm))	•	
6208	0.3	6308	0.4	2 years	2 years	12 months	6 months	6 months	
6209	0.3	6309	0.4	2 years	1.5 years	12 months	6 months	6 months	
6210	0.3	6310	0.5	2 years	1.5 years	12 months	6 months	3 months	
6211	0.4	6311	0.6	2 years	1.5 years	12 months	6 months	3 months	
6212	0.4	6312	0.7	2 years	1.5 years	12 months	6 months	3 months	
6213	0.5	6313	0.8	2 years	1.5 years	6 months	3 months	3 months	
6214	0.5	6314	0.9	2 years	1.5 years	6 months	3 months	2 months	
6215	0.6	6315	1.1	1.5 years	12 months	6 months	3 months	2 months	
6216	0.7	6316	1.2	1.5 years	12 months	6 months	2 months	1 month	
6217	0.8	6317	1.3	1.5 years	12 months	6 months	2 months	1 month	
6218	0.9	6318	1.5	1.5 years	12 months	6 months	2 months	1 month	

Our online catalog was used to generate the information on this chart. The information can be obtained on our website - **www.nachiamerica.com.** Please verify the volume output per stoke for your grease gun. Guns normally have outputs between 10 shot for one ounce to 33 shots for one ounce. This is a wide range so the grease guns should be calibrated.

Nachi's Radial Ball Bearings standard grease is EXXON **Polyrex EM** Grease. This grease has a polyurea thickener and is used exclusively in the motor industry. Other standard greases used by Nachi are Shell Alvania, and Kyodo Yushi Multemp SRL; both greases are lithium thickener greases.

Sealed bearings are lubricated for life. That is the life of the grease not the possible life of the bearing. On most applications, extended grease life can be achieved by relubricating ball bearings. Bearing life should not be compromised by lubrication.

Recommended Grease Replenishment Quantities & Intervals (for lubrication of units in service)									
Bearing P/N Grease - fluid (oz) 3,600 rpm 1,800 rpm 1,200 rpm									
6203 ~ 6208	0.2	2 years	3 years	3 years					
6209 ~ 6309	0.4	1 year	2 years	2 years					
6310 ~ 6311	0.6	1 year	2 years	2 years					
6312 ~ 6317									
6218 ~ 6220	1.0	6 months	1 year	2 years					

This is a relubrication schedule specifically for electric motor. Notice how the two tables compare.

Grease Lubrication

Spherical Roller bearings used in SAF housings on horizontal shafts applications

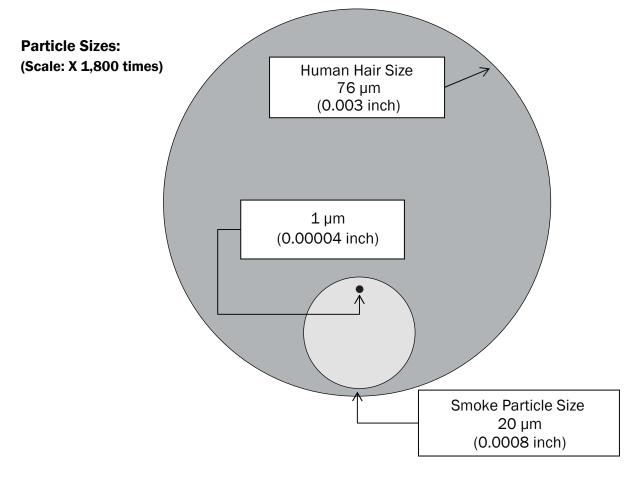
Initially hand pack the bearings and fill the bearing cavity to the bottom of the shaft.

Relubrication should be a function of rpm of the application.

Basic	Amount		Relube Cycle						
Bearing	of	6 months	4 months	2 months	1 months				
Number	Grease	(Operating Speed (rpm)						
	OZ.								
22209	0.3	2400	3600	5000	5500				
22210	0.6	2200	3300	4500	5000				
22211	0.4	2000	3000	4000	4500				
22213	0.8	1700	2500	3400	3800				
22215	0.8	1450	2200	3000	3400				
22216	0.9	1350	2000	2800	3200				
22217	1.2	1300	1900	2600	3000				
22218	1.7	1200	1800	2400	2700				
22220	2.3	1100	1650	2200	2300				
22222	3.1	1000	1500	1950	2100				
22224	4.3	900	1350	1850	1900				
22226	5.5	840	1250	1700	1800				
22228	6.4	780	1150	1600	1700				
22230	7.9	730	1100	1500	1600				
Clean &	Repack	5 years	3 years	2 years	1 year				

Basic	Amount	Relube Cycle					
Bearing	of Grease	6 months	4 months	2 months	1 months		
Number	OZ.	(Operating S	peed (rpm))		
22309	0.7	1325	2100	3150	4200		
22310	1.1	1200	1900	2850	3800		
22311	1.3	1075	1800	2700	3600		
22313	1.9	925	1500	2250	3000		
22315	2.6	800	1300	1950	2600		
22316	3.2	750	1250	1875	2500		
22317	3.6	700	1150	1725	2300		
22318	4.3	650	1100	1650	2200		
22320	6.1	600	1000	1500	2000		
22322	8.3	550	900	1350	1800		
22324	11.6	500	800	1200	1600		
22326	13.3	450	750	1125	1500		
22328	16.9	425	700	1050	1400		
22330	22	400	650	975	1300		
Clean &	Repack	5 years	3 years	2 years	1 year		

Oil Lubrication


Advantages:

- Good for operation at high speeds
- · Circulating oil can act as a coolant
- · Circulating oil can remove contaminants and be filtered
- Oil is suitable for extremely low or extremely high temperatures

Characteristics:

- Oil is primarily used for higher speed and lighter loads
- Mineral oils are the most common, however high temperatures may require synthetic oils
- The quantity and type of oil varies depending on bearing type, size, load, speed...etc

Generally, oil should be replaced once per year when operating temperatures are < 120°F Oil should be replaced every 90 days when operating temperatures > 200°F For mineral oil the life of the oil halves every 15°F the oil operates over 140°F On Synthetic oil, the starting point of the lubricant life reduction is 180°F

Contamination in bearings is a constant problem. Even a small amount of contamination will affect the bearings. A hair has a diameter of about 0.003" A smoke particle is 0.0008". Contamination the size of 1 micron is at least five times the film thickness of the oil on the raceways. The contour of the raceway surfaces are in the range of plus or minus 1 micron.

Oil Lubrication

The majority of the bearings in operation are lubricated with grease. Grease is 80% oil so the difference is not as large as you would expect. There are thousands of various greases. Each grease has its own operating characteristic and the Engineer has to align the bearing with the best grease for the application. On the more difficult applications, oil is many times preferred. The oil selection process is much easier than the grease selection.

It is important to select an oil having a viscosity which will work with the bearing configuration, operating temperature, rotating speed and load. If the oil viscosity is too low, the film between the raceways and the elements can be compromised too easily by the application and the bearing will prematurely wear. Anti-friction bearings are not designed to wear. Sleeve bearings are designed to wear and so sleeve bearings have acceptable wear rates. When rolling bearings wear they wear out. If the oil viscosity is too high the rotation torque will increase causing the bearing to operate hotter and the input power would also be increased.

dn value is the bore of the bearing, multiplied by the rpm of the application. In the following chart the units of dn are in 1,000. (example: $50 \text{ mm } \times 2,000 \text{ rpm} = 100,000$; in the chart = 100)

Viscosity is a measure of the resistance of a fluid which is being deformed by either shear or tensile stress. In everyday terms (and for fluids only), viscosity is thickness or "internal friction". Thus, water is "thin" having a lower viscosity, while honey is "thick" having a higher viscosity.

The following is a general oil selection guide.

Operating	Speed	ISO viscosity g	rade (VG) of Oil	Decring Trace	
Temperature °C	dn value 1000	Normal Loads	Heavy or Shock Loads	Bearing Types	
-30° to 0°	Up to limit	22 32	46	All Types	
	Up to 15	46 68	100	All Types	
0° to 60°	15 to 80	32 64	68	All Types	
0 10 00	80 to 150	22 32	32	Except Thrust Ball	
	150 to 500	10	22 32	Deep Groove Ball Cylindrical Roller	
	Up to 15	150	220	All Types	
60° to 100°	15 to 80	100	150	All Types	
80 (0 100	80 to 150	68	100	Deep Groove Ball Cylindrical Roller	
	150 to 500	32	32	All Types	
100° to 150°	Up to Limit	32	20	All Types	
0° to 60°	Up to Limit	46	68	Spherical Roller	
60° to 100° Up to Limit		1!	50	Spherical Roller	

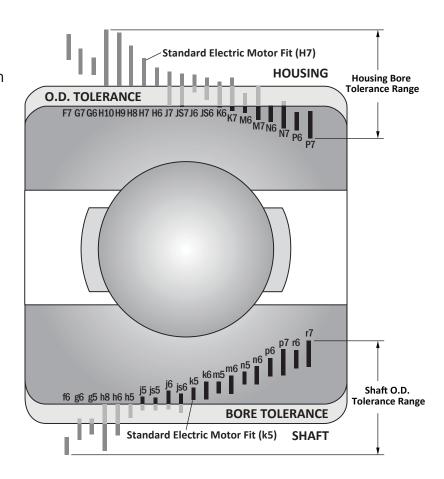
Oil Lubrication

The viscosity index is a widely used and accepted measure of the variation in kinematic viscosity, due to changes in the temperature of a petroleum product between 40° and 100° C.

A higher viscosity index indicates a smaller decrease in kinematic viscosity with increasing temperature of the lubricant. The viscosity index is used in practice as a single number indicating temperature dependence of kinematic viscosity.

	VIS	COSITY	CLASSIFIC	CATION E	QUIVALEN	TS	
KINE! VISCOS	MATIC SITIES	ISO VG	AGMA Grades	SAE GRADES Auto	SAE GRADES Year	SAYE VISCOS	
cSt / 40° C	cSt / 100° C					SUS / 100° F	SUS / 210° F
2000							
1000	50	1000	8A		250	5000	
800						4000	200
600		680	8			3000	
500	30		13				160
400		460	7		140	2000	
300		320	6				100
200	18	220	5	50		1000	
150	15	150	4	40	90	800	80
100	12	100	3			500	
80	10			30	85		60
60	8	68	2		80	300	
50	7			20			60
40	6	46	1			200	
30	5	32		10	75	150	45
20	4	22		5		100	40
10	10						

Rule of Thumb \sim SUS @ 100° F / 5 = cSt @ 40° C

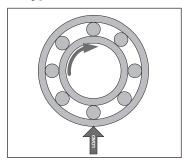

Shaft & Housing Fits

In order for a ball or roller bearing to perform satisfactorily, the fit between the inner ring and the shaft, and the fit between the outer ring and the housing must be suitable for the application. For example, too loose of a fit could result in a corroded or scored bearing bore and shaft. While too tight of a fit could result in unnecessarily high mounting forces and too great of a reduction in internal bearing clearance. In either case, the end result could be premature bearing failure.

All Nachi bearings are made to tolerances set forth by the American Bearing Manufacturers Association (ABMA) and the International Standards of Organization (ISO). The proper fits can only be obtained by selecting the proper tolerances for the shaft outside diameter and housing bore diameter. A letter and a number designate each tolerance. The lower case letter is for shaft fits and a capital letter is used for housing fits. The letter indicates the tolerance zone in relation to the nominal dimension and the number indicates the magnitude. The sectional rectangles shown in the image on the right, illustrate the location and magnitude of the various shaft and housing tolerance zones used for ball and roller bearings.

The selection of fit is dependent of the characteristic of the load, the bearing dimensions, the bearing operating temperature, thermal expansion of the shaft and other surrounding parts, and the required running accuracy.

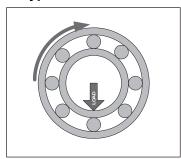
In determining suitable fits for any given application, the direction of the load with respect to the bearing ring must be known.



Shaft & Housing Fits

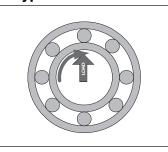
There are three most common types of applications which fit into two fitting categories:

Note: the loads in these applications are radial only


Type One

The shaft rotates and the direction of the load does not change. The outer ring is stationary. The entire inner ring raceway comes under load during one revolution of the shaft. Only a portion (an arc) of the outer ring comes under load. This is the most common application. Example: Electric Motor

In this type of application the inner ring wants to slip on the shaft and the outer ring does not want to slip in the housing. An interference fit is required between the shaft and the inner ring bore. The shaft should be slightly larger than the bearing bore. The bearing will have to be pressed onto the shaft. A loose fit is required between the outer ring OD and the housing bore. The housing is slightly larger than the bearing allowing the bearing to slide axially into the housing.


Type Two

The shaft remains stationary and the outer ring rotates. The direction of the load does not change. The entire outer ring raceway comes under load during one rotation of the housing. Only a portion of the inner ring raceway ever comes under load.

Example: Pulley

Type Three

The shaft rotates and the load rotates with the shaft. The outer ring does not rotate. The entire outer ring raceway comes under load during one rotation of the shaft. Only a portion of the inner ring ever comes under load.

Example: Vibrating Screen

In these types of applications the outer ring wants to slip in the housing and the inner ring does not want to slip on the shaft. An interference fit is required between the bearing OD and the housing. The housing will be slightly smaller than the bearing. The bearing will have to be pressed into the housing. A loose fit is required between the bearing bore and the shaft. The shaft is slightly smaller than the bearing bore. The bearing will slide onto the shaft.

All the other applications are a slight combination of these three applications and will be noted later in this book.

Shaft Fits

- 1) Determine the type of bearing to be used and the bore diameter in millimeters.
- 2) Determine which of the following load conditions is present.
 - a) Rotating Outer Ring Load Such as a wheel
 - b) Rotating Inner Ring Load Such as an electric motor or pump
 - c) Rotating Inner Ring Load and High Accuracy is Required Such as a machine tool spindle.
 - d) Rotating Inner Ring Load that is Considered a Heavy Load Such as Rail Vehicles or Rolling Mills.
- 3) Select the proper tolerance symbol based on the following table:

		Sha	aft Diameter (m	ım)			
Operating C	conditions	Ball Bearings	Cylindrical Roller Bearings	Spherical Roller Bearings	Tolerance Symbol	Remarks	Application Example
			Bearing	gs with Cylin	drical Bore		
Rotating	When the inner ring is required to move on the shaft easily	For A	All Shaft Diamet	ers	g6	When high precision is required, adopt g5 and h5	Driven Wheel
Outer Ring Load	When the inner ring is NOT required to move on the shaft easily	For A	All Shaft Diamet	ers	h6	respectively. For large bearings, use f6 instead.	Tension Pulley or Rope Sheave
		up to 18			h5	M. 1:4	
	Light or Fluctuating	(18) to 100	up to 40		j6	When high precision is required, adopt i5, k5 and	Conveyors, lightly
	Load	(100) to 200	(40) to 140		k6	m5 respectively, instead of	loaded gear boxes
			(140) to 200		m6	j6, k6 and m6	
		up to 18			j5		
Rotating		(18) to 100	up to 40	up to 40	k5		Electric Motors,
Inner Ring Load or		(100) to 200	(40) to 100	(40) to 65	m5	Use k6 and m6 instead of	turbines, pumps,
Indeterminate	Normal Load		(100) to 140	(65) to 100	m6	k5 and m5 for Angular	"Bearing applications
Load Direction			(140) to 200	(100) to 140	n6	Contact Ball Bearings.	in general"
			(200) to 400	(140) to 280	p6		
				over 280	r6		
	Hooverond		(50) to 140	(50) to 100	n6	A bearing with larger than	Locamativa Aylaa aad
	Heavy and Shock Loads		(140) to 200	(100) to 140	p6	normal clearance is	Locomotive Axles and Traction Motors
	2 .222240		Over 200	over 140	r6	required.	
Avial Load	Avial Load Only		up to 250		j6		
Axiai Luau	Axial Load Only		over 250		js6		

Notes: Shaft tolerances in this table are for solid steel shafts for P0 or P6 bearings For every 0.0001" of shaft interference, you lose 0.00007" of the bearing internal clearance

Typical Bearing Loads:

Heavy Load P > 0.18Cr Cr = Basic Dynamic Load Rating

Normal Load 0.08Cr < P < 0.18Cr P = Equivalent Load

Light Load P < 0.08Cr

Housing Fits

- 1) Determine the type of bearing to be used and the outside diameter in millimeters.
- 2) Determine which of the following load conditions is present.
 - a) Rotating Outer Ring Load Such as a wheel
 - b) Rotating Inner Ring Load Such as an electric motor or pump
- 3) Select the proper tolerance symbol based on the following table:

	Opera	ating Conditions	Tolerance Symbol	Outer Ring Movement	Application Example		
	Rotating	When a heavy load is applied to a thin-walled housing or impact load.	P7		Automobile Wheel (roller bearing)		
	Outer Ring	Normal or Heavy Load	N7	Outer ring cannot be moved in an	Automobile Wheel (ball bearing)		
Solid Housing	Load	Light or Fluctuating Load	M7	axial direction	Conveyor or Roller or Tension Pulley		
	la data maia ata	Heavy Impact Load	IVI 7		Traction Motor		
	Indeterminate Load Direction	Heavy load or normal load; when the outer ring is not required to move in axial direction	K7	Outer ring cannot be moved in an axial direction as a rule	Pump or Crankshaft		
		Normal or light load; when it is desirable for the outer ring to move in an axial direction	J7	Outer ring can be moved in an	Medium-sized Electric Motors		
		Impact load; When an unloaded condition can occur instantaneously	31	axial direction	Railroad Car Axle		
Split or Solid Housing	Rotating Inner		H7		General Engineering		
	Ring Load		Н8	Outer ring can easily be moved in an axial direction	Gear Transmission		
		When a thermal condition through the shaft is present	G7		Drying Cylinder		
		Fluctuating Load; when extremely accurate rotation and high rigidity	N6	Outer ring cannot	Machine Tool Spindle with bearing O.D. > 125 mm		
Solid	When High	are required.	M6	be moved in an axial direction	Machine Tool Spindle with bearing O.D. <= 125 mm		
Housing	Accuracy is	Accuracy is	,	Indeterminate load direction, light load; when extremely accurate rotation is required	K6	Outer ring cannot be moved in an axial direction as a rule	Centerless Grinder Main Shaft - Fixed Bearing
		When extremely accurate rotation is required and it is desirable for the outer ring to move in an axial direction.	J6	Outer ring can be moved in an axial direction	Centerless Grinder Main Shaft - Floating Bearing		

Notes: Housing tolerances in this table are applied to cast iron or steel housings for PO or P6 bearings For every 0.0001" of housing interference, you use 0.0001" of the bearings internal clearance. A tighter fit may be adopted for light alloy housings.

Shaft Bearing Seat Diameters

																	· .	1405 111		
ı	Bearing B			g6			h6			h5			j5			j6			k5	
	Diamete	r	Shaft Di	iameter	Fit in	Shaft Di	iameter	Fit in	Shaft Di	ameter	Fit in	Shaft D	iameter	Fit in	Shaft Di	iameter	Fit in	Shaft D	iameter	Fit in
mm	Inch Max.	nes Min.	Max.	Min.	0.0001"	Max.	Min.	0.0001"	Max.	Min.	0.0001"	Max.	Min.	0.0001"	Max.	Min.	0.0001"	Max.	Min.	0.0001"
10	0.3937	0.3934	0.3935	0.3931	6L 1T	0.3937	0.3933	4L 3T	0.3937	0.3935	2L 3T	0.3939	0.3936	1L 5T	0.3940	0.3936	1L 6T	0.3940	0.3937	OL 7T
12 15 17	0.4724 0.5906 0.6693	0.4721 0.5903 0.6690	0.4722 0.5904 0.6691	0.4717 0.5899 0.6686	7L 1T	0.4724 0.5906 0.6693	0.4720 0.5902 0.6689	4L 3T	0.4724 0.5906 0.6693	0.4721 0.5903 0.6690	3L 3T	0.4726 0.5908 0.6695	0.4723 0.5905 0.6692	1L 5T	0.4727 0.5909 0.6696	0.4723 0.5905 0.6692	1L 6T	0.4728 0.5910 0.6697	0.4724 0.5906 0.6693	OL 7T
20 25 30	0.7874 0.9843 1.1811	0.7871 0.9839 1.1807	0.7872 0.9840 1.1808	0.7866 0.9835 1.1803	8L 1T	0.7875 0.9843 1.1811	0.7869 0.9838 1.1806	5L 4T	0.7875 0.9843 1.1811	0.7870 0.9839 1.1807	4L 4T	0.7877 0.9845 1.1813	0.7872 0.9841 1.1809	2L 6T	0.7879 0.9847 1.1815	0.7872 0.9841 1.1809	2L 8T	0.7879 0.9847 1.1815	0.7875 0.9844 1.1812	1L 8T
35 40 45 50	1.3780 1.5748 1.7717 1.9685	1.3775 1.5744 1.7712 1.9681	1.3776 1.5745 1.7713 1.9682	1.3770 1.5738 1.7707 1.9675	10L 1T	1.3780 1.5749 1.7717 1.9686	1.3774 1.5742 1.7711 1.9679	6L 5T	1.3780 1.5749 1.7717 1.9686	1.3776 1.5744 1.7713 1.9681	4L 5T	1.3782 1.5751 1.7719 1.9688	1.3778 1.5746 1.7715 1.9683	2L 7T	1.3784 1.5753 1.7721 1.9690	1.3778 1.5746 1.7715 1.9683	2L 9T	1.3785 1.5754 1.7722 1.9691	1.3781 1.5749 1.7718 1.9686	1L 10T
55 60 65 70 75 80	2.1654 2.3622 2.5591 2.7559 2.9528 3.1496	2.1648 2.3616 2.5585 2.7553 2.9522 3.1490	2.1650 2.3618 2.5587 2.7555 2.9524 3.1492	2.1643 2.3611 2.5580 2.7548 2.9517 3.1485	11L 2T	2.1654 2.3622 2.5591 2.7559 2.9528 3.1496	2.1647 2.3615 2.5584 2.7552 2.9521 3.1489	7L 6T	2.1654 2.3622 2.5591 2.7559 2.9528 3.1496	2.1649 2.3617 2.5586 2.7554 2.9523 3.1491	5L 6T	2.1656 2.3624 2.5593 2.7561 2.9530 3.1498	2.1651 2.3619 2.5588 2.7556 2.9525 3.1493	3L 8T	2.1659 2.3627 2.5596 2.7564 2.9533 3.1501	2.1651 2.3619 2.5588 2.7556 2.9525 3.1493	3L 11T	2.1660 2.3628 2.5597 2.7565 2.9534 3.1502	2.1655 2.3623 2.5592 2.7560 2.9529 3.1497	1L 12T
85 90 95 100 105 110 115 120	3.3465 3.5433 3.7402 3.9370 4.1339 4.3307 4.5276 4.7244	3.3457 3.5425 3.7394 3.9362 4.1331 4.3299 4.5268 4.7236	3.3460 3.5428 3.7397 3.9365 4.1334 4.3302 4.5271 4.7239	3.3452 3.5420 3.7389 3.9357 4.1326 4.3294 4.5263 4.7231	13L 3T	3.3465 3.5433 3.7402 3.9370 4.1339 4.3307 4.5276 4.7244	3.3456 3.5424 3.7393 3.9361 4.1330 4.3298 4.5267 4.7235	9L 8T	3.3465 3.5433 3.7402 3.9370 4.1339 4.3307 4.5276 4.7244	3.3459 3.5427 3.7396 3.9364 4.1333 4.3301 4.5270 4.7238	6L 8T	3.3467 3.5435 3.7404 3.9372 4.1341 4.3309 4.5278 4.7246	3.3461 3.5429 3.7398 3.9366 4.1335 4.3303 4.5272 4.7240	4L 10T	3.3470 3.5438 3.7407 3.9375 4.1344 4.3312 4.5281 4.7249	3.3461 3.5429 3.7398 3.9366 4.1335 4.3303 4.5272 4.7240	4L 13T	3.3472 3.5440 3.7409 3.9377 4.1346 4.3314 4.5283 4.7251	3.3466 3.5434 3.7403 3.9371 4.1340 4.3308 4.5277 4.7245	1L 15T
125 130 140 150 160 170 180	4.9213 5.1181 5.5118 5.9055 6.2992 6.6929 7.0866	4.9203 5.1171 5.5108 5.9045 6.2982 6.6919 7.0856	4.9207 5.1175 5.5112 5.9049 6.2986 6.6923 7.0860	4.9198 5.1166 5.5103 5.9040 6.2977 6.6914 7.0851	15L 4T	4.9213 5.1181 5.5118 5.9055 6.2992 6.6929 7.0866	4.9203 5.1171 5.5108 5.9045 6.2982 6.6919 7.0856	10L 10T	4.9213 5.1181 5.5118 5.9055 6.2992 6.6929 7.0866	4.9206 5.1174 5.5111 5.9048 6.2985 6.6922 7.0859	7L 10T	4.9216 5.1184 5.5121 5.9058 6.2995 6.6932 7.0869	4.9209 5.1177 5.5114 5.9051 6.2988 6.6925 7.0862	4L 13T	4.9219 5.1187 5.5124 5.9061 6.2998 6.6935 7.0872	4.9209 5.1177 5.5114 5.9051 6.2988 6.6925 7.0862	4L 16T	4.9221 5.1189 5.5126 5.9063 6.3000 6.6937 7.0874	4.9214 5.1182 5.5119 5.9056 6.2993 6.6930 7.0867	1L 18T
190 200 220 240	7.4803 7.8740 8.6614 9.4488	7.4791 7.8728 8.6602 9.4476	7.4797 7.8734 8.6608 9.4482	7.4786 7.8723 8.6597 9.4471	17L 6T	7.4803 7.8740 8.6614 9.4488	7.4792 7.8729 8.6603 9.4477	11L 12T	7.4803 7.8740 8.6614 9.4488	7.4795 7.8732 8.6606 9.4480	8L 12T	7.4806 7.8743 8.6617 9.4491	7.4798 7.8735 8.6609 9.4483	5L 15T	7.4809 7.8746 8.6620 9.4494	7.4798 7.8735 8.6609 9.4483	5L 18T	7.4812 7.8749 8.6623 9.4497	7.4805 7.8742 8.6616 9.4490	2L 21T
260 280 300		10.2348 11.0222 11.8096	10.2355 11.0229 11.8103	10.2343 11.0217 11.8091	19L 7T	10.2362 11.0236 11.8110	10.2349 11.0223 11.8097	13L 14T	10.2362 11.0236 11.8110	10.2353 11.0227 11.8101	9L 14T	10.2365 11.0239 11.8113	10.2356 11.0230 11.8104	6L 17T	10.2368 11.0242 11.8116	10.2356 11.0230 11.8104	6L 20T	10.2373 11.0247 11.8121	10.2364 11.0238 11.8112	2L 25T
320 340 360 380 400	13.3858 14.1732 14.9606	12.5968 13.3842 14.1716 14.9590 15.7464	12.5977 13.3851 14.1725 14.9599 15.7473	12.5963 13.3837 14.1711 14.9585 15.7459	21L 9T	12.5984 13.3858 14.1732 14.9606 15.7480	12.5970 13.3844 14.1718 14.9592 15.7466	14L 16T	12.5984 13.3858 14.1732 14.9606 15.7480	12.5974 13.3848 14.1722 14.9596 15.7470	10L 16T	12.5987 13.3861 14.1735 14.9609 15.7483	12.5977 13.3851 14.1725 14.9599 15.7473	7L 19T		12.5977 13.3851 14.1725 14.9599 15.7473	7L 23T	12.5995 13.3869 14.1743 14.9617 15.7491	12.5986 13.3860 14.1734 14.9608 15.7482	2L 27T
420 440 460 480 500	18.1102 18.8976	16.5336 17.3210 18.1084 18.8958 19.6832	16.5346 17.3220 18.1094 18.8968 19.6842	16.5330 17.3204 18.1078 18.8952 19.6826	24L 10T	16.5354 17.3228 18.1102 18.8976 19.6850	16.5338 17.3212 18.1086 18.8960 19.6834	16L 18T	16.5354 17.3228 18.1102 18.8976 19.6850	16.5343 17.3217 18.1091 18.8965 19.6839	11L 18T	16.5357 17.3231 18.1105 18.8979 19.6853	16.5346 17.3220 18.1094 18.8968 19.6842	8L 21T	18.1110 18.8984	16.5346 17.3220 18.1094 18.8968 19.6842	8L 26T	16.5367 17.3241 18.1115 18.8989 19.6863	16.5356 17.3230 18.1104 18.8978 19.6852	2L 31T

Shaft Bearing Seat Diameters

																	(V č	alues i	II IIICII	2 5)
E	Bearing E			k6			m5			m6			n6			p6			r6	
	Diamet	er ———	Shaft D	iameter	Fit in	Shaft D	iameter	Fit in	Shaft D	iameter	Fit in									
mm	Inc Max.	hes Min.	Max.	Min.	0.0001"	Max.	Min.	0.0001"	Max.	Min.	0.0001"									
10	0.3937	0.3934	0.3941	0.3937	OT 7T	0.3942	0.3939	2T 8T	0.3943	0.3939	2T 9T	0.3944	0.3941	4T 10T						
12 15	0.4724 0.5906	0.4721 0.5903	0.4729 0.5911	0.4724 0.5906	ОТ	0.4730 0.5912	0.4727 0.5909	3T	0.4731 0.5913	0.4727 0.5909	3T	0.4733 0.5915	0.4729 0.5911	5T						
17	0.6693	0.6690	0.6698	0.6693	8T	0.6699	0.6696	9T	0.6700	0.6696	10T	0.6702	0.6698	12T						
20 25	0.7874 0.9843	0.7871 0.9839	0.7881 0.9849	0.7875 0.9844	1T	0.7882 0.9850	0.7877 0.9846	3T	0.7883 0.9851	0.7877 0.9846	3T	0.7886 0.9854	0.7880 0.9849	6T						
30	1.1811	1.1807	1.1817	1.1812	10T	1.1818	1.1814	11T	1.1819	1.1814	12T	1.1822	1.1817	15T						
35 40	1.3780 1.5748	1.3775	1.3787 1.5756	1.3781 1.5749	4.7	1.3788 1.5757	1.3784 1.5752	4T	1.3790 1.5759	1.3784	4T	1.3793	1.3787 1.5755	7T						
45	1.7717	1.5744 1.7712	1.7724	1.7718	1T 12T	1.7725	1.7721	4T 13T	1.7727	1.5752 1.7722	15T	1.5762 1.7730	1.7724	18T						
50	1.9685	1.9681	1.9693	1.9686		1.9694	1.9689		1.9696	1.9689		1.9699	1.9692							<u> </u>
55 60	2.1654 2.3622	2.1648 2.3616	2.1662 2.3630	2.1655 2.3623		2.1664 2.3632	2.1659 2.3627		2.1666 2.3634	2.1658 2.3626		2.1669 2.3637	2.1662 2.3630							
65	2.5591	2.5585	2.5599	2.5592	1T	2.5601	2.5596	5T	2.5603	2.5595	4T	2.5606	2.5599	8T						
70 75	2.7559 2.9528	2.7553 2.9522	2.7567 2.9536	2.7560 2.9529	14T	2.7569 2.9538	2.7564 2.9533	16T	2.7571 2.9540	2.7563 2.9532	18T	2.7574 2.9543	2.7567 2.9536	21T						
80	3.1496	3.1490	3.1504	3.1497		3.1506	3.1501		3.1508	3.1500		3.1511	3.1504							
85	3.3465	3.3457	3.3475	3.3466		3.3476	3.3470		3.3479	3.3470		3.3483	3.3474		3.3488	3.3480				
90 95	3.5433 3.7402	3.5425 3.7394	3.5443 3.7412	3.5434 3.7403		3.5444 3.7413	3.5438 3.7407		3.5447 3.7416	3.5438 3.7407		3.5451 3.7420	3.5442 3.7411	9T	3.5456 3.7425	3.5448 3.7417	15T			
100	3.9370	3.9362	3.9380	3.9371	1T	3.9381	3.9375	5T	3.9384	3.9375	5T	3.9388	3.9379	26T	3.9393	3.9385	31T			
105 110	4.1339 4.3307	4.1331 4.3299	4.1349 4.3317	4.1340 4.3308	18T	4.1350 4.3318	4.1344 4.3312	19T	4.1353 4.3321	4.1344 4.3312	22T	4.1357 4.3325	4.1348 4.3316		4.1362 4.3330	4.1354 4.3322				
115	4.5276	4.5268	4.5286	4.5277		4.5287	4.5281		4.5290	4.5281		4.5294	4.5285		4.5299	4.5291				
120	4.7244	4.7236	4.7254	4.7245		4.7255	4.7249		4.7258	4.7249		4.7262	4.7253		4.7267	4.7259 4.9230		4.0040	1.0000	
125 130	4.9213 5.1181	4.9203 5.1171	4.9224 5.1192	4.9214 5.1182		4.9226 5.1194	4.9219 5.1187		4.9229 5.1197	4.9219 5.1187		4.9233 5.1201	4.9224 5.1192		4.9240 5.1208	5.1198		4.9248 5.1216	4.9239 5.1207	
140	5.5118	5.5108	5.5129	5.5119		5.5131	5.5124		5.5134	5.5024		5.5138	5.5129		5.5145	5.5135 5.9072	17T 37T	5.5153	5.5144	l
150 160	5.9055 6.2992	5.9045 6.2982	5.9066 6.3003	5.9056 6.2993	1T 21T	5.9068 6.3005	5.9061 6.2998	6T 23T	5.9071 6.3008	5.9061 6.2998	6T 26T	5.9075 6.3012	5.9066 6.3003	11T 30T	5.9082 6.3019	6.3009	0	5.9090 6.3027	5.9081 6.3018	26T 45T
170	6.6929	6.6919	6.6940	6.6930		6.6942	6.6935		6.6945	6.6935		6.6949	6.6940		6.6956 7.0893	6.6946 7.0883		6.6964	6.6955	
180	7.0866 7.4803	7.0856	7.0877 7.4817	7.0867		7.0879	7.0872 7.4810		7.0882 7.4821	7.0872		7.0886 7.4827	7.0877		7.4834	7.4823		7.0901 7.4845	7.0892 7.4833	30T
190 200	7.4803	7.4791 7.8728	7.8754	7.8742	2T	7.8755	7.8747	7T	7.8758	7.4810		7.8764	7.4815 7.8752		7.8771	7.8760		7.8782	7.8770	54T
220 240	8.6614 9.4488	8.6602 9.4476	8.6628 9.4502	8.6616 9.4490	26T	8.6629 9.4503	8.6621 9.4495	27T	8.6632 9.4506	8.6621 9.4495	7T 30T	8.6638 9.4512	8.6626 9.4500	12T 36T	8.6645 9.4519	8.6634 9.4508	20T 43T	8.6657 9.4532	8.6645 9.4521	31T/55T 33T/56T
260	10.2362	10.2348	10.2376	10.2364		10.2382	10.2370		10.2382	10.2370		10.2388	10.2375		10.2397	10.2384		10.2412	10.2399	37T
280 300	11.0236 11.8110	11.0222 11.8096	11.0250	11.0238 11.8112	2T 28T	11.0256 11.8130	11.0244 11.8118	8T	11.0256	11.0244 11.8118	8T	11.0262	11.0249 11.8123	13T 40T	11.0271 11.8145	11.0258 11.8132	22T 49T	11.0286 11.8161	11.0273	64T 39T/65T
320	12.5984	12.5968	11.8124 12.6000	12.5986	201	12.6006	12.5992	34T	11.8130 12.6006	12.5992	34T	11.8136 12.6013	12.5999	401	12.6023	12.6008	491	12.6041	12.6027	43T
340	13.3858	13.3842	13.3874	13.3860	_	13.3880	13.3866	8T	13.3880	13.3866	8T	13.3887	13.3873		13.3987	13.3982	24T	13.3915		73T
360 380	14.1732 14.9606	14.1716 14.9590	14.1748 14.9622	14.1734 14.9608	2T 32T	14.1754 14.9628	14.1740 14.9614	38T	14.1754 14.9628	14.1740 14.9614	38T	14.1761 14.9635	14.1747 14.9621	15T 45T	14.1771 14.9645	14.1756 14.9630	55T		14.1777 14.9651	45T 75T
400	15.7480	15.7464	15.7496	15.7482		15.7502	15.7488		15.7502	15.7488		15.7509	15.7495		15.7519	15.7504		15.7539	15.7525	
420 440	16.5354 17.3228	16.5336 17.3210	16.5372 17.3246	16.5356 17.3230		16.5374 17.3248	16.5363 17.3237	ОТ.	16.5379 17.3253	16.5363 17.3237	0.7	16.5385 17.3259	16.5370 17.3244		16.5397 17.3271	16.53981 17.3255		16.5419 17.3293	16.5404 17.3278	50T 83T
460	18.1102	18.1084	18.1120	18.1104	2T	18.1122	18.1111	9T 38T	18.1127	18.1111	9T 43T	18.1133	18.1118	16T	18.1145	18.1129	27T	18.1170	18.1154	52T
480 500	18.8976 19.6850	18.8958 19.6832	18.8994 19.6873	18.8978 19.6852	36T	18.8996 19.6870	18.8985 19.6859		18.9001	18.8985 19.6859		18.9007 19.6881	18.8992 19.6866	49T	18.9019 19.6893	18.9003 19.6877	61T	18.9044 19.6918	18.9028	86T
300	19.0000	13.0032	19.00/3	15.0002		13.0010	19.0009		13.00/5	19.0009		19.0001	13.0000		13.0033	19.00//		19.0918	19.0902	

Housing Bearing Seat Diameters

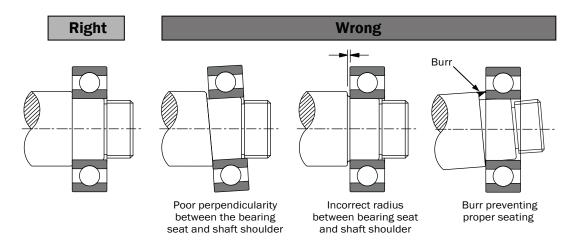
																	(va	lues ir	Inche	(S)
Ве	earing Out			G7			Н8			Н7			J6			J7			K6	
mm	Diamete Incl Min.		Housir Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	ng Bore Max.	Fit in 0.0001"	Housin Min.	g Bore Max.	Fit in 0.0001"	Housin Min.	g Bore Max.	Fit in 0.0001"
19 22 24 26 28 30	0.7477 0.8658 0.9445 1.0233 1.1020 1.1808	0.7480 0.8661 0.9449 1.0236 1.1024 1.1811	0.7483 0.8664 0.9452 1.0239 1.1027 1.1814	0.7491 0.8672 0.9460 1.0247 1.1035 1.1822	15L 3L	0.7480 0.8661 0.9449 1.0236 1.1024 1.1811	0.7494 0.8675 0.9462 1.0250 1.1037 1.1825	17L OT	0.7480 0.8661 0.9449 1.0236 1.1024 1.1811	0.7489 0.8670 0.9457 1.0245 1.1032 1.1820	12L 0T	0.7478 0.8659 0.9447 1.0234 1.1022 1.1809	0.7484 0.8665 0.9452 1.0240 1.1027 1.1815	7L 2T	0.7476 0.8657 0.9445 1.0232 1.1020 1.1807	0.7486 0.8667 0.9454 1.0242 1.1029 1.1817	9L 4T	0.7476 0.8657 0.9445 1.0232 1.1020 1.1807	0.7481 0.8662 0.9449 1.0237 1.1024 1.1812	4L 4T
32 35 37 40 42 47	1.2594 1.3775 1.4562 1.5744 1.6531 1.8499	1.2598 1.3780 1.4567 1.5748 1.6535 1.8504	1.2602 1.3784 1.4571 1.5752 1.6539 1.8508	1.2611 1.3793 1.4580 1.5761 1.6548 1.8517	17L 4L	1.2598 1.3780 1.4567 1.5748 1.6535 1.8504	1.2613 1.3795 1.4582 1.5763 1.6550 1.8519	19L OT	1.2598 1.3780 1.4567 1.5748 1.6535 1.8504	1.2608 1.3789 1.4576 1.5758 1.6545 1.8513	14L 0T	1.2596 1.3778 1.4565 1.5746 1.6533 1.8502	1.2602 1.3783 1.4570 1.5752 1.6539 1.8507	8L 2T	1.2594 1.3776 1.4563 1.5744 1.6531 1.8500	1.2604 1.3785 1.4572 1.5754 1.6541 1.8509	10L 4T	1.2593 1.3775 1.4562 1.5743 1.6530 1.8499	1.2599 1.3780 1.4567 1.5749 1.6536 1.8504	5L 5T
52 55 62 72 80	2.0467 2.1649 2.4404 2.8341 3.1491	2.0472 2.1654 2.4409 2.8346 3.1496	2.0476 2.1658 2.4413 2.8350 3.1500	2.0488 2.1670 2.4425 2.8362 3.1512	21L 4L	2.0472 2.1654 2.4409 2.8346 3.1496	2.0490 2.1672 2.4427 2.8364 3.1514	23L 0T	2.0472 2.1654 2.4409 2.8346 3.1496	2.0484 2.1666 2.4421 2.8358 3.1508	17L 0T	2.0470 2.1652 2.4407 2.8344 3.1494	2.0477 2.1659 2.4414 2.8351 3.1501	10L 2T	2.0467 2.1649 2.4404 2.8341 3.1491	2.0479 2.1661 2.4416 2.8353 3.1503	12L 5T	2.0466 2.1648 2.4403 2.8340 3.1490	2.0474 2.1656 2.4411 2.8348 3.1498	7L 6T
85 90 100 110 115 120	3.3459 3.5427 3.9364 4.3301 4.5270 4.7238	3.3465 3.5433 3.9370 4.3307 4.5276 4.7244	3.3470 3.5438 3.9375 4.3312 4.5281 4.7249	3.3484 3.5452 3.9389 4.3326 4.5295 4.7263	25L 5L	3.3465 3.5433 3.9370 4.3307 4.5276 4.7244	3.3486 3.5454 3.9391 4.3328 4.5297 4.7265	27L 0T	3.3465 3.5433 3.9370 4.3307 4.5276 4.7244	3.3479 3.5447 3.9384 4.3321 4.5290 4.7258	20L 0T	3.3463 3.5431 3.9368 4.3305 4.5274 4.7242	3.3471 3.5439 3.9376 4.3313 4.5282 4.7250	12L 2T	3.3460 3.5428 3.9365 4.3302 4.5271 4.7239	3.3474 3.5442 3.9379 4.3316 4.5285 4.7253	15L 5T	3.3458 3.5426 3.9363 4.3300 4.5269 4.7237	3.3467 3.5435 3.9372 4.3309 4.5278 4.7246	8L 7T
125 130 140 145 150	4.9206 5.1174 5.5111 5.7080 5.9048	4.9213 5.1181 5.5118 5.7087 5.9055	4.9219 5.1187 5.5124 5.7093 5.9061	4.9234 5.1202 5.5139 5.7108 5.9076	28L 6L	4.9213 5.1181 5.5118 5.7087 5.9055	4.9238 5.1206 5.5143 5.7112 5.9080	32L 0T	4.9213 5.1181 5.5118 5.7087 5.9055	4.9229 5.1197 5.5134 5.7103 5.9071	23L 0T	4.9210 5.1178 5.5115 5.7084 5.9052	4.9220 5.1188 5.5125 5.7094 5.9062	14L 3T	4.9207 5.1175 5.5112 5.7081 5.9049	4.9223 5.1191 5.5128 5.7097 5.9065	17L 6T	4.9205 5.1173 5.5110 5.7079 5.9047	4.9215 5.1183 5.5120 5.7089 5.9057	9L 8T
160 170 180	6.2982 6.6919 7.0856	6.2992 6.6929 7.0866	6.2998 6.6935 7.0872	6.3013 6.6950 7.0887	31L 6L	6.2992 6.6929 7.0866	6.3017 6.6954 7.0891	35L 0T	6.2992 6.6929 7.0866	6.3008 6.6945 7.0882	26L 0T	6.2989 6.6926 7.0863	6.2999 6.6936 7.0873	17L 3T	6.2986 6.6923 7.0860	6.3002 6.6939 7.0876	20L 6T	6.2984 6.6921 7.0858	6.2994 6.6931 7.0868	12L 8T
190 200 210 215 225 240 250	7.4791 7.8728 8.2665 8.4634 8.8571 9.4476 9.8413	7.4803 7.8740 8.2677 8.4646 8.8583 9.4488 9.8425	7.4809 7.8746 8.2683 8.4652 8.8589 9.4494 9.8431	7.4827 7.8764 8.2701 8.4670 8.8607 9.4512 9.8449	36L 6L	7.4803 7.8740 8.2677 8.4646 8.8583 9.4488 9.8425	7.4831 7.8768 8.2705 8.4674 8.8611 9.4516 9.8453	40L OT	7.4803 7.8740 8.2677 8.4646 8.8583 9.4488 9.8425	7.4821 7.8758 8.2695 8.4664 8.8601 9.4506 9.8443	30L OT	7.4800 7.8737 8.2674 8.4643 8.8580 9.4485 9.8422	7.4812 7.8749 8.2686 8.4655 8.8592 9.4497 9.8434	21L 3T	7.4797 7.8734 8.2671 8.4640 8.8577 9.4482 9.8419	7.4815 7.8752 8.2689 8.4658 8.8595 9.4500 9.8437	24L 6T	7.4794 7.8731 8.2668 8.4637 8.8574 9.4479 9.8416	7.4805 7.8742 8.2679 8.4648 8.8585 9.4490 9.8427	14L 9T
260 280 300 310	10.2348 11.0222 11.8096 12.2033	10.2362 11.0236 11.8110 12.2047	10.2369 11.0243 11.8117 12.2054	10.2389 11.0263 11.8137 12.2074	41L 7L	10.2362 11.0236 11.8110 12.2047	10.2394 11.0268 11.8142 12.2079	46L 0T	10.2362 11.0236 11.8110 12.2047	10.2382 11.0256 11.8130 12.2067	34L 0T	10.2359 11.0233 11.8107 12.2044	10.2372 11.0246 11.8120 12.2057	24L 3T	10.2356 11.0230 11.8104 12.2041	10.2376 11.0250 11.8124 12.2061	28L 6T	10.2351 11.0225 11.8099 12.2036	10.2364 11.0238 11.8112 12.2049	16L 11T
320 340 360 380 400	12.5970 13.3844 14.1716 14.9590 15.7464	12.5984 13.3858 14.1732 14.9606 15.7480	12.5991 13.3865 14.1739 14.9613 15.7487	12.6016 13.3890 14.1762 14.9636 15.7510	46L 7L	12.5984 13.3858 14.1732 14.9606 15.7480	12.6021 13.3895 14.1767 14.9641 15.7515	51L 0T	12.5984 13.3858 14.1732 14.9606 15.7480	12.6008 13.3882 14.1754 14.9628 15.7502	38L 0T	12.5981 13.3855 14.1729 14.9603 15.7477	12.5997 13.3871 14.1743 14.9617 15.7491	27L 3T	12.5977 13.3851 14.1725 14.9599 15.7473	12.6001 13.3875 14.1747 14.9621 15.7495	31L 7T	12.5973 13.3847 14.1721 14.9595 15.7469	12.5989 13.3863 14.1735 14.9609 15.7483	19L 11T
420 440 460 480 500	16.5336 17.3210 18.1084 18.8958 19.6832	16.5354 17.3228 18.1102 18.8976 19.6850	16.5362 17.3236 18.1110 18.8984 19.6858	16.5387 17.3261 18.1135 18.9009 19.6883	51L 8L	16.5354 17.3228 18.1102 18.8976 19.6850	16.5392 17.3266 18.1140 18.9014 19.6888	56L OT	16.5354 17.3228 18.1102 18.8976 19.6850	16.5379 17.3253 18.1127 18.9001 19.6875	43L 0T	16.5351 17.3225 18.1099 18.8973 19.6847	16.5367 17.3241 18.1115 18.8989 19.6863	31L 3T	16.5346 17.3220 18.1094 18.8968 19.6842	16.5371 17.3245 18.1119 18.8993 19.6867	35L 8T	16.5341 17.3215 18.1089 18.8963 19.6837	16.5357 17.3231 18.1105 18.8979 19.6853	21L 13T
520 540 580 600 620	20.4704 21.2578 22.8326 23.6200 24.4074	20.4724 21.2598 22.8346 23.6220 24.4094	20.4733 21.2607 22.8355 23.6229 24.4103	20.4760 21.2634 22.8382 23.6256 24.4130	56L 9L	20.4724 21.2598 22.8346 23.6220 24.4094	20.4767 21.2641 22.8389 23.6263 24.4137	63L 0T	20.4724 21.2598 22.8346 23.6220 24.4094	20.4752 21.2626 22.8374 23.6248 24.4122	48L 0T	20.4721 21.2595 22.8343 23.6217 24.4091	20.4739 21.2613 22.8361 23.6235 24.4109	35L 3T	20.4715 21.2589 22.8337 23.6211 24.4085	20.4743 21.2617 22.8365 23.6239 24.4113	39L 9T	20.4707 21.2581 22.8329 23.6203 24.4077	20.4724 21.2598 22.8346 23.6220 24.4094	20L 17T
650 670 680 700 720 750 780 790	25.5876 26.3750 26.7687 27.5561 28.3435 29.5246 30.7057 31.0994	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	25.5915 26.3789 26.7726 27.5600 28.3474 29.5285 30.7096 31.1033	25.5947 26.3821 26.7758 27.5632 28.3506 29.5317 30.7128 31.1065	71L 9L	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	25.5955 26.3829 26.7766 27.5640 28.3514 29.5325 30.7136 31.1073	79L 0T	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	25.5937 26.3811 26.7748 27.5622 28.3496 29.5307 30.7118 31.1055	61L 0T	25.5902 26.3776 26.7713 27.5587 28.3461 29.5272 30.7083 31.1020	25.5922 26.3796 26.7733 27.5607 28.3481 29.5292 30.7103 31.1040	46L 4T	25.5897 26.3771 26.7708 27.5582 28.3456 29.5267 30.7078 31.1015	25.5928 26.3802 26.7739 27.5613 28.3487 29.5298 30.7109 31.1046	52L 9T	25.5886 26.3760 26.7697 27.5571 28.3445 29.5256 30.7067 31.1004	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	30L 20T

Housing Bearing Seat Diameters

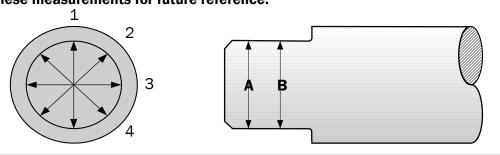
			1											-			(va	iues ii		,J)
Ве	aring Out Diamete			К7			М6			М7			N6			N7			P7	
mm	Incl Min.		Housir Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	ng Bore Max.	Fit in 0.0001"	Housi Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	ng Bore Max.	Fit in 0.0001"	Housir Min.	g Bore Max.	Fit in 0.0001"	Housin Min.	g Bore Max.	Fit in 0.0001"
19 22 24 26 28 30	0.7477 0.8658 0.9445 1.0233 1.1020 1.1808	0.7480 0.8661 0.9449 1.0236 1.1024 1.1811	0.7474 0.8655 0.9443 1.0230 1.1018 1.1805	0.7483 0.8664 0.9451 1.0239 1.1026 1.1814	6L 6T	0.7473 0.8654 0.9442 1.0229 1.1017 1.1804	0.7479 0.8660 0.9449 1.0237 1.1024 1.1812	2L 7T	0.7472 0.8653 0.9441 1.0228 1.1016 1.1803	0.7481 0.8662 0.9449 1.0237 1.1024 1.1812	4L 8T	0.7471 0.8652 0.9440 1.0227 1.1015 1.1802	0.7476 0.8657 0.9445 1.0232 1.1020 1.1807	OL 9T	0.7469 0.8650 0.9438 1.0225 1.1013 1.1800	0.7478 0.8659 0.9446 1.0234 1.1021 1.1809	1L 11T	0.7466 0.8647 0.9435 1.0222 1.1010 1.1797	0.7475 0.8656 0.9443 1.0231 1.1018 1.1806	2T 14T
32 35 37 40 42 47	1.2594 1.3775 1.4562 1.5744 1.6531 1.8499	1.2598 1.3780 1.4567 1.5748 1.6535 1.8504	1.2591 1.3773 1.4560 1.5741 1.6528 1.8497	1.2601 1.3782 1.4569 1.5751 1.6538 1.8506	7L 7T	1.2590 1.3772 1.4559 1.5740 1.6527 1.8496	1.2596 1.3777 1.4564 1.5746 1.6533 1.8501	2L 8T	1.2588 1.3770 1.4557 1.5738 1.6525 1.8494	1.2598 1.3779 1.4566 1.5748 1.6535 1.8503	4L 10T	1.2587 1.3769 1.4556 1.5737 1.6524 1.8493	1.2593 1.3775 1.4562 1.5743 1.6530 1.8499	1L 11T	1.2585 1.3767 1.4554 1.5735 1.6522 1.8491	1.2595 1.3776 1.4563 1.5745 1.6532 1.8500	1L 13T	1.2581 1.3763 1.4550 1.5731 1.6518 1.8487	1.2591 1.3772 1.4559 1.5741 1.6528 1.8496	3T 17T
52 55 62 72 80	2.0467 2.1649 2.4404 2.8341 3.1491	2.0472 2.1654 2.4409 2.8346 3.1496	2.0464 2.1646 2.4401 2.8338 3.1488	2.0476 2.1658 2.4413 2.8350 3.1500	9L 8T	2.0463 2.1645 2.4400 2.8337 3.1487	2.0470 2.1652 2.4407 2.8344 3.1494	3L 9T	2.0460 2.1642 2.4397 2.8334 3.1484	2.0472 2.1654 2.4409 2.8346 3.1496	5L 12T	2.0459 2.1641 2.4396 2.8333 3.1483	2.0466 2.1648 2.4403 2.8340 3.1490	1L 13T	2.0457 2.1639 2.4394 2.8331 3.1481	2.0468 2.1650 2.4405 2.8342 3.1492	1L 15T	2.0452 2.1634 2.4389 2.8326 3.1476	2.0464 2.1646 2.4401 2.8338 3.1488	3T 20T
85 90 100 110 115 120	3.3459 3.5427 3.9364 4.3301 4.5270 4.7238	3.3465 3.5433 3.9370 4.3307 4.5276 4.7244	3.3455 3.5423 3.9360 4.3297 4.5266 4.7234	3.3469 3.5437 3.9374 4.3311 4.5280 4.7248	10L 10T	3.3454 3.5422 3.9359 4.3296 4.5265 4.7233	3.3463 3.5431 3.9368 4.3305 4.5274 4.7242	4L 11T	3.3451 3.5419 3.9356 4.3293 4.5262 4.7230	3.3465 3.5433 3.9370 4.3307 4.5276 4.7244	6L 14T	3.3450 3.5418 3.9355 4.3292 4.5261 4.7229	3.3459 3.5427 3.9364 4.3301 4.5270 4.7238	0L 15T	3.3447 3.5415 3.9352 4.3289 4.5258 4.7226	3.3461 3.5429 3.9366 4.3303 4.5272 4.7240	2L 18T	3.3442 3.5410 3.9347 4.3284 4.5253 4.7221	3.3456 3.5424 3.9361 4.3298 4.5267 4.7235	3T 23T
125 130 140 145 150	4.9206 5.1174 5.5111 5.7080 5.9048	4.9213 5.1181 5.5118 5.7087 5.9055	4.9202 5.1170 5.5107 5.7076 5.9044	4.9218 5.1186 5.5123 5.7092 5.9060	12L 11T	4.9200 5.1168 5.5105 5.7074 5.9042	4.9210 5.1178 5.5115 5.7084 5.9052	4L 13T	4.9197 5.1165 5.5102 5.7071 5.9039	4.9213 5.1181 5.5118 5.7087 5.9055	7L 16T	4.9195 5.1163 5.5100 5.7069 5.9037	4.9205 5.1173 5.5110 5.7079 5.9047	1L 18T	4.9193 5.1161 5.5098 5.7067 5.9035	4.9208 5.1176 5.5113 5.7082 5.9050	2L 20T	4.9186 5.1154 5.5091 5.7060 5.9028	4.9202 5.1170 5.5107 5.7076 5.9044	4T 27T
160 170 180	6.2982 6.6919 7.0856	6.2992 6.6929 7.0866	6.2981 6.6918 7.0855	6.2997 6.6934 7.0871	15L 11T	6.2979 6.6916 7.0853	6.2989 6.6926 7.0863	7L 13T	6.2976 6.6913 7.0850	6.2992 6.6929 7.0866	10L 16T	6.2974 6.6911 7.0848	6.2984 6.6921 7.0858	2L 18T	6.2972 6.6909 7.0846	6.2987 6.6924 7.0861	5L 20T	6.2965 6.6902 7.0839	6.2981 6.6918 7.0855	1T 27T
190 200 210 215 225 240 250	7.4791 7.8728 8.2665 8.4634 8.8571 9.4476 9.8413	7.4803 7.8740 8.2677 8.4646 8.8583 9.4488 9.8425	7.4790 7.8727 8.2664 8.4633 8.8570 9.4475 9.8412	7.4808 7.8745 8.2682 8.4651 8.8588 9.4493 9.8430	17L 13T	7.4788 7.8725 8.2662 8.4631 8.8568 9.4473 9.8410	7.4800 7.8737 8.2674 8.4643 8.8580 9.4485 9.8422	9L 15T	7.4785 7.8722 8.2659 8.4628 8.8565 9.4470 9.8407	7.4803 7.8740 8.2677 8.4646 8.8583 9.4488 9.8425	12L 18T	7.4783 7.8720 8.2657 8.4626 8.8563 9.4468 9.8405	7.4794 7.8731 8.2668 8.4637 8.8574 9.4479 9.8416	3L 20T	7.4779 7.8716 8.2653 8.4622 8.8559 9.4464 9.8401	7.4797 7.8734 8.2671 8.4640 8.8577 9.4482 9.8419	6L 24T	7.4772 7.8709 8.2646 8.4615 8.8552 9.4457 9.8394	7.4790 7.8727 8.2664 8.4633 8.8570 9.4475 9.8412	1T 31T
260 280 300 310	10.2348 11.0222 11.8096 12.2033	10.2362 11.0236 11.8110 12.2047	10.2348 11.0222 11.8096 12.2033	10.2368 11.0242 11.8116 12.2053	20L 14T	10.2346 11.0220 11.8094 12.2031	10.2358 11.0232 11.8106 12.2043	10L 16T	10.2342 11.0216 11.8090 12.2027	10.2362 11.0236 11.8110 12.2047	14L 20T	10.2340 11.0214 11.8088 12.2025	10.2352 11.0226 11.8100 12.2037	4L 22T	10.2336 11.0210 11.8084 12.2021	10.2356 11.0230 11.8104 12.2041	8L 26T	10.2327 11.0201 11.8075 12.2012	10.2348 11.0222 11.8096 12.2033	0T 35T
320 340 360 380 400	12.5970 13.3844 14.1716 14.9590 15.7464	12.5984 13.3858 14.1732 14.9606 15.7480	12.5968 13.3842 14.1716 14.9590 15.7464	12.5993 13.3867 14.1739 14.9613 15.7487	23L 16T	12.5966 13.3840 14.1714 14.9588 15.7462	12.5982 13.3856 14.1728 14.9602 15.7476	12L 18T	12.5962 13.3836 14.1710 14.9584 15.7458	12.5986 13.3860 14.1732 14.9606 15.7480	16L 22T	12.5960 13.3834 14.1708 14.9582 15.7456	12.5976 13.3850 14.1722 14.9596 15.7470	6L 24T	12.5955 13.3829 14.1703 14.9577 15.7451	12.5980 13.3854 14.1726 14.9600 15.7474	10L 29T	12.5945 13.3819 14.1693 14.9567 15.7441	12.5970 13.3844 14.1716 14.9590 15.7464	0T 39T
420 440 460 480 500	16.5336 17.3210 18.1084 18.8958 19.6832	16.5354 17.3228 18.1102 18.8976 19.6850	16.5336 17.3210 18.1084 18.8958 19.6832	16.5361 17.3235 18.1109 18.8983 19.6857	25L 18T	16.5334 17.3208 18.1082 18.8956 19.6830	16.5350 17.3224 18.1098 18.8972 19.6846	14L 20T	16.5329 17.3203 18.1077 18.8951 19.6825	16.5354 17.3228 18.1102 18.8976 19.6850	18L 25T	16.5328 17.3202 18.1076 18.8950 19.6824	16.5343 17.3217 18.1091 18.8965 19.6839	7L 26T	16.5323 17.3197 18.1071 18.8945 19.6819	16.5347 17.3221 18.1095 18.8969 19.6843	11L 31T	16.5311 17.3185 18.1059 18.8933 19.6807	16.5336 17.3210 18.1084 18.8958 19.6832	0T 43T
520 540 580 600 620	20.4704 21.2578 22.8326 23.6200 24.4074	20.4724 21.2598 22.8346 23.6220 24.4094	20.4696 21.2570 22.8318 23.6192 24.4066	20.4724 21.2598 22.8346 23.6220 24.4094	20L 28T	20.4696 21.2570 22.8318 23.6192 24.4066	20.4714 21.2588 22.8336 23.6210 24.4084	10L 28T	20.4686 21.2560 22.8308 23.6182 24.4056	20.4714 21.2588 22.8336 23.6210 24.4084	10L 38T	20.4690 21.2564 22.8312 23.6186 24.4060	20.4707 21.2581 22.8329 23.6203 24.4077	3L 34T	20.4679 21.2553 22.8301 23.6175 24.4049	20.4707 21.2581 22.8329 23.6203 24.4077	3L 45T	20.4666 21.2540 22.8288 23.6162 24.4036	20.4693 21.2567 22.8315 23.6289 24.4063	11T 58T
650 670 680 700 720 750 780 790	25.5876 26.3750 26.7687 27.5561 28.3435 29.5246 30.7057 31.0994	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	25.5875 26.3749 26.7686 27.5560 28.3434 29.5245 30.7056 31.0993	25.5906 26.3780 26.7717 27.5591 28.3465 29.5276 30.7087 31.1024	30L 31T	25.5875 26.3749 26.7686 27.5560 28.3434 29.5245 30.7056 31.0993	25.5894 26.3768 26.7705 27.5579 28.3453 29.5264 30.7075 31.1012	18L 31T	25.5863 26.3737 26.7674 27.5547 28.3422 29.5233 30.7044 31.0981	25.5894 26.3768 26.7705 27.5579 28.3453 29.5264 30.7075 31.1012	18L 43T	25.5867 26.3741 26.7678 27.5552 28.3426 29.5237 30.7048 31.0985	25.5886 26.3760 26.7697 27.5571 28.3445 29.5256 30.7067 31.1004	10L 39T	25.5855 26.3729 26.7666 27.5540 28.3414 29.5225 30.7036 31.0973	25.5886 26.3760 26.7697 27.5571 28.3445 29.5256 30.7067 31.1004	10L 51T	25.5840 26.3714 26.7651 27.5525 28.3399 29.5210 30.7021 31.0958	25.5871 26.3745 26.7682 27.5556 28.3430 29.5241 30.7052 31.0989	5T 66T

The Installation Process:

- 1. Preparing for mounting
- 2. Inspecting the shaft & housing
- 3. Unpacking (washing the bearing, when needed)
- 4. Mounting the bearing
- 5. Lubrication
- 6. Test running of the equipment

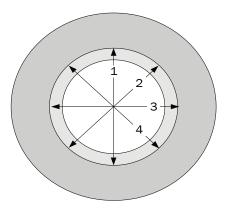


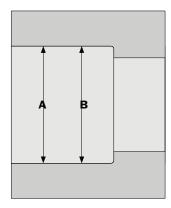
1. Preparing for Mounting


When preparing for mounting, select an appropriate and clean work place to proceed. All of the necessary parts, tools, and equipment should be at hand before beginning the procedure.

2. Inspecting the shaft & housing

Inspect the shaft and housing to confirm that they are free of burrs, flashings or any other defects. Check to confirm that the shaft and housing meet specifications using properly selected tolerances in accordance with American Bearing Manufactures Association (ABMA) Standard 7, "Shaft and Housing Fits for Metric Ball and Roller Bearings." This includes dimensions, perpendicularity of the shoulder, and fillet radii. Non-observance of proper shaft and housing conformity will impair bearing performance leading to premature bearing failure. The cause of such failures is not always easy to identify; much time can be lost looking for the cause of failure.




- Check the shaft diameter at two positions (A and B) in four planes.
- Record these measurements for future reference.

- Check the housing bore diameter at two positions (A and B) in four planes.
- Record these measurements for future reference

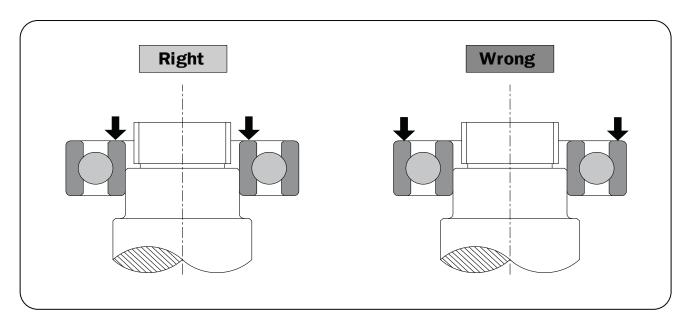
3. Unpacking (washing the bearing, when needed)

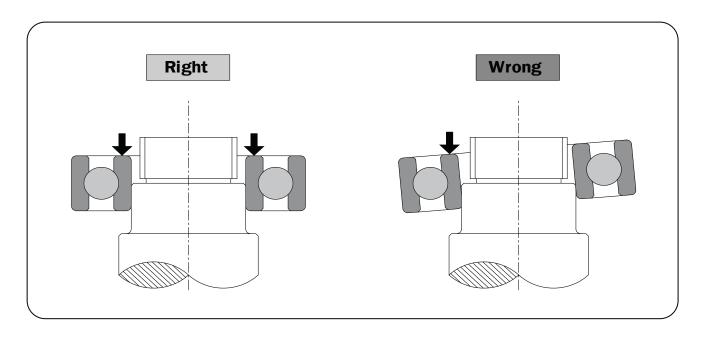
Unpack the bearing just before mounting. Handling with bare hands may cause rust, it is advised that you use a clean pair of vinyl gloves. Dirty gloves are a possible source of dust and dirt which may enter the bearing and cause future problems. Normally a bearing need not be washed after unpacking as the anti-rust preservative coating is compatible with most lubricants. However, high speed and high precision bearings which are used for special applications or when the grease is incompatible with the preservative, the bearing may have to be washed to remove the rust prevention fluid. When cleaning the bearing, it is necessary to use a fresh kerosene, free of impurities such as dust and dirt. Wash the bearing with a filter shower. When a shower is not available use a net to dip the bearing in kerosene.

The cleaning process should be divided into rough cleaning and final cleaning. A separate kerosene container should be used for each process. The bearings should then be carefully dried. After cleaning, immediately cover the bearings, preferably with plastic.

4. Mounting the Bearing - Methods of Mounting:

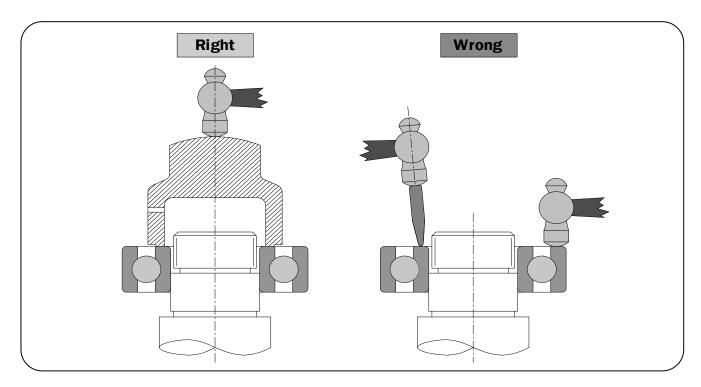
Mount the bearing using one of the three methods: (see following pages for diagrams)


- 4-1 The Press Method
- 4-2 The Heat Expansion Method
- 4-3 The Adapter or Withdrawal Sleeve Method

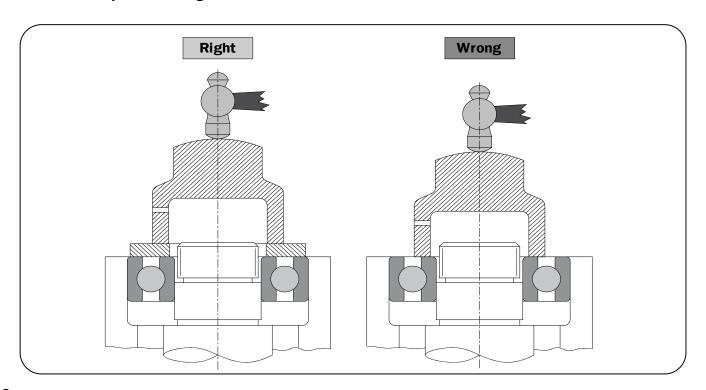

4-1 Press Method:

This is the most common method to mount a bearing and can be used on bearings up to a maximum bore diameter of 60 mm. When mounting with an interference between the shaft and inner ring, use a mounting dolly according to the size of the inner ring.

It is recommended that a thin film of oil should be applied to the shaft.



When force is to be applied on the rolling bearing for mounting, it must be applied in a straight line and evenly. Make sure that bearing is centered correctly.

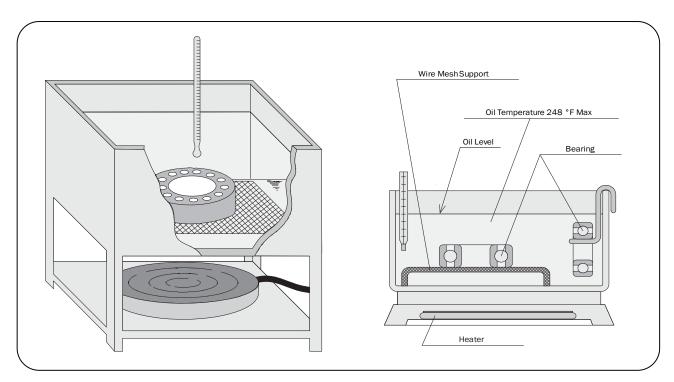


When a press is not available, hammer in the bearing, using only a dead blow hammer and a mounting dolly to minimize the shock to the bearing and evenly distribute the mounting forces. The bearing should not be hammered directly and pressure should be applied only to the inner ring.

When you are mounting the inner and outer rings at same time, use a metal buffer and apply a force simultaneously on both rings.

4-2 The Thermal Expansion Method:

If the interference between the inner ring and shaft is large, a thermal expansion method is recommended. This method of mounting is simple if a heat tank or induction heater is available.


Absolutely never heat a bearing using an open flame!

When using an oil bath heating tank, place the bearing on a screen that is several inches off the bottom and heat the tank to the required temperature. Normally good quality machine oil or transmission oil is used.

The following 3 points should be checked:

- the oil to be used must be always clean
- place the bearing on a wire mesh support, the bearing should never be in direct contact with the bottom of the heating tank
- the oil temperature should not be allowed to exceed 248°F (120°C)

If you frequently mount bearings of similar sizes, use an induction heater with automatic demagnetization. This tool heats by inducing electric currents. It takes only a short time to heat a bearing to 248° F (120° C), even a large bearing.

The bearing should be mounted immediately after heating. If the bearing does not slip on smoothly do not force it. In this case remove the bearing and reheat it. If expanding the bearing by heating is not sufficient to get it on the shaft, you may also cool the shaft with dry ice to make it contract. Contraction also will occur in the axial direction as it is cooled and there is a possibility of some clearance developing between the inner ring and shoulder. To prevent this from happening, a small amount of pressure can be applied with a mounting dolly.

4-3 The Adapter or Withdrawal Sleeve Method

Please refer to page 41 for extensive guidelines on proper mounting procedures for this method. (Assembly Instructions for Spherical Roller Bearing)

5. Lubrication

Lubricants are indispensable for all bearings and are classified into oils and greases. Make sure that a specified and adequate amount of clean lubricant is used. When using oil as a lubricant with horizontal shafts, the static oil level must be approx. at the center of the ball or roller at the bottom of its travel. In case of vertical shafts, the oil level is set slightly above the center line of the bearing. The volume of grease to be injected is about 1/3 or 1/2 of the total volume of the internal bearing space. The volume of grease is reduced slightly if the bearing runs at high speeds. In NACHI sealed or shielded bearings the appropriate amount of grease is supplied.

Do not subject the sealed or shielded bearings undo pressure. This may cause a deformation of seal or shield resulting in bearing problems. No attempt should be made to add lubricant to these bearings. Attempting to do so will most likely result in damage to the bearing.

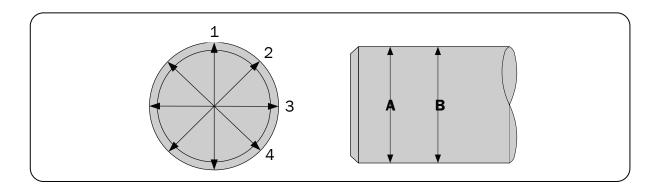
6. Test Running the Equipment

If possible, do not run bearings at the full operating speed immediately installation. First, rotate the shaft manually and then run the machine at slow speeds. Make sure that the bearings run smoothly and that there is no abnormal noise or vibration. If no problem is detected, gradually raise the speed watching the temperature and checking the lubricant.

Tapered-bore spherical roller bearings can be mounted either on a tapered shaft or on a cylindrical shaft using a tapered adapter sleeve.

Note: Leave the bearing in its protective wrapping until ready to assemble it on the shaft. Do not wash off the preservative coating: it protects the bearing and is compatible with all standard lubricants. Gather all necessary parts and tools before starting.

Required Tools and Equipments:


- Micrometer
- Lockwasher
- Adapter Sleeve; if required

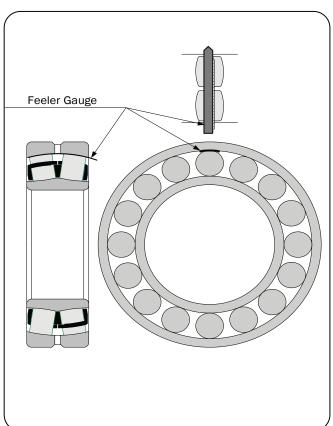
- Feeler Gauge
- Hammer & Rod
- Graphite or Molybdenum Paste

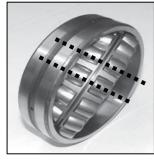
- Spanner Wrench
- Locknut
- Light-duty Oil

1. Measure Shaft Diameter

Check the shaft for dimensional accuracy with a micrometer, also check for nicks and burrs. If any discrepancies are found on the shaft, have it reworked to conform to specification.

Shaft Tolerances When Used with Adapter or Withdrawal Sleeves

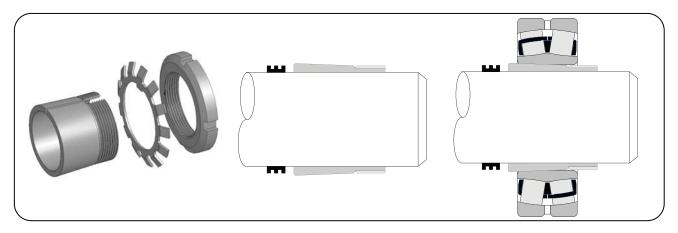

	Nominal Sha	aft Diameter		Devia	ation
Over	Incl	Over	Incl	mm	Inch
m	m	In	ch	111111	HIGH
30	50	1.1811	1.9685	+0.000 -0.062	+0.0000 -0.0025
50	80	1.9685	3.1496	+0.000 -0.074	+0.0000 -0.0030
80	120	3.1496	4.7244	+0.000 -0.087	+0.0000 -0.0035
120	180	4.7244	7.0866	+0.000 -0.100	+0.0000 -0.0040
180	250	7.0866	9.8425	+0.000 -0.115	+0.0000 -0.0045
250	315	9.8425	12.4016	+0.000 -0.130	+0.0000 -0.0050
315	400	12.4016	15.748	+0.000 -0.140	+0.0000 -0.0055



2. Measure the Unmounted Radial Internal Clearance

To properly determine initial internal radial clearance, the following procedure should be observed. A feeler gauge with the smallest blade of .0010" is used.

- (a) Place the bearing in an upright position with inner and outer ring faces parallel.
- (b) Place thumbs on inner ring bore and oscillate inner ring two or three times, pressing down firmly. This "Seats" the inner ring and rolling elements (= rollers).
- (c) Position the individual roller assemblies so that a roller is at the top of inner ring on both sides of the bearing.

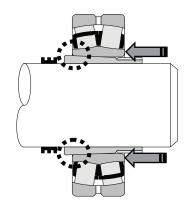

- (d) Press the two rollers inward to assure they are in contact with the center guide ring as well as the inner ring raceways.
- (e) With the rollers in correct position, insert a thin blade of the feeler gauge between the rollers.
- (f) Move it carefully over the top of both rollers between the rollers and outer ring raceway.
- (g) Repeat this procedure using progressively thicker feeler gauge blades until one is found that will not go through.
- (h) The blade thickness that preceded the "NO GO" blade is a measure of internal radial clearance.
- (i) Record the unmounted radial clearance in a convenient place for reference in this procedure.

3. Mount the Adapter Sleeve, if Required

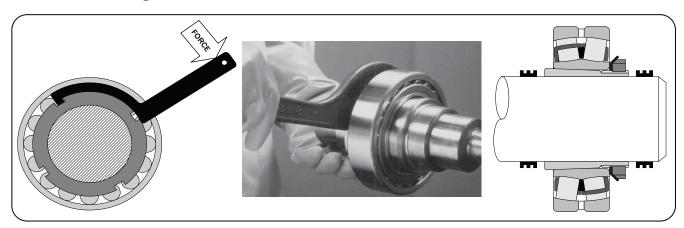
If the bearing is to be mounted on a tapered shaft, skip this step. Either dimensionally or visually determine the final position of the bearing. Slide the adapter sleeve onto the shaft with the threads on the sleeve facing outboard side. Position the sleeve at the approximate location of the bearing centerline.

- (a) remove oil from the shaft to prevent transfer of oil to the bore of the adapter sleeve.
- (b) for SAF units slide inner triple seal onto shaft. This seal slides freely into position.
- (c) position adapter sleeve onto shaft with threads to outboard.

4. Mount the Bearing


Apply a light coating of oil on the outside diameter of the sleeve to facilitate bearing mounting. Starting with the large end of the bearing bore, slide the bearing on the adapter sleeve or shaft so that the taper of the bearing matches the taper of the adapter or shaft. With the bearing hand tight on the adapter sleeve or shaft, position the bearing in the correct location on the shaft. Please note, as the bearing is pushed up the adapter the position of the bearing will move about 1/8".

Bearin	_	Radial Clearance Prior to Mounting (in)						
Diamete	er (mm)	Nori	mal	C	3	C ²	1	
over	incl.	min	max	min	max	min	max	
30	40	0.0014	0.0020	0.0020	0.0026	0.0026	0.0034	
40	50	0.0018	0.0024	0.0024	0.0032	0.0032	0.0039	
50	65	0.0022	0.0030	0.0030	0.0037	0.0037	0.0047	
65	80	0.0028	0.0037	0.0037	0.0047	0.0047	0.0059	
80	100	0.0032	0.0043	0.0043	0.0055	0.0055	0.0071	
100	120	0.0039	0.0053	0.0053	0.0067	0.0067	0.0087	
120	140	0.0047	0.0063	0.0063	0.0079	0.0079	0.0102	
140	160	0.0051	0.0071	0.0071	0.0091	0.0091	0.0118	
160	180	0.0055	0.0079	0.0079	0.0102	0.0102	0.0134	
180	200	0.0063	0.0087	0.0087	0.0114	0.0114	0.0146	
200	225	0.0071	0.0098	0.0098	0.0126	0.0126	0.0161	
225	250	0.0079	0.0106	0.0106	0.0138	0.0138	0.0177	
250	280	0.0087	0.0118	0.0118	0.0154	0.0154	0.0193	
280	315	0.0095	0.0130	0.0130	0.0169	0.0169	0.0213	



5. Drive Up the Bearing

A coating of graphite or molybdenum disulfide paste on both faces of the lock washer and adapter threads will reduce the mounting forces during assembly. Slip the lock nut on the adapter, the ID tang locates in the split of the adapter under the bearing. Position the locknut on the threads of the adapter with the adapter with the chamfered face toward the bearing. Tighten the locknut with a heavy-duty spanner wrench. If using a hammer and chisel, be careful not to damage the lock washer or add debris into the bearing. Periodically check the internal radial clearance.

When the required reduction in radial clearance is measured advance the locknut to the align up the locknut to the closest lock washer tang and bend the tang over into the slot to secure the locknut from backing off.

Reduction of Radial Clearance

		r							
	g Bore		on in Intern		Axial Disp	lacement		t Radial Cle	
Diamet	er (mm)		learance (ir	1)	1:12 ta	per (in)	aπer	Mounting	(IN)
over	incl.	Target	min	max	min	max	Normal	C3	C4
30	40	0.0010	0.0008	0.0010	0.0140	0.0180	0.0006	0.0010	0.0016
40	50	0.0010	0.0010	0.0012	0.0180	0.0200	0.0008	0.0012	0.0020
50	65	0.0015	0.0012	0.0016	0.0200	0.0280	0.0010	0.0014	0.0022
65	80	0.0015	0.0016	0.0020	0.0280	0.0330	0.0010	0.0016	0.0028
80	100	0.0020	0.0018	0.0024	0.0300	0.0390	0.0014	0.0020	0.0031
100	120	0.0025	0.0020	0.0028	0.0310	0.0470	0.0020	0.0026	0.0039
120	140	0.0030	0.0026	0.0035	0.0470	0.0590	0.0022	0.0031	0.0043
140	160	0.0035	0.0030	0.0039	0.0510	0.0670	0.0022	0.0035	0.0051
160	180	0.0040	0.0031	0.0043	0.0550	0.0750	0.0024	0.0039	0.0059
180	200	0.0045	0.0035	0.0051	0.0590	0.0870	0.0028	0.0039	0.0063
200	225	0.0050	0.0039	0.0055	0.0670	0.0940	0.0031	0.0047	0.0071
225	250	0.0050	0.0043	0.0059	0.0710	0.1020	0.0035	0.0051	0.0079
250	280	0.0055	0.0047	0.0067	0.0790	0.1140	0.0039	0.0055	0.0087
280	315	0.0060	0.0051	0.0075	0.0870	0.1260	0.0043	0.0059	0.0094

Shaft and Housing Dimensions

Many times, the shaft selection is decided by the customer on the basic design. Shaft strength is normally one of the primary limitations. Bearing size is then determined by the size of the customer shaft. Housing size normally has more flexibility. The outside diameter of the bearing and the width of the bearing can be dictated by our customers, but these dimensions are normally open to discussion. As previously shown, bearings with the same bore and OD dimension have considerable variations.

Please review the section on Shaft and Housing Fitting Practices. These are straight forward. The chart for shaft fits requires the product type, the shaft size, the application type and the loading conditions. The chart produces a tolerance class which is a small case letter followed by a number. Using the shaft size and tolerance class a second set of charts show the bearing bore tolerance and the recommended shaft tolerance. We use these shaft to bearing fits to determine bearing internal clearance removal.

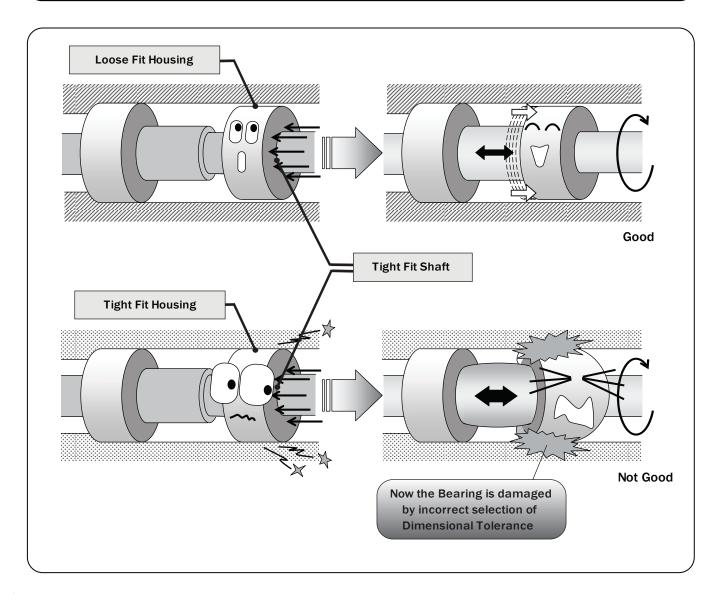
The chart for housing fits is similar to the shaft chart, as knowing the bearing type, application and loading conditions, we are able to, again, find a tolerance class for the housing. The tolerance class for the housing wil be a capital letter followed by a number. Using the bearing OD and the tolerance class, a second set of charts shows the bearing OD tolerance and the recommended housing bore tolerance. We use these housing to bearing fits to determine bearing internal clearance removal.

Internal Clearances

Interference fits between the shaft & bearing and housing & bearing reduce the bearing internal clearance. This calculation is dependent on operating temperature, housing material, housing cross section, shaft material, and solid or hollow shaft. This calculation can be done manually or on our website at **www.nachiamerica.com.**

Environmental Conditions

Most of the time, we are considering open bearings or bearings without seals. Discussions on housing seals are important as contamination leads to bearing failure by lubrication. Redundant sealing or seals with dual acting features are always an important point. Lubricant is normally selected by the customer so we will comment on our experiences with the specific products.


We always try to use standard commercial parts as the cost of special bearings will increase the cost of the product as well as extend the availability of the bearings.

Fixed vs. Expansion Sides

Two bearings are normally mounted on each shaft. One of the bearings will be designated as the fixed bearing as it axially locates the shaft with the housing. The second bearing will be the expansion bearing. The expansion bearing may be similar to the NU cylindrical roller bearing and will not accept thrust loading. The expansion bearing may be standard and the housing will be machined so that the bearing will not be located up against a confining shoulder in the housing. Bearings are very stiff. As the bearing and shaft heat up we try and limit the possibility of the bearings loading axially against each other, as this is another possible way of causing premature bearing failure.

Material will expand when exposed to heat. We have to select the correct shaft tolerance and housing tolerance to ensure the material's Thermal Expansion Growth does not adversely affect the bearings.

The bearing application will determine which bearing would be the better selection. These are some of the basic requirements for any application:

- · Bearing Speed
- Bearing Loads
- Expected Service Life
- Environmental Temperature
- Contamination from Environment
- Seals for Housing and/or Bearing
- Dimensional Limitations
- Shaft and Housing Fits
- Fixed vs Expansion
- Lubrication

When reviewing the application please take time to write down these requirements. These application requirements are used to determine if the bearing is suitable for the application and the resultant life of the bearing.

Using the NACHI Catalog, select a bearing with a Dynamic Load Capacity larger than the load applied on the bearing. Ensure the limiting speed is also greater than the fastest RPM at which the bearing will operate.

The "C" Capacity of the bearing is used to calculate bearing life. The loading ratio "load/C" indicates type of load. 1% to 8% are light loads, 8% to 18% medium loads; heavy loads are 18% to 25%, Light loaded applications tend to operate at higher speeds, medium loaded applications operate at half of the speed limit of the bearings, and heavy loaded applications operate at low RPM.

If possible, adjust the bearing selection until the L_{10} equals or exceeds expected service life. The expected service life indicates how long the user believes the bearing should last.

Design Life Recommendations:

In order to determine what is acceptable life, the following guide is used by most manufacturers when designing their equipment:

Class of Machine	L ₁₀ Hours of Service
Domestic Machines, Agricultural Machines, Instruments, Technical Apparatus or Medical Use	300 to 3,000
Machines Used For Short Periods Or Intermittently: Electric Hand Tools, Lifting Tackle In Workshops, Small Construction Machines	3,000 to 8,000
Machines Working Intermittently With High Reliability: Hoists, Workshop Cranes, Auxiliary Machinery In Power Stations, Domestic Refrigerating Appliances, And Infrequently Used Machine Tools	8,000 to 12,000
Machines Used 8 Hours Per Day, But Not Always Fully Utilized: General Purpose Gear Drives, Electric Motors	10,000 to 25,000
Machines Used 8 Hours Per Day And Fully Utilized: Machine Tools, Wood Processing Machinery, Machines For The Engineering Industry, Cranes For Bulk Materials, Ventilating Fans, Conveyors, Printing Equipment, Centerfuges	20,000 to 30,000
Machines For Continuous Use, 24 Hours Per Day: Rolling Mill Gear Drives, Compressors, Pumps Mine Hoists, Stationary Electric Machines, Textile Machinery	40,000 to 50,000
Water Works Machinery Rotary Furnaces, Cable Stranding Machines, Propulsion Machinery For Ocean-Going Vessels	60,000 to 100,000
Pulp And Papermaking Machinery, Large Electric Motors, Power Station Plants, Mine Pumps And Ventilating Fans	Greater than 100,000

The following standard formula has been used for decades to estimate bearing life:

$$L_{10} := \left(\frac{C}{P}\right)^{p} \cdot \left(\frac{10^{6}}{60 \cdot N}\right)$$

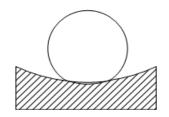
L₁₀ = Rating Fatigue Life in Hours

C = Cataloged Basic Dynamic Load Capacity

P = Equivalent Applied Load to the Bearing

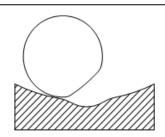
N = Rotating Speed in RPM

p = calculation exponent


- use 3 for ball bearings

- use ¹⁰/₃ for roller bearings

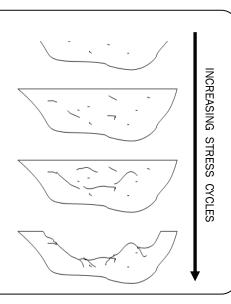
In addition to C values for each bearing we have Co values. Co values are calculated values to determine the static load which will permanently damage the bearing by exceeding the elastic deformation.


Elastic Deformation

Now let's look under the surface and see how a ball interacts with the raceway under this same load. At the loaded point of contact we can see that the ball and raceway are actually deformed. However, the deformation incurred will not be permanent. This process where the bearing steel will return to its original form is called "elastic deformation".

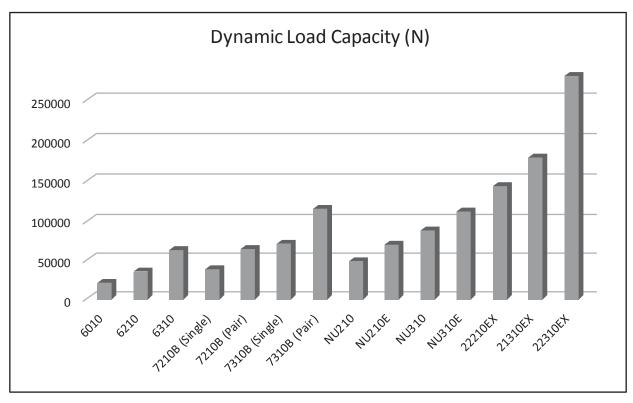
Exceeded Elastic Deformation

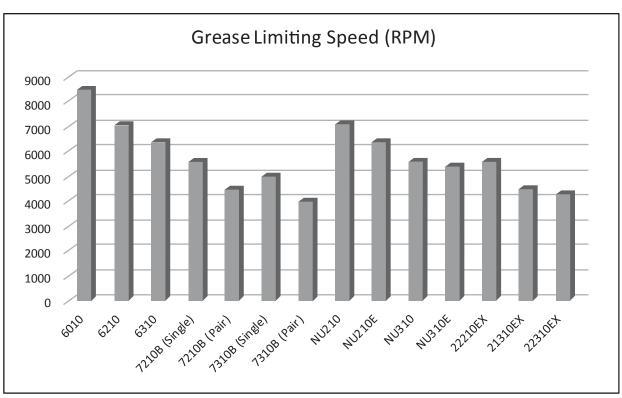
If a static or non-rotating load results in a contact stress that exceeds 4200 MPa, the elastic deformation limit is exceeded. The material surfaces yield and enters the "plastic deformation" zone. The deformation becomes a permanent dent called a "Brinell". The load which will permanently damage the bearing is the "Co" value. Both "C" and "Co" values are in the catalog.

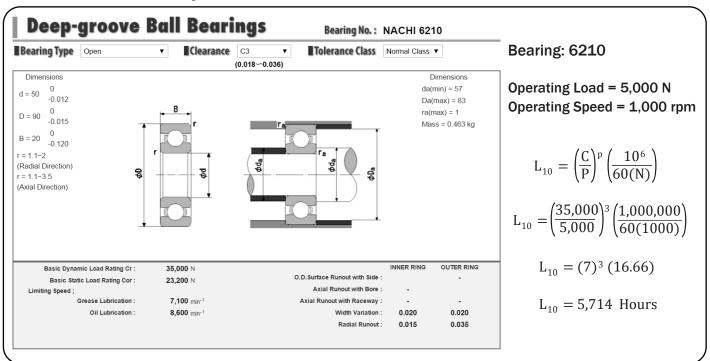


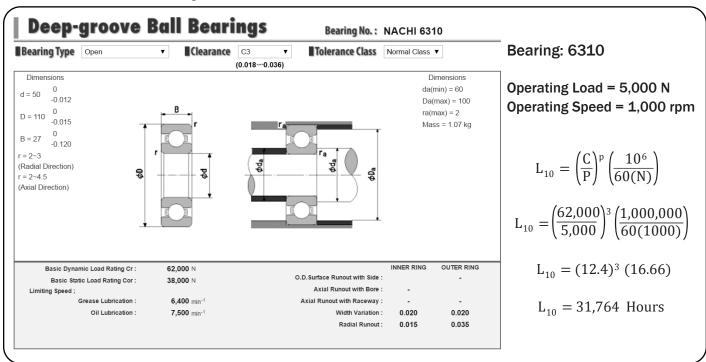
Subsurface Flaking

As the stress cycles increase and the fatigue limits are reached subsurface fracturing begins. These fracture points are the origins of subsurface flaking.


The physical evidence of this subsurface flaking appears as a spall, which is a small fragment or chip removed from the raceway. This single spall will continue to grow in size similar to the way a pot-hole will develop in a road and continue to grow. Ultimately, spalling will end the life of a bearing. The quantification of this life-ending process is called "rolling fatigue life." It is represented by the number of revolutions endured.


The bearing may be operable for some time beyond this point, but will be noisier and will eventually lock-up completely.


Information from the charts below is used to compare different bearing types and series and their performance characteristics.



Life Calculation Example 1:

Life Calculation Example 2:

Load Comparison:

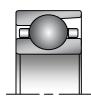
Customers always want to know how much load will a bearing accept. The answer to this question is complicated. To determine the load on the bearing the RPM and the expected life must be known. The first of the following two tables shows a comparison of Radial Ball Bearing's Radial Loading given the life requirement of 20,000 hours and 40,000 hours and speed requirement. All of the bearings are grouped by bore size. This chart shows the smaller the bearing cross section the less load that bearing can accept. It also shows why the 6300 series bearings are called heavy duty.

The two tables show similar comparisons. The table below is grouped by bore size and shows radial ball bearing loads for various rpm and life requirements. On the next page the table shows ball and roller bearing loads for the same rpm and life requirements.

		Applied Load (lbf)							
Basic	Load	;	3 year life (•		5 years life ((40000 hrs.))
Bearing	Rating (lbs)	@900 rpm	@1200 rpm	@1800 rpm	@3600 rpm	@900 rpm	@1200 rpm	@1800 rpm	@3600 rpm
6805	967	94	86	75	59	75	68	59	47
6905	1574	153	139	122	97	122	111	97	77
6005	2271	221	201	176	139	176	160	139	111
6205	3147	307	279	243	193	243	221	193	153
6305	5306	517	470	410	326	410	373	326	259
6810	1439	140	127	111	88	111	101	88	70
6910	3260	318	289	252	200	252	229	200	159
6010	4901	478	434	379	301	379	344	301	239
6210	7869	767	697	609	483	609	553	483	383
6310	13939	1359	1234	1078	856	1078	980	856	679
6815	2810	274	249	217	173	217	198	173	137
6915	4676	456	414	362	287	362	329	287	228
6015	8880	866	786	687	545	687	624	545	433
6215	14838	1446	1314	1148	911	1148	1043	911	723
6315	25405	2476	2250	1965	1560	1965	1786	1560	1238
6820	4406	429	390	341	271	341	310	271	215
6920	9555	931	846	739	587	739	672	587	466
6020	13489	1315	1195	1044	828	1044	948	828	657
6220	27428	2673	2429	2122	1684	2122	1928	1684	1337
6320	38894	3791	3444	3009	2388	3009	2734	2388	1895
6830	10679	1041	946	826	656	826	751	656	520
6930	19222	1874	1702	1487	1180	1487	1351	1180	937
6030	28327	2761	2509	2191	1739	2191	1991	1739	1380
6230	39568	3857	3504	3061	2430	3061	2781	2430	1928
6330	61601	6004	5455	4765	3782	4765	4330	3782	3002

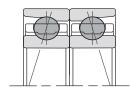
		Applied Load (lbf)								
Basic	Load		3 year life	(20000 hrs.	.)	5 years life (40000 hrs.)				
Bearing	Rating (lbs)	@900 rpm	@1200 rpm	-	@3600 rpm	@900 rpm	@1200 rpm	@1800 rpm	@3600 rpm	
6205	3147	307	279	243	193	243	221	193	153	
7205	2293	224	203	177	141	177	161	141	112	
5205	4901	478	434	379	301	379	344	301	239	
NU205	3979	490	449	398	323	398	365	323	262	
NU205E	6587	810	743	658	535	658	604	535	434	
E30205J	7082	871	799	708	575	708	649	575	467	
22205EX	14164	1742	1598	1415	1150	1415	1298	1150	934	
6210	7869	767	697	609	483	609	553	483	383	
7210	7082	690	627	548	435	548	498	435	345	
5210	12253	1194	1085	948	752	948	861	752	597	
NU210	10791	1328	1218	1078	876	1078	989	876	711	
NU210E	15513	1908	1751	1550	1259	1550	1422	1259	1023	
E30210J	17199	2116	1941	1719	1396	1719	1576	1396	1134	
22210EX	31924	3927	3603	3190	2591	3190	2926	2591	2105	
6215	14838	1446	1314	1148	911	1148	1043	911	723	
7215	15400	1501	1364	1191	946	1191	1082	946	751	
5215	21583	2104	1911	1670	1325	1670	1517	1325	1052	
NU215	21695	2669	2448	2168	1761	2168	1989	1761	1430	
NU215E	29227	3595	3298	2920	2372	2920	2679	2372	1927	
E30215J	31924	3927	3603	3190	2591	3190	2926	2591	2105	
22215EX	59577	7329	6723	5953	4835	5953	5461	4835	3928	
6220	27428	2673	2429	2122	1684	2122	1928	1684	1337	
7220	28327	2761	2509	2191	1739	2191	1991	1739	1380	
5220	37770	3681	3345	2922	2319	2922	2655	2319	1841	
NU220	41142	5061	4643	4111	3339	4111	3771	3339	2712	
NU220E	56205	6914	6343	5616	4562	5616	5152	4562	3705	
E30220J	58004	7136	6546	5796	4708	5796	5317	4708	3824	
22220EX	116906	14382	13193	11682	9488	11682	10716	9488	7707	
6230	39568	3857	3504	3061	2430	3061	2781	2430	1928	
7230	62950	6136	5574	4870	3865	4870	4424	3865	3068	
NU230	84308	10371	9514	8424	6843	8424	7728	6843	5558	
NU230E	101169	12446	11417	10109	8211	10109	9273	8211	6670	
E30230J	104766	12888	11823	10469	8503	10469	9603	8503	6907	
22230EX	269784	33189	30444	26958	21896	26958	24729	21896	17785	

Equivalent Dynamic Load:


In the previous example, we mentioned "Equivalent Dynamic Load" Sometimes the load fluctuates and we must average it into a steady equivalent dynamic load, or sometimes we have both radial loads and thrust loads and we must combine them into an equivalent radial load to use in the life calculation. To obtain the equivalent dynamic load "P", we combine the radial forces "Fr" with the axial forces "Fa" using loading factors. These factors are selected dependent upon their ratio relative to one another and the contact angle and internal geometry of the bearing. The formula to combine this is as follows:

$$P = X \cdot Fr + Y \cdot Fa$$

The selection of "X" and "Y" is usually more cumbersome than the life calculation itself. This has been greatly simplified through the use of bearing manufacturers electronic catalogs that are available online. These electronic versions automatically select the proper loading factors.


40° Angular Contact Ball Bearing Continuous Thrust Loads (lbs.) Single Set

		Applied Load (lbf)								
Basic Bearing	Load Rating (lbs)	@900 rnm	1 year life @1200 rpm	(8760 hrs.) @1800 rnm	@3600 rpm	@900 rnm		(17520 hrs @1800 rpm		
7204	2990	673	612	534	424	534	486	424	337	
7205	3147	709	644	562	446	562	511	446	354	
7206	4362	982	892	779	619	779	708	619	491	
7207	5755	1296	1177	1029	816	1029	934	816	648	
7208	6879	1549	1407	1229	976	1229	1117	976	774	
7209	7711	1736	1578	1378	1094	1378	1252	1094	868	
7210	8026	1807	1642	1434	1138	1434	1303	1138	904	
7211	9915	2232	2028	1772	1406	1772	1610	1406	1116	
7212	12005	2703	2456	2145	1703	2145	1949	1703	1352	
7213	13692	3083	2801	2447	1942	2447	2223	1942	1541	
7214	14209	3199	2907	2539	2015	2539	2307	2015	1600	
7215	16120	3630	3298	2881	2286	2881	2617	2286	1815	
7216	17334	3903	3546	3098	2459	3098	2814	2459	1951	
7217	20054	4515	4102	3584	2844	3584	3256	2844	2258	
7218	22932	5163	4691	4098	3253	4098	3723	3253	2582	
7219	24955	5619	5105	4460	3540	4460	4052	3540	2809	
7220	27878	6277	5703	4982	3954	4982	4526	3954	3138	
7221	30351	6834	6209	5424	4305	5424	4928	4305	3417	
7222	33049	7441	6761	5906	4688	5906	5366	4688	3721	
7224	35522	7998	7267	6348	5038	6348	5768	5038	3999	
7226	39793	8960	8141	7111	5644	7111	6461	5644	4480	
7228	44290	9972	9060	7915	6282	7915	7191	6282	4986	
7230	50585	11390	10348	9040	7175	9040	8213	7175	5695	
7303	3103	699	635	554	440	554	504	440	349	
7304	3642	820	745	651	517	651	591	517	410	
7305	5148	1159	1053	920	730	920	836	730	580	
7306	6205	1397	1269	1109	880	1109	1008	880	699	
7307	7307	1645	1495	1306	1036	1306	1186	1036	823	
7308	8925	2010	1826	1595	1266	1595	1449	1266	1005	
7309	11376	2561	2327	2033	1614	2033	1847	1614	1281	
7310	14478	3260	2962	2587	2054	2587	2351	2054	1630	
7311	16704	3761	3417	2985	2369	2985	2712	2369	1881	
7312	19087	4298	3905	3411	2707	3411	3099	2707	2149	
7313	21605	4865	4420	3861	3065	3861	3508	3065	2432	
7314	24281	5467	4967	4339	3444	4339	3942	3444	2734	
7315	26529	5973	5427	4741	3763	4741	4307	3763	2987	
7316	28552	6429	5841	5103	4050	5103	4636	4050	3214	
7317	30800	6935	6301	5504	4369	5504	5001	4369	3468	
7318	33273	7492	6807	5946	4720	5946	5403	4720	3746	
7319	35522	7998	7267	6348	5038	6348	5768	5038	3999	
7320	37770	8504	7727	6750	5357	6750	6133	5357	4252	
7321	42941	9669	8784	7674	6091	7674	6972	6091	4834	
7322	47887	10782	9796	8558	6792	8558	7775	6792	5391	

40° Angular Contact Ball Bearing **Continuous Thrust Loads (lbs.) Duplex Set**

		Applied Load (lbf)							
Basic Bearing	Load Rating (lbs)	@900 rpm		e (8760 hrs @1800 rpm				(17520 hrs @1800 rpm	
7204	4857	1094	994	868	689	868	789	689	547
7205 7206	5113 7085	1151 1595	1046 1449	914 1266	725 1005	914 1266	830 1150	725 1005	576 798
7207	9350	2105	1913	1671	1326	1671	1518	1326	1053
7208	11176	2516	2286	1997	1585	1997	1815	1585	1258
7209	12527	2821	2563	2239	1777	2239	2034	1777	1410
7210	13038	2936	2667	2330	1849	2330	2117	1849	1468
7211	16106	3626	3295	2878	2285	2878	2615	2285	1813
7212	19503	4391	3990	3485	2766	3485	3167	2766	2196
7213 7214	22242 23082	5008 5197	4550 4722	3975 4125	3155 3274	3975 4125	3611 3748	3155 3274	2504 2599
7215	26186	5896	5357	4680	3714	4680	4252	3714	2948
7216 7217	28159 32578	6340 7335	5760 6664	5032 5822	3994 4621	5032 5822	4572 5290	3994 4621	3170 3668
7218	37253	8388	7621	6657	5284	6657	6049	5284	4194
7219 7220	40540 45287	9128 10197	8293 9265	7245 8093	5750 6424	7245 8093	6582 7353	5750 6424	4564 5098
7221	49305	11102	10086	8811	6994	8811	8006	6994	5551
7222	53688	12088	10983	9595	7615	9595	8717	7615	6044
7224	57705	12993	11805	10312	8185	10312	9369	8185	6496
7226	64644	14555	13224	11553	9169	11553	10496	9169	7278
7228	71949	16200	14719	12858	10205	12858	11682	10205	8100
7230	82175	18503	16811	14685	11656	14685	13343	11656	9251
7303	5040	1135	1031	901	715	901	818	715	567
7304	5917	1332	1210	1057	839	1057	961	839	666
7305	8364	1883	1711	1495	1186	1495	1358	1186	942
7306 7307	10080 11870	2270 2673	2062 2428	1801 2121	1430 1684	1801 2121	1637 1927	1430 1684	1135 1336
7308	14499	3265	2 4 28 2966	2591	2057	2591	2354	2057	1632
7309	18480	4161	3781	3303	2621	3303	3001	2621	2081
7310	23520	5296	4812	4203	3336	4203	3819	3336	2648
7311	27136	6110	5551	4849	3849	4849	4406	3849	3055
7312	31007	6982	6343	5541	4398	5541	5035	4398	3491
7313	35098	7903	7180	6272	4978	6272	5699	4978	3951
7314	39444	8881	8069	7049	5595	7049	6404	5595	4441
7315	43096	9704	8816	7702	6113	7702	6997	6113	4852
7316	46383	10444	9489	8289	6579	8289	7531	6579	5222
7317	50035	11266	10236	8942	7097	8942	8124	7097	5633
7318	54053	12171	11058	9660	7667	9660	8776	7667	6085
7319	57705	12993	11805	10312	8185	10312	9369	8185	6496
7320	61357	13815	12552	10965	8703	10965	9963	8703	6908
7321	69757	15707	14270	12466	9895	12466	11326	9895	7853 8758
7322	77792	17516	15914	13902	11034	13902	12631	11034	8758

Super Precision Bearings are bearings with ISO Class 5 or higher tolerance.

The tolerance of bearings, dimensional and running accuracy, is classified into five classes by the International Standardization Organization and other standards as shown in the table below:

	Precision Bearings			Super Precision Bearings				
ISO 492	Normal	Class 6	Class 5	Class 4	Class 2	International		
JIS B 1514	Class 0	Class 6	Class 5	Class 4	Class 2	Japanese		
ANSI/ABMA 20	ABEC 1	ABEC 3	ABEC 5	ABEC 7	ABEC 9	American		
ANSI/ ABINA 20	RBEC 1	RBEC 3	RBEC 5	-	•	American		
DIN 620	0	P6	P5	P4	P2	German		

NACHI Super Precision Angular Contact Ball Bearings

CY Series (15° contact angle) 7000CY ~ 7020CY

7200CY ~ 7220CY

BNH Series (High Speed Type) BNH907C ~ BNH932C

BNH007C ~ BNH032C

TAB Series (Ball Screw Support Bearings) 15TAB04 ~ 60TAB12 ACY Series (25° contact angle)

Nylon or Phenolic cage

Ceramic optional

Ceramic optional

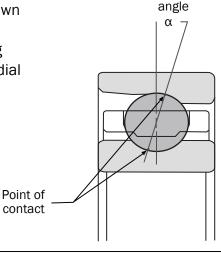
7000 series boundary dimensions

Contact

Seals optional

Contact Angle

The contact angle is the angle formed by a line drawn between the points of contact of the balls with the raceways and a plane perpendicular to the bearing axis. The contact angle influences the axial and radial characteristics of a bearing.


"B" = 40° contact angle

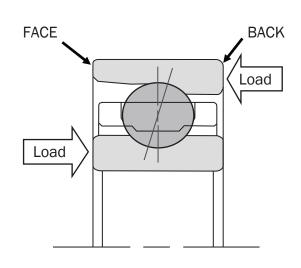
"A" = 30° contact angle

"AC" = 25° contact angle

"C" = 15° contact angle

Contact angles of TAB bearings are 60°

The Bearings are Not Interchangeable.

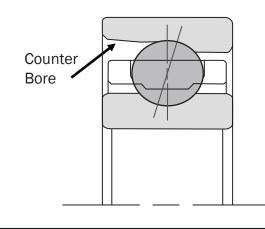

"C" \rightarrow contact angle is used for high speed and light load applications.

"B" → contact angle is used for lower speeds and heavy axial load applications.

The following may occur when using a "C" contact angle instead of a "B" contact angle.

- Poor Rigidity in Axial Direction
- High Operating Temperature
- · Short Service Life

Angular Contact Bearings have Two Sides

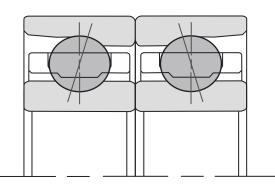

Back

The thick face of the outer ring is the Back side. The thick face is the side receiving the load.

Face

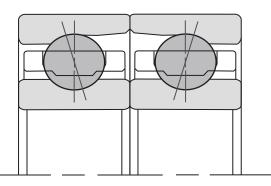
The thin face of the outer ring is the Face side. The face side is at times called the front side.

Counter Bore

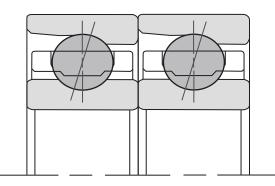

Counter Bore:

Removing the shoulder of the ring of a ball bearing and replacing with a chamfer.

Appearance indicates an angular ball bearing, not a radial ball bearing.


Permits better lubrication flow. Ring is no longer a symmetrical part.

These are the suffixes for the bearing arrangements.


Back-to-Back Mounting (DB)

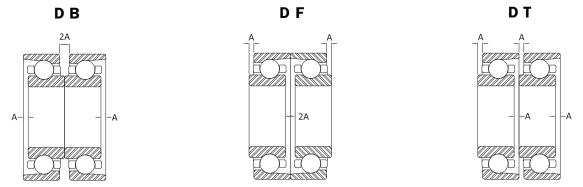
In this arrangement the contact angles diverge so that the effective distance between bearing center is increased. Axial and radial loads can be used in any direction. This arrangement accomodates radial stiffness and resistance to moment loads.

Face-to-Face Mounting (DF)

In this arrangement the contact angles converge so that the effective distance between bearing center is decreased. Axial and radial loads can be used in any direction. This arrangement has less radial stiffness and is generally used where precise alignment cannot be achieved.

Tandem Mounting (DT)

In this arrangement the contact angles are parallel. Axial loads are shared but can be applied in only one direction. Must be opposed by another bearing, or set of bearings, to accommodate the axial load in the reverse direction.


Configured bearings can only be used in one arrangement

For DB bearings, the preload is only controlled on the "Back" side of the bearings. For DF bearings, the preload is only controlled on the "Face" side of the bearings. If a DF arrangement is made from DB set, we cannot expect the correct preload.

"DU" is the suffix for a duplex universal combination bearing set. We call these universal bearings "Flush Ground Bearings".

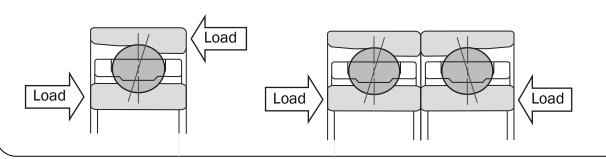
For DU bearings, the preload gap (width dimension) of both the "Face" and "Back" sides is controlled to get a proper preload. Any arrangement, DB, DF, DT or other multi-combinations can be arranged.

These sets of two bearings have been selected as matched pairs at the factory. One DU set of bearings has only a small dimensional variation ($2\mu m$ maximum) on the bore diameter and OD of the two bearings. The dimensions are shown on the inspection sheet in the box and on the side of the box. Each bearing is serialized.

To make triplex and quadruplex combinations, DU sets with similar Bore and OD dimensions should be selected. The selected sets should have no more than 2 μ m (0.002 mm) variation between the bearings on bore size and OD size. This practice ensures the preload will be correct and that there will be proper load sharing across each bearing.

Each manufacturer has their own suffixes for Triplex and Quad arrangements. Common suffixes are shown below.

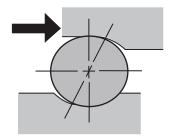
Angle	NACHI	SKF	NSK	NTN	RHP	KOYO	BARDEN
//\	FFB	TBT	DBD	DBT	2TB	DBD	DBT
\/	BFF	TFT	DFD	DFT	2TF	DFD	(DFT)
///	FFF	TT	DTD	DTT	3T	DTD	
///\	FFFB	QBT	DBT	DBTT	3TB		DBD
//\\	FFBB	QBC	DBB	DTBT	2TB2T (QB)	DBB	DBTT
\\/	BBFF	QFC	DFF	DTFT	2TF2T(QF)	(DFF)	(DFTT)
V//	BFFF	QFT	DFT	DFTT	3TF		(DFD)
////	FFFF	QT	DTT	DTTT	4T		

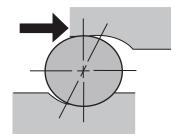

Most manufacturers have the same nomenclature for DU, DB, DF and DT.

Preload means to apply a permanent axial load to a bearing. All of the internal bearing clearance is removed.

Preloading achieves a number of objectives:

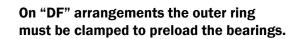
Elimination of free radial and axial movement Reduced deflection from externally applied loads

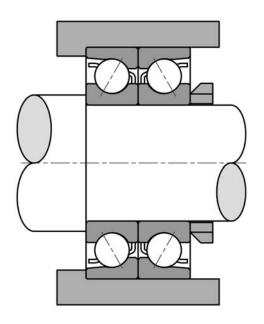


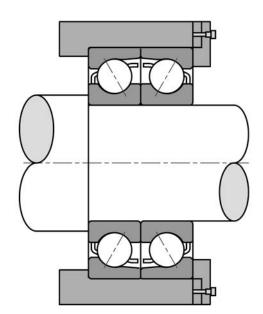

Single row angular contact bearings can only be loaded in one direction.

If the bearing is loaded in the wrong direction away from the back face, the bearing could:

- Disassemble
- · Have high operating noise
- Fail quickly







On "DB" arrangements the inner ring must be clamped to preload the bearings.

Bearing	Clamping Force								
Bore	70	00	72	.00					
(mm)	N	lbs	N	lbs					
10	550	124	600	135					
12	770	173	830	187					
15	770	173	830	187					
17	860	194	1100	248					
20	1000	225	1200	270					
25	1300	293	1400	315					
30	1400	315	2200	495					
35	1600	360	3100	698					
40	1800	405	2800	630					
45	2000	450	3600	810					
50	2200	495	3800	855					
55	2700	608	4000	900					
60	2900	653	4400	990					
65	3100	698	6000	1350					
70	3300	743	5700	1283					
75	3500	788	6100	1373					
80	5100	1148	5600	1260					
85	5400	1215	8200	1845					
90	8700	1958	10000	2250					
95	7600	1710	12000	2700					
100	7900	1778	11000	2475					
110	8100	1826	13000	2925					
120	8600	1935	16000	3600					

NACHI has four kinds of preload as shown in the table below.

GE = Extra Light

GL = Light (std)

GM = Medium

GH = Heavy

Units: Newtons / Ibs

	7000 F	reload		Bore		7200 F	reload	
GE	GL	GM	GH	Number	GE	GL	GM	GH
				00				
20	50	100	145	01	30	70	145	195
5	11	23	33	02	7	16	33	44
				03				
			295	04				490
50	100	195	66	05	70	145	295	110
11	23	44	390	06	16	33	66	590
			88	07				133
70	145	295		08	100	195	490	
16	33	66	590	09	23	44	110	785
			133	10				177
				11				
100	195	390	785	12	145	295	590	980
23	44	88	177	13	33	66	133	221
				14				
145	295	590	1170	15	195	390	785	1470
33	66	133	263	16	44	88	177	331
				17				
195	390	785	1470	18	295	490	980	1960
44	88	177	331	19	66	110	221	441
				20				

High Speed Small Ball Series							
Brg. No	Light P	reload					
Big. No	N	lbs					
BNH007	78.5	18					
BNH008	98.1	22					
BNH009	98.1	22					
BNH010	98.1	22					
BNH011	147	33					
BNH012	147	33					
BNH013	147	33					
BNH014	245	55					
BNH015	245	55					
BNH016	294	66					
BNH017	294	66					
BNH018	392	88					
BNH019	392	88					
BNH020	392	88					

Ball Screw Support Bearings						
Pro No	Medium	Preload				
Brg. No	N	lbs				
15TAB04	2160	486				
17TAB04	2160	486				
20TAB04	2160	486				
25TAB06	3330	749				
30TAB06	3330	749				
35TAB07	3920	882				
40TAB07	3920	882				
40TAB09	5200	1170				
45TAB07	4120	927				
45TAB10	5980	1346				
50TAB10	6280	1413				
55TAB10	6280	1413				
55TAB12	7060	1589				
60TAB12	7060	1589				

Preloads are similar for all manufacturers but not identical.

Manufacturing Comparison of Preload of Duplex Pair

			7006C		7012C		7018C	
			N	lbs	N	lbs	N	lbs
ıt	NACHI	GE	50	11	100	23	200	45
Light	NSK	C2	20	5	55	12	120	27
	NTN	GL	30	7	100	23	150	34
Extra	KOYO	S	25	6	65	15	140	32
Ê	FAG	-	-	-				
	NACHI	GL	100	23	200	45	390	88
ıt	NSK	C7	100	23	275	62	640	144
Light	NTN	GN	80	18	200	45	390	88
	KOYO	L	80	18	200	45	440	99
	FAG	UL	95	21	235	53	470	106
	NACHI	GM	200	45	390	88	785	177
lm	NSK	C8	210	47	590	133	1325	298
Medium	NTN	GM	150	34	490	110	890	200
Me	KOYO	М	200	45	490	110	980	221
	FAG	UM	300	68	700	158	1422	320
	NACHI	GH	390	88	785	177	1475	332
>	NSK	C9	390	88	1225	276	2750	619
Неаvу	NTN	GH	300	68	980	221	1960	441
Ĭ	KOYO	Н	390	88	980	221	1960	441
	FAG	US	580	131	1350	304	2940	662

"Medium preload" can be used in place of "Light preload". Please note:

- Higher preload makes the spindle more ridged.
- Spindle rotating torque would increase.
- Spindle would have higher operating temperature.

Variation in preloads may work or they may not depending upon the customer expectation and usage of the equipment.

Bearing Speed Limits

Speed Limits should be regarded as a guide rather than an absolute figure, as the maximum speed can be affected by a variety of circumstances. Speed Limits apply when the bearings are operating under normal temperature conditions, are adequately protected from contamination and for applications with inner ring rotation. The speeds quoted are for proper lubrication.

High speed operation means operation at speeds more than 75% of the limiting speed. In case of high speed operation, more careful lubrication selection and determination of amount of lubrication is required.

Each series has a dN value. 'd' is the bore size in mm, 'N' is the spindle speed rpm. Multiplying these two numbers together produces a relative speed value which can be used on a bearing series regardless of bearing size.

dN Values Unit: 1000 (mm x rpm)

Bearing	Contact	Grease L	ubrication	Oil Lub	rication	Oil	Vist
Туре	Angle	Single	Duplex	Single	Duplex	Single	Duplex
7200	C (15°)	550	450	800	625		
7000	C (15°)	600	500	850	650	1000	
BNH	C (15°)	925		1300		1600	
Ceramic	C (15°)	1100		1600		2000	
7200	B (40°)	280	225	375	300		
TAB	(60°)	130					
NN3000		400		500			

Note: Spindle applications are normally lightly loaded < 6% C

Nachi's "BNH Series" has the boundary dimensions of a 7000 series and uses a **smaller ball**. The small ball design enables the bearing to be used at higher speeds than the 7000. The BNH will produce a stiffer spindle with less load capacity.

Machine Tool bearings with Ceramic balls also can operate at higher speeds with similar load capabilities as the 7000 steel ball design.

Master Grease Amount Chart

units:	cm ³	&	grams
--------	-----------------	---	-------

Bore	700	00C	720	00C	В	NH	NN3000		T/	\B
(mm)	cm ³	grams								
10	0.14	0.12	0.18	0.16						
12	0.15	0.14	0.26	0.23						
15	0.21	0.19	0.33	0.30						
17	0.26	0.23	0.45	0.41						
20	0.44	0.39	0.71	0.63					1.71	1.51
25	0.51	0.46	0.80	0.72			0.54	0.49		
30	0.72	0.65	1.23	1.11			0.89	0.80	2.16	1.94
35	0.96	0.86	1.55	1.39	0.84	0.76	1.13	1.01	2.72	2.44
40	1.17	1.05	1.95	1.76	1.08	0.97	1.43	1.28		
45	1.53	1.38	2.31	2.08	1.35	1.22	1.92	1.73	6.30	5.67
50	1.61	1.44	2.79	2.51	1.46	1.31	2.07	1.86	6.90	6.21
55	2.39	2.15	3.89	3.50	2.10	1.89	2.94	2.65		
60	2.55	2.30	4.98	4.48	2.25	2.03	3.11	2.79	8.55	7.70
65	2.73	2.46	5.87	5.28	2.40	2.16	3.27	2.94		
70	4.16	3.74	6.78	6.10	3.30	2.97	4.56	4.10		
75	4.31	3.87	7.41	6.67	3.45	3.11	4.94	4.44		
80	4.82	4.33	8.85	7.97	4.50	4.05	6.95	6.25		
85	5.45	4.90	11.0	9.92	4.65	4.19	7.17	6.45		
90	7.38	6.64	14.0	12.57	6.00	5.40	9.44	8.49		
95	7.95	7.16	17.5	15.77	6.30	5.67	9.68	8.71		
100	8.27	7.44	20.3	18.27	6.45	5.81	10.1	9.09		
105					8.10	7.29	13.8	12.39		
110					9.90	8.91	17.1	15.42		
120					10.7	9.59	19.0	17.06		
130					16.2	14.58	26.6	23.96		
140					17.1	15.39	29.3	26.35		
150					20.7	18.63	35.2	31.68		
160					26.1	23.49	43.2	38.92		
170					34.1	30.65	56.1	50.48		
180							76.2	68.55		
190							79.5	71.56		
200							103	92.27		

Conversion: $1 \text{ cm}^3 = 0.9 \text{ grams}$ (specific weight of grease 0.9 grams per cc.)

Common Machine Tool Greases

ManufacturerGreaseKluberNBU15KluberLDS18Kyodo YushiMultemp PS2

*Nachi recommends a 15% grease fill

NΔCHi

Machine Tool Bearings

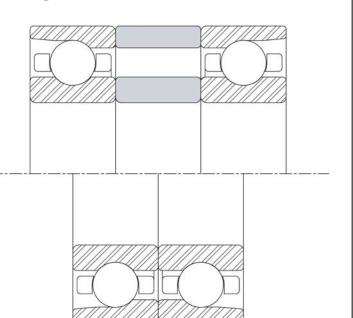
Shaft & Housing Tolerance and Fitting Practice

Sha		t OD	Shaft	Tolera	ance	Possible	Ideal Fit
	(mm)	(mm)	Fit	Brg.	Shaft	Resultant	ideal Fit
Shaft	over	incl.		Bore	Seat	(µm)	(µm)
				(µm)	(µm)		
	10	18	h3	0 - 4	0 - 4	4L-4T	0 - 2T
	18	30	h3	0 - 5	0 - 4	4L-5T	0 - 2.5T
Angular Contact	30	50	h3	0 - 6	0 - 5	5L-6T	0 - 2.5T
	50	80	h3	0 - 7	+2 - 4	4L-9T	0 - 3T
Ball Bearings	80	120	js3	0 - 8	+3 - 5	5L-11T	0 - 4T
	120	180	js3	0 - 10	+4 - 6	6L-14T	0 - 5T
	180	250	js3	0 - 12	+5 - 7	7L-17T	0 - 6T
	10	18	h5	0 - 4	0 - 8	8L-4T	10L - 0
Ball Screw	18	30	h5	0 - 5	0 - 9	9L-5T	10L - 0
Support Bearings	30	50	h5	0 - 6	0 - 11	11L-6T	10L - 0
	50	80	h5	0 - 7	0 - 13	13L-7T	10L - 0

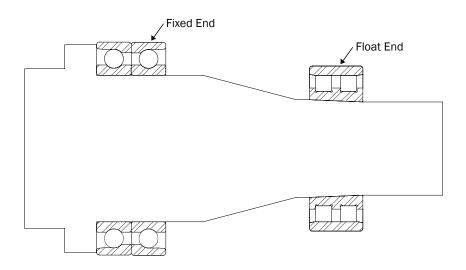
		Housing		Hgs.	Tolerance		Possible	Ideal Fit
ŀ	lousing	Во	re	Fit	Brg.	Housing	Resultant	ideal Fit
F	ixed End	(mm)	(mm)		OD	Bore	(µm)	(µm)
_		over	incl		(µm)	(µm)		
	Cylindrical	All si	zes	K5	0 - 8	+2 - 13	10L-13T	±Ο
		18	50	JS3	0 - 6	+6 - 1	12L-1T	3L - 0
	Angular Contact	50	120	JS3	0 - 8	+7 - 1	15L-1T	4L - 0
	Ball Bearings	120	180	JS3	0 - 10	+8 - 2	18L-2T	5L - 0
		180	250	JS3	0 - 11	+9 - 3	20L-3T	6L - 0
	Ball Screw Brg.	All si	zes	Н6	0 - 6	0 - 21	27L-0T	20L -10L

	Hous	Housing		Tolera	ance	Possible	Ideal Fit
Housing	Bore		Fit	Brg.	Housing	Resultant	Ideal Fit
Free End	(mm)	(mm)		OD	Bore	(µm)	(µm)
	over	incl		(µm)	(µm)		
Cylindrical	Alls	izes	K5	0 - 8	+2 - 13	10L-13T	±0
	18	50	Н3	0 - 6	+7 -0	13L-0T	10L - 6L
Angular Contact	50	120	НЗ	0 - 8	+8 -0	16L-0T	13L - 8L
Ball Bearings	120	180	НЗ	0 - 10	+10 -0	20L-0T	18L - 12L
	180	250	Н3	0 - 11	+12 -0	23L-0T	22L - 15L
Ball Screw Brg.	Alls	izes	Н6	0 - 6	0 - 21	27L-0T	20L -10L

L = loose or slip fit


T = tight or interference fit

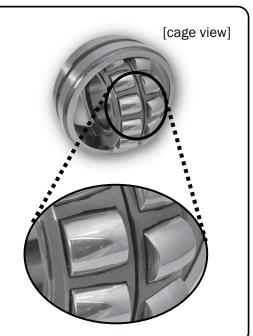
Using spacers between bearings is a common practice


Increasing the space between bearings produces a mechanical advantage.

- Reduces the equivalent radial load applied to the bearings.
- Higher moment load capabilities.
- Space out bearings for better heat transfer.

Angular contact ball bearings at the fixed end have tight fit and shoulder on the housing or shaft. Bearings at free end are cylindrical roller bearings or bearings which are not fixed in the axial direction. Therefore, they can move in the axial direction and they do not carry axial load. The float end is also the expansion end.

Spindles with a float end can absorb length change of spindle due to temperature (thermal expansion of shaft) or dimensional difference between the shaft and the housing.


Bearings for Vibrating Applications

Spherical Roller Bearing Design & Configuration

Hardened stamped steel cages on our EXQ-V design provides a great selection for applications with heavy vibration.

Extreme contaminated lubrication application are normally huge problems for bearings. Nachi has had great success on these applications by using heat treated steel cages.

Nachi has our own steel plant and our expertise in steel making has transferred to all of our products like bearings, drills, broaches, heat treatment equipment and tool steels.

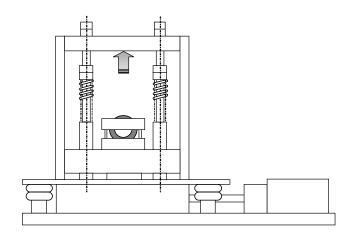
EXQ-V Series Features

HIGHEST LOAD CAPACITY Nachi's EXQ-V spherical roller bearing design maintains the highest load capacities by utilizing the biggest rollers (longest length, largest diameter).

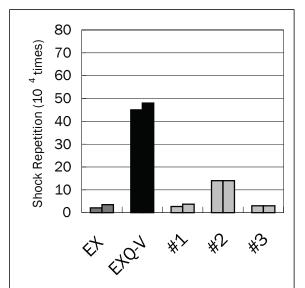
HARDENED CAGE Hardening steel cage increases the strength, making the cage more fatigue resistant. Nachi has been a leader in the main support bearing on the high speed trains in Japan. We have developed testing procedures which separate great products from good products. As shown by the test results, we have a great design.

LOWER OPERATING TEMPERATURE In addition to increased strength, our hardened steel cage has a lower coefficient of friction which generates less heat and promotes lower operating temperatures. Lower operating temperature will result in longer grease life.

EXQ-V DESIGN Nachi vibrating screen bearings have a standard bore tolerance and special OD tolerance that is the center 2/3 "P6". Increased internal clearance, that is the lower 2/3 of C4, ensures the bearings will have enough radial clearance when operating.


EXQ-V Special Fits

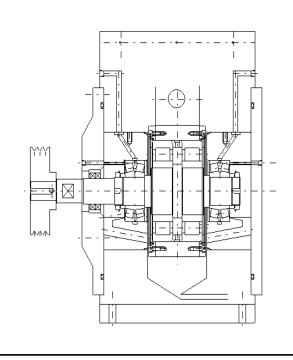
Vibrating Screen Bearings require special fit conditions to handle the centrifugal force of eccentric loading. A "g5" loose fit is used on the shaft and an "N6" interference fit is used on the housing.

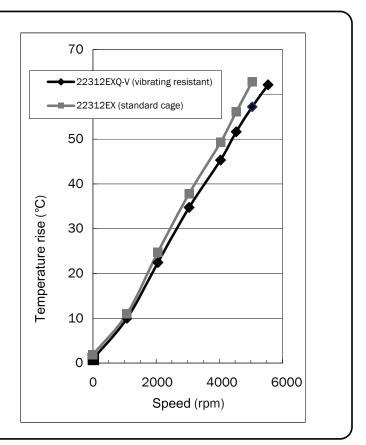

Bearings for Vibrating Applications

Vibration Test

Test conditions

Vibrating cycles : 119 cpm
Vibrating acceleration : 200 G
Temperature : ambient


EX Nachi EXQ-V Nachi

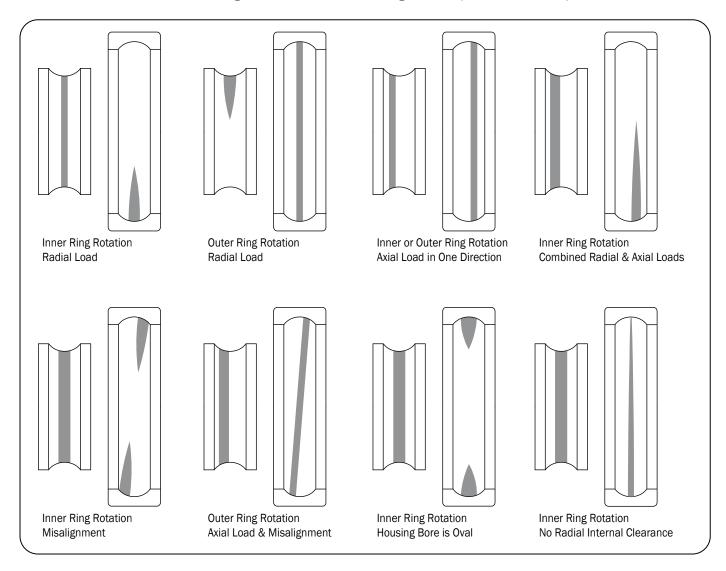

#1 VA405

#2 HPS

#3 E1-T41A

Speed / Temperature Test

The majority of premature bearing failures are caused by inadequate lubrication. Anti-friction rolling element bearings are designed to have a thin film of oil between the rolling elements and the raceway surfaces. When this film degrades or gets too thin the rolling elements contact the raceway surfaces and wear develops. Anti-friction bearings are not designed to be wear parts.


There are many causes for inadequate lubrication:

- 1. Insufficient amount of grease (lubricant) or an excessive amount of grease.
- 2. Using a lubricant with the wrong characteristics, or mixing of greases (lubricants).
- 3. Moisture or hard particle contamination from the operating environment. Contamination can degrade, wear the bearing surfaces, or degrade the oil film which will also cause wear.
- 4. Excessive operating temperature from the environment or from the operating speed of the bearing. The faster a bearing operates, the higher the temperature. Bearing and lubricants have temperature limits and speed limits.

Investigating bearing failure typically involves reviewing the application. The bearing raceways tend to leave the best clues as to what may have caused the bearing failure. First, the bearings will have to be disassembled to view the ring raceways.

Since the most common cause for bearing failure is inadequate lubrication, we will use this characteristic to determine bearing failure. Frosting patterns on the inner ring and outer ring raceways is the first indication of inadequate lubrication. The raceway surfaces are starting to have contact with the rolling elements and these slight wear patterns develop.

Bearings are like fuses, something causes the bearing to fail. We use these visual wear patterns to determine if the application is normal or if something is abnormal. By shining a bright light (Mag flashlight) down the raceway, these patterns pop out and become more visible.

The most common application is the inner ring rotation with a radial load (upper left). By looking at the frosting patterns we can determine if the application is consistent or if something in the application is affecting the bearing. Orientation is always an important part of the investigation. Knowing which side of the bearing was positioned in or out will help in determining which way the bearing was loaded.

Seizure: Bearing seized up from excessive heat. Discoloration, softening

and fusion of raceway and rolling element.

Causes: Poor lubrication, excessive load, excessive, clearance too small,

entrance of contaminants, poor precision of the shaft or housing

Countermeasures: Reconfirm bearing selection, review lubricant selection type & quantity,

check shaft & housing, improve sealing mechanism

Flaking: Repetitive Heavy stress cycle between the bearing raceways and

rolling elements resulting in surface fatigue cracks and spalls

Causes: Excessive load, poor mounting, excessive moment load, entry of contamination,

improper bearing clearance, improper shaft & housing precision

Countermeasures: Reconfirm the bearing application & load conditions, improve mounting method,

improve sealing mechanism, use proper lubricant, check shaft & housing

<u>Cracks:</u> Splits and cracks in the inner ring, outer ring or rolling element.

Causes: Excessive interference fit, impact load, progression of flaking,

shaft corner larger than bearing, heat generation & fretting problem

Countermeasures: Check fits, check shaft & housing, review the load conditions,

make shaft corner smaller than that of the bearing

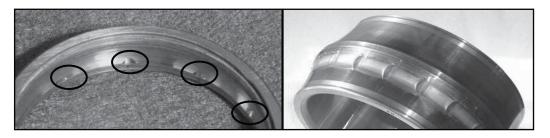
Fracture: Cracked inner ring rib. Broken retainer.

Causes: Excessive impact load during handling or mounting, heavy shock

load or vibration

Countermeasures: Review handling, check mounting practice

re-check load conditions & bearing selection


True Brinelling: The occurrence of dents on the raceways that are the result

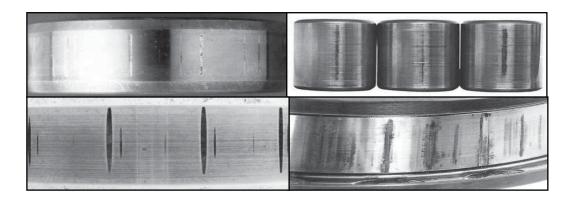
of exceeding the elastic limit of the steel.

Causes: Any static overload, severe impact

Countermeasures: Install bearings by applying force only to the ring being press fitted,

recheck static load conditions do not exceed bearing capacity

False Brinelling: The occurrence of elliptical wear at ball or roller spacing


due to an excessive external vibration

Causes: Small relative motion between the rolling elements & raceways

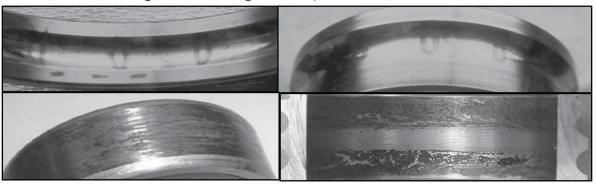
in a non-rotating bearing, stand by equipment, or shipping damage.

Countermeasures: Isolate bearing from external vibration, secure shaft & housing

during shipping, reduce vibration by preloading bearings.

Fretting: It is the wear and oxidation due to repetitive sliding between

two steel surfaces of non rotating components.


This can occur between mating components or between rolling elements and raceways. This can develop into false brinelling.

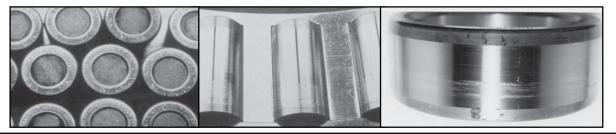
Causes: Improper shaft & housing fits, vibration with a small amplitude

Countermeasures: Check shaft & housing dimensions to ensure they are within

recommended tolerances, Preload or load bearing, use an oil or

grease in bearings when exposed to vibration

Smearing: Metal to metal contact due to the destruction of oil film.


Sliding between outer ring, inner ring and rolling element.

Causes: Improper lubricant selection, rapid acceleration or

deceleration, water intrusion

Countermeasures: Use a proper lubricant, review preload/clearance

conditions, improve sealing mechanism

Excessive Wear: Surface deterioration due to heavy sliding friction between

the contact areas of the bearing components

Causes: Poor lubrication, entry of contamination particles,

progression from corrosion

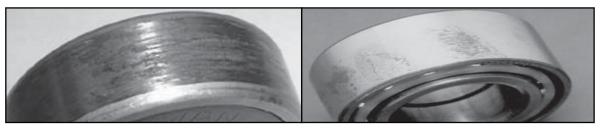
Countermeasures: Use proper type and amount of lubricant, improve sealing

mechanism, clean shaft & housing before mounting

Rusting, Corrosion: Rusting and corrosion is oxidation of the steel. Can cause

pits on the surface of the rings & rolling elements

Causes: Ingress of water or corrosive fluid or gas, condensation of

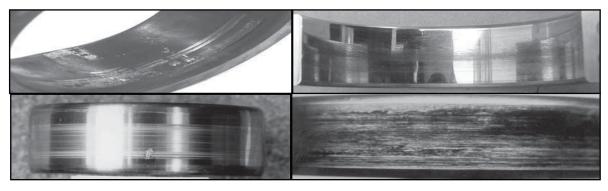

of moisture in the air, poor packing/storage conditions

handling with bare hands.

Countermeasures: Improper sealing mechanism, improve storage & handling

implement measures for preventing rust during long periods

of non-operation

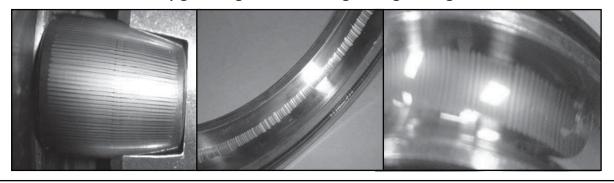

Creep: Galling, wear, sliding and discoloration of fit face.

Causes: Improper shaft & housing sizes, thermal expansion

of the shaft & housing material

Countermeasures: Bring shaft or housings back to recommended

tolerances, improve accuracy of shaft & housing


Electric Arcing: Pitted or corrugated surface caused by electric current pass.

Causes: Electric current passes through the bearing current melts

patterns in the raceway surface

Countermeasures: Eliminate the flow of electric current through the bearing by grounding

by grounding brush, insulating bearing or using ceramic balls.

Bearing Failures

	Timeline								
		Inco	rrect		Def	ects			
Cause	Bearing Selection	Basic Design	Lubrication	Bearing Handling	Seal Failure	Defective Bearing			
After Installation	•		•	•		•			
After Periodic Maintenance			•	•					
After Re-lubrication			•	•					
During Normal Operation			•		•				

Daily Care:

Bearings simply do not break down one day. Before a breakdown occurs, symptoms such as abnormal noises, increase in vibration and/or increased operating temperature will occur. It is important to check and record these characteristics of bearings on regular intervals. With this, historical information trends can be identified and maintenance can be scheduled before catastrophic failure occurs. Bearing failures will not affect each of these three symptoms evenly. History will provide a key for each application as to which symptom to monitor.

Noise:

Audible noise seems to be the number one characteristic used in determining bearing failure. Many times it is hard to determine if the noise is coming from the bearing or another component part in the machine. Listening rod and screw drivers & thumbs in the ear are used to try and isolate the bearing noise.

Vibration Analysis:

Trends in the vibration signatures of equipment is a proven way to determine when maintenance should be performed. The vibration signature of each piece of equipment is different. These signatures are sensitive to variation in probe type, location of the probe on the equipment, even the auditor. On critical equipment the probes are mounted permanently and signals related to a control office.

• Operating Temperature:

Monitoring bearing temperatures is a proven approach and has been used for decades on critical equipment. Normally the probe contacts the outer ring. The operating temperature fluctuates since it is a function of the bearing heating up and the environment heating up.

Bearing Failures

	Symptom During Operation						
Operat	ing Condition	Potential Source of Trouble					
	Whining or Squealing	Insufficient Operating Clearance Contamination Poor Lubrication					
Noise	Rumbling or Irregular	Excessive Clearance Damaged Rings Contaminated Lube					
	Change in Noise	Temperature Change Damaged Rings					
Uneven Running		Damaged Rings Contamination					
Reduced Work Accuracy	king	Wear Due to Contaminants or Insufficient Lube					

• Bearing Sounds

As shown in the previous table the bearing noise is an indication of many possible bearing situations. The following chart attempts to qualify the audible sounds.

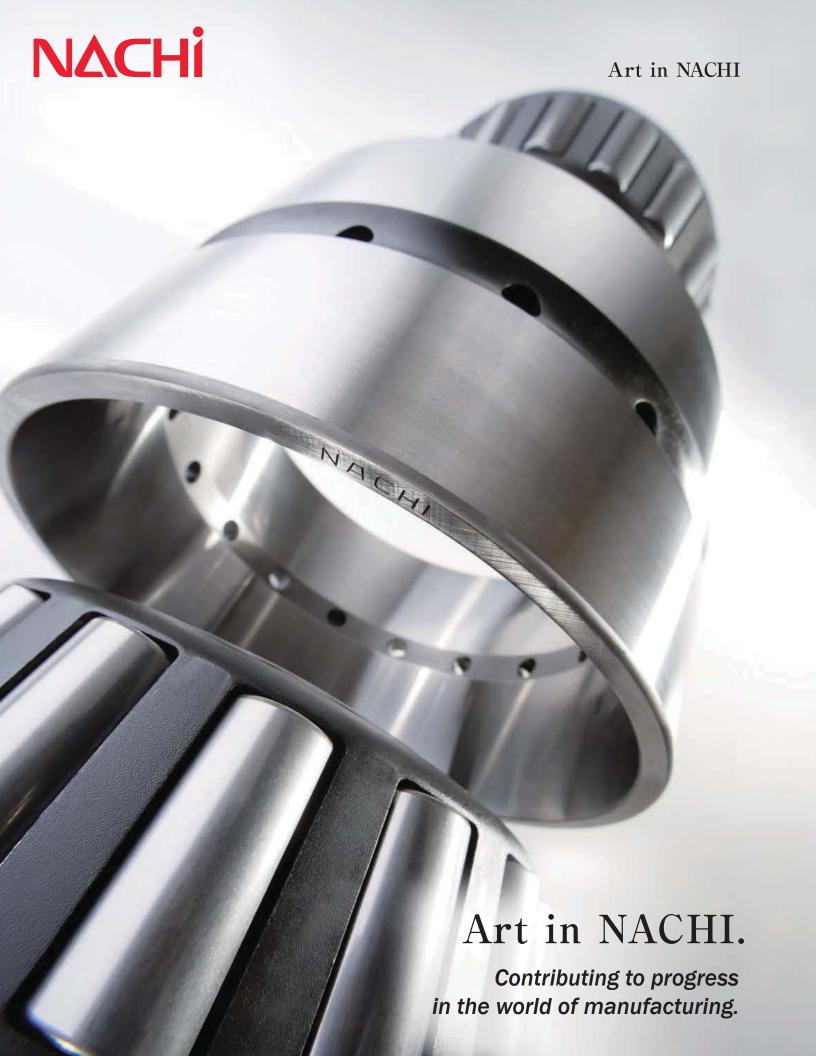
Sound Features	Causes
Continuous Sounds Zaaaa Shaaa Jiiiii	Deterioration of surface roughness or damage to the raceways and rolling elements
Buzzing Tone Woo-woo Goo-goo	Resonance, poor fit condition Deformation of bearing rings, fluttering of elements on raceway
Indeterminate Sound Chiritchirit Piri-piri Pin-pin	Foreign matter (dirt) Creaking of attachment surfaces
Metal Galling Noise Kii-kii Gii-gii Kin-kin	Excessive contact of elements and cage Insufficient Clearance Poor Lubrication

MEMO PAGE

www.nachiamerica.com

► Click on "Bearings"

- ► Click on >> Technical button on the left margin
- ► Click on >> Specs & Calculations


▶ Bearing Drawings:

- -Dimensions / Tolerance
- -Load Ratings
- -Speed Limits
- -Internal Clearance

► Technical Information:

- -Axial Clearances
- -Bearing Life
- -Fit Recommendation
- -Clearance after Mounting
- -Vibration Frequencies
- -Mounting Forces
- -Grease Recommendations

Nachi America Inc.

Corporate & Bearing Division Headquarters

715 Pushville Road, Greenwood, IN 46143

Phone: 317-530-1002 Fax: 317-530-1012

Nachi America Inc. - LA Office

12652 Alonda Blvd. Cerritos, CA 90703

Phone: 562-802-0055 Fax: 562-802-2455

Nachi America Inc. - Miami Office

2315 NW 107th Ave., Miami, FL 33172

Phone: 305-591-0054 Fax: 305-591-3110

Nachi Canada Inc.

89 Courtland Ave., Unit No.2 Concord

Ontario, L4K 3T4 Canada Phone: 905-660-0088 Fax: 905-660-1146

Nachi Mexicana, S.A. de C.V.

Calle Tequisquipan 2, Aerotech Industrial Park

Localidad Galeras, Municipio de Colon, Queretaro, México C.P. 76295

Phone: 52-442-153-2424 Fax: 52-442-153-2435

www.nachiamerica.com

CATALOG NO.: NAB1202-3

2018