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This coloring book is both digital and on paper.

The paper copy is where the coloring is done - color through the
concepts to explore symmetry and the beauty of math.

The digital copy brings the concepts and illustrations to life in
interactive animations.

Digital copy: http://beautifulsymmetry.onl

The illustrations in this book are drawn by algorithms. The algorithms
follow the symmetry rules for the illustrated groups. Many of these

algorithms also add components of randomness so that each set of
online illustrations is unique.



WHO THIS "BOOK" IS FOR

This book is for children and adults alike. It is for math nerds, experts, and people who avoid the
subject. It is for coloring enthusiasts as well as those who would prefer to simply read through or
play with patterns. It is for educators and students, parents and children, and casual readers just
looking to have a good time.

This book is for you.

WHAT THIS "BOOK" IS AND IS ABOUT

This is a "coloring book about math" that is both digital and on paper.

It is a playful book. The mathematical concepts it presents show themselves in illustrations that
are interactive and animated online, and can be colored on paper. Throughout the book there are
visual puzzles and coloring challenges.

The book is about symmetry. Group theory is used as the mathematical foundation to discuss
its content and interactive visuals are used to help communicate the concepts.

Group theory and other mathematical studies of symmetry are traditionally covered in college
level or higher courses. This is unfortunate because these exciting parts of mathematics can be
introduced with language that is visual, and with words that avoid jargon. Such an introduction is
the intention of this "book".

HOW TO USE THIS "BOOK"

This book is both on paper and online.

The two formats complement each other, and can be used together. Their content is the same,
but they provide different ways to more deeply engage or play with it.

Color the illustrations on paper. Only on paper can the coloring challenges be fully completed and
realized in color. Solutions are provided so that you can check your work.
Play with the illustrations online. They come to life with interactive animations that show the
symmetries that generate them.

This book can be used as a playful educational tool to serve as an additional resource in the
classroom or home. For educators, the challenges within the pages of the book can be used as
"problem sets".
This book can be used as a relaxing coloring book.
This book can be used to entertain your mathematical intuition or interests.







We'll start coloring through the basics of SHAPES & SYMMETRIES

to build an understanding for more patterns and groups,

such as the FRIEZE PATTERNS

They start with a single shape that transforms and then repeats forever in opposite directions.

WALLPAPER PATTERNS have inVnite repetitions and symmetries in even

more directions.
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FOREWORD  

By   Alex   Bellos  
 
 
 
 
In   1919,   the   British   logician   Bertrand   Russell   wrote   the   following   lines   on   mathematical  
beauty:  
 

Mathematics,   rightly   viewed,   possesses   not   only   truth,   but  
supreme   beauty—a   beauty   cold   and   austere,   like   that   of  
sculpture,   without   appeal   to   any   part   of   our   weaker   nature,  
without   the   gorgeous   trappings   of   painting   or   music,   yet  
sublimely   pure,   and   capable   of   a   stern   perfection   such   as   only  
the   greatest   art   can   show.   The   true   spirit   of   delight,   the  
exaltation,   the   sense   of   being   more   than   Man,   which   is   the  
touchstone   of   the   highest   excellence,   is   to   be   found   in  
mathematics   as   surely   as   poetry.  
 
A   century   later,   these   lines   remain   one   of   the   most   powerful   statements   of   what   is  
unique   and   thrilling   about   mathematics.  

Russell—the   only   mathematician   to   have   won   the   Nobel   Prize   for  
literature—was   writing   about   the   elegance   of   abstract   thought.   Yet   mathematics   also  
embraces   a   more   traditional   understanding   of   beauty:   the   beauty   of   visual   art.   Many  
images   derived   from   mathematical   ideas   are   extremely   visually   appealing.   The  
mandalas   of   Hinduism   and   the   mosaics   of   Islamic   geometric   design,   for   example,   are  
works   of   art   with   a   mathematical   structure   that   for   centuries   have   been   used   for   both  
decoration   and   contemplation.   They   are   nice   to   look   at   as   well   as   nice   to   think   about.  

In   the   overlap   between   what   is   mathematically   interesting   and   what   is  
aesthetically   attractive   lies   the   concept   of   symmetry;   that   is,   the   property   of   certain  
shapes   such   that   when   the   shape   is   moved   from   its   original   position—via,   say,   rotation  
around   or   reflection   across   an   axis—there   is   a   new   position   where   the   shape   fits  
perfectly   onto   itself.   Psychologically,   we   are   drawn   to   objects   and   images   that   contain  
symmetries,   such   as   the   faces   of   other   humans,   which   have   left–right   symmetry,   or   the  
repeating   patterns   of   fashion   and   interior   design.   Indeed,   the   universe   is   built   on  
symmetries   at   every   level,   from   the   molecular   to   the   astronomical.   Mathematics   is   the  
best   tool   we   have   for   the   investigation   of   patterns,   providing   a   language   with   which   to  
investigate   the   properties   of   symmetrical   objects   and   shapes.  



 
Alex   Berke’s   idea   to   explore   the   math   of   symmetry   through   coloring   is   a   brilliant  

one.   The   meditative   process   of   selecting   colors,   shading   in   sections,   and   slowly   seeing  
the   picture   take   shape   is   matched   by   the   intellectual   buzz   of   discovering   the   abstract  
structure   that   lies   beneath.   Coloring   is   a   relaxing   and   satisfying   activity,   and   in   this   book,  
it   becomes   an   enlightening   one,   too.  

The   book   is   beautifully   presented,   filled   with   attractive   symmetrical   shapes,  
combinations   of   simple   spirals,   swirls,   triangles   and   squares.   The   conceptual  
progression   is   also   clearly   done,   the   clarity   of   design   matched   by   the   clarity   of   thought.   

Many   people   find   math   difficult   and   inaccessible,   but   coloring   is   easy   and   for  
everyone.   This   book   provides   a   way   to   engage   with   important   ideas   just   by   thinking  
about   what   color   to   use   and   where   to   put   it.   At   the   end   of   each   exercise,   you   will   be   left  
with   a   striking   picture   and—I   hope—a   better   sense   of   Russell’s   “true   spirit   of   delight”   in  
abstract   mathematics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 





SHAPES & SYMMETRIES



INTRODUCTION

Symmetry presents itself in nature.

Landscape re<ected in water

We can see symmetry in the repetitions, reWections, and turns in life around us, but these symmetries
often have imperfections.

Moth Sun<ower Star>sh

Math creates a space where perfect symmetry can be explored.

In our real physical world, lines may not be perfectly straight, and squares may not be perfectly square,
but mathematics allows us to believe in straight lines and perfect squares.

Throughout this book, we will pretend we are in that mathematical space. We will ignore the
imperfections in our drawings, and see shapes and patterns as if they are composed of perfect lines and
curves. We will play with our shapes and patterns, using color to manipulate their symmetries, and even
destroy them at times, all in order to better understand them.
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Let's talk about symmetry. See, some shapes have more symmetry than others.

If while you blinked, a square was Wipped,

Or turned a quarter of the way around,

You would then still see the same square and not know.

Yet this is not the case for a rectangle...

Check in: Which of these shapes can be rotated by a ¼ turn without changing in appearance?

The symmetries of our shapes are the transformations that leave our shapes unchanged. We can see
that a ¼ turn is a symmetry of a square but not for a rectangle, and we can intuitively see that a square
is "more symmetric" than a rectangle because it can be Wipped and turned in more ways.

We will also see how this can change once color is added.

flip

1/4 turn

1/4 turn
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Can you color the shapes to make them “less symmetric”?
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Can you see which shapes have ¼ turns and which do not?
Color the shapes with ¼ turns with a different set of colors than the shapes that do not have ¼ turns.

shapes with ½ turns and shapes with ¼ turns



ROTATIONS

A regular triangle has equal side lengths and equal angles.

What's more, it can rotate ⅓ of the way around a circle and appear unchanged. Had our eyes been
closed when it rotated, we would not have noticed a difference.

→

If the triangle instead rotates by an arbitrary amount, like ¼ of the way around a circle, it will then appear
changed, since it is oriented differently.

→

We can even Vnd ways to color the triangle so that a ⅓ turn still does not change it.

→

While this will not work for other ways.

→

→

Check in: Which of the following colored triangles can be rotated by a ⅓ turn without changing in
appearance?

1/3 turn

1/4 turn 2/4 turn 3/4 turn

1/3 turn

1/3 turn

1/3 turn
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Our triangle can also rotate by more than a ⅓ turn without changing. It can rotate by twice that much - ⅔
of the way around the circle - or by 3 times that much, which is all the way around the circle.

We can keep rotating - by 4 times that much, 5 times that much, 6 times... and keep going. The triangle
seems to have an inVnite number of rotations! But after 3 they become repetitive.

Check in: How many ways can a square rotate without changing before the ways become repetitive?

The triangle has only 3 unique rotations, so we’ll talk about rotations that are less than a full turn. When
we say our triangle ‘has 3 rotations’ we mean it can be rotated by these 3 different turns and appear
unchanged.

Other shapes have these same 3 rotations. For this reason, we can say they all share the same
symmetry group.

However, their rotations can be removed by adding color.

Now when our shape is rotated, its color shows it.

0 turn 1/3 turn 2/3 turn

0 turn 1/3 turn 2/3 turn

3/3 turn 4/3 turn 5/3 turn

0 turn 1/3 turn 2/3 turn

0 turn 1/3 turn 2/3 turn

0 turn 1/3 turn 2/3 turn
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Now that we can count rotations, we can be more precise when we say a square has more symmetry
than a rectangle.

We can also see that a square has more rotational symmetry than a triangle, which in turn has more
than a rectangle: A rectangle has only 2 unique rotations, while our triangle has 3, and a square has 4.

We don’t need to stop at 4 rotations. We can Vnd shapes with 5 rotations, 6 rotations, 7, 8, ... and keep
going towards inVnity.

...

And these shapes don’t even need to be so simple.

...

...

0 turn 1/2 turn

0 turn 1/4 turn 2/4 turn 3/4 turn

5 6 7 8

5 6 7 8

5 6 7 8
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Can you >nd all of the shapes with 7 rotations?
Color the shapes so that they no longer have any rotations.

shapes with 3, 4, 5, 6, 7 rotations
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Color the shapes so that a ⅓ turn continues to leave their appearance unchanged.

shapes with ⅓ turns and sierpinski triangles
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Can you see all of the rotations for this shape?
Color the shape so that it has only 3 unique rotations.

circular pattern with 9 rotations
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Color the shapes with 4 rotations so that they have only 2 rotations.

shapes with 2, 3, 4 rotations
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The rotations we have been Vnding for shapes are symmetries of these shapes - they are
transformations that leave the shapes unchanged. When shapes have the same symmetries, they share
a symmetry group.

Giving names to the groups that our shapes share will help us talk about and play with them later. We
can call the group with 2 rotations C2, and call the group with 3 rotations C3, call the group with 4
rotations C4, and so on...

C2:

C3:

C4:

C5:

...

These groups are called the cyclic groups.

Check in: Which shapes illustrate C6?

Our shapes help us see our groups, but the members of the groups are the rotations, not the shapes.

C2:  { }  =  { }

C3:  { } = { }

The rotations within each group are related to each other...

0 turn 1/2 turn 0 turn 1/2 turn

0 turn 1/3 turn 2/3 turn 0 turn 1/3 turn 2/3 turn



S H A P E S  &  S YM M E TR I E S :  R OTATI O N S14

C4:  { }

Another way to think about rotating a C4 shape by a  turn is to rotate it by a  turn and then rotate it
again by a  turn.

C4:    turn ✷  turn ➞  turn

Notice that the order in which these rotations are combined does not matter. For this reason we say the
cyclic groups are commutative.

C4:     turn ✷  turn =  turn ✷  turn

Similarly, for our C3 group, a  turn is the same as combining a  turn with another  turn.

C3:     turn ✷  turn ➞  turn

Adding another  turn brings the shape back to its starting position - the 0 turn.

C3:     turn ✷  turn ✷  turn ➞ 0 turn

0 turn 1/4 turn 2/4 turn 3/4 turn

3⁄4 1⁄4
2⁄4

1⁄4 2⁄4 3⁄4

0 turn

1/4

1/4 turn

2/4

3/4 turn

1⁄4 2⁄4 2⁄4 1⁄4

0 turn

1/4

1/4 turn

2/4

3/4 turn

0 turn

2/4

2/4 turn

1/4

3/4 turn

2⁄3 1⁄3 1⁄3

1⁄3 1⁄3 2⁄3

0 turn

1/3

1/3 turn

1/3

2/3 turn

1⁄3

1⁄3 1⁄3 1⁄3

0 turn

1/3

1/3 turn

1/3

2/3 turn

1/3

0 turn
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C27 shape (circular pattern)
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Can you >nd all of the C5 and C6 shapes?
Color the C4 shapes with as many colors as possible while keeping them as C4 shapes.

C3, C4, C5, C6, C7 shapes
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We saw that the  turn did something special for our C3 group. We were able to combine it with itself
again and again in order to generate all of the rotations of C3 - it is a generator for our C3 group.

 turn→

 turn ✷  turn→

 turn ✷  turn ✷  turn→

In the same way that a  turn is a generator for our C3 group, we can see that a  turn is a generator for
our C4 group.

C3:      turn ➞   { }

C4:      turn ➞   { }

We might even choose different generators to end up with the same result...

1⁄3

1⁄3

1/3 turn

1⁄3 1⁄3

2/3 turn

1⁄3 1⁄3 1⁄3

0 turn

1⁄3 1⁄4

1⁄3
0 turn 1/3 turn 2/3 turn

1⁄4
0 turn 1/4 turn 2/4 turn 3/4 turn
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 turn→

 turn ✷  turn→

 turn ✷  turn ✷  turn→

See, we can use a  turn as a generator and still end up with our C3 group.

C3:      turn ➞   { }

But beware we must be careful: not all members of our groups are generators.

For example, a  turn does not generate all of the rotations of our C4 group.

Instead a  turn generates a smaller group - our C2 group.

 turn →   { }  =  { }

Another way to see this is with color...

2⁄3

2/3 turn

2⁄3 2⁄3

4/3 = 1/3 turn

2⁄3 2⁄3 2⁄3

6/3 = 0 turn

2⁄3

2⁄3
0 turn 1/3 turn 2/3 turn

2⁄4

0/4 turn 2/4 turn

2⁄4

2⁄4
0/4 turn 2/4 turn 0/2 turn 1/2 turn
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We can transform a C4 shape into a C2 shape by coloring it.

→

Now the only rotations that leave this colored shape unchanged are those of C2.

C2: { }

Again we must be careful. Not all colorings of our C4 shapes will transform them into C2 shapes. Some
will remove their rotations altogether and leave them with just the 0 turn.

→

Challenge: Find all the generators for C4 and C8.

Challenge: Which rotations of C8 generate our C4 group but not C8?

C4 C2

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 = 1/2 turn

C4 C1 C1 C1
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Can you use color to transform the uncolored shapes into C2 shapes?

C4 and C8 shapes
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The C9 shape below is made up of pieces that repeat around a circle. Go clockwise around the circle,
coloring every other repeated piece in the same way. That is, color a piece, skip a piece, color the next

piece the same way as the >rst, and keep going. Do you end up coloring every piece? Can you use this to
prove a 2/9 turn is or isn't a generator for C9?

C9 shape (circular tessellation)
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Can you show that a 3/12 turn is not a generator for C12 by coloring every other 3 pieces in the same
way? What group does the 3/12 turn generate?

C12 shape (circular tessellation)
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For some cyclic groups, any of their transformations can be used as generators. Which groups are these?

shapes with 3, 4, 5, 6, 7, 8 rotations
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Color can reduce C4 shapes to C2 or C1 shapes because C2 and C1 are subgroups of C4. A subgroup is
a group contained within a group.

C4: { }

C2: { }

C1: { }

Similarly, C1, C2, and C3 are all subgroups of C6.

Check in: Can you see how color can reduce the C4 and C6 shapes to C1 or C2 shapes?

It is easy to see that a group has all of the rotations of its subgroups,

C6: { }

C3: { }

C2: { }

But we cannot simply pick out a few rotations from a group and call them a subgroup. See for yourself:
Try to color a C6 shape so that it has only the rotations of C4.

It can’t be done - C4 is not a subgroup of C6. There is more to it than that...

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 turn

0 turn

0 turn 1/6 turn 2/6 turn 3/6 turn 4/6 turn 5/6 turn

0 turn 2/6 turn 4/6 turn

0 turn 3/6 turn
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When we use color to reduce our shapes to represent smaller groups, we give them a new set of
rotations.

C4: { }

C2: { }

Not all sets of rotations are groups, and therefore cannot be subgroups. Try to color a shape in a way so
that it has only a 0 turn,  turn, and a  turn.

It’s impossible without also giving the shape a  turn. {0 turn,  turn,  turn } is not a group, but
{0 turn,  turn,  turn,  turn } is. Why? This brings us back to combining rotations.

In order for a set of rotations to be a group, any combination of rotations in the set must also be in the
set. This rule is called group closure, and we can see it by looking at our shapes. If transforming our
shape by either a  turn or a  turn leaves our shape unchanged, then transforming our shape by a 
turn and then a  turn must also leave our shape unchanged.

But we already saw that this is the same as just transforming the shape by the combination of these
turns! Remember, the elements in our groups are the transformations that leave our shapes unchanged,
so this combination must also be in our group.

C4:     turn ✷  turn =  turn

For this same reason, once we have a generator in our group, we have all the other transformations that
it generates.

C4:      turn ➞   { }

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 turn

1⁄4 2⁄4

3⁄4 1⁄4 2⁄4
1⁄4 2⁄4 3⁄4

1⁄4 2⁄4 1⁄4
2⁄4

1/4

2/4

1/4 2/4

1⁄4 2⁄4 3⁄4

0 turn

1/4

1/4 turn

2/4

3/4 turn

1⁄4
0 turn 1/4 turn 2/4 turn 3/4 turn
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So far we’ve only been talking about groups of rotations. These groups are cyclic. They can be created
by combining just one rotation - a generator - multiple times with itself.

C3:      turn ➞   { }

Our next groups have even more generators and symmetries to play with, such as reWections.

1⁄3
0 turn 1/3 turn 2/3 turn
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Color the shape to reduce it to a C8 shape. Then add more color to reduce it to a C4 shape. Can you again
add more color to reduce it to show an even smaller subgroup? What are the subgroups of C16?

C16 shape (circular tessellation)
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Color the shapes to make them all C2 shapes while using as many colors as possible. How many rotations
did you remove with color? How many colors were you able to use?

C2, C4, C6, C8 shapes
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These shapes illustrate groups that share a common subgroup. Can you color the shapes to remove
rotations so that they illustrate their common subgroup?

shapes with 6 rotations and shapes with 9 rotations
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Use color to reduce the C12 shape to a C6 shape. Is it possible to add more color to reduce it to a C4
shape? What about a C3 shape?

C12 shape (circular tessellation)
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REFLECTIONS

Even when two shapes have the same number of rotations, one can still have more symmetry than the
other.

Some shapes have mirrors - they can reWect across internal, invisible lines without changing in
appearance.

While others cannot.

These mirrors are symmetries of our shapes, and we’ll see how they can be removed by adding color.

First, let’s generate more mirrors.

reflect

reflect

reflect
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We saw that a single generator, the  turn, could generate the entire group of rotations of a regular
triangle. This was our C3 group.

C3:      turn ➞   { }

We can also reWect this triangle across a vertical mirror through its center.

By combining this mirror with a rotation, we can generate even more mirrors, for even larger groups.

This will be easier to see if we use color.

:

:

:

The triangle has 3 unique mirrors in total.

With just a rotation and a mirror as generators, we generated a new, larger group of symmetries for a
regular triangle.

We can do the same with other shapes, to see even bigger groups.

1⁄3

1⁄3
0 turn 1/3 turn 2/3 turn

reflect

1/3 turn reflect

1/3 turn 1/3 turn reflect
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These shapes have mirrors, and so does the illustration as a whole. Can you add color to remove all of the
mirrors?

mirrors
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These shapes have mirrors. Maintain these mirrors as you color.

shapes with mirror re<ections
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Our regular triangle has 3 unique rotations and 3 unique reWections, a square has 4, and we can Vnd
shapes with 5, 6, 7, and keep going...

...

Shapes that are not regular polygons can have these same symmetries.

...

We already saw how shapes that share the same set of symmetries share a symmetry group, but then
we only considered rotations. Symmetry groups can have both rotations and reWections.

We’ll call the symmetry group that contains the 3 rotations and 3 reWections of a regular triangle D3. And
we’ll call the symmetry group with the 4 rotations and 4 reWections of a square D4, while we call the
symmetry group with 5 rotations and 5 reWections D5, and so on...

D3:

D4:

D5:

D6:

...

3 4 5 6 7

3 4 5 6 7
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This series of groups is called the dihedral groups. Again, these groups contain symmetries, not shapes -
the shapes just help us see them.

D3:

D4:

D5:

D6:

...

These shapes that share a symmetry group may look different, but when viewed through the lens of
group theory, they look the same. Only their symmetries - the rotations and reWections that leave them
unchanged - are seen.

Check in: Which of these shapes have 8 mirrors?
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We saw that the cyclic groups are commutative. The order in which we combined rotations did not
matter - the result was always the same. The dihedral groups are not commutative. We can see this in
our D4 shapes: rotating our D4 shapes by a ¼ turn and then reWecting across a vertical mirror,

Is not the same as reWecting across a vertical mirror and then rotating by a ¼ turn.

Challenge: Show that D3 is not commutative. Find 2 symmetries of our triangle where transforming the
triangle by one symmetry and then the next is not the same as applying the transformations in the
reversed order.

Challenge: We showed how the ⅓ turn and a vertical mirror could be used as generators for D3 and
generate all of the other mirrors of a regular triangle. Show how the ¼ turn and a vertical mirror can be
used to generate all of the other mirrors of a square.

:

:

:

:

1/4 turn reflect

reflect 1/4 turn

? ?

? ?

reflect

? ?

1/4 turn 1/4 turn reflect

? ? ? ?
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Challenge: What is the result of combining two different mirrors?

✷ = ?

Is the result a re<ection or a rotation?

Is this always the case?

(go ahead and draw more shapes)
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For our D4 group, we can see that the result of applying a vertical mirror and then a horizontal mirror is a
½ turn.

D4: ✷ = ½ turn

Challenge: Can you >nd 2 mirrors where applying one and then the other results in a ¼ turn in our D4
group?

Is it possible to use 2 mirrors to generate all of the symmetries of our D4 group? What about our other
dihedral groups?

Here are some shapes for you to puzzle over.
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How many unique rotations and re<ections does each shape have? Color all of the D8 shapes so that they
are no longer D8 shapes but still have at least one mirror re<ection.

D3, D4, D5, D6, D7, D8 shapes
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The D8 shape below is made up of pieces that repeat around a circle. Show that a ¼ turn and a vertical
mirror cannot be used as generators for our D8 group by coloring a piece, and then coloring other pieces if
and only if they can be reached by a ¼ turn or mirror re<ection from an already colored piece. What are the

symmetries of the colored shape you end up with?

D8 shape (circular tessellation)
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By looking for rotations and reWections, we can see when shapes share a symmetry group,

Or when they do not.

And now that we have groups with more symmetries, there are more interesting subgroups to Vnd.

We can again use color to reduce the amount of symmetry a shape has. For example, a D6 shape has 6
mirrors and 6 rotations, but with color we can remove 3 of these mirrors and 3 of these rotations to
reduce it to a D3 shape.

→

Alternatively, we could have reduced the D6 shape to a D2 shape.

→

This is possible because D3 and D2 are subgroups of D6. Similarly, D4 is a subgroup of D8, and D2 is a
subgroup of both D4 and D8.

→ →

Check in: What are the symmetry groups for these colored shapes?

D4 D4 D4

D4 D2 C4

D6 D3

D6 D2

D8 D4 D2
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What happens when color is added to remove only mirrors and not rotations?

→

The dihedral groups have mirror reWections, while the cyclic groups do not. When these mirrors are
removed, we can see the cyclic groups are subgroups of the dihedral groups.

→

→

→

Color can also take away a shape's rotations to show us subgroups with only mirror reWections.

:

:

:

:

D3 C3

D4 C4

D5 C5
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Here is an example where a D4 shape is colored with 2 colors so that it has only 1 mirror and that mirror is
horizontal.

:

Challenge: Find other ways to color the D4 shape with 2 colors so that its only mirror is the horizontal
mirror.

After being colored in this way, the shape no longer has the symmetries of D4, instead it illustrates a
subgroup of D4.

Challenge: Can you >nd different ways to color the D4 shape with 2 colors so that it has only 1 mirror and
that mirror is diagonal?

Our D4 group has multiple subgroups that have just 2 symmetries. One of those subgroups is the group of
symmetries with just the horizontal mirror and the 0 turn (the 0 turn is also known as the identity).

Challenge: Can you >nd the other subgroups of our D4 group that have just 2 symmetries?

There are multiple ways to color our D4 shape to reduce it to a shape with only a 0 turn, a ½ turn, and 2
mirrors. This is just our D2 group! Here is an example where we keep the 2 diagonal mirrors.

Challenge: Color the D4 shape to remove the diagonal mirrors but keep the horizontal and vertical mirrors.
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Challenge: Is it possible to color a D4 shape to remove the horizontal mirror while keeping the vertical
mirror and ¼ turn? (Hint: Think about group closure)

There is a relationship between the number of symmetries in our dihedral groups, the number of
symmetries in their subgroups, and the maximum number of colors we can use to reduce our dihedral
shapes to show those subgroups.

When we reduce our D4 shapes to D2 shapes, we reduce their number of symmetries from 8 (4 mirrors, 4
rotations) to 4 (2 mirrors, 2 rotations). This is also the case when we reduce our D4 shapes to C4 shapes:
Shapes go from having 4 mirrors and 4 rotations to having just 4 rotations.

Challenge: In any of the cases where we remove half the symmetries of these dihedral shapes, what is the
maximum number of colors we can use?

D2 C4
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Can you >nd different ways to remove half of the symmetries of the D8 shapes? Color some of the shapes
to remove their mirrors while keeping their rotations. Color others to remove half of their mirrors and half

of their rotations.

D8 shapes
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Use color to reduce the D4 and D8 shapes to D2 shapes.

D4 and D8 shapes
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Can you add color to reduce the D6 shapes to D3 shapes? Then add more color to reduce them to
C3 shapes.

D6 shapes
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Can you color the D12 shape to reduce it to a D6 shape? Then add more color to reduce it to a C6 shape.
And add more color again to further reduce it to a C3 shape.

D12 shape (circular tessellation)
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There is something about mirrors that you may have already noticed.

ReWecting a shape across the same mirror twice in a row is the same as not reWecting it at all.

:

The second reWection reverses the work of the Vrst reWection. The same can be said for all of the mirrors
we found.

:

:

You may have also noticed that our rotations can be reversed as well. When our triangle is rotated by a
⅓ turn, rotating again by a ⅔ turn brings it back to the position it started in. The result is the same as a
0 turn.

 turn ✷  turn = 0 turn

The same can be said the other way around.

 turn ✷  turn = 0 turn

Check in: Which rotation in C4 is the reverse of the  turn?

reflect reflect

reflect reflect

reflect reflect

1⁄3 2⁄3

0 turn

1/3 turn

1/3 turn

2/3 turn

0 turn

2⁄3 1⁄3

0 turn

2/3 turn

2/3 turn

1/3 turn

0 turn

2⁄4
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When one transformation reverses the work of another transformation, it’s called an inverse.

The ⅓ turn is the inverse of the ⅔ turn in C3 and D3. Similarly, the ¼ turn and ¾ turn are inverses in C4
and D4.

 turn ✷  turn = 0 turn =  turn ✷  turn

Check in: What is the inverse of a horizontal re<ection? What is the inverse of any re<ection?

All of the symmetries in our cyclic and dihedral groups have inverses. Even when a shape undergoes a
combination of reWections and rotations,

The transformations can be reversed and the shape can end back in the position it started.

 turn ✷ reDect ✷  turn ✷  turn ✷ reDect ✷  turn = 0 turn

This is a rule in group theory: Any member of a group has an inverse that is also in the group. And
remember, the members of our groups are the symmetries of our shapes - they are the reWections and
rotations that leave our shapes unchanged.

1⁄4 3⁄4 3⁄4 1⁄4

0 turn

1/4 turn

1/4 turn

3/4 turn

0 turn

0 turn

3/4 turn

3/4 turn

1/4 turn

0 turn

0 turn

1/4 turn reflect 2/4 turn

2/4 turn reflect 3/4 turn

0 turn

1⁄4 2⁄4 2⁄4 3⁄4
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So far we have been focusing on only the symmetries of shapes, but there are even more types of
symmetry to see and even bigger groups to talk about - groups of inVnite size. Next we’ll see
transformations that take our illustrations beyond shapes and generate patterns that repeat forever...

... ...

Challenge: What would happen if you re<ected a shape across a mirror that sat next to the shape rather
than through its center?

Challenge: Color the squares to show the result of re<ecting across a vertical mirror and then rotating by a
¼ turn. Then >nd the combination of transformations that brings the square back to its starting position.

0 turn

reflect 1/4 turn ? ?

0 turn
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This entire illustration has mirrors and a ½ turn. Can you use color to remove the mirrors while maintaining
the ½ turn?

dihedral shapes
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Use color to reduce the symmetries of the shapes so that their only remaining symmetry is equivalent to
the 0 turn, or the transformation that does nothing. This do-nothing transformation is called the "identity"

and it is in every group.

D3, D4, D5, D6, D7, D8 shapes
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This illustration as a whole has 2 mirrors and a ½ turn. Can you see these symmetries? Color the
illustration with as many colors as possible while maintaining these 2 mirrors and ½ turn.

patterns of repeated shapes with mirror re<ections and rotations





INFINITELY REPEATING PATTERNS



FRIEZE GROUPS

The frieze groups can be seen in patterns that repeat inVnitely in opposite directions.

... ...

A page cannot do these patterns justice. It cuts them off when really they continue repeating forever...

Consider the smallest repeating piece of this pattern as a unit.

We can see the entire pattern can shift over by this unit. Each piece shifts on to an identical piece and
there is always more behind to replace what was shifted,

... ...

... ...

... ...

So that the shift leaves the entire pattern unchanged. Such is the nature of inVnite repetition...

This shift is a symmetry called translation.



I N F I N ITE LY  R E P E ATI N G  PAT TE R N S :  FR I E ZE  G R O U P S 61

Translations are the only symmetries in our simplest group of frieze patterns, so this group can be
generated by translations alone.

We can see this by starting with a single piece

That is copied and then translated

Again and again...

...An inVnite number of times...

... ...

To result in a pattern with translation as a symmetry that leaves the entire pattern unchanged.

Check in: Can you see the translations in these patterns? Can you extend your imagination to see these as
in>nitely repeating patterns that repeat beyond the page borders?
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Like any of the symmetries we have seen, translations can be combined and the result of the
combination will still be a symmetry. We can see this by combining a translation with another
translation so that in the same way a pattern can shift over by 1 unit and remain unchanged, it can also
shift over by 2 units and remain unchanged.

... ...

... ...

We can keep combining translations to see larger and larger shifts...

... ...

... ...

Or we can use color to take them away.

By coloring every other unit in this pattern, we can double the shortest possible distance of translation in
the pattern from 1 unit to 2.

... ...

Now only shifting by an even number of units leaves the pattern unchanged in appearance. The pattern
still repeats inVnitely, and there are still an inVnite number of translations that will leave it unchanged. By
adding color, we took away ½ of its translations, but ½ of inVnity is still inVnity.

Challenge: What is the inverse of a translation that shifts our pattern a unit to the right?
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Color the patterns in a way that maintains all of their translations.

frieze patterns (∞∞)
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Can you color the patterns so that their shortest possible translation distance triples? Use only 2 colors.

frieze patterns (∞∞)
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Our patterns can have more symmetries than just translations.

ReWecting a piece across a horizontal mirror before translating it,

→

Generates a new pattern, with more symmetry than the one before.

The pattern still has translations - it can still shift over without changing.

But it also has a horizontal mirror: The entire pattern can reWect across the same mirror that
transformed our Vrst piece, and appear unchanged.
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Patterns can have vertical mirrors as well.

These mirrors shift over with each repeated translation, so once a pattern has one vertical mirror, it has
an inVnite number of vertical mirrors.

Twice that many, really.

Even though we start with a vertical mirror on one side of each piece, as the pattern repeats, another
different vertical mirror shows itself.

Check in: Can you see the mirrors in the following patterns?
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All of the mirrors in our frieze patterns can be removed with color.

With color, we can reduce the patterns so that translations are their only symmetries.

Why can we do this? This brings us back to subgroups.

Our patterns with vertical mirror reWections belong to a symmetry group with translations and vertical
mirrors.

vertical mirror reDection & translation:

Naturally, the group with only translations is a subgroup.

translation:

The same goes for our patterns with horizontal mirrors. Color can remove their mirrors as well, and
reduce them to patterns with only translations.

→
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Frieze patterns can also have ½ turns as symmetries.

We can see how they are generated by looking at a single piece that rotates by a ½ turn around a point,

→

before translating.

...

The entire pattern can then be rotated by a ½ turn around that rotation point.

And just as we saw for vertical mirrors, once there is one point of rotation, there are inVnitely many more,
on either side of each piece,

That the entire pattern can rotate around, yet remain unchanged.
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There is another type of symmetry called glide reDection.

A glide reDection is a transformation that reWects across a mirror line at the same time as translating
along it.

→

By continuing to translate or glide, a pattern with glide reWection is generated.

Glide reWections show themselves in other patterns as well. The patterns we generated with horizontal
mirrors have glide reWections too,

And color can reduce them

→

To patterns with glide reWections only.
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Can you see which patterns have horizontal mirrors and which have vertical mirrors? Use color to remove
all of the vertical mirrors.

frieze patterns with horizontal mirrors, and frieze patterns with vertical mirrors (∞∗ and ∗∞∞)
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Can you see all of the ½ turns in these frieze patterns? Use color to double the shortest possible distance
of translation for each pattern while maintaining some of the ½ turns. How does the number of ½ turns

change?

frieze patterns with ½ turns (22∞)
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Can you see the glide re<ections in these patterns? Use color to triple the shortest possible distance of
translation in the patterns, while making sure they still have glide re<ections.

frieze patterns with glide re<ections (∞×)
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Can you see which patterns have horizontal mirrors, and which patterns have glide re<ections? Use color
to transform the patterns with horizontal mirrors into patterns with glide re<ections only, so that all of the

patterns have glide re<ections.

frieze patterns with horizontal mirrors and frieze patterns with glide re<ections (∞∗ and ∞×)
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We have now seen patterns with each of the frieze group symmetries.

translation:

horizontal mirror reDection & translation:

vertical mirror reDection & translation:

glide reDection & translation:

½ turn rotation & translation:

They all have translations, and all but the simplest have an additional generator of either a
horizontal mirror, vertical mirror, glide reDection, or ½ turn.

Let’s clarify what we’ve been talking about and coloring...
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The frieze patterns illustrate the frieze groups. These groups contain symmetries, not patterns - the
patterns just help us see them.

For example, vertical mirror reDections and translations are symmetries in a group that can be seen
with the patterns:

And we can come up with inVnitely more pattern designs to illustrate it.

This is the case for all of our pattern groups. As long as a pattern has units

Where applying the same symmetries to any unit leaves the entire pattern unchanged,

→

Then the pattern illustrates the same group as any other patterns with the same symmetries.

½ turn rotation & translation:
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Color the patterns that share the same types of symmetries with the same sets of colors.

frieze patterns with ½ turns, glide re<ections, and translation (22∞, ∞×, ∞∞)
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Can you color the patterns to remove half of their mirrors? Use only 2 colors.

frieze patterns with vertical mirrors (∗∞∞)
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Combining the frieze group symmetries yields even more groups of patterns. For example, we can make
patterns with glide reDection, vertical mirror reDection, ½ turn rotation, translation:

And color can again reduce the symmetry in these patterns so that they share the same symmetry
groups as the simpler patterns we already colored.

½ turn rotation & translation:

glide reDection & translation:

vertical mirror reDection & translation:
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Patterns illustrating the frieze group with all possible symmetries
(glide reDection, horizontal mirror reDection, vertical mirror reDection, ½ turn rotation, translation)

Can be reduced to each of the pattern groups we have already seen.

½ turn rotation & translation:

horizontal mirror reDection & translation:

You can Vnd the rest!

Check in: Can you see ½ turns in these patterns? What about vertical mirrors?
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There are 7 frieze groups, and we have now colored all of them. There are no other ways to combine our
symmetries to generate patterns that repeat forever in one direction. Surprised? Then try to generate
patterns with different groups of symmetries by again starting with a single piece

Or use color to reduce a pattern to one with a combination of symmetries that we did not yet see, like a
pattern with just horizontal mirror reDection, vertical mirror reDection, translation.

You will have to give up - it's not possible for a pattern to have just those symmetries because
combining a horizontal mirror with a vertical mirror brings about a ½ turn rotation. This is just one
example of how combining symmetries results in other symmetries, and brings us back to pattern
groups we already saw.

Yet we can still Vnd more repeating patterns. Frieze patterns are limited to repetition along one
dimension, but wallpaper patterns do not have that limit.

When that limit is removed for the wallpaper patterns, the number of possible patterns and amount of
symmetry within them grows beyond what we have colored.
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Challenge: What happens when you start with a single piece and then transform it with both rotation and
glide re<ection? What other symmetries emerge?

Aside from our simplest frieze pattern group that has just translation, we can see how different types of
symmetries can be used to generate the same pattern.

See, we can re<ect across one mirror,

And then across another different mirror,

And keep re<ecting across these alternating mirrors,

To generate a pattern that can also be generated by just one mirror and a translation.

→
This is an example of how various sets of generators - two different mirrors versus one mirror and a
translation - can be used to generate the same pattern group.

Challenge: For each of the frieze pattern groups, what are the various sets of symmetries that can be used
to generate the entire pattern group?
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translation:

horizontal mirror reDection & translation:

vertical mirror reDection & translation:

glide reDection & translation:

½ turn rotation & translation:

vertical mirror reDection, glide reDection, ½ turn rotation & translation:

horizontal and vertical mirror reDection, ½ turn rotation & translation:
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Can you identify the symmetries in each of the patterns?

patterns from each of the 7 frieze groups

(∞∞, ∞∗, ∗∞∞, 22∞, ∞×, 2∗∞, ∗22∞)
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Can you identify the symmetries in each of the patterns?

patterns from each of the 7 frieze groups

(∞∞, ∞∗, ∗∞∞, 22∞, ∞×, 2∗∞, ∗22∞)
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Can you identify the symmetries in each of the patterns?
Color each pattern to triple its shortest possible translation distance, while making sure it continues to

represent the same symmetry group.

patterns from each of the 7 frieze groups

(∞∞, ∞∗, ∗∞∞, 22∞, ∞×, 2∗∞, ∗22∞)
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Use color to reduce the amount of symmetry in the patterns so that they only have vertical mirrors and
translations, and do not have ½ turns.

frieze patterns with glide re<ections, vertical mirrors, ½ turns, and translations (2∗∞)
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Use color to reduce these patterns to patterns that have vertical mirrors, glide re<ections, and ½ turns, but
not horizontal mirrors.

frieze patterns with ½ turns, glide re<ections, horizontal mirrors, vertical mirrors, and translations (∗22∞)



WALLPAPER GROUPS

Wallpaper Patterns repeat inVnitely along 2 dimensions, and with more dimensions come more
symmetries.

The frieze patterns showed us how translations, rotations, and mirrors and glide reWections can be
symmetries of inVnitely repeating patterns. The wallpaper patterns can translate, rotate, reWect and glide
in even more directions...

And since the repetitions in these patterns are no longer limited to a line, they can have more rotations
than just ½ turns.

We’ll color through patterns with all of these symmetries, as well as all of the ways in which they can be
combined. We will mutate these symmetries, and transform the patterns with color. But Vrst, let’s make
sure we can see their inVnite repetitions.

Check in: Can you extend your imagination to see wallpaper patterns repeat in>nitely beyond a page's
borders?
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Like the frieze patterns, we can see the inVnite translations within wallpaper patterns by focusing on a
single piece that shifts over,

This time in multiple directions.

...

... → ...

... ↓ ...

... ...

... ...

...

And again we can see how the entire pattern can shift with these translations. Because each shifting
piece is followed by inVnitely more pieces, the entire pattern is left unchanged.

These translations in different directions are symmetries of the wallpaper patterns that we can combine
to see such translations in even more directions.

→ ✷ ↓ = ↘
...

... ...

... ↘ ...

... ...

... ...

...
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Any 2 different directions of translation can be combined with each other, or with themselves, in any
number of ways, again and again, to produce more,

→ ✷ → ✷ ↓ ✷ ↓ ✷ ↓ ...

Showing us how these 2 translations can be the generators for a group of translations that span across
all directions of the wallpaper patterns.

And once again we can use color to alter our patterns, such as taking away some of these translations,

And doubling the shortest distance a pattern can translate vertically,

Or the many other ways that you will puzzle over.
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O

The simplest wallpaper patterns have translations as their only symmetries.

They get more interesting when we consider groups with more complex symmetries...

Challenge: Can you color the pattern so that the shortest possible translation is in a diagonal direction?
Then add more color so that the shortest possible distance of translation is tripled.



(O)



(O)
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We already saw how inVnitely repeating patterns can have rotations.

As we might expect, wallpaper patterns can have ½ turns, which we can see a single piece rotate
around,

Or an entire pattern rotate around.

Since the pieces of our patterns repeat along translations, their rotation points must repeat along these
same translations as well.
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Wallpaper patterns can also have ¼ turns,

As well as ⅓ turns,

And ⅙ turns.

But there are no other types of rotations for the wallpaper patterns, and we can see why.
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As each of our pieces rotates around a point, we can imagine it drawing a shape around itself as a
boundary.

This bounding shape has the same rotations as the point it was drawn around, and it is centered on that
rotation point.

When our starting piece shifts over in a translation, or is transformed by any other symmetry, all of the
other pieces that share its rotation point must go with it,

And so its rotation point and bounding shape follow as well.
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This collection of pieces, with their rotation point and bounding shape, keep moving with the inVnite
translations and symmetries of a wallpaper pattern,

So that we can see that bounding shape as part of an inVnite grid of identical bounding shapes,
providing structure for a pattern.

See, a square can make a grid for a pattern that has ¼ turns, with 4 other squares meeting perfectly at
each of its sides. Each time it rotates by a ¼ turn, the surrounding squares rotate around it, each landing
on an identical square, so that a pattern structured within this grid can be left unchanged.

Making perfect grids is possible with shapes that have the right number of rotations,

Such as the shapes with 2, 4, 3 and 6 rotations that can be drawn around our pieces as they make
½ turns, ¼ turns, ⅓ turns and ⅙ turns.

2 4 3 6
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But making these grids will not work with shapes that have any other number of rotations.

...

Their angles cannot add up in a way to perfectly equal a full turn, so these other shapes cannot perfectly
Vt together in a grid.

5 7 8 9
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For example, we can draw a shape with 5 rotations around a piece as its makes ⅕ turns,

But we cannot make a perfect grid by surrounding that shape with 5 copies of itself at each of its sides.

So we cannot have an inVnitely repeating wallpaper pattern with ⅕ turns.

Challenge: Can you see the rotations in the following patterns? Can you imagine an underlying grid?

Challenge: Use color to remove the rotations in the patterns while maintaining their translations.
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Now that we have seen all the possible symmetries of the wallpaper patterns
(translations, mirrors, glide reDections, ½ turns, ¼ turns,⅓ turns, and ⅙ turns), we can color through
patterns with all of their possible combinations,

↖ ↑ ↗
← →

↙ ↓ ↘
In their many directions.

We'll play with these symmetries, destroy some, and puzzle over how to transform patterns to illustrate
different symmetry groups.

Each possible combination of symmetries de>nes a wallpaper group, and these groups have names. The
names (like xx or ∗632) may look cryptic, but they can be decoded to describe the symmetries within their
patterns. If you want to decode them, the notation section at the end tells how.
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∗∗

This symmetry group is simple to see, since it has only mirror reWections.

We can see a single piece of the pattern reWect across any one of its mirrors

or see the entire pattern reWect across them.

Challenge: Can you see the pattern’s different parallel vertical mirrors?

Challenge: Color the pattern to remove half of its mirrors.



(∗∗)
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xx

This pattern group has glide reWections

along parallel axes.

These axes shift over with its translations. This is due to group closure: the combination of any of the
glide reWection or translation symmetries in the group must also be in the group.

Challenge: Can you see the different parallel axes of the glide re<ections?

Challenge: Can you color the pattern to remove half of the glide re<ections axes? Use only 2 colors.



(xx)
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x∗

This pattern has parallel axes of both glide and mirror reWections,

and we can again use color to reduce it to simpler pattern groups we already saw

such as by coloring away its glide reWections while keeping its mirror reWections.

Challenge: Can you see the different parallel axes of glide re<ection?

Challenge: Color the pattern to remove the mirror re<ections while keeping glide re<ections.



(x∗)
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2222

This pattern has ½ turn rotations. There are 4 different points that we can see a single piece make a ½
turn around

and that the entire pattern can turn around.

Challenge: Can you see the many rotation points in the pattern?

Challenge: Color the pattern to remove some rotations while keeping others.



(2222)
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∗2222

This pattern has perpendicular axes of mirror reWection

with ½ turn rotations where the axes intersect.

This is about to get more complicated...

Challenge: Is it possible for patterns to have perpendicular axes of re<ection without ½ turns? Hint: Is the
result of re<ecting a shape across two perpendicular mirrors the same as rotating it?

Challenge: Color the pattern to remove its mirrors while maintaining its ½ turns.



(∗2222)
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22x

This pattern group has glide reWections and ½ turn rotations, but no mirror reWections. The glide
reWections have perpendicular axes, and the rotation centers do not lie on their intersection.

We can shift these axes and yet have a pattern with the same symmetries, and so it’s in the same
wallpaper group.

Challenge: Can you see the many different axes of glide re<ection?

Challenge: Color the pattern to remove the horizontal axes of glide re<ection while maintaining the vertical
glide re<ections. What happens to the ½ turns?



(22x)
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22∗

This pattern group contains both mirror and glide reWections where the axes of the glide reWections are
perpendicular to those of the mirror reWections. It also has ½ turn rotations on the glide reWection axes,
halfway between the mirror reWections.

We can again shift the axes to see a pattern with the same symmetries.

Challenge: Can you see the glide re<ections and the rotation points in the pattern?

Challenge: Color the pattern to remove the glide re<ections while maintaining the mirror re<ections. What
happens to the rotations?



(22∗)
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2∗22

Like another pattern group we already colored, this one has perpendicular reWection axes with ½ turn
rotations at their intersections.

However it also has additional rotations that do not lie on the intersection of the reWections.

Challenge: Can you see the rotation points that lie on the mirror re<ection axes as well as those that do
not?

Challenge: Use color to transform the pattern into one that has glide re<ections but no mirror re<ections.



(2∗22)
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442

This pattern has ¼ turn rotations

As well as ½ turns.

Challenge: Color the pattern to reduce the ¼ turns to ½ turns.



(442)



I N F I N ITE LY  R E P E ATI N G  PAT TE R N S :  WA L L PA P E R  G R O U P S122

∗442

This pattern group has ½ turn and ¼ turn rotations, as well as reWections with axes that intersect in ways
that are both perpendicular and diagonal.

Each of its rotation centers lie on multiple reWection axes:
The centers of the ¼ turns are at the intersection of 4 mirror reWection axes. The centers of the ½ turns
sit on the intersection of 2 mirror reWection axes and 2 glide reWection axes.

Challenge: Can you see the ½ turns as well as the ¼ turns? Can you >nd the many different axes of
re<ection?

Challenge: Color the pattern to remove its re<ections so that rotations are its only symmetries.



(∗442)



I N F I N ITE LY  R E P E ATI N G  PAT TE R N S :  WA L L PA P E R  G R O U P S124

4∗2

This pattern group again contains ½ turn and ¼ turn rotations as well as both mirror and glide
reWections, but this time with more glide reWections - there are 4 directions of glide reWection.

Each ½ turn rotation sits on the intersection of 2 perpendicular mirror reWection axes and the ¼ turn
rotations sit on glide reWection axes.

Challenge: Can you see the many different axes of glide re<ection?

Challenge: Color the pattern to remove the ¼ turns while keeping the ½ turns.



(4∗2)
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333

This is the simplest wallpaper pattern group that contains a ⅓ turn rotation. It has no reWections, but
others can...

Challenge: There are 3 different ⅓ turn rotation points. Can you see them?

Challenge: Color the pattern to remove its rotations so that translation is its only symmetry.



(333)
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3∗3

This pattern group contains mirror reWections, glide reWections, and ⅓ turn rotations.

Some of the centers of rotation lie on the reWection axes, and some do not.

Challenge: Can you see the rotation centers that are both on and off the re<ection axes?

Challenge: Color the pattern to remove the mirror re<ections while keeping the ⅓ turns.



(3∗3)
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∗333

This pattern group also has mirror reWections, glide reWections, and ⅓ turn rotations,

And this time all of the centers of rotation lie on the reWection axes.

Challenge: Can you see the glide re<ections?

Challenge: Color the pattern to again remove the re<ections while keeping the ⅓ turns.



(∗333)
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632

Any group with both ½ turns and ⅓ turns must have all of their combinations, including ⅙ turns...

This pattern group has ½ turn, ⅓ turn, and ⅙ turn rotations but no reWections.

Challenge: Can you see the ⅙ turns? Can you see the ½ turns?

Challenge: Color the pattern to remove the ½ turn and ⅙ turn rotations while maintaining the ⅓ turns.



(632)



I N F I N ITE LY  R E P E ATI N G  PAT TE R N S :  WA L L PA P E R  G R O U P S134

∗632

This pattern group has ⅙ turn, ⅓ turn, and ½ turn rotations, as well as mirror and glide reWections.

Challenge: How many axes of re<ection intersect at the centers of the ⅙ turn rotations?

Challenge: Color the pattern to remove the ⅙ turns while keeping mirror re<ections and ⅓ turns.



(∗632)



I N F I N ITE LY  R E P E ATI N G  PAT TE R N S :  WA L L PA P E R  G R O U P S136

We have now colored through patterns that illustrate each of the wallpaper groups. Yet each wallpaper
group has endlessly many more pattern designs that could represent it. As long as a pattern has the
same symmetries as another, then it illustrates the same group.

We can continue to Vnd these patterns in nature and the physical world around us,

Beehive Ojce building Basket Weave Bricks

Or stay within the worlds of art and design and mathematics.

∗632 ∗2222 2222 2∗22

Symmetries, and the relationships between them, have inspired the works of artists, architects, and
mathematicians, who have a history of building upon each other’s ideas and creations. For example, our
symmetries can be explored through the artworks of M.C. Escher, who studied the wallpaper patterns he
saw in Islamic architecture, particularly the Alhambra palace in Spain. Developing his artwork was aided
by the papers he read about symmetry groups by mathematicians, and these mathematicians believe
his art further contributed to their Veld.

Mathematics can help us understand the symmetries within art and the world around us, as well as their
abstractions. There are even symmetries that we cannot precisely draw on paper, or picture in our
physical world, but that we can explore in the other realms that math shows to us.









NOTES ON NOTATION

Cyclic Groups

We name our cyclic groups with Cn notation, where n is a number that corresponds to the number of
rotations in a group. For example, we illustrate our C3 group with shapes that have 3 rotations.

Dihedral Groups

We use Dn notation to name our dihedral groups, where by Dn we mean the group with n rotations and n
mirrors. For example, we illustrate the D3 group with shapes that have 3 rotations and 3 mirror
reWections as symmetries.

Note that while many books use this same Dn notation, others use the D2n notation, where they would
call our D3 group D6. Neither notation is better, they simply differ by academic Veld or the backgrounds
of the writers - so watch out if you read a book about abstract algebra! This book uses the Dn notation
rather than the D2n notation for ease and clarity, and because this is the notation more commonly used
by those who stare at shapes (geometers).

Pattern Groups

In this coloring book, we use orbifold notation to name each of the frieze and wallpaper groups with
symbols, such as ∗2222. In this section, we describe what this notation means, and how to decode it.

(∗2222)

C3 C4 C5

D3 D4 D5
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There are a number of ways that mathematicians use notation to classify the frieze and wallpaper
pattern groups. For example, we could have used the IUC notation to call that same ∗2222 pattern pmm.
The IUC notation names a group by its generators. This can be confusing because of the ambiguity it
presents: As we saw, many groups have multiple choices for generators.

The orbifold notation names symmetry groups by their symmetries. The orbifold names can be read as
descriptions of the symmetries we can Vnd in the patterns they name.

Before we talk about how to read the symbols in the orbifold notation, let’s talk about what an orbifold is.

(∗2222)

We can think of an orbifold as a quotient of a surface divided by a symmetry group.

Imagine taking a pattern and folding it up along its symmetries until we come to the smallest piece that
can no longer be folded.

(orbifold for ∗2222)

This piece is the orbifold. The symmetries of the original pattern are features of this piece, and they can
be interpreted as instructions for how to unfold it to get our pattern again.

The original pattern (∗2222) has mirrors and four different ½ turn rotation points where the mirrors
intersect. These mirrors are the bounding sides of the orbifold, and the ½ turn rotation points are its
corners.
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Reading The Orbifold Symbols

Groups are named in the orbifold notation by a string of the following symbols.

Positive integers and the inVnity symbol 1, 2, 3, 4, 5, 6, 7, ... ∞ indicate a rotation point with that many
rotations.

∗ is used whenever there are mirror reWections.

x indicates glide reWection that is not the result of other symmetries in the pattern group.

o indicates translations that are not generated by other symmetries in the group.

Whenever a pattern has mirror axes that intersect, there is a rotation point at their intersection. The
number of rotations around that point is the same as the number of intersecting mirrors.

Patterns can also have rotations points that do not sit on mirrors.

Any number in a pattern name that comes before a ∗ symbol describes a rotation point that does not sit
on a mirror, while any number that comes after a ∗ symbol describes a rotation point that does sit on
mirrors.

For example, 442 names a pattern group that has two different ¼ turn rotation points, and a ½ turn
rotation point, and no mirrors.

(442)
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∗442 names a pattern that also has two different ¼ turn rotation points and a ½ turn rotation point, but
this time all of those rotation points sit on the intersections of mirrors. The ¼ turns are where 4 mirrors
intersect, and the ½ turns are where 2 mirrors intersect.

(∗442)

4∗2 then names a pattern with a ¼ turn rotation point that does not sit on any mirrors, and a ½ turn
rotation point that sits at the intersection of 2 mirrors.

(4∗2)

The names of the wallpaper groups use only the numbers 2, 3, 4, 6 because these are the only rotations
possible for patterns drawn on an endless piece of Wat paper, or the euclidean plane. However, more
rotations are possible on other surfaces, such as spheres and hyperbolic planes.



N OTE S  O N  N OTATI O N

What about the frieze groups?

Orbifold notation describes frieze patterns as if they were wrapped around an inVnitely large sphere
rather than following an inVnitely long line. For this reason, instead of using the o symbol to indicate
translation, they use the ∞ symbol to indicate inVnite rotations. These points of inVnite rotation are at the
poles of the sphere, while the frieze pattern wraps around the sphere like an equator.

(∞∞)

(∗∞∞)

However, if the frieze pattern has a horizontal mirror or a ½ turn or a glide reWection, then the poles are
identical. We can fold the pattern along these symmetries so that the poles meet, and the orbifold has
just one point of rotation, so only one ∞ symbol is used.

(∞∗)

(22∞)

For more about orbifolds and orbifold notation, read “The Orbifold Notation for Two-Dimensional Groups” by John H. Conway
and Daniel H. Huson.



THEORY REFERENCE

Group theory helps deVne abstract structures. The groups in this coloring book are only a window into
the groups explored in the many realms of mathematics. This book is about "symmetry groups", and we
use shapes and patterns to illustrate them.
Remember: the groups contain symmetries, not the shapes or patterns.

The groups we talk about are the groups of symmetries in our illustrations. We can say a shape or
pattern is more "symmetrical" than another if it has a larger group of symmetries.

There are some rules and deVnitions that pertain to all groups, not just ours.

Group

A group G is a set coupled with a binary operator ✷ that satisVes 4 requirements:

See the details of each rule for examples.

Closure: G is closed under ✷; i.e., if a and b are in G, then a✷b is in G.

Identity element: There exists an identity element e in G; i.e., for all a in G we have

a ✷ e = e ✷ a = a.

Inverse element: Every element in G has an inverse in G; i.e., for all a in G, there exists an

element -a in G such that a✷(-a) = (-a)✷a = e.

Associativity: The operator ✷ acts associatively; i.e., for all a,b,c in G, a ✷ (b ✷ c) = (a ✷ b) ✷ c.

Associative Property

When an operator ✷ for a group G is associative, the way elements in G are grouped when the operator is
applied does not matter. I.e., for all a,b,c in G, a ✷ (b ✷ c) = (a ✷ b) ✷ c.

One example of this is adding numbers: 1 + (2 + 3) = (1 + 2) + 3.
Notice that subtraction of numbers is not associative: 1 − (2 − 3) does not equal (1 − 2) − 3.

Our groups of rotations have an associative operator: Our operator here is combining rotations.
For C3, (  turn ✷  turn) ✷  turn =  turn ✷ (  turn ✷  turn). That is, rotating twice by a  turn and
then rotating the result by a  turn is the same as combining a  turn with the result of rotating by a 
turn and then by a  turn.

1⁄3 1⁄3 2⁄3 1⁄3 1⁄3 2⁄3 1⁄3
2⁄3 1⁄3 1⁄3

2⁄3
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Binary Operator

A binary operator ✷ combines 2 elements, a and b, from a set S to give a third element: a ✷ b.

An example is addition over the set of counting numbers: + is a binary operator that combines 2
numbers to create their sum: 1 + 2 = 3.
Our binary operator combines the transformations that act on our symmetry groups. For symmetry
elements a and b, a ✷ b says "do a, and then do b". For example, if transformation a is "rotate by a  turn"
and b is "reWect horizontally", then a ✷ b is "rotate by a  turn and then reWect horizontally”.

Closure

A set S is closed under an operator ✷ if combining any 2 elements in S with ✷ results in an element that
is also in S; i.e, for any a and b in S, a✷b is also in S.

For example, the set of all counting numbers 0,1,2,3,... is closed under the addition operator + because
adding any two counting numbers results in another counting number.
Coming back to our sets of rotations, the set {  turn,  turn } is not closed because combining the 
turn with the  turn results in the  turn which is not in this set.

Commutative Property

A binary operator ✷ is commutative if the order in which it combines elements does not matter.

I.e., for any 2 elements a and b, a✷b = b✷a.

For example, addition is commutative because 1 + 2 = 2 + 1, but subtraction is not commutative
because 1 − 2 ≠ 2 − 1.
A group with a commutative binary operator ✷ is called a commutative group. This means that the order
in which any 2 of the group’s elements are combined does not matter.

For example, our groups with only rotations are commutative groups because the order in which any 2
rotations are combined does not matter. e.g.  turn ✷  turn =  turn ✷  turn =  turn.
However, our groups with both rotations and reWections are not commutative because the order in which
their symmetries are combined does matter.

Cyclic Group

A group G is called cyclic if it can be generated by a single generator.

Our groups of rotations are cyclic groups because they can be generated by combining just one rotation
with itself, again and again. For example, our C2 group, {0 turn,  turn}, is generated by the  turn.
There are many other cyclic groups out there. Another C2 group that may look different, is the group
{1, −1} where the members of the group are the numbers 1 and −1 and the way of combining these
members is with multiplication. It can be generated by −1.
The term cyclic may be misleading. Our cyclic groups had a >nite number of elements, and combining
them again and again created cycles. However, there are cyclic groups with in>nite elements, such as the
integers under addition.

1⁄4
1⁄4

1⁄4 2⁄4 1⁄4
2⁄4 3⁄4

1⁄4 2⁄4 2⁄4 1⁄4 3⁄4

1⁄2 1⁄2
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Generator

Generators of a group are a set of elements that when combined with themselves, or each other, can
produce all the other elements of the group.

For example, −2 and 2 are generators that when combined with addition, generate the entire group of
even integers.

Identity Element

An identity element is a neutral element and every group has one. Whenever the identity element is
combined with any other element of the group, the result is the same as that other element.

For our groups of rotations, the identity element is the 0 turn: rotating by the 0 turn is the same as doing
nothing at all.
For the group of integers under addition, the identity element is 0: 0 + 2 = 2.

Inverse Element

An inverse element is the reverse of another element.

More formally, for a set, S with a binary operator, ✷, and a and b in S: a is the inverse of b if
a✷b = b✷a = e, where e is the identity element.

For our groups of rotations, each rotation’s inverse element is the rotation that undoes it. For example,
the inverse of the  turn is the  turn because  turn ✷  turn → full turn. The full turn is the same as
the 0 turn which is our identity element.
For addition on the integers, each integer’s inverse element is it’s negative: −1 is the inverse of 1 because
−1 + 1 = 0.

Order

The order of a group G is the number of elements in G. The order of G is sometimes written as |G|.

For example, the order of our C3 group of rotations is 3 because C3 has 3 elements:

{ }

Set

A set is a collection of distinct elements.

For example, the set {blue, red, blue} is the same set as the set {blue, red}.
For our sets of rotations, the set {0 turn,  turn,  turn} is the same as the set {0 turn,  turn} because a

 turn means the same thing as a  turn - they are not distinct.

1⁄3 2⁄3 1⁄3 2⁄3

0 turn 1/3 turn 2/3 turn

1⁄3 4⁄3 1⁄3
1⁄3 4⁄3
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Subgroup

Given a group G, a subgroup of G is a group with the same binary operator as G and whose members
are all also in G.

For example, the group of even integers under addition {... −2, 0, 2, 4,...}, + is a subgroup of the group of
all integers under addition {... −2, −1, 0, 1, 2,...}, +.
However, the same cannot be said for odd integers. The set of odd integers under addition
{... −3, −1, 1, 3, 5,...}, + is not closed and therefore cannot be a group: Combining odd integers with
addition produces even integers (e.g. 1 + 3 = 4), which are clearly not in the set of odd integers.



CHALLENGE SOLUTIONS & MORE

Challenge solutions are at:
http://beautifulsymmetry.onl/solutions

There are more patterns to play with, print, and color.

You can generate more circular patterns to represent the cyclic and dihedral groups at:
http://beautifulsymmetry.onl/circular-pattern

Or the 7 frieze patterns:
http://beautifulsymmetry.onl/frieze

As well as the 17 wallpaper patterns:
http://beautifulsymmetry.onl/wallpaper


