
BEAWebLogic
Server®

Programming WebLogic
Enterprise JavaBeans,
Version 3.0

Version: 10.0
Revised: May 30, 2008

Programming WebLogic Enterprise JavaBeans, Version 3.0 iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-2

Comprehensive Example for the EJB 3.0 Developer . 1-3

Release-Specific EJB 3.0 Information . 1-4

2. Understanding Enterprise JavaBeans 3.0
Understanding EJB 3.0: New Features and Changes From EJB 2.X 2-1

Changes in the EJB Programming Model and Requirements Between Versions 2.X and
3.0 . 2-2

New EJB 3.0 Features. 2-3

WebLogic Server Value-Added EJB 3.0 Features. 2-3

EJB 3.0 Examples . 2-4

Programming 3.0 Entities . 2-5

3. Simple Enterprise JavaBeans 3.0 Examples
Example of a Simple Stateless EJB . 3-1

Example of a Simple Stateful EJB. 3-3

Example of an Interceptor Class . 3-7

Example of Invoking a 3.0 Entity From A Session Bean . 3-8

iv Programming WebLogic Enterprise JavaBeans, Version 3.0

4. Iterative Development of Enterprise JavaBeans 3.0
Overview of the EJB 3.0 Development Process . 4-1

Create a Source Directory . 4-3

Program the EJB 3.0 Business Interface . 4-4

Business Interface Application Exceptions . 4-4

Using Generics in EJBs . 4-5

Program the Annotated EJB Class . 4-5

Optionally Program Interceptors . 4-6

Compile Java Source. 4-6

Optionally Create and Edit Deployment Descriptors . 4-7

Package . 4-8

Deploy . 4-8

5. Programming the Annotated EJB 3.0 Class
Overview of Metadata Annotations and EJB 3.0 Bean Files . 5-1

Programming the Bean File: Requirements and Changes From 2.X 5-2

Bean Class Requirements and Changes From 2.X . 5-2

Bean Class Method Requirements . 5-3

Programming the Bean File: Typical Steps. 5-3

Specifying the Business and Other Interfaces . 5-5

Specifying the Bean Type (Stateless, Stateful, Message-Driven) 5-6

Injecting Resource Dependency into a Variable or Setter Method 5-7

Invoking a 3.0 Entity . 5-8

Specifying Interceptors for Business Methods or Lifecycle Callback Events. 5-12

Programming Application Exceptions . 5-18

Securing Access to the EJB . 5-19

Specifying Transaction Management and Attributes . 5-22

Complete List of Metadata Annotations By Function . 5-22

Programming WebLogic Enterprise JavaBeans, Version 3.0 v

6. Using Kodo with WebLogic Server
Overview of Kodo . 6-1

Creating a Kodo Application . 6-2

Using Different Kodo Versions . 6-2

Configuring Persistence. 6-2

Editing the Configuration Property Files . 6-3

Configuring a Plugin . 6-4

Deploying a Kodo Application . 6-4

Configuring a Kodo Application . 6-4

A. EJB 3.0 Metadata Annotations Reference
Overview of EJB 3.0 Annotations .A-1

Annotations for Stateless, Stateful, and Message-Driven Beans.A-2

javax.ejb.ActivationConfigProperty. .A-2

javax.ejb.ApplicationException .A-3

javax.ejb.EJB .A-4

javax.ejb.EJBs .A-5

javax.ejb.Init .A-6

javax.ejb.Local .A-6

javax.ejb.LocalHome .A-7

javax.ejb.MessageDriven .A-8

javax.ejb.PostActivate .A-10

javax.ejb.PrePassivate . A-11

javax.ejb.Remote .A-12

javax.ejb.RemoteHome .A-12

javax.ejb.Remove .A-13

javax.ejb.Stateful .A-14

javax.ejb.Stateless. .A-15

vi Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.Timeout. A-16

javax.ejb.TransactionAttribute . A-16

javax.ejb.TransactionManagement. A-17

Annotations Used to Configure Interceptors. A-18

javax.interceptor.AroundInvoke. A-18

javax.interceptor.ExcludeClassInterceptors . A-19

javax.interceptor.ExcludeDefaultInterceptors . A-19

javax.interceptor.Interceptors. A-19

Annotations Used to Interact With Entity Beans . A-20

javax.persistence.PersistenceContext. A-20

javax.persistence.PersistenceContexts . A-22

javax.persistence.PersistenceUnit . A-24

javax.persistence.PersistenceUnits. A-25

Standard JDK Annotations Used By EJB 3.0 . A-26

javax.annotation.PostConstruct . A-26

javax.annotation.PreDestroy . A-27

javax.annotation.Resource . A-27

javax.annotation.Resources . A-29

Standard Security-Related JDK Annotations Used by EJB 3.0 A-30

javax.annotation.security.DeclareRoles . A-30

javax.annotation.security.DenyAll . A-31

javax.annotation.security.PermitAll . A-31

javax.annotation.security.RolesAllowed . A-31

javax.annotation.security.RunAs . A-32

Programming WebLogic Enterprise JavaBeans, Version 3.0 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
Enterprise Java Beans, Version 3.0.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“Comprehensive Example for the EJB 3.0 Developer” on page 1-3

“Release-Specific EJB 3.0 Information” on page 1-4

Document Scope and Audience
This document is a resource for software developers who develop applications that include
WebLogic Server® Enterprise Java Beans (EJBs), Version 3.0.

The document mostly discusses the new EJB 3.0 programming model, in particular the use of
metadata annotations to simplify development. The document briefly discusses the main
differences between EJB 3.0 and 2.X for users who are familiar with programming EJB 2.X and
want to know why they might want to use the new 3.0 programming model.

This document does not address EJB topics that the same between versions 2.X and 3.0, such as
design considerations, EJB container architecture, deployment descriptor use, and so on. This
document also does not address production phase administration, monitoring, or performance

I n t roduct i on and Roadmap

1-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

tuning. For links to WebLogic Server documentation and resources for these topics, see “Related
Documentation” on page 1-2.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java EE) Version
5 and EJB 2.X concepts.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding Enterprise JavaBeans 3.0,” provides an overview of the new
EJB 3.0 features and programming model, as well as a brief description of the differences
between EJB 3.0 and 2.X.

Chapter 3, “Simple Enterprise JavaBeans 3.0 Examples,” provides simple examples of
programming EJBs using the new metadata annotations specified by EJB 3.0.

Chapter 4, “Iterative Development of Enterprise JavaBeans 3.0,” describes the EJB
implementation process, and provides guidance for how to get an EJB up and running in
WebLogic Server.

Chapter 5, “Programming the Annotated EJB 3.0 Class,” describes the requirements and
typical steps when programming the EJB bean class that contains the metadata annotations.

Chapter 6, “Using Kodo with WebLogic Server,” describes how to use BEA Kodo to create
entity beans. BEA Kodo is a product that provides the implementation of the Java
Persistence API section of the EJB 3.0 specification, as well as other persistence-related
technologies such as Java Data Objects (JDO).

Appendix A, “EJB 3.0 Metadata Annotations Reference,” provides reference information
for the EJB 3.0 metadata annotations, as well as information about standard metadata
annotations that are used by EJB.

Appendix B, “Persistence Configuration Schema Reference,” provides reference
information about the persistence-configuration.xml file, which is the
WebLogic-specific file used to configure BEA Kodo entities.

Related Documentation
This document contains EJB 3.0-specific development information. Additionally, it provides
information only for session and message-driven beans. For completed information on general

Comprehens ive Example fo r the E JB 3 .0 Deve loper

Programming WebLogic Enterprise JavaBeans, Version 3.0 1-3

EJB design and architecture, the EJB 2.X programming model (which is fully supported in EJB
3.0), and programming 3.0 entities, see the following documents:

Programming Weblogic Enterprise JavaBeans (Version 2.X)

An Introduction to the Enterprise JavaBeans 3.0 Specification (dev2dev Article)

Enterprise JavaBeans 3.0 Specification (JSR-220)

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications in development and production environments.

Comprehensive Example for the EJB 3.0 Developer
In addition to this document and the basic examples described in Chapter 3, “Simple Enterprise
JavaBeans 3.0 Examples,” BEA Systems also provides a comprehensive example in the
WebLogic Server distribution kit. The example illustrates EJB 3.0 in action and provides
practical instructions on how to perform key EJB 3.0 development tasks. In particular, the
example demonstrates usage of EJB 3.0 with:

Java Persistence API

Stateless Session Bean

Message Driven Bean

Asynchronous JavaScript based browser application.

The example uses a persistent domain model for entity EJBs.

WebLogic Server optionally install this comprehensive example in
WL_HOME\samples\server\examples\src\examples\ejb\ejb30, where WL_HOME is the
top-level directory of your WebLogic Server installation. On Windows, you can start the
examples server, and obtain information about the samples and how to run them from the
WebLogic Server Start menu.

BEA recommends that you run this example before programming your own application that uses
EJB 3.0.

I n t roduct i on and Roadmap

1-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

Release-Specific EJB 3.0 Information
For release-specific information, see these sections in WebLogic Server Release Notes:

WebLogic Server Features and Changes lists new, changed, and deprecated features.

WebLogic Server Known and Resolved Issues lists known problems by general release, as
well as service pack, for all WebLogic Server APIs, including Web Services.

Programming WebLogic Enterprise JavaBeans, Version 3.0 2-1

C H A P T E R 2

Understanding Enterprise JavaBeans
3.0

These sections describe the new features and programming model of EJB 3.0.

It is assumed the reader is familiar with Java programming, Java Platform, Enterprise Edition
(Java EE) Version 5, and EJB 2.x concepts and features.

“Understanding EJB 3.0: New Features and Changes From EJB 2.X” on page 2-1

“WebLogic Server Value-Added EJB 3.0 Features” on page 2-3

“EJB 3.0 Examples” on page 2-4

“Programming 3.0 Entities” on page 2-5

Understanding EJB 3.0: New Features and Changes From
EJB 2.X

Enterprise JavaBeans (EJB) is a Java Platform, Enterprise Edition (Java EE) Version 5
technology for the development and deployment of component-based business applications.
Although EJB is a powerful and useful technology, the programming model in version 2.X and
previous was complex and confusing, requiring the creation of multiple Java files and
deployment descriptors for even the simplest of EJB. This complexity hindered the wide adoption
of EJBs.

As a consequence, one of the central goals of Version 3.0 of the EJB specification is to make it
much easier to program an EJB, in particular by reducing the number of required programming

Unders tanding Ente rp r i se JavaBeans 3 .0

2-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

artifacts and introducing a set of EJB-specific metadata annotations that make programming the
bean file easier and more intuitive.

Another goal of the EJB 3.0 specification was to standardize the persistence framework and
reduce the complexity of the entity bean programming model and object-relational (O/R)
mapping model.

Note: This document does not discuss programming 3.0 entity beans; that information is
provided in the Enterprise JavaBeans 3 Persistence guide of the BEA Kodo
documentation set.

The remainder of this section describes, at a high-level, how the programming model and
requirements changed in EJB 3.0, as compared to version 2.X, and lists a brief description of the
the new features of EJB 3.0.

For a more detailed article that discusses these issues in depth, see An Introduction to the
Enterprise JavaBeans 3.0 Specification (dev2dev Article).

Changes in the EJB Programming Model and Requirements
Between Versions 2.X and 3.0
The changes between EJB 2.X and 3.0 are:

You are no longer required to create the EJB deployment descriptor files (such as
ejb-jar.xml). You can now use metadata annotations in the bean file itself to configure
metadata. You are still allowed, however, to use XML deployment descriptors if you want;
in the case of conflicts, the deployment descriptor value overrides the annotation value.

Note: In this release, WebLogic-specific features can only be configured in the WebLogic
deployment descriptors, such as weblogic-ejb-jar.xml.

The bean file can be a plain Java object (or POJO); it is no longer required to implement
javax.ejb.SessionBean or javax.ejb.MessageDrivenBean.

As a result of not having to implement javax.ejb.SessionBean or
javax.ejb.MessageDrivenBean, the bean file no longer has to implement the lifecycle
callback methods, such as ejbCreate, ejbPassivate, and so on. If, however, you want
to implement these callback methods, you can name them anything you want and then
annotate them with the appropriate annotation, such as @javax.ejb.PostActivate.

The bean file is required to use a business interface. The bean file can either explicitly
implement the business interface or it can specify it using the @javax.ejb.Remote or
@javax.ejb.Local annotations.)

WebLog ic Se rve r Va lue-Added EJB 3 .0 Featu res

Programming WebLogic Enterprise JavaBeans, Version 3.0 2-3

The business interface is a plain Java interface (or POJI); it should not extend
javax.ejb.EJBObject or javax.ejb.EJBLocalObject.

The business interface methods may not throw java.rmi.RemoteException unless the
business interface extends java.rmi.Remote.

Because the EJB 3.0 programming model is so simple, BEA no longer supports using the EJBGen
tags and code-generating tool on EJB 3.0 beans. Rather, you can use this tool only on 2.X beans.
For information, see EJBGen Reference.

New EJB 3.0 Features
Bean files can now use metadata annotations to configure metadata, thus eliminating the
need for deployment descriptors.

The only required metadata annotation in your bean file is the one that specifies the type of
EJB you are writing (@javax.ejb.Stateless, @javax.ejb.Stateful,
@javax.ejb.MessageDriven, or @javax.persistence.Entity). The default value for
all other annotations reflect typical and standard use of EJBs. This reduces the amount of
code in your bean file in the case where you are programming a typical EJB; you only
need to use additional annotations if the default values do not suit your needs.

Bean files supports dependency injection. Dependency injection is when the EJB container
automatically supplies (or injects) a variable or setter method in the bean file with a
reference to another EJB or resource or another environment entry in the bean’s context.

Bean files support interceptors, which is a standard way of using aspect-oriented
programming with EJB.

You can configure two types of interceptor methods: those that intercept business methods
and those that intercept lifecycle callbacks. Y

You can configure multiple interceptor methods that execute in a chain in a particular
order.

You can configure default interceptor methods that execute for all EJBs contained in a JAR
file.

WebLogic Server Value-Added EJB 3.0 Features
The following features are not part of the Enterprise JavaBeans 3.0 specification, but rather, are
value-added features to further simplify the EJB 3.0 programming model:

Unders tanding Ente rp r i se JavaBeans 3 .0

2-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

Automatic persistence unit deployment based on variable name.

If you want to query and update an entity in your session bean, you annotate a variable
with either the @javax.persistence.PersistenceContext or
@javax.persistence.PersistenceUnit annotation; the variable is then injected with
persistence unit information. You can specify the unitName attribute to reference a
particular persistence unit in the persistence.xml file of the EJB JAR file; in this case,
the EJB container automatically deploys the persistence unit and sets its JNDI name to the
persistence unit name, as listed in the persistence.xml file. You can also simply name
the injected variable exactly the same as the persistence unit you want injected into the
variable; in this case, you no longer need to specify the unitName attribute, but the EJB
container still deploys the persistence unit and sets its JNDI name to the persistence unit
name.

See “Invoking a 3.0 Entity” on page 5-8 for general information about invoking an entity
from a session bean and “Annotations Used to Interact With Entity Beans” on page A-20
for reference information about the annotations.

Support for vendor-specific subinterfaces when injecting an EntityManager from a
particular persistence provider.

When you inject a persistence context into a variable using either
@javax.persisetence.PersistenceContext or
@javax.persistence.PersistenceUnit, the standard data type of the injected variable
is EntityManager. If your persistence provider provides a subinterface of the
EntityManager (such as KodoEntityManager in the case of BEA Kodo) then as a
convenience you can simply set the data type of the injected variable to that subinterface,
rather than use the more complicated lookup mechanisms as described in the EJB 3.0
specification. For example:

@PersistenceContext private KodoEntityManager em;

See “Invoking a 3.0 Entity” on page 5-8 and KodoEntityManager for general information
about EntityManager and the BEA Kodo-provided KodoEntityManager.

EJB 3.0 Examples
See Chapter 3, “Simple Enterprise JavaBeans 3.0 Examples,” for simple examples of stateless
and stateful session beans, interceptor classes, and how to invoke an entity. The sections in this
guide reference these examples extensively. These examples are meant to simply show how to
use the new EJB 3.0 metadata annotations and programming model, rather than how to program
the business code of your EJB.

Programming 3 .0 Ent i t i es

Programming WebLogic Enterprise JavaBeans, Version 3.0 2-5

For a more complex example that includes actual business code, see samples directory of the
WebLogic Server installation, in particular
WL_HOME/samples/server/examples/src/examples/ejb/ejb30, where WL_HOME refers to
the installation directory of WebLogic Server, such as /bea/wlserver_10.0.

Programming 3.0 Entities
This guide describes how to program 3.0 session and message-driven EJBs, and how to invoke
3.0 entities from a session EJB. It does not describe how to actually program and configure a 3.0
entity. For details instructions on that topic, see Enterprise JavaBeans 3 Persistence in the BEA
Kodo documentation.

Unders tanding Ente rp r i se JavaBeans 3 .0

2-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

Programming WebLogic Enterprise JavaBeans, Version 3.0 3-1

C H A P T E R 3

Simple Enterprise JavaBeans 3.0
Examples

The following sections describe simple Java examples of EJBs that use the new metadata
annotation programming model:

“Example of a Simple Stateless EJB” on page 3-1

“Example of a Simple Stateful EJB” on page 3-3

“Example of an Interceptor Class” on page 3-7

“Example of Invoking a 3.0 Entity From A Session Bean” on page 3-8

Later procedural sections of this guide that describe how to program an EJB make reference to
these examples.

Example of a Simple Stateless EJB
The following code shows a simple business interface for the ServiceBean stateless session
EJB:

package examples;

/**

* Business interface of the Service stateless session EJB

*/

public interface Service {

 public void sayHelloFromServiceBean();

Simple Ente rp r i se JavaBeans 3 .0 Examples

3-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

}

The code shows that the Service business interface has one method,
sayHelloFromServiceBean(), that takes no parameters and returns void.

The following code shows the bean file that implements the preceding Service interface; the
code in bold is described after the example:

package examples;

import static javax.ejb.TransactionAttributeType.*;

import javax.ejb.Stateless;

import javax.ejb.TransactionAttribute;

import javax.interceptor.ExcludeDefaultInterceptors;

/**

 * Bean file that implements the Service business interface.

 * Class uses following EJB 3.0 annotations:

 * - @Stateless - specifies that the EJB is of type stateless session

 * - @TransactionAttribute - specifies that the EJB never runs in a

 * transaction

 * - @ExcludeDefaultInterceptors - specifies any configured default

 * interceptors should not be invoked for this class

 */

@Stateless

@TransactionAttribute(NEVER)

@ExcludeDefaultInterceptors

public class ServiceBean

 implements Service

{

 public void sayHelloFromServiceBean() {

 System.out.println("Hello From Service Bean!");

 }

}

The main points to note about the preceding code are:

Use standard import statements to import the metadata annotations you use in the bean
file:

Example o f a S imp le State fu l E JB

Programming WebLogic Enterprise JavaBeans, Version 3.0 3-3

import static javax.ejb.TransactionAttributeType.*;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.interceptor.ExcludeDefaultInterceptors

The annotations that apply only to EJB 3.0 are in the javax.ejb package. Annotations
that can be used by other Java Platform, Enterprise Edition (Java EE) Version 5
components are in more generic packages, such javax.interceptor or
javax.annotation.

The ServiceBean bean file is a plain Java file that implements the Service business
interface; it is not required to implement any EJB-specific interface. This means that the
bean file does not need to implement the lifecycle methods, such as ejbCreate and
ejbPassivate, that were required in the 2.X programming model.

The class-level @Stateless metadata annotation specifies that the EJB is of type stateless
session.

The class-level @TransactionAttribute(NEVER) annotation specifies that the EJB never
runs inside of a transaction.

The class-level @ExcludeDefaultInterceptors annotation specifies that default
interceptors, if any are defined in the ejb-jar.xml deployment descriptor file, should
never be invoked for any method invocation of this particular EJB.

Example of a Simple Stateful EJB
The following code shows a simple business interface for the AccountBean stateful session EJB:

package examples;

/**

 * Business interface for the Account stateful session EJB.

 */

public interface Account {

 public void deposit(int amount);

 public void withdraw(int amount);

 public void sayHelloFromAccountBean();

}

The code shows that the Account business interface has three methods, deposit, withdraw, and
sayHelloFromAccountBean.

Simple Ente rp r i se JavaBeans 3 .0 Examples

3-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

The following code shows the bean file that implements the preceding Account interface; the
code in bold is described after the example:

package examples;

import static javax.ejb.TransactionAttributeType.*;

import javax.ejb.Stateful;

import javax.ejb.TransactionAttribute;

import javax.ejb.Remote;

import javax.ejb.EJB;

import javax.annotation.PreDestroy;

import javax.interceptor.Interceptors;

import javax.interceptor.ExcludeClassInterceptors;

import javax.interceptor.InvocationContext;

/**

 * Bean file that implements the Account business interface.

 * Uses the following EJB annotations:

 * - @Stateful: specifies that this is a stateful session EJB

 * - @TransactionAttribute - specifies that this EJB never runs

 * in a transaction

 * - @Remote - specifies the Remote interface for this EJB

 * - @EJB - specifies a dependency on the ServiceBean stateless

 * session ejb

 * - @Interceptors - Specifies that the bean file is associated with an

 * Interceptor class; by default all business methods invoke the

 * method in the interceptor class annotated with @AroundInvoke.

 * - @ExcludeClassInterceptors - Specifies that the interceptor methods

 * defined for the bean class should NOT fire for the annotated

 * method.

 * - @PreDestroy - Specifies lifecycle method that is invoked when the

 * bean is about to be destoryed by EJB container.

 *

 */

@Stateful

@TransactionAttribute(NEVER)

@Remote({examples.Account.class})

@Interceptors({examples.AuditInterceptor.class})

Example o f a S imp le State fu l E JB

Programming WebLogic Enterprise JavaBeans, Version 3.0 3-5

public class AccountBean

 implements Account

{

 private int balance = 0;

 @EJB(beanName="ServiceBean")

 private Service service;

 public void deposit(int amount) {

 balance += amount;

 System.out.println("deposited: "+amount+" balance: "+balance);

 }

 public void withdraw(int amount) {

 balance -= amount;

 System.out.println("withdrew: "+amount+" balance: "+balance);

 }

 @ExcludeClassInterceptors

 public void sayHelloFromAccountBean() {

 service.sayHelloFromServiceBean();

 }

 @PreDestroy

 public void preDestroy() {

 System.out.println("Invoking method: preDestroy()");

 }

}

The main points to note about the preceding code are:

Use standard import statements to import the metadata annotations you use in the bean
file:

import static javax.ejb.TransactionAttributeType.*;
import javax.ejb.Stateful;
import javax.ejb.TransactionAttribute;
import javax.ejb.Remote;
import javax.ejb.EJB;

import javax.annotation.PreDestroy;

import javax.interceptor.Interceptors;
import javax.interceptor.ExcludeClassInterceptors;

Simple Ente rp r i se JavaBeans 3 .0 Examples

3-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

The annotations that apply only to EJB 3.0 are in the javax.ejb package. Annotations
that can be used by other Java Platform, Enterprise Edition (Java EE) Version 5
components are in more generic packages, such javax.interceptor or
javax.annotation.

Import the InvocationContext class, used to maintain state between interceptors:

import javax.interceptor.InvocationContext;

The AccountBean bean file is a plain Java file that implements the Account business
interface; it is not required to implement any EJB-specific interface. This means that the
bean file does not need to implement the lifecycle methods, such as ejbCreate and
ejbPassivate, that were required in the 2.X programming model.

The class-level @Stateful metadata annotation specifies that the EJB is of type stateful
session.

The class-level @TransactionAttribute(NEVER) annotation specifies that the EJB never
runs inside of a transaction.

The class-level @Remote annotation specifies the name of the remote interface of the EJB;
in this case it is the same as the business interface, Account.

The class-level @Interceptors({examples.AuditInterceptor.class}) annotation
specifies the interceptor class that is associated with the bean file. This class typically
includes a business method interceptor method, as well as lifecycle callback interceptor
methods. See “Example of an Interceptor Class” on page 3-7 for details about this class.

The field-level @EJB annotation specifies that the annotated variable, service, is injected
with the dependent ServiceBean stateless session bean context. The data type of the
injected field, Service, is the business interface of the ServiceBean EJB. The following
code in the sayHelloFromAccountBean method shows how to invoke the
sayHelloFromServiceBean method of the dependent ServiceBean:

 service.sayHelloFromServiceBean();

The method-level @ExcludeClassInterceptors annotation specifies that the
@AroundInvoke method specified in the associated interceptor class (AuditInterceptor)
should not be invoked for the sayHelloFromAccountBean method.

The method-level @PreDestroy annotation specifies that the EJB container should invoke
the preDestroy method before the container destroys an instance of the AccountBean.
This shows how you can specify interceptor methods (for both business methods and
lifecycle callbacks) in the bean file itself, in addition to using an associated interceptor
class.

Example o f an In te rcepto r C lass

Programming WebLogic Enterprise JavaBeans, Version 3.0 3-7

Example of an Interceptor Class
The following code shows an example of an interceptor class, specifically the
AuditInterceptor class that is referenced by the preceding AccountBean stateful session bean
with the @Interceptors({examples.AuditInterceptor.class}) annotation; the code in
bold is described after the example:

package examples;

import javax.interceptor.AroundInvoke;

import javax.interceptor.InvocationContext;

import javax.ejb.PostActivate;

import javax.ejb.PrePassivate;

/**

 * Interceptor class. The interceptor method is annotated with the

 * @AroundInvoke annotation.

 */

public class AuditInterceptor {

 public AuditInterceptor() {}

 @AroundInvoke

 public Object audit(InvocationContext ic) throws Exception {

 System.out.println("Invoking method: "+ic.getMethod());

 return ic.proceed();

 }

 @PostActivate

 public void postActivate(InvocationContext ic) {

 System.out.println("Invoking method: "+ic.getMethod());

 }

 @PrePassivate

 public void prePassivate(InvocationContext ic) {

 System.out.println("Invoking method: "+ic.getMethod());

 }

}

The main points to notice about the preceding example are:

As usual, import the metadata annotations used in the file:

Simple Ente rp r i se JavaBeans 3 .0 Examples

3-8 Programming WebLogic Enterprise JavaBeans, Version 3.0

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;

The interceptor class is plain Java class.

The class has an empty constructor:

 public AuditInterceptor() {}

The method-level @AroundInvoke specifies the business method interceptor method. You
can use this annotation only once in an interceptor class.

The method-level @PostActivate and @PrePassivate annotations specify the methods
that the EJB container should call after reactivating and before passivating the bean,
respectively.

Note: These lifecycle callback interceptor methods apply only to stateful session beans.

Example of Invoking a 3.0 Entity From A Session Bean
For an example of invoking an entity from a session bean, see the EJB 3.0 example in the
distribution kit. After you have installed WebLogic Server, the example is in the following
directory:

WL_HOME/samples/server/examples/src/examples/ejb/ejb30

where WL_HOME refers to the directory in which you installed WebLogic Server, such as
/bea/wlserver_10.0.

Programming WebLogic Enterprise JavaBeans, Version 3.0 4-1

C H A P T E R 4

Iterative Development of Enterprise
JavaBeans 3.0

The sections that follow describe the general EJB 3.0 implementation process, and provide
guidance for how to get an EJB 3.0 up and running in WebLogic Server.

For a review of WebLogic Server EJB features, see “WebLogic Server Value-Added EJB 3.0
Features” on page 2-3.

“Overview of the EJB 3.0 Development Process” on page 4-1

“Create a Source Directory” on page 4-3

“Program the EJB 3.0 Business Interface” on page 4-4

“Program the Annotated EJB Class” on page 4-5

“Optionally Program Interceptors” on page 4-6

“Compile Java Source” on page 4-6

“Optionally Create and Edit Deployment Descriptors” on page 4-7

“Package” on page 4-8

“Deploy” on page 4-8

Overview of the EJB 3.0 Development Process
This section is a brief overview of the EJB 3.0 development process. It describes the key
implementation tasks and associated results.

I t e ra t ive Deve l opment o f Ente rpr ise JavaBeans 3 .0

4-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

The following section mostly discusses the EJB 3.0 programming model and points out the
differences between the 3.0 and 2.X programming model in only a few places. If you are an
experienced EJB 2.X programmer and want the full list of differences between the two models,
see “Understanding EJB 3.0: New Features and Changes From EJB 2.X” on page 2-1.

Table 4-1 EJB Development Tasks and Results

Step Description Result

1) Create a Source
Directory

Create the directory structure for your
Java source files, and optional deployment
descriptors.

A directory structure on your
local drive.

2) Program the EJB
3.0 Business Interface

Create the required business interface that
describes your EJB.

.java file

3) Program the
Annotated EJB Class

Create the Java file that implements the
business interface and includes the EJB
3.0 metadata annotations that describe
how your EJB behaves.

.java file

4) Optionally Program
Interceptors

Optionally create the interceptor classes
that describe the interceptors that intercept
a business method invocation or a
lifecycle callback event.

.java file

5) Compile Java
Source

Compile source code. .class file for each class and
interface

6) Optionally Create
and Edit Deployment
Descriptors

Optionally create the EJB-specific
deployment descriptors, although this step
is no longer required when using the EJB
3.0 programming model.

• ejb-jar.xml,
• weblogic-ejb-jar.xml,

which contains elements that
control WebLogic
Server-specific features, and

• weblogic-cmp-jar.xml
if the bean is a
container-managed
persistence entity bean.

Create a Source D i r ec to ry

Programming WebLogic Enterprise JavaBeans, Version 3.0 4-3

Create a Source Directory
Create a source directory where you will assemble the EJB 3.0.

BEA recommends a split development directory structure, which segregates source and output
files in parallel directory structures. For instructions on how to set up a split directory structure
and package your EJB 3.0 as an enterprise application archive (EAR), see “Overview of the Split
Development Directory Environment” in Developing Applications with WebLogic Server.

If you prefer to package and deploy your EJB 3.0 in a JAR file, create a directory for your class
files. If you are also creating deployment descriptors (which is optional but supported in the EJB
3.0 programming model) put them in a subdirectory named META-INF.

Listing 4-1 Directory Structure for Packaging JAR

myEJB/

META-INF/

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-jar.xml

foo.class

fooHome.class

fooBean.class

7) Package Package compiled classes and optional
deployment descriptors for deployment.

If appropriate, you can leave your files
unarchived in an exploded directory.

Archive file (either an EJB JAR
or Enterprise Application EAR)
or equivalent exploded directory.

8) Deploy Target the archive or application directory
to desired Managed Server, or a
WebLogic Server cluster, in accordance
with selected staging mode.

The deployment settings for the
bean are written to
EJBComponent element in
config.xml.

Table 4-1 EJB Development Tasks and Results

Step Description Result

I t e ra t ive Deve l opment o f Ente rpr ise JavaBeans 3 .0

4-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

Program the EJB 3.0 Business Interface
The EJB 3.0 business interface is a plain Java interface that describes the full signature of all the
business methods of the EJB. For example, assume an Account EJB represents a client’s
checking account; its business interface might include three methods (withdraw, deposit, and
balance) that clients can use to manage their bank accounts.

The EJB 3.0 business interface can extend other interfaces. In the case of message-driven beans,
the business interface is typically the message-listener interface that is determined by the
messaging type used by the bean, such as javax.jms.MessageListener in the case of JMS.
The interface for a session bean has not such defining type; it can be anything that suits your
business needs.

WARNING: The only requirement for an EJB 3.0 business interface is that it must not extend
javax.ejb.EJBObject or javax.ejb.EJBLocalObject, as required in EJB
2.X.

See “Example of a Simple Stateless EJB” on page 3-1 and “Example of a Simple Stateful EJB”
on page 3-3 for examples of business interfaces implemented by stateless and stateful session
beans.

Business Interface Application Exceptions
When you design the business methods of your EJB, you can define an application exception in
the throws clause of a method of the EJB’s business interface. An application exception is an
exception that you program in your bean class to alert a client of abnormal application-level
conditions. For example, a withdraw() method in an Account EJB that represents a bank
checking account might throw an application exception if the client tries to withdraw more money
than is available in their account.

Application exceptions are different from system exceptions, which are thrown by the EJB
container to alert the client of a system-level exception, such as the unavailability of a database
management system. You should not report system-level errors in your application exceptions.

Finally, your business methods should not throw the java.rmi.RemoteException, even if the
interface is a remote business interface, the bean class is annotated with the @WebService JWS
annotation, or the method is annotated with @WebMethod. The only exception is if the business
interface extends java.rmi.Remote. If the EJB container encounters problems at the protocol
level, the container throws an EJBException which wraps the underlying RemoteException.

Note: The @WebService and @WebMethod annotations are in the javax.jws package; you use
them to specify that your EJB implements a Web Service and that the EJB business will

Program the Anno ta ted EJB C lass

Programming WebLogic Enterprise JavaBeans, Version 3.0 4-5

be exposed as public Web Service operations. For details about these annotations and
programming Web Services in general, see Programming WebLogic Web Services.

Using Generics in EJBs
The EJB 3.0 programming model supports the use of generics in the business interface at the class
level.

BEA recommends as a best practice that you first define a super-interface that uses the generics,
and then have the actual business interface extend this super-interface with a specific data type.

The following example shows how to do this. First program the super-interface that uses
generics:

 public interface RootI<T> {

 public T getObject();

 public void updateObject(T object);

 }

Then program the actual business interface to extend Root*<T> for a particular data type:

 @Remote

 public interface StatelessI extends RootI<String> { }

Finally, program the actual stateless session bean to implement the business interface; use the
specified data type, in this case String, in the implementation of the methods:

 @Stateless

 public class StatelessSample implements StatelessI {

 public String getObject() {

 return null;

 }

 public void updateObject(String object) {

 }

 }

Program the Annotated EJB Class
The EJB bean class is the main EJB programming artifact. It implements the EJB business
interface and contains the EJB metadata annotations that specify semantics and requirements to
the EJB container, request container services, and provide structural and configuration
information to the application deployer or the container runtime.

I t e ra t ive Deve l opment o f Ente rpr ise JavaBeans 3 .0

4-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

In the 3.0 programming model, there is only one required annotation: either
@javax.ejb.Stateful, @javax.ejb.Stateless, or @javax.ejb.MessageDriven to
specify the type of EJB. Although there are many other annotations you can use to further
configure your EJB, these annotations have typical default values so that you are not required to
explicitly use the annotation in your bean class unless you want it to behave other than in the
default manner. This programming model makes it very easy to program an EJB that exhibits
typical behavior.

For additional details and examples of programming the bean class, see Chapter 5,
“Programming the Annotated EJB 3.0 Class.”

Optionally Program Interceptors
An interceptor is a method that intercepts the invocation of a business method or a lifecycle
callback event.

You can define an interceptor method within the actual bean class, or you can program an
interceptor class (distinct from the bean class itself) and associate it with the bean class using the
@javax.ejb.Interceptor annotation.

See “Specifying Interceptors for Business Methods or Lifecycle Callback Events” on page 5-12
for information on programming the bean class to use interceptors.

Compile Java Source
Once you have written the Java source code for your EJB bean class and optional interceptor
class, you must compile it into class files. Typical tools to compile include:

weblogic.appc—The weblogic.appc Java class (or its equivalent Ant task wlappc)
generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server. It
validates the optional deployment descriptors for compliance with the current
specifications at both the individual module level and the application level. The
application-level checks include checks between the application-level deployment
descriptors and the individual modules as well as validation checks across the modules.

See Building Modules and Applications Using wlappc.

wlcompile Ant task—Invokes the javac compiler to compile your application's Java
components in a split development directory structure.

See Compiling Applications Using wlcompile

Opt iona l l y Create and Ed i t Dep lo yment Descr ip to rs

Programming WebLogic Enterprise JavaBeans, Version 3.0 4-7

javac —The javac compiler provided with the Sun Java J2SE SDK provides java
compilation capabilities.

See http://java.sun.com/docs/.

Optionally Create and Edit Deployment Descriptors
A very important aspect of the new EJB 3.0 programming model is the introduction of metadata
annotations. Annotations simplify the EJB development process by allowing a developer to
specify within the Java class itself how the bean behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions (2.X and earlier) of EJB.

However, EJB 3.0 still fully supports the use of deployment descriptors, even though the standard
Java Platform, Enterprise Edition (Java EE) Version 5 ones are not required. For example, you
may prefer to use the old 2.X programming model, or might want to allow further customizing of
the EJB at a later development or deployment stage; in these cases you can create the standard
deployment descriptors in addition to, or instead of, the metadata annotations.

Deployment descriptor elements always override their annotation counterparts. For example, if
you specify the @javax.ejb.TransactionManagement(BEAN) annotation in your bean class,
but then create an ejb-jar.xml deployment descriptor for the EJB and set the
<transaction-type> element to container, then the deployment descriptor value takes
precedence and the EJB uses container-managed transaction demarcation.

Note: This version of EJB 3.0 also supports all 2.X WebLogic-specific EJB features. However,
the features that are configured in the weblogic-ejb-jar.xml or
weblogic-cmp-rdbms-jar.xml deployment descriptor files must continue to be
configured that way for this release of EJB 3.0 because currently they do not have any
annotation equivalent.

The 2.X version of Programming WebLogic Enterprise JavaBeans provides detailed information
about creating and editing EJB deployment descriptors, both the Java EE standard and
WebLogic-specific ones. In particular, see the following sections:

EJB Deployment Descriptors (Overview Information)

Editing Deployment Descriptors

Deployment Descriptor Schema and Document Type Definitions Reference

weblogic-ejb-jar.xml Deployment Descriptor Reference

I t e ra t ive Deve l opment o f Ente rpr ise JavaBeans 3 .0

4-8 Programming WebLogic Enterprise JavaBeans, Version 3.0

weblogic-cmp-jar.xml Deployment Descriptor Reference

Package
BEA recommends that you package EJBs as part of an enterprise application. For more
information, see Deploying and Packaging from a Split Development Directory in Developing
Applications with WebLogic Server.

See Packaging Considerations for EJBs with Clients in Other Applications for additional
EJB-specific packaging information.

Deploy
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You
can deploy an EJB using one of several procedures, depending on your environment and whether
or not your EJB is in production. Deploying an EJB created with the 3.0 programming model is
the same as deploying an EJB created with the 2.X programming model.

For general instructions on deploying WebLogic Server applications and modules, including
EJBs, see Deploying Applications to WebLogic Server. For EJB-specific deployment issues and
procedures, see Deployment Guidelines For Enterprise Java Beans in the Programming
WebLogic Enterprise JavaBeans guide, which concentrates on the 2.X programming model.

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-1

C H A P T E R 5

Programming the Annotated EJB 3.0
Class

The sections that follow describe how to program the annotated EJB 3.0 class file:

“Overview of Metadata Annotations and EJB 3.0 Bean Files” on page 5-1

“Programming the Bean File: Requirements and Changes From 2.X” on page 5-2

“Programming the Bean File: Typical Steps” on page 5-3

“Complete List of Metadata Annotations By Function” on page 5-22

Overview of Metadata Annotations and EJB 3.0 Bean Files
The new EJB 3.0 programming model uses the JDK 5.0 metadata annotations feature in which
you create an annotated EJB 3.0 bean file and then use the WebLogic compile tool
weblogic.appc (or its Ant equivalent wlappc) to compile the bean file into a Java class file and
generate the associated EJB artifacts, such as the required EJB interfaces and deployment
descriptors.

The annotated 3.0 bean file is the core of your EJB. It contains the Java code that determines how
your EJB behaves. The 3.0 bean file is an ordinary Java class file that implements an EJB business
interface that outlines the business methods of your EJB. You then annotate the bean file with
JDK 5.0 metadata annotations to specify the shape and characteristics of the EJB, document your
EJB, and provide special services such as enhanced business-level security or special business
logic during runtime.

See “Complete List of Metadata Annotations By Function” on page 5-22 for a breakdown of the
annotations you can specify in a bean file, by function. These annotations include those described

Programming the Anno ta ted EJB 3 .0 C lass

5-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

by the Enterprise JavaBeans 3.0 specification (JSR-220), as well as some described by the
Common Annotations for the Java Platform (JSR-250). See Appendix A, “EJB 3.0 Metadata
Annotations Reference,” for reference information about the annotations, listed in alphabetical
order.

This topic is part of the iterative development procedure for creating an EJB 3.0, described in
Chapter 4, “Iterative Development of Enterprise JavaBeans 3.0.”

Programming the Bean File: Requirements and Changes
From 2.X

The requirements for programming the 3.0 bean class file are essentially the same as the 2.X
requirements. This section briefly describes the basic mandatory requirements of the bean class,
mostly for overview purposes, as well as changes in requirements between 2.X and 3.0.

See Programming WebLogic Enterprise JavaBeans for detailed information about the mandatory
and optional requirements for programming the bean class.

Bean Class Requirements and Changes From 2.X
The following bullets list the new 3.0 requirements for programming a bean class, as well as the
2.X requirements that no longer apply:

The class must specify its bean type, typically using one of the following metadata
annotations, although you can also override this using a deployment descriptor:
– @javax.ejb.Stateless

– @javax.ejb.Stateful

– @javax.ejb.MessageDriven

– @javax.ejb.Entity

Note: Programming a 3.0 entity is discussed in a separate document. See Enterprise
JavaBeans 3 Persistence in the BEA Kodo documentation.

If the bean is a session bean, the bean class must implement the bean’s business
interface(s) or the methods of the bean’s business interface(s), if any.

Session beans no longer needs to implement javax.ejb.SessionBean, which means the
bean no longer needs to implement the ejbXXX() methods, such as ejbCreate(),
ejbPassivate(), and so on.

Stateful session beans no loner need to implement java.io.Serializable.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-3

Message-driven beans no longer need to implement javax.ejb.MessageDrivenBean.

The following requirements are the same as in EJB 2.X and are provided only as a brief overview:

The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.

The class must have a public constructor that takes no parameters.

The class must not define the finalize() method.

If the bean is message-driven, the bean class must implement, directly or indirectly, the
message listener interface required by the messaging type that it supports or the methods of
the message listener interface. In the case of JMS, this is the
javax.jms.MessageListener interface.

Bean Class Method Requirements
The method requirements have not changed since EJB 2.X and are provided in this section for a
brief overview only.

The requirements for programming the session bean class’ methods (that implement the business
interface methods) are as follows:

The method names can be arbitrary.

 The business method must be declared as public and must not be final or static.

 The argument and return value types for a method must be legal types for RMI/IIOP if the
method corresponds to a business method on the session bean’s remote business interface
or remote interface.

The throws clause may define arbitrary application exceptions.

The requirements for programming the message-driven bean class’ methods are as follows:

The methods must implement the listener methods of the message listener interface.

The methods must be declared as public and must not be final or static.

Programming the Bean File: Typical Steps
The following procedure describes the typical basic steps when programming the 3.0 bean file
for a EJB. The steps you follow depends, of course, on what your EJB does.

Programming the Anno ta ted EJB 3 .0 C lass

5-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

Refer to Chapter 3, “Simple Enterprise JavaBeans 3.0 Examples,” for code examples of the topics
discussed in the remaining sections.

1. Import the EJB 3.0 and other common annotations that will be used in your bean file. The
general EJB annotations are in the javax.ejb package, the interceptor annotations are in the
javax.interceptor package, the annotations to invoke a 3.0 entity are in the
javax.persistence package, and the common annotations are in the javax.common or
javax.common.security packages. For example:

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.interceptor.ExcludeDefaultInterceptors;

2. Specify the business interface that your EJB is going to implement, as well as other standard
interfaces. You can either explicitly implement the interface, or use an annotation to specify
it.

See “Specifying the Business and Other Interfaces” on page 5-5.

3. Use the required annotation to specify the type of bean you are programming (session or
message-driven).

See “Specifying the Bean Type (Stateless, Stateful, Message-Driven)” on page 5-6.

4. Optionally use dependency injection to use external resources, such as another EJB or other
Java Platform, Enterprise Edition (Java EE) Version 5 object.

See “Injecting Resource Dependency into a Variable or Setter Method” on page 5-7.

5. Optionally create an EntityManager object and use the entity annotations to inject entity
information.

See “Invoking a 3.0 Entity” on page 5-8.

6. Optionally program and configure business method or lifecycle callback method interceptor
method. You can program the interceptor methods in the bean file itself, or in a separate Java
file.

See “Specifying Interceptors for Business Methods or Lifecycle Callback Events” on
page 5-12.

7. If your business interface specifies that business methods throw application exceptions, you
must program the exception class, the same as in EJB 2.X.

See “Programming Application Exceptions” on page 5-18 for EJB 3.0 specific information.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-5

8. Optionally specify the security roles that are allowed to invoke the EJB methods using the
security-related metadata annotations.

See “Securing Access to the EJB” on page 5-19.

9. Optionally change the default transaction configuration in which the EJB runs.

See “Specifying Transaction Management and Attributes” on page 5-22.

Specifying the Business and Other Interfaces
When using the EJB 3.0 programming model to program a bean, you are required to specify a
business interface.

There are two ways you can specify the business interface for the EJB bean class:

By explicitly implementing the business interface, using the implements Java keyword.

By using metadata annotations (such as javax.ejb.Local and javax.ejb.Remote) to
specify the business interface. In this case, the bean class does not need to explicitly
implement the business interface.

Typically, if an EJB bean class implements an interface, it is assumed to be the business interface
of the EJB. Additionally, the business interface is assumed to be the local interface unless you
explicitly denote it as the remote interface, either by using the javax.ejb.Remote annotation or
updating the appropriate EJB deployment descriptor. You can specify the javax.ejb.Remote
annotation. as well as the javax.ejb.Local annotation, in either the business interface itself, or
the bean class that implements the interface.

A bean class can have more than one interface. In this case (excluding the interfaces listed below),
you must specify the business interface of the EJB by explicitly using the javax.ejb.Local or
javax.ejb.Remote annotations in either the business interface itself, the bean class that
implements the business interface, or the appropriate deployment descriptor.

The following interfaces are excluded when determining whether the bean class has more than
one interface:

java.io.Serializable

java.io.Externalizable

any of the interfaces defined by the javax.ejb package

The following code snippet shows how to specify the business interface of a bean class by
explicitly implementing the interface:

public class ServiceBean

Programming the Anno ta ted EJB 3 .0 C lass

5-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

 implements Service

For the full example, see “Example of a Simple Stateless EJB” on page 3-1

Specifying the Bean Type (Stateless, Stateful,
Message-Driven)
There is only one required metadata annotation in a 3.0 bean class: an annotation that specifies
the type of bean you are programing. You must specify one, and only one, of the following:

@javax.ejb.Stateless—Specifies that you are programming a stateless session bean.

@javax.ejb.Stateful—Specifies that you are programming a stateful session bean.

@javax.ejb.MessageDriven—Specifies that you are programming a message-driven
bean.

@javax.ejb.Entity—Specifies that you are programming an entity bean.

Note: Programming a 3.0 entity is discussed in a separate document. See Enterprise
JavaBeans 3 Persistence in the BEA Kodo documentation.

Although not required, you can specify attributes of the annotations to further describe the bean
type. For example, you can set the following attributes for all bean types:

name—Name of the bean class; the default value is the unqualified bean class name.

mappedName—Product-specific name of the bean.

description—Description of what the bean does.

If you are programming a message-driven bean, then you can specify the following optional
attributes:

messageListenerInterface—Specifies the message listener interface, if you haven’t
explicitly implemented it or if the bean implements additional interfaces.

activationConfig—Specifies an array of activation configuration name-value pairs that
configure the bean in its operational environment.

The following code snippet shows how to specify that a bean is a stateless session bean:

@Stateless
public class ServiceBean
 implements Service

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-7

For the full example, see “Example of a Simple Stateless EJB” on page 3-1.

Injecting Resource Dependency into a Variable or Setter
Method
Dependency injection is when the EJB container automatically supplies (or injects) a bean’s
variable or setter method with a reference to a resource or another environment entry in the bean’s
context. Dependency injection is simply an easier-to-program alternative to using the
javax.ejb.EJBContext interface or JNDI APIs to look up resources.

You specify dependency injection by annotating a variable or setter method with one of the
following annotations, depending on the type of resource you want to inject:

@javax.ejb.EJB—Specifies a dependency on another EJB.

@javax.annotation.Resource—Specifies a dependency on an external resource, such
as a JDBC datasource or a JMS destination or connection factory.

Note: This annotation is not specific to EJB; rather, it is part of the common set of metadata
annotations used by many different types of Java EE components.

Both annotations have an equivalent grouping annotation to specify a dependency on multiple
resources (@javax.ejb.EJBs and @javax.annotation.Resources).

Although not required, you can specify attributes to these dependency annotations to explicitly
describe the dependent resource. The amount of information you need to specify depends upon
its usage context and how much information the EJB container can infer from that context. See
“javax.ejb.EJB” on page A-4 and “javax.annotation.Resource” on page A-27 for detailed
information on the attributes and when you should specify them.

The following code snippet shows how to use the @javax.ejb.EJB annotation to inject a
dependency on an EJB into a variable; only the relevant parts of the bean file are shown:

package examples;

import javax.ejb.EJB;

...

@Stateful

public class AccountBean

 implements Account

{

Programming the Anno ta ted EJB 3 .0 C lass

5-8 Programming WebLogic Enterprise JavaBeans, Version 3.0

 @EJB(beanName="ServiceBean")

 private Service service;

...

 public void sayHelloFromAccountBean() {

 service.sayHelloFromServiceBean();

 }

In the preceding example, the private variable service is annotated with the @javax.ejb.EJB
annotation, which makes reference to the EJB with a bean name of ServiceBean. The data type
of the service variable is Service, which is the business interface implemented by the
ServiceBean bean class. As soon as the EJB container creates the AccountBean EJB, the
container injects a reference to ServiceBean into the service variable; the variable then has
direct access to all the business methods of SessionBean, as shown in the
sayHelloFromAccountBean method implementation in which the
sayHelloFromServiceBean method is invoked.

Invoking a 3.0 Entity
This section describes how to invoke and update a 3.0 entity from within a session bean.

Note: It is assumed in this section that you have already programmed the entity, as well as
configured the database resources that support the entity. For details on that topic, see
Enterprise JavaBeans 3 Persistence in the BEA Kodo documentation.

An entity is a persistent object that represents datastore records; typically an instance of an entity
represents a single row of a database table. Entities make it easy to query and update information
in a persistent store from within another Java EE component, such as a session bean. A Person
entity, for example, might include name, address, and age fields, each of which correspond to
the columns of a table in a database. Using an javax.persistence.EntityManager object to
access and manage the entities, you can easily retrieve a Person record, based on either their
unique id or by using a SQL query, and then change the information and automatically commit
the information to the underlying datastore.

The following sections describe the typical programming tasks you perform in your session bean
to interact with entities:

“Injecting Persistence Context Using Metadata Annotations” on page 5-9

“Finding an Entity Using the EntityManager API” on page 5-10

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-9

“Creating and Updating an Entity Using EntityManager” on page 5-11

Injecting Persistence Context Using Metadata Annotations
In your session bean, use the following metadata annotations inject entity information into a
variable:

@javax.persistence.PersistenceContext—Injects a persistence context into a
variable of data type javax.persistence.EntityManager. A persistence context is
simply a set of entities such that, for any persistent identity, there is a unique entity
instance. The persistence.xml file defines and names the persistence contexts available
to a session bean.

@javax.persistence.PersistenceContexts—Specifies a set of multiple persistence
contexts.

@javax.persistence.PersistenceUnit—Injects a persistence context into a variable
of data type javax.persistence.EntityManagerFactory.

@javax.persistence.PersistenceUnits—Specifies a set of multiple persistence
contexts.

The @PersistenceContext and @PersistenceUnit annotations perform a similar function:
inject persistence context information into a variable; the main difference is the data type of the
instance into which you inject the information. If you prefer to have full control over the
lifecycle of the EntityManager in your session bean, then use @PersistenceUnit to inject into
an EntityManagerFactory instance, and then write the code to manually create an
EntityManager and later destroy when you are done, to release resources. If you prefer that the
EJB container manage the lifecycle of the EntityManager, then use the @PersistenceContext
annotation to inject directly into an EntityManager.

The following example shows how to inject a persistence context into the variable em of data type
EntityManager; relevant code is shown in bold:

package examples;

import javax.ejb.Stateless;

import javax.persistence.PersistenceContext;

import javax.persistence.EntityManager;

@Stateless

public class ServiceBean

 implements Service

Programming the Anno ta ted EJB 3 .0 C lass

5-10 Programming WebLogic Enterprise JavaBeans, Version 3.0

{

 @PersistenceContext private EntityManager em;

...

Finding an Entity Using the EntityManager API
Once you have instantiated an EntityManager object, you can use its methods to interact with
the entities in the persistence context. This section discusses the methods used to identify and
manage the lifecycle of an entity; see EntityManager in the BEA Kodo documentation for
additional uses of the EntityManager, such as transaction management, caching, and so on.

Note: For clarity, this section assumes that the entities are configured such that they represent
actual rows in a database table.

Use the EntityManager.find() method to find a row in a table based on its primary key. The
find method takes two parameters: the entity class that you are querying, such as
Person.class, and the primary key value for the particular row you want to retrieve. Once you
retrieve the row, you can use standard getXXX methods to get particular properties of the entity.
The following code snippet shows how to retrieve a Person with whose primary key value is 10,
and then get their address:

public List<Person> findPerson () {

 Person p = em.find(Person.class, 10);

 Address a = p.getAddress();

 Query q = em.createQuery("select p from Person p where p.name = :name");

 q.setParameter("name", "Patrick");

 List<Person> l = (List<Person>) q.getResultList();

 return l;

 }

The preceding example also shows how to use the EntityManager.createQuery() method to
create a Query object that contains a custom SQL query; by contrast, the
EntityManager.find() method allows you to query using only the table’s primary key. In the
example, the table is queried for all Persons whose first name is Patrick; the resulting set of
rows populates the List<Person> object and is returned to the findPerson() invoker.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-11

Creating and Updating an Entity Using EntityManager
To create a new entity instance (and thus add a new row to the database), use the
EntityManager.persist method, as shown in the following code snippet

 @TransactionAttribute(REQUIRED)

 public Person createNewPerson(String name, int age) {

 Person p = new Person(name, age);

 em.persist(p); // register the new object with the database

 Address a = new Address();

 p.setAddress(a);

 em.persist(a); // depending on how things are configured, this may or

may not be required

 return p;

 }

Note: Whenever you create or update an entity, you must be in a transaction, which is why the
@TransactionAttribute annotation in the preceding example is set to REQUIRED.

The preceding example shows how to create a new Person, based on parameters passed to the
createNewPerson method, and then call the EntityManager.persist method to automatically add
the row to the database table.

The preceding example also shows how to update the newly-created Person entity (and thus new
table row) with an Address by using the setAddress() entity method. Depending on the
cascade configuration of the Person entity, the second persist() call may not be necessary;
this is because the call to the setAddress() method might have automatically triggered an
update to the database. For more information about cascading operations, see Cascade Type in
the BEA Kodo documentation.

If you use the EntityManager.find() method to find an entity instance, and then use a setXXX
method to change a property of the entity, the database is automatically updated and you do not
need to explicitly call the EntityManager.persist() method, as shown in the following code
snippet:

 @TransactionAttribute(REQUIRED)

 public Person changePerson(int id, int newAge) {

 Person p = em.find(Person.class, id);

Programming the Anno ta ted EJB 3 .0 C lass

5-12 Programming WebLogic Enterprise JavaBeans, Version 3.0

 p.setAge(newAge);

 return p;

 }

In the preceding example, the call to the Person.setAge() method automatically triggered an
update to the appropriate row in the database table.

Finally, you can use the EntityManager.merge() method to quickly and easily update a row in
the database table based on an update to an entity made by a client, as shown in the following
example:

 @TransactionAttribute(REQUIRED)

 public Person applyOfflineChanges(Person pDTO) {

 return em.merge(pDTO);

 }

In the example, the applyOfflineChanges() method is a business method of the session bean
that takes as a parameter a Person, which has been previously created by the session bean client.
When you pass this Person to the EntityManager.merge() method, the EJB container
automatically finds the existing row in the database table and automatically updates the row with
the new data. The merge() method then returns a copy of this updated row.

Specifying Interceptors for Business Methods or Lifecycle
Callback Events
An interceptor is a method that intercepts a business method invocation or a lifecycle callback
event. There are two types of interceptors: those that intercept business methods and those that
intercept lifecycle callback methods.

Interceptors can be specified for session and message-driven beans.

You can program an interceptor method inside the bean class itself, or in a separate interceptor
class which you then associate with the bean class with the
@javax.interceptor.Interceptors annotation. You can create multiple interceptor
methods that execute as a chain in a particular order.

Interceptor instances may hold state. The lifecycle of an interceptor instance is the same as that
of the bean instance with which it is associated. Interceptors can invoke JNDI, JDBC, JMS, other
enterprise beans, and the EntityManager. Interceptor methods share the JNDI name space of the

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-13

bean for which they are invoked. Programming restrictions that apply to enterprise bean
components to apply to interceptors as well.

Interceptors are configured using metadata annotations in the javax.interceptor package, as
described in later sections.

The following topics discuss how to actually program interceptors for your bean class:

Specifying Business or Lifecycle Interceptors: Typical Steps

Programming the Interceptor Class

Programming Business Method Interceptor Methods

Programming Lifecycle Callback Interceptor Methods

Specifying Default Interceptor Methods

Saving State Across Interceptors With the InvocationContext API

Specifying Business or Lifecycle Interceptors: Typical Steps
The following procedure provides the typical steps to specify and program interceptors for your
bean class.

See “Example of a Simple Stateful EJB” on page 3-3 for an example of specifying interceptors
and “Example of an Interceptor Class” on page 3-7 for an example of programming an interceptor
class.

1. Decide whether interceptor methods are programmed in bean class or in a separate interceptor
class.

2. If you decide to program the interceptor methods in a separate interceptor class

a. Program the class, as described in “Programming the Interceptor Class” on page 5-14.

b. In your bean class, use the @javax.interceptor.Interceptors annotation to
associate the interceptor class with the bean class. The method in the interceptor class
annotated with the @javax.interceptor.AroundInvoke annotation then becomes a
business method interceptor method of the bean class. Similarly, the methods annotated
with the lifecycle callback annotations become the lifecycle callback interceptor methods
of the bean class.

You can specify any number of interceptor classes for a given bean class—the order in
which they execute is the order in which they are listed in the annotation. If you specify
the interceptor class at the class-level, the interceptor methods apply to all appropriate

Programming the Anno ta ted EJB 3 .0 C lass

5-14 Programming WebLogic Enterprise JavaBeans, Version 3.0

bean class methods. If you specify the interceptor class at the method-level, the
interceptor methods apply to only the annotated method.

3. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program business method interceptor methods, as described in “Programming
Business Method Interceptor Methods” on page 5-14.

4. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program lifecycle callback interceptor methods, as described in “Programming
Business Method Interceptor Methods” on page 5-14.

5. In the bean class, optionally annotate methods with the
@javax.interceptor.ExcludeClassInterceptors annotation to exclude any
interceptors defined at the class-level.

6. In the bean class, optionally annotate the class or methods with the
@javax.interceptor.ExcludeDefaultInterceptors annotation to exclude any default
interceptors that you might define later. Default interceptors are configured in the
ejb-jar.xml deployment descriptor, and apply to all EJBs in the JAR file, unless you
explicitly use the annotation to exclude them.

7. Optionally specify default interceptors for the entire EJB JAR file, as described in
“Specifying Default Interceptor Methods” on page 5-17.

Programming the Interceptor Class
The interceptor class is a plain Java class that includes the interceptor annotations to specify
which methods intercept business methods and which intercept lifecycle callback methods.

Interceptor classes support dependency injection, which is performed when the interceptor class
instance is created, using the naming context of the associated enterprise bean.

You must include a public no-argument constructor.

You can have any number of methods in the interceptor class, but restrictions apply as to how
many methods can be annotated with the interceptor annotations, as described in the following
sections.

For an example, see “Example of an Interceptor Class” on page 3-7.

Programming Business Method Interceptor Methods
You specify business method interceptor methods by annotating them with the @AroundInvoke
annotation.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-15

An interceptor class or bean class can have only one method annotated with @AroundInvoke. To
specify that multiple interceptor methods execute for a given business method, you must
associate multiple interceptor classes with the bean file, in addition to optionally specifying an
interceptor method in the bean file itself. The order in which the interceptor methods execute is
the order in which the associated interceptor classes are listed in the @Interceptor annotation.
Interceptor methods in the bean class itself execute after those defined in the interceptor classes.

You cannot annotate a business method itself with the @AroundInvoke annotation.

The signature of an @AroundInvoke method must be:

 Object <METHOD>(InvocationContext) throws Exception

The method annotated with the @AroundInvoke annotation must always call
InvocationContext.proceed() or neither the business method will be invoked nor any
subsequent @AroundInvoke methods. See “Saving State Across Interceptors With the
InvocationContext API” on page 5-17 for additional information about the InvocationContext
API.

Business method interceptor method invocations occur within the same transaction and security
context as the business method for which they are invoked. Business method interceptor
methods may throw runtime exceptions or application exceptions that are allowed in the throws
clause of the business method.

For an example, see “Example of an Interceptor Class” on page 3-7.

Programming Lifecycle Callback Interceptor Methods
You specify a method to be a lifecycle callback interceptor method so that it can receive
notification of life cycle events from the EJB container. Life cycle events include creation,
passivation, and destruction of the bean instance.

You can name the lifecycle callback interceptor method anything you want; this is different from
the EJB 2.X programming model in which you had to name the methods ejbCreate(),
ejbPassivate(), and so on.

You use the following lifecycle interceptor annotations to specify that a method is a lifecycle
callback interceptor method:

@javax.ejb.PrePassivate—Specifies the method that the EJB container notifies when
it is about to passivate a stateful session bean.

@javax.ejb.PostActivate—Specifies the method that the EJB container notifies right
after it has reactivated a stateful session bean.

Programming the Anno ta ted EJB 3 .0 C lass

5-16 Programming WebLogic Enterprise JavaBeans, Version 3.0

@javax.annotation.PostConstruct—Specifies the method that the EJB container
notifies before it invokes the first business method and after it has done dependency
injection. You typically apply this annotation to the method that performs initialization.

Note: This annotation is in the javax.annotation package, rather than javax.ejb.

@javax.annotation.PreDestroy—Specifies the method that the EJB container notifies
right before it destroys the bean instance. You typically apply this annotation to the method
that release resources that the bean class has been holding.

Note: This annotation is in the javax.annotation package, rather than javax.ejb.

You use the preceding annotations the same way, whether the annotated method is in the bean
class or in a separate interceptor class. You can annotate the same method with more than one
annotation.

You can also specify any subset or combination of lifecycle callback annotations in the bean class
or in an associated interceptor class. However, the same callback annotation may not be specified
more than once in a given class. If you do specify a callback annotation more than once in a given
class, the EJB will not deploy.

To specify that multiple interceptor methods execute for a given lifecycle callback event, you
must associate multiple interceptor classes with the bean file, in addition to optionally specifying
the lifecycle callback interceptor method in the bean file itself. The order in which the interceptor
methods execute is the order in which the associated classes are listed in the @Interceptor
annotation. Interceptor methods in the bean class itself execute after those defined in the
interceptor classes.

The signature of the annotated methods depends on where the method is defined:

Lifecycle callback methods defined on a bean class have the following signature:

 void <METHOD>()

Lifecycle callback methods defined on an interceptor class have the following signature:

 void <METHOD>(InvocationContext)

See “Saving State Across Interceptors With the InvocationContext API” on page 5-17 for
additional information about the InvocationContext API.

See “javax.ejb.PostActivate” on page A-10, “javax.ejb.PrePassivate” on page A-11,
“javax.annotation.PostConstruct” on page A-26, and “javax.annotation.PreDestroy” on
page A-27 for additional requirements when programming the lifecycle interceptor class.

For an example, see “Example of an Interceptor Class” on page 3-7.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-17

Specifying Default Interceptor Methods
Default interceptor methods apply to all components in a particular EJB JAR file or exploded
directory, and thus can only be configured in the ejb-jar.xml deployment descriptor file and
not with metadata annotations, which apply to a particular EJB.

The EJB container invokes default interceptor methods, if any, before all other interceptors
defined for an EJB (both business and lifecycle). If you do not want the EJB container to invoke
the default interceptors for a particular EJB, specify the class-level
@javax.interceptor.ExcludeDefaultInterceptors annotation in the bean file.

In the ejb-jar.xml file, use the <interceptor-binding> child element of
<assembly-descriptor> to specify default interceptors. In particular, set the <ejb-name>
child element to *, which means the class applies to all EJBs, and then the
<interceptor-class> child element to the name of the interceptor class.

The following snippet from an ejb-jar.xml file shows how to specify the default interceptor
class org.mycompany.DefaultIC:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">

...

 <assembly-descriptor>

...

 <interceptor-binding>

 <ejb-name>*</ejb-name>

 <interceptor-class>org.mycompany.DefaultIC</interceptor-class>

 </interceptors>

 </assembly-descriptor>

</ejb-jar>

Saving State Across Interceptors With the InvocationContext API
Use the javax.interceptor.InvocationContext API to pass state information between the
interceptors that execute for a given business method or lifecycle callback. The EJB Container

Programming the Anno ta ted EJB 3 .0 C lass

5-18 Programming WebLogic Enterprise JavaBeans, Version 3.0

passes the same InvocationContext instance to each interceptor method, so you can, for
example save information when the first business method interceptor method executes, and then
retrieve this information for all subsequent interceptor methods that execute for this business
method. The InvocationContext instance is not shared between business method or lifecycle
callback invocations.

All interceptor methods must have an InvocationContext parameter. You can then use the
methods of the InvocationContext interface to get and set context information. The
InvocationContext interface is shown below:

public interface InvocationContext {

 public Object getBean();

 public Method getMethod();

 public Object[] getParameters();

 public void setParameters(Object[]);

 public java.util.Map getContextData();

 public Object proceed() throws Exception;

}

The getBean method returns the bean instance. The getMethod method returns the name of the
business method for which the interceptor method was invoked; in the case of lifecycle callback
interceptor methods, getMethod returns null.

The proceed method causes the invocation of the next interceptor method in the chain, or the
business method itself if called from the last @AroundInvoke interceptor method.

For an example of using InvocationContext, see “Example of an Interceptor Class” on
page 3-7.

Programming Application Exceptions
If you specified in the business interface that a method throws an application method, then you
must program the exception as a separate class from the bean class.

Use the @javax.ejb.ApplicationException annotation to specify that an exception class is
an application exception thrown by a business method of the EJB. The EJB container reports the
exception directly to the client in the event of the application error.

Use the rollback Boolean attribute of the @ApplicationException annotation to specify
whether the application error causes the current transaction to be rolled back. By default, the
current transaction is not rolled back in event of the error.

You can annotate both checked and unchecked exceptions with this annotation.

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-19

The following ProcessingException.java file shows how to use the
@ApplicationException annotation to specify that an exception class is an application
exception thrown by one of the business methods of the EJB:

package examples;

import javax.ejb.ApplicationException;

/**

 * Application exception class thrown when there was a processing error

 * with a business method of the EJB. Annotated with the

 * @ApplicationException annotation.

 */

@ApplicationException()

public class ProcessingException extends Exception {

 /**

 * Catches exceptions without a specified string

 *

 */

 public ProcessingException() {}

 /**

 * Constructs the appropriate exception with the specified string

 *

 * @param message Exception message

 */

 public ProcessingException(String message) {super(message);}

}

Securing Access to the EJB
By default, any user can invoke the public methods of an EJB. If you want to restrict access to
the EJB, you can use the following security-related annotations to specify the roles that are
allowed to invoke all, or a subset, of the methods:

javax.annotation.security.DeclareRoles—Explicitly lists the security roles that
will be used to secure the EJB.

javax.annotation.security.RolesAllowed—Specifies the security roles that are
allowed to invoke all the methods of the EJB (when specified at the class-level) or a
particular method (when specified at the method-level.)

Programming the Anno ta ted EJB 3 .0 C lass

5-20 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.annotation.security.DenyAll—Specifies that the annotated method can not be
invoked by any role.

javax.annotation.security.PermitAll—Specifies that the annotated method can be
invoked by all roles.

javax.annotation.security.RunAs—Specifies the role which runs the EJB. By
default, the EJB runs as the user who actually invokes it.

The preceding annotations can be used with many Java EE components that allow metadata
annotations, not just EJB 3.0.

You create security roles and map users to roles using the WebLogic Server Administration
Console to update your security realm. For details, see Manage Security Roles.

The following example shows a simple stateless session EJB that uses all of the security-related
annotations; the code in bold is discussed after the example:

package examples;

import javax.ejb.Stateless;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.PermitAll;

import javax.annotation.security.DenyAll;

import javax.annotation.security.RolesAllowed;

import javax.annotation.security.RunAs;

/**

 * Bean file that implements the Service business interface.

 */

@Stateless

@DeclareRoles({ "admin", "hr" })

@RunAs ("admin")

public class ServiceBean

 implements Service

{

 @RolesAllowed ({"admin", "hr"})

 public void sayHelloRestricted() {

 System.out.println("Only some roles can invoke this method.");

 }

Programming the Bean F i l e : T yp i ca l S teps

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-21

 @DenyAll

 public void sayHelloSecret() {

 System.out.println("No one can invoke this method.");

 }

 @PermitAll

 public void sayHelloPublic() {

 System.out.println("Everyone can invoke this method.");

 }

}

The main points to note about the preceding example are:

Import the security-related metadata annotations:

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.RunAs;

The class-level @DeclareRoles annotation explicitly specifies that the admin and hr
security roles will later be used to secure some or all of the methods. This annotation is
not required; any security role referenced in, for example, the @RolesReferenced
annotation is implicitly declared. However, explicitly declaring the security roles makes
your code easier to read and understand.

The class-level @RunAs annotation specifies that, regardless of the user who actually
invokes a particular method of the EJB, the EJB container runs the method as the admin
role, assuming, of course, that the original user is allowed to invoke the method.

The @RolesAllowed annotation on the sayHelloRestricted method specifies that only
users mapped to the admin and hr roles are allowed to invoke the method.

The @DenyAll annotation on the sayHelloSecret method specifies that no one is
allowed to invoke the method.

The @PermitAll annotation on the sayHelloPublic method specifies that all users
mapped to any roles are allowed to invoke the method.

Programming the Anno ta ted EJB 3 .0 C lass

5-22 Programming WebLogic Enterprise JavaBeans, Version 3.0

Specifying Transaction Management and Attributes
By default, the EJB container invokes a business method within a transaction context.
Additionally, the EJB container itself decides whether to commit or rollback a transaction; this is
called container-managed transaction demarcation.

You can change this default behavior by using the following annotations in your bean file:

javax.ejb.TransactionManagement—Specifies whether the EJB container or the bean
file manages the demarcation of transactions. If you specify that the bean file manages it,
then you must program transaction management in your bean file, typically using the Java
Transaction API (JTA).

javax.ejb.TransactionAttribute—Specifies whether the EJB container invokes
methods within a transaction.

For an example of using the javax.ejb.TransactionAttribute annotation, see “Example of
a Simple Stateful EJB” on page 3-3.

Complete List of Metadata Annotations By Function
Appendix A, “EJB 3.0 Metadata Annotations Reference,” provides full reference information
about the EJB 3.0 metadata annotations in alphabetical order. The tables in this section group the
annotations based on what task they perform.

Annotations to Specify the Bean Type

Table 5-1 Annotations to Specify the Bean Type

Annotation Description

@javax.ejb.Stateless Specifies that the bean class is a stateless session bean.

@javax.ejb.Stateful Specifies that the bean class is a stateful session bean.

@javax.ejb.Init Specifies the correspondence of a stateful session bean class method
with a create<METHOD> method for an adapted EJB 2.1
EJBHome and/or EJBLocalHome client view.

@javax.ejb.Remove Specifies a remove method of a stateful session bean.

Comple te L i s t o f Metadata Annota t ions By Funct i on

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-23

Annotations to Specify the Local or Remote Interfaces

Annotations to Support EJB 2.X Client View

@javax.ejb.MessageDriven Specifies that the bean class is a message-driven bean.

@javax.ejb.ActivationConf
igProperty

Specifies properties used to configure a message-driven bean in its
operational environment.

Table 5-1 Annotations to Specify the Bean Type

Annotation Description

Table 5-2 Annotations to Specify the Local or Remote Interfaces

Annotation Description

@javax.ejb.Local Specifies a local interface of the bean.

@javax.ejb.Remote Specifies a remote interface of the bean.

Table 5-3 Annotations to Support EJB 2.X Client View

Annotation Description

@javax.ejb.LocalHome Specifies a local home interface of the bean.

@javax.ejb.RemoteHome Specifies a remote home interface of the bean.

Programming the Anno ta ted EJB 3 .0 C lass

5-24 Programming WebLogic Enterprise JavaBeans, Version 3.0

Annotations to Invoke a 3.0 Entity Bean

Transaction-Related Annotations

Annotations to Specify Interceptors

Table 5-4 Annotations to Invoke a 3.0 Entity Bean

Annotation Description

@javax.persistence.PersistenceCo
ntext

Specifies a dependency on an EntityManager persistence
context.

@javax.persistence.PersistenceCo
ntexts

Specifies one or more PersistenceContext annotations.

@javax.persistence.PersistenceUn
it

Specifies a dependency on an EntityManagerFactory.

@javax.persistence.PersistenceUn
its

Specifies one or more PersistenceUnit annotations.

Table 5-5 Transaction-Related Annotations

Annotation Description

@javax.ejb.TransactionManagement Specifies the transaction management demarcation type
(container- or bean-managed)

@javax.ejb.TransactionAttribute Specifies whether a business method is invoked within the
context of a transaction.

Table 5-6 Annotations to Specify Interceptors

Annotation Description

@javax.interceptor.Interceptors Specifies the list of interceptor classes associated with a bean
class or method.

@javax.interceptor.AroundInvoke Specifies an interceptor method.

Comple te L i s t o f Metadata Annota t ions By Funct i on

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-25

Annotations to Specify Lifecycle Callbacks

Security-Related Annotations
The following metadata annotations are not specific to EJB 3.0, but rather, are general
security-related annotations in the javax.annotation.security package.

@javax.interceptor.ExcludeClassI
nterceptors

Specifies that, when the annotated method is invoked, the
class-level interceptors should not invoke.

@javax.interceptor.ExcludeDefaul
tInterceptors

Specifies that, when the annotated method is invoked, the
default interceptors should not invoke.

Table 5-6 Annotations to Specify Interceptors

Annotation Description

Table 5-7 Annotations to Specify Lifecycle Callbacks

Annotation Description

@javax.ejb.PostActivate Designates a method to receive a callback after a stateful
session bean has been activated.

@javax.ejb.PrePassivate Designates a method to receive a callback before a stateful
session bean is passivated.

@javax.annotation.PostConstruct Specifies the method that needs to be executed after
dependency injection is done to perform any initialization.

@javax.annotation.PreDestroy Specifies a method to be a callback notification to signal that
the instance is in the process of being removed by the
container

Programming the Anno ta ted EJB 3 .0 C lass

5-26 Programming WebLogic Enterprise JavaBeans, Version 3.0

Context Dependency Annotations

Table 5-8 Security-Related Annotations

Annotation Description

@javax.annotation.security.Decla
reRoles

Specifies the references to security roles in the bean class.

@javax.annotation.security.Roles
Allowed

Specifies the list of security roles that are allowed to invoke
the bean’s business methods.

@javax.annotation.security.Permi
tAll

Specifies that all security roles are allowed to invoke the
method.

@javax.annotation.security.DenyA
ll

Specifies that no security roles are allowed to invoke the
method.

@javax.annotation.security.RunAs Specifies the security role which the method is run as.

Table 5-9 Context Dependency Annotations

Annotation Description

@javax.ejb.EJB Specifies a dependency to an EJB business interface or home
interface.

@javax.ejb.EJBs Specifies one or more @EJB annotations.

@javax.annotation.Resource Specifies a dependency on an external resource in the bean’s
environment.

@javax.annotation.Resources Specifies one or more @Resource annotations.

Comple te L i s t o f Metadata Annota t ions By Funct i on

Programming WebLogic Enterprise JavaBeans, Version 3.0 5-27

Timeout and Exceptions Annotations

Table 5-10 Timeout and Exception Annotations

Annotation Description

@javax.ejb.Timeout Specifies the timeout method of the bean class.

@javax.ejb.ApplicationException Specifies that an exception is an application exception and
should be reported to the client directly.

Programming the Anno ta ted EJB 3 .0 C lass

5-28 Programming WebLogic Enterprise JavaBeans, Version 3.0

Programming WebLogic Enterprise JavaBeans, Version 3.0 6-1

C H A P T E R 6

Using Kodo with WebLogic Server

This chapter provides an overview of developing, deploying, and configuring a BEA Kodo
application using WebLogic Server: The following topics are covered:

“Overview of Kodo” on page 6-1

“Creating a Kodo Application” on page 6-2

“Using Different Kodo Versions” on page 6-2

“Configuring Persistence” on page 6-2

“Deploying a Kodo Application” on page 6-4

“Configuring a Kodo Application” on page 6-4

Overview of Kodo
BEA Kodo an implementation of Sun Microsystem’s Java Persistence API (JPA) specification
and Java Data Objects (JDO) specification for transparent data objects. BEA Kodo is available
as a stand-alone product and is integrated within WebLogic Server.

This chapter describes how to implement an application using JPA or JDO in WebLogic Server.
Within WebLogic Server, the JPA and JDO implementations are part of WebLogic Servers
overall Enterprise Java Bean 3.0 persistence implementation.

For general information on creating an application using JPA and JDO, see the Kodo Developer’s
Guide.

Using Kodo w i th WebLog ic Se rve r

6-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

Creating a Kodo Application
The first step in implementing a BEA Kodo application on WebLogic Server is to write your
application’s code. The following resources provide general information on writing an
application that uses BEA Kodo to manage persistence of your data:

BEA Kodo JPA Tutorials

BEA Kodo JDO Tutorials

Once you are familiar with the steps involved in creating applications using BEA Kodo and have
created your application, the following sections describe how to deploy and configure your
application using WebLogic Server.

Using Different Kodo Versions
If you choose to use a different version of Kodo than the one provided by default within
WebLogic Server, you must use the FilteringClassLoader to exclude the Kodo and OpenJPA
libraries from the component classpath.

The following example shows how to exclude these class libraries using
weblogic-application.xml:

<prefer-application-packages>

 <package-name>org.apache.openjpa.*</package-name>

 <package-name>kodo.*</package-name>

</prefer-application-packages>

For more information on filtering classloaders, see “Understanding WebLogic Server
Application Classloading” in Developing Applications With WebLogic Server.

Configuring Persistence
The following sections describe how to configure persistence.

“Editing the Configuration Property Files” on page 6-3

“Configuring a Plugin” on page 6-4

Conf igur ing Pe rs is tence

Programming WebLogic Enterprise JavaBeans, Version 3.0 6-3

Editing the Configuration Property Files
BEA Kodo uses two XML files, listed in the following table, to define configuration properties.

Edit the contents of the configuration files as required to configure persistence. The files should
be available as resources in the META-INF directory of the root of the persistence unit. For
container environments, the root of a persistence unit may be one of the following:

EJB-JAR file

WEB-INF/classes directory of a WAR file

JAR file in the WEB-INF/lib directory of a WAR file

JAR file in the root of the EAR

JAR file in the EAR library directory

Table 6-1 Persistence Configuration Files

Configuration File Description

persistence.xml Kodo configuration parameters defined by the JPA functional
specifications. This file is required.

The XML schema for structuring this configuration is available at:
http://java.sun.com/xml/ns/persistence/persistence_
1_0.xsd.

For more information, see “Chapter 6. Persistence” in the Kodo Developers
Guide.

persistence-configu
ration.xml

Configuration parameters that are specific to BEA Kodo. This file is not
required when deploying an application. If specified, you must still

Use of persistence

If you do not include persistence-configuration.xml in your
deployment, WebLogic Server will create reasonable defaults for each
configuration parameter.

The XML schema for structuring this configuration is available at:
http://www.bea.com/ns/weblogic/persistence-configur
ation/10.0/persistence-configuration.xsd.

Note: The weblogic.jar file must be in the CLASSPATH when using
the persistent-configuration.xml file in the Java SE
environment.

Using Kodo w i th WebLog ic Se rve r

6-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

Application client jar file

Configuring a Plugin
Because Kodo is a highly customizable environment, many configuration properties relate to the
creation and configuration of system plugins. Plugin properties have a syntax very similar to that
of Java annotations. They allow you to specify both what class to use for the plugin and how to
configure the public fields or bean properties of the instantiated plugin instance.

Essentially, plugins are defined via a series of properties using name/value pairs. The following
example shows how a plugin is defined within persistence.xml:

<property name=’myplugin.DataCache’

value=’com.bea.MyDataCache(CacheSize=1000, RemoteHost=’CacheServer)’>

Deploying a Kodo Application
You are ready to deploy your application on WebLogic Server, once you have completed the
following tasks:

Created a Kodo application

Configured persistence.xml and persistence-configuration.xml

Created and archive for your application (.ear or .war)

Once your application is configured, a Kodo application is deployed just like any other
application. For complete information on deploying applications, see Deploying Applications on
BEA WebLogic Server.

Configuring a Kodo Application
Once you have deployed your Kodo application, you can alter the configuration paramters
defined in persistence.xml and persistence-configuration.xml. Many Kodo
configuration parameters can be configured from the WebLogic Server Administration Console.

If your deployed application has defined a persistence unit within persistence.xml, you can
access configuration from within the Administration Console using the following:

1. Select Deployments

2. Select the name of the module containing a persistence unit that you want to configure.

Conf igu r ing a Kodo Appl i cat ion

Programming WebLogic Enterprise JavaBeans, Version 3.0 6-5

3. Select the Configuration tab.

4. Select the Persistence tab.

5. From the list of persistence units, select the one that you want to configure.

From here, you can access all of the Kodo persistence parameters that can be edited from the
Administration Console.

Note: You cannot create a new persistence unit from the Administration Console. To create a
new persistence unit, you must edit persistence.xml manually.

Using Kodo w i th WebLog ic Se rve r

6-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-1

A P P E N D I X A

EJB 3.0 Metadata Annotations
Reference

The following topics provide reference information about the EJB 3.0 metadata annotations:

“Overview of EJB 3.0 Annotations” on page A-1

“Annotations for Stateless, Stateful, and Message-Driven Beans” on page A-2

“Annotations Used to Configure Interceptors” on page A-18

“Annotations Used to Interact With Entity Beans” on page A-20

“Standard JDK Annotations Used By EJB 3.0” on page A-26

“Standard Security-Related JDK Annotations Used by EJB 3.0” on page A-30

Overview of EJB 3.0 Annotations
The new EJB 3.0 programming model uses the JDK 5.0 metadata annotations feature in which
you create an annotated EJB 3.0 bean file and then use the WebLogic compile tool
weblogic.appc (or its Ant equivalent wlappc) to compile the bean file into a Java class file and
generate the associated EJB artifacts, such as the required EJB interfaces and deployment
descriptors.

The following sections provide reference information for the metadata annotations you can
specify in the EJB bean file. Some of the annotations are in the javax.ejb package, and are thus
specific to EJBs; others are more common and are used by other Java Platform, Enterprise Edition
(Java EE) Version 5 components, and are thus in more generic packages, such as
javax.annotation.

EJB 3 .0 Metadata Annota t ions Refe rence

A-2 Programming WebLogic Enterprise JavaBeans, Version 3.0

Annotations for Stateless, Stateful, and Message-Driven
Beans

This section provides reference information for the following annotations:

“javax.ejb.ActivationConfigProperty” on page A-2

“javax.ejb.ApplicationException” on page A-3

“javax.ejb.EJB” on page A-4

“javax.ejb.EJBs” on page A-5

“javax.ejb.Init” on page A-6

“javax.ejb.Local” on page A-6

“javax.ejb.LocalHome” on page A-7

“javax.ejb.MessageDriven” on page A-8

“javax.ejb.PostActivate” on page A-10

“javax.ejb.PrePassivate” on page A-11

“javax.ejb.Remote” on page A-12

“javax.ejb.RemoteHome” on page A-12

“javax.ejb.Remove” on page A-13

“javax.ejb.Stateful” on page A-14

“javax.ejb.Stateless” on page A-15

“javax.ejb.Timeout” on page A-16

“javax.ejb.TransactionAttribute” on page A-16

“javax.ejb.TransactionManagement” on page A-17

javax.ejb.ActivationConfigProperty

Description
Target: Any

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-3

Specifies properties used to configure a message-driven bean in its operational environment. This
may include information about message acknowledgement modes, message selectors, expected
destination or endpoint types, and so on.

This annotation is used only as a value to the activationConfig attribute of the
@javax.ejb.MessageDriven annotation.

Attributes

javax.ejb.ApplicationException

Description
Target: Class

Specifies that an exception is an application exception and that it should be reported to the client
application directly, or unwrapped.

This annotation can be applied to both checked and unchecked exceptions.

Attributes

Table A-1 Attributes of the javax.ejb.ActivationConfigProperty Annotation

Name Description Data Type Required?

propertyName Specifies the name of the activation property. String Yes

propertyValue Specifies the value of the activation property. String Yes

Table A-2 Attributes of the javax.ejb.ApplicationException Annotation

Name Description Data Type Required?

rollback Specifies whether the EJB container should rollback the
transaction, if the bean is currently being invoked inside
of one, if the exception is thrown.

Valid values for this attribute are true and false.
Default value is false, or the transaction should not be
rolled back.

boolean No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-4 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.EJB

Description
Target: Class, Method, Field

Specifies a dependency or reference to an EJB business or home interface.

You annotate a bean’s instance variable with the @EJB annotation to specify a dependence on
another EJB. WebLogic Server automatically initializes the annotated variable with the
reference to the EJB on which it depends; this is also called dependency injection. This
initialization occurs before any of the bean’s business methods are invoked and after the bean’s
EJBContext is set.

You can also annotate a setter method in the bean class; in this case WebLogic Server uses the
setter method itself when performing dependency injection. This is an alternative to instance
variable dependency injection.

If you apply the annotation to a class, the annotation declares the EJB that the bean will look up
at runtime.

Whether using variable or setter method injection, WebLogic Server determines the name of the
referenced EJB by either the name or data type of the annotated instance variable or setter method
parameter. If there is any ambiguity, you should use the beanName or mappedName attributes of
the @EJB annotation to explicitly name the dependent EJB.

Attributes

Table A-3 Attributes of the javax.ejb.EJB Annotation

Name Description Data Type Required?

name Specifies the name by which the referenced EJB is to be
looked up in the environment.

String No

beanInterface Specifies the interface type of the referenced EJB (either
a business or home interface).

Default value for this attribute is Object.class

Class No

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-5

javax.ejb.EJBs

Description
Target: Class

Specifies an array of @javax.ejb.EJB annotations.

Attribute

beanName Specifies the name of the referenced EJB.

This attribute corresponds to the name element of the
@Stateless or @Stateful annotation in the
referenced EJB, which by default is the unqualified name
of the referenced bean class.

This attribute is most useful when multiple session beans
in an EJB JAR file implement the same interface, because
the name of each bean must be unique.

String No

mappedName Specifies the global JNDI name of the referenced EJB.

For example:
 mappedName="bank.Account"

specifies that the referenced EJB has a global JNDI name
of bank.Account and is deployed in the WebLogic
Server JNDI tree.

Note: EJBs that use mapped names may not be portable.

String No

description Describes the EJB reference. String No

Table A-3 Attributes of the javax.ejb.EJB Annotation

Name Description Data Type Required?

Table A-4 Attribute of the javax.ejb.EJBs Annotation

Name Description Data Type Required?

value Specifies the array of @javax.ejb.EJB annotations EJB[] No

EJB 3 .0 Metadata Annota t ions Refe rence

A-6 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.Init

Description
Target: Method

Specifies the correspondence of a method in the bean class with a createMETHOD method for an
adapted EJB 2.1 EJBHome or EJBLocalHome client view.

This annotation is used only in conjunction with stateful session beans, or those that have been
annotated with the @javax.ejb.Stateful class-level annotation,

The return type of a method annotated with the @javax.ejb.Init annotation must be void, and
its parameter types must be exactly the same as those of the referenced createMETHOD method
or methods.

The @Init annotation is required only for stateful session beans that provide a Remote-Home
or LocalHome interface. You must specify the name of the adapted create method of the Home
or LocalHome interface, using the value attribute, if there is any ambiguity.

Attributes

javax.ejb.Local

Description
Target: Class

Table A-5 Attributes of the javax.ejb.Init Annotation

Name Description Data Type Required?

value Specifies the name of the corresponding createMETHOD
method.

This attribute is required only when the @Init annotation
is used to associate an adapted Home interface of a stateful
session bean that has more than one create<METHOD>
method.

String No.

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-7

Specifies the local interface or interfaces of a session bean. The local interface exposes business
logic to local clients—those running in the same application as the EJB. It defines the business
methods a local client can call.

You are required to specify this annotation if your bean class implements more than a single
interface, not including the following:

java.io.Serializable

java.io.Externalizable

javax.ejb.*

This annotation applies only to stateless or stateful session beans.

Attributes

javax.ejb.LocalHome

Description
Target: Class

Specifies the local home interface of the bean class.

The local home interface provides methods that local clients—those running in the same
application as the EJB—can use to create, remove, and in the case of an entity bean, find instances
of the bean. The local home interface also has home methods—business logic that is not specific
to a particular bean instance.

Table A-6 Attributes of the javax.ejb.Local Annotation

Name Description Data Type Required?

value Specifies the list of local interfaces as an array of classes.

You are required to specify this attribute only if your bean
class implements more than a single interface, not
including the following:
• java.io.Serializable

• java.io.Externalizable

• javax.ejb.*

Class[] No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-8 Programming WebLogic Enterprise JavaBeans, Version 3.0

This attribute applies only to stateless and stateful session beans.

You typically specify this attribute only if you are going to provide an adapted EJB 2.1
component view of the EJB 3.0 bean. You can also use this annotation with bean classes that have
been written to the EJB 2.1 APIs.

Attributes

javax.ejb.MessageDriven

Description
Target: Class

Specifies that the Enterprise JavaBean is a message-driven bean.

Table A-7 Attributes of the javax.ejb.LocalHome Annotation

Name Description Data Type Required?

value Specifies the local home class. Class Yes.

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-9

Attributes

Table A-8 Attributes of the javax.ejb.MessageDriven Annotation

Name Description Data Type Required?

name Specifies the name of the message-driven bean.

If you do not specify this attribute, the default value is the
unqualified name of the bean class.

String No.

messageListenerInter
face

Specifies the message-listener interface of the bean class.

You must specify this attribute if the bean class does not
explicitly implement the message-listener interface, or if
the bean class implements more than one interface other
than java.io.Serializable,
java.io.Externalizable, or any of the interfaces
in the javax.ejb package.

The default value for this attribute is Object.class.

Class No.

activationConfig Specifies the configuration of the message-driven bean in
its operational environment. This may include
information about message acknowledgement modes,
message selectors, expected destination or endpoint types,
and so on.

You specify activation configuration information using an
Array of
@javax.ejb.ActivationConfigProperty
annotation, specify the property name and value.

Activation
ConfigPro
perty[]

No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-10 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.PostActivate

Description
Target: Method

Specifies the lifecycle callback method that signals that the EJB container has just reactivated the
bean instance.

This annotation applies only to stateful session beans. Because the EJB container automatically
maintains the conversational state of a stateful session bean instance when it is passivated, you
do not need to specify this annotation for most stateful session beans. You only need to use this
annotation, along with its partner @PrePassivate, if you want to allow your stateful session
bean to maintain the open resources that need to be closed prior to a bean instance’s passivation
and then reopened during the bean instance’s activation.

Only one method in the bean class can be annotated with this annotation. If you annotate more
than one method with this annotations, the EJB will not deploy.

The method annotated with @PostActivate must follow these requirements:

The return type of the method must be void.

The method must not throw a checked exception.

mappedName Specifies the product-specific name to which the
message-driven bean should be mapped.

You can also use this attribute to specify the JNDI name
of the message destination of this message-driven bean.
For example:
 mappedName="my.Queue"

specifies that this message-driven bean is associated with
a JMS queue, whose JNDI name is my.Queue and is
deployed in the WebLogic Server JNDI tree.

Note: If you specify this attribute, the message-driven
bean may not be portable.

String No

description Specifies a description of the message-driven bean. String No

Table A-8 Attributes of the javax.ejb.MessageDriven Annotation

Name Description Data Type Required?

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-11

The method may be public, protected, package private or private.

The method must not be static.

The method must not be final.

This annotation does not have any attributes.

javax.ejb.PrePassivate

Description
Target: Method

Specifies the lifecycle callback method that signals that the EJB container is about to passivate
the bean instance.

This annotation applies only to stateful session beans. Because the EJB container automatically
maintains the conversational state of a stateful session bean instance when it is passivated, you
do not need to specify this annotation for most stateful session beans. You only need to use this
annotation, along with its partner @PostActivate, if you want to allow your stateful session
bean to maintain the open resources that need to be closed prior to a bean instance’s passivation
and then reopened during the bean instance’s activation.

Only one method in the bean class can be annotated with this annotation. If you annotate more
than one method with this annotations, the EJB will not deploy.

The method annotated with @PrePassivate must follow these requirements:

The return type of the method must be void.

The method must not throw a checked exception.

The method may be public, protected, package private or private.

The method must not be static.

The method must not be final.

This annotation does not have any attributes.

EJB 3 .0 Metadata Annota t ions Refe rence

A-12 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.Remote

Description
Target: Class

Specifies the remote interface or interfaces of a session bean. The remote interface exposes
business logic to remote clients—clients running in a separate application from the EJB. It
defines the business methods a remote client can call.

This annotation applies only to stateless or stateful session beans.

Attributes

javax.ejb.RemoteHome

Description
Target: Class

Specifies the remote home interface of the bean class.

The remote home interface provides methods that remote clients—those running in a separate
application from the EJB—can use to create, remove, and find instances of the bean.

This attribute applies only to stateless and stateful session beans.

Table A-9 Attributes of the javax.ejb.Remote Annotation

Name Description Data Type Required?

value Specifies the list of remote interfaces as an array of
classes.

You are required to specify this attribute only if your bean
class implements more than a single interface, not
including the following:
• java.io.Serializable

• java.io.Externalizable

• javax.ejb.*

Class[] No.

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-13

You typically specify this attribute only if you are going to provide an adapted EJB 2.1
component view of the EJB 3.0 bean. You can also use this annotation with bean classes that have
been written to the EJB 2.1 APIs.

Attributes

javax.ejb.Remove

Description
Target: Method

Use the @javax.ejb.Remove annotation to denote a remove method of a stateful session bean.

When the method completes, the EJB container will invoke the method annotated with the
@javax.annotation.PreDestroy annotation, if any, and then destroy the stateful session
bean.

Attributes

Table A-10 Attributes of the javax.ejb.RemoteHome Annotation

Name Description Data Type Required?

value Specifies the remote home class. Class Yes.

Table A-11 Attributes of the javax.ejb.Remove Annotation

Name Description Data Type Required?

retainIfException Specifies that the container should not remove the stateful
session bean if the annotated method terminates
abnormally with an application exception.

Valid values are true and false. Default value is
false.

boolean No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-14 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.Stateful

Description
Target: Class

Specifies that the Enterprise JavaBean is a stateful session bean.

Attributes

Table A-12 Attributes of the javax.ejb.Stateful Annotation

Name Description Data Type Required?

name Specifies the name of the stateful session bean.

If you do not specify this attribute, the default value is the
unqualified name of the bean class.

String No.

mappedName Specifies the product-specific name to which the stateful
session bean should be mapped.

You can also use this attribute to specify the JNDI name
of this stateful session bean. WebLogic Server uses the
value of the mappedName attribute when creating the
bean’s global JNDI name. In particular, the JNDI name
will be:
mappedName#name_of_businessInterface

where name_of_businessInterface is the fully
qualified name of the business interface of this session
bean.

For example, if you specify mappedName="bank" and
the fully qualified name of the business interface is
com.CheckingAccount, then the JNDI of the business
interface is bank#com.CheckingAccount.

Note: If you specify this attribute, the stateful session
bean may not be portable.

String No.

description Describes the stateful session bean. String No.

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-15

javax.ejb.Stateless

Description
Target: Class

Specifies that the Enterprise JavaBean is a stateless session bean.

Attributes

Table A-13 Attributes of the javax.ejb.Stateless Annotation

Name Description Data Type Required?

name Specifies the name of the stateless session bean.

If you do not specify this attribute, the default value is the
unqualified name of the bean class.

String No.

mappedName Specifies the product-specific name to which the stateless
session bean should be mapped.

You can also use this attribute to specify the JNDI name
of this stateless session bean. WebLogic Server uses the
value of the mappedName attribute when creating the
bean’s global JNDI name. In particular, the JNDI name
will be:
mappedName#name_of_businessInterface

where name_of_businessInterface is the fully
qualified name of the business interface of this session
bean.

For example, if you specify mappedName="bank" and
the fully qualified name of the business interface is
com.CheckingAccount, then the JNDI of the business
interface is bank#com.CheckingAccount.

Note: If you specify this attribute, the stateless session
bean may not be portable.

String No.

description Describes the stateless session bean. String No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-16 Programming WebLogic Enterprise JavaBeans, Version 3.0

javax.ejb.Timeout

Description
Target: Method

Specifies the timeout method of the bean class.

This annotation makes it easy to program an EJB timer service in your bean class. The EJB timer
service is an EJB-container provided service that allows you to create timers that schedule
callbacks to occur when a timer object expires.

Previous to EJB 3.0, your bean class was required to implement javax.ejb.TimedObject if
you wanted to program the timer service. Additionally, your bean class had to include a method
with the exact name ejbTimeout. These requirements are relaxed in Version 3.0 of EJB. You no
longer are required to implement the javax.ejb.TimedObject interface, and you can name
your timeout method anything you want, as long as you annotate it with the @Timeout annotation.
You can, however, continue to use the pre-3.0 way of programming the timer service if you want.

For details, see Programming the EJB Timer Service.

This annotation does not have any attributes.

javax.ejb.TransactionAttribute

Description
Target: Class, Method

Specifies whether the EJB container invokes an EJB business method within a transaction
context.

WARNING: If you specify this annotation, you are also required to use the
@TransactionManagement annotation to specify container-managed transaction
demarcation.

You can specify this annotation on either the bean class, or a particular method of the class that
is also a method of the business interface. If specified at the bean class, the annotation applies to
all applicable business interface methods of the class. If specified for a particular method, the
annotation applies to that method only. If the annotation is specified at both the class and the
method level, the method value overrides if the two disagree.

Annotat ions fo r S tate l ess , S ta te fu l , and Message-Dr iven Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-17

If you do not specify the @TransactionAttribute annotation in your bean class, and the bean
uses container managed transaction demarcation, the semantics of the REQUIRED transaction
attribute are assumed.

Attributes

javax.ejb.TransactionManagement

Description
Target: Class

Specifies the transaction management demarcation type of the session bean or message-driven
bean.

A transaction is a unit of work that changes application state—whether on disk, in memory or in
a database—that, once started, is completed entirely, or not at all. Transactions can be
demarcated—started, and ended with a commit or rollback—by the EJB container, by bean code,
or by client code. This annotation specifies whether the EJB container or the user-written bean
code manages the demarcation of a transaction.

Table A-14 Attributes of the javax.ejb.TransactionAttribute Annotation

Name Description Data Type Required?

value Specifies how the EJB container manages the transaction
boundaries when invoking a business method.

For details about these values, see the description of the
trans-attribute element in the Container-Managed
Transactions Elements table.

Valid values for this attribute are:
• TransactionAttributeType.MANDATORY

• TransactionAttributeType.REQUIRED

• TransactionAttributeType.REQUIRED_NEW

• TransactionAttributeType.SUPPORTS

• TransactionAttributeType.NOT_SUPPORTED

• TransactionAttributeType.NEVER

Default value is
TransactionAttributeType.REQUIRED.

Transactio
nAttribute
Type

No.

EJB 3 .0 Metadata Annota t ions Refe rence

A-18 Programming WebLogic Enterprise JavaBeans, Version 3.0

If you do not specify this annotation in your bean class, it is assumed that the bean has
container-managed transaction demarcation.

For additional information about transactions, see Transaction Design and Management Options.

Attributes

Annotations Used to Configure Interceptors
This section provides reference information for the following annotations:

“javax.interceptor.AroundInvoke” on page A-18

“javax.interceptor.ExcludeClassInterceptors” on page A-19

“javax.interceptor.ExcludeDefaultInterceptors” on page A-19

“javax.interceptor.Interceptors” on page A-19

javax.interceptor.AroundInvoke

Description
Target: Method

Specifies the business method interceptor for either a bean class or an interceptor class.

You can annotate only one method in the bean class or interceptor class with the @AroundInvoke
annotation; the method cannot be a business method of the bean class.

Table A-15 Attributes of the javax.ejb.TransactionManagement Annotation

Name Description Data Type Required?

value Specifies the transaction management demarcation type
used by the bean class.

Valid values for this attribute are:
• TransactionManagementType.CONTAINER

• TransactionManagementType.BEAN

Default value is
TransactionManagementType.CONTAINER

Transacati
onManage
mentType

No.

Annota t ions Used to Conf igure In te rcepto rs

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-19

This annotation does not have any attributes.

javax.interceptor.ExcludeClassInterceptors

Description
Target: Method

Specifies that any class-level interceptors should not be invoked for the annotated method. This
does not include default interceptors, whose invocation are excluded only with the
@ExcludeDefaultInterceptors annotation.

This annotation does not have any attributes.

javax.interceptor.ExcludeDefaultInterceptors

Description
Target: Class, Method

Specifies that any defined default interceptors (which can be specified only in the EJB
deployment descriptors, and not with annotations) should not be invoked.

If defined at the class-level, the default interceptors are never invoked for any of the bean’s
business methods. If defined at the method-level, the default interceptors are never invoked for
the particular business method, but they are invoked for all other business methods that do not
have the @ExludeDefaultInterceptors annotation.

This annotation does not include any attributes.

javax.interceptor.Interceptors

Description
Target: Class, Method

Specifies the interceptor classes that are associated with the bean class or method. An interceptor
class is a class—distinct from the bean class itself—whose methods are invoked in response to
business method invocations and/or lifecycle events on the bean.

The interceptor class can include both an business interceptor method (annotated with the
@javax.interceptor.AroundInvoke annotation) and lifecycle callback methods (annotated

EJB 3 .0 Metadata Annota t ions Refe rence

A-20 Programming WebLogic Enterprise JavaBeans, Version 3.0

with the @javax.annotation.PostConstruct, @javax.annotation.PreDestroy,
@javax.ejb.PostActivate, and @javax.ejb.PrePassivate annotations).

Any number of interceptor classes may be defined for a bean class. If more than one interceptor
class is defined, they are invoked in the order they are specified in the annotation.

If the annotation is specified at the class-level, the interceptors apply to all business methods of
the EJB. If specified at the method-level, the interceptors apply to just that method. You can
specify the same interceptor class to more than one method of the bean class. By default,
method-level interceptors are invoked after all applicable interceptors (default interceptors,
class-level interceptors, and so on).

Attributes

Annotations Used to Interact With Entity Beans
This section provides reference information about the following annotations:

“javax.persistence.PersistenceContext” on page A-20

“javax.persistence.PersistenceContexts” on page A-22

“javax.persistence.PersistenceUnit” on page A-24

“javax.persistence.PersistenceUnits” on page A-25

javax.persistence.PersistenceContext

Description
Target: Class, Method, Field

Specifies a dependency on a container-managed EntityManager persistence context.

Table A-16 Attributes of the javax.interceptor.Interceptors Annotation

Name Description Data Type Required?

value Specifies the array of interceptor classes. If there is more
than one interceptor class in the array, the order in which
they are listed defines the order in which they are invoked.

Class[] Yes

Annotat i ons Used to In te rac t Wi th Ent i t y Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-21

You use this annotation to interact with a 3.0 entity bean, typically by performing dependency
injection into an EntityManager instance.

The EntityManager interface defines the methods that are used to interact with the persistence
context. A persistence context is a set of entity instances; an entity is a lightweight persistent
domain object. The EntityManager API is used to create and remove persistent entity instances,
to find entities by their primary key, and to query over entities.

EJB 3 .0 Metadata Annota t ions Refe rence

A-22 Programming WebLogic Enterprise JavaBeans, Version 3.0

Attributes

javax.persistence.PersistenceContexts
Table A-17 Attributes of the javax.pesistence.PersistenceContext Annotation

Name Description Data Type Required?

name Specifies the name by which the EntityManager and
its persistence unit are to be known within the context of
the session or message-driven bean.

You only need to specify this attribute if you use a JNDI
lookup to obtain an EntityManager; if you use
dependency injection, then you do not need to specify this
attribute.

String No.

Annotat i ons Used to In te rac t Wi th Ent i t y Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-23

Description
Target: Class

Specifies an array of @javax.persistence.PersistencContext annotations.

unitName Specifies the name of the persistence unit.

If you specify a value for this attribute that is the same as
the name of a persistence unit in the persistence.xml
file, the EJB container automatically deploys the
persistence unit and sets its JNDI name to its persistence
unit name. Similarly, if you do not specify this attribute,
but the name of the variable into which you are injecting
the persistence context information is the same as the
name of a persistence unit in the persistence.xml
file, then the EJB container again automatically deploys
the persistence unit with its JNDI name equal to its unit
name.

Note: The persistence.xml file is an XML file,
located in the META-INF directory of the EJB
JAR file, that specifies the database used with the
entity beans and specifies the default behavior of
the EntityManager.

You must specify this attribute if there is more than one
persistence unit within the referencing scope.

String No.

type Specifies whether the lifetime of the persistence context is
scoped to a transaction or whether it extends beyond that
of a single transaction.

Valid values for this attribute are:
• PersistenceContextType.TRANSACTION

• PersistenceContextType.EXTENDED

Default value is
PersistenceContextType.TRANSACTION.

Persist
enceCon
textTyp
e

No.

Table A-17 Attributes of the javax.pesistence.PersistenceContext Annotation

Name Description Data Type Required?

EJB 3 .0 Metadata Annota t ions Refe rence

A-24 Programming WebLogic Enterprise JavaBeans, Version 3.0

Attributes

javax.persistence.PersistenceUnit

Description
Target: Class, Method, Field

Specifies a dependency on an EntityManagerFactory object.

You use this annotation to interact with a 3.0 entity bean, typically by performing dependency
injection into an EntityManagerFactory instance. You can then use the
EntityManagerFactory to create one or more EntityManager instances. This annotation is
similar to the @PersistenceContext annotation, except that it gives you more control over the
life of the EntityManager because you create and destroy it yourself, rather than let the EJB
container do it for you.

The EntityManager interface defines the methods that are used to interact with the persistence
context. A persistence context is a set of entity instances; an entity is a lightweight persistent
domain object. The EntityManager API is used to create and remove persistent entity instances,
to find entities by their primary key, and to query over entities.

Table A-18 Attributes of the javax.pesistence.PersistenceContexts Annotation

Name Description Data Type Required?

value Specifies the array of
@javax.persistence.PersistencContext
annotations.

Persist
enceCon
text[]

Yes.

Annotat i ons Used to In te rac t Wi th Ent i t y Beans

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-25

Attributes

javax.persistence.PersistenceUnits

Description
Target: Class

Specifies an array of @javax.persistence.PersistenceUnit annotations.

Table A-19 Attributes of the javax.pesistence.PersistenceUnit Annotation

Name Description Data Type Required?

name Specifies the name by which the
EntityManagerFactory is to be known within the
context of the session or message-driven bean

You are not required to specify this attribute if you use
dependency injection, only if you also use JNDI to look up
information.

String No

unitName Refers to the name of the persistence unit as defined in the
persistence.xml file. This file is an XML file,
located in the META-INF directory of the EJB JAR file,
that specifies the database used with the entity beans and
specifies the default behavior of the EntityManager.

If you set this attribute, the EJB container automatically
deploys the referenced persistence unit and sets its JNDI
name to its persistence unit name. Similarly, if you do not
specify this attribute, but the name of the variable into
which you are injecting the persistence context
information is the same as the name of a persistence unit
in the persistence.xml file, then the EJB container
again automatically deploys the persistence unit with its
JNDI name equal to its unit name.

You are required to specify this attribute only if there is
more than one persistence unit in the referencing scope.

String No

EJB 3 .0 Metadata Annota t ions Refe rence

A-26 Programming WebLogic Enterprise JavaBeans, Version 3.0

Attributes

Standard JDK Annotations Used By EJB 3.0
This section provides reference information about the following annotations:

“javax.annotation.PostConstruct” on page A-26

“javax.annotation.PreDestroy” on page A-27

“javax.annotation.Resource” on page A-27

“javax.annotation.Resources” on page A-29

javax.annotation.PostConstruct

Description
Target: Method

Specifies the lifecycle callback method that the EJB container should execute before the first
business method invocation and after dependency injection is done to perform any initialization.

You may specify a @PostConstruct method in any bean class that includes dependency
injection.

Only one method in the bean class can be annotated with this annotation. If you annotate more
than one method with this annotations, the EJB will not deploy.

The method annotated with @PostConstruct must follow these requirements:

The return type of the method must be void.

The method must not throw a checked exception.

Table A-20 Attributes of the javax.pesistence.PersistenceUnits Annotation

Name Description Data Type Required?

value Specifies the array of
@javax.persistence.PersistenceUnit
annotations.

Persist
enceUni
t[]

Yes

Standard JDK Annotat i ons Used By E JB 3 .0

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-27

The method may be public, protected, package private or private.

The method must not be static.

The method must not be final.

This annotation does not have any attributes.

javax.annotation.PreDestroy

Description
Target: Method

Specifies the lifecycle callback method that signals that the bean class instance is about to be
destroyed by the EJB container. You typically apply this annotation to methods that release
resources that the bean class has been holding.

Only one method in the bean class can be annotated with this annotation. If you annotate more
than one method with this annotations, the EJB will not deploy.

The method annotated with @PreDestroy must follow these requirements:

The return type of the method must be void.

The method must not throw a checked exception.

The method may be public, protected, package private or private.

The method must not be static.

The method must not be final.

This annotation does not have any attributes.

javax.annotation.Resource

Description
Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS destination
or connection factory.

EJB 3 .0 Metadata Annota t ions Refe rence

A-28 Programming WebLogic Enterprise JavaBeans, Version 3.0

If you specify the annotation on a field or method, the EJB container injects an instance of the
requested resource into the bean when the bean is initialized. If you apply the annotation to a
class, the annotation declares a resource that the bean will look up at runtime.

Attributes

Table A-21 Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

name Specifies the name of the resource reference.

If you apply the @Resource annotation to a field, the
default value of the name attribute is the field name,
qualified by the class name. If you apply it to a method,
the default value is the JavaBeans property name
corresponding to the method, qualified by the class name.
If you apply the annotation to class, there is no default
value and thus you are required to specify the attribute.

String No

type Specifies the Java data type of the resource.

If you apply the @Resource annotation to a field, the
default value of the type attribute is the type of the field.
If you apply it to a method, the default is the type of the
JavaBeans property. If you apply it to a class, there is no
default value and thus you are required to specify this
attribute.

Class No

authenticationType Specifies the authentication type to use for the resource.

You specify this attribute only for resources representing
a connection factory of any supported type.

Valid values for this attribute are:
• AuthenticationType.CONTAINER

• AuthenticationType.APPLICATION

Default value is AuthenticationType.CONTAINER

Authentica
tionType

No

Standard JDK Annotat i ons Used By E JB 3 .0

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-29

javax.annotation.Resources

Description
Target: Class

Specifies an array of @Resource annotations.

Attributes

shareable Indicates whether a resource can be shared between this
EJB and other EJBs.

You specify this attribute only for resources representing
a connection factory of any supported type or ORB object
instances.

Valid values for this attribute are true and false.
Default value is true.

boolean No.

mappedName Specifies the global JNDI name of the dependent
resource.

For example:
 mappedName="my.Datasource"

specifies that the JNDI name of the dependent resources is
my.Datasource and is deployed in the WebLogic
Server JNDI tree.

String No.

description Specifies a description of the resource. String No.

Table A-21 Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

Table A-22 Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of @Resource annotations. Resourc
e[]

Yes.

EJB 3 .0 Metadata Annota t ions Refe rence

A-30 Programming WebLogic Enterprise JavaBeans, Version 3.0

Standard Security-Related JDK Annotations Used by EJB
3.0

This section provides reference information about the following annotations:

“javax.annotation.security.DeclareRoles” on page A-30

“javax.annotation.security.DenyAll” on page A-31

“javax.annotation.security.PermitAll” on page A-31

“javax.annotation.security.RolesAllowed” on page A-31

“javax.annotation.security.RunAs” on page A-32

javax.annotation.security.DeclareRoles

Description
Target: Class

Defines the security roles that will be used in the EJB.

You typically use this annotation to define roles that can be tested from within the methods of the
annotated class, such as using the isUserInRole method. You can also use the annotation to
explicitly declare roles that are implicitly declared if you use the @RolesAllowed annotation on
the class or a method of the class.

You create security roles in WebLogic Server using the Administration Console. For details, see
Manage Security Roles.

Attributes

Table A-23 Attributes of the javax.annotation.security.DeclareRoles Annotation

Name Description Data Type Required?

value Specifies an array of security roles that will be used in the
bean class.

String[] Yes.

Standard Secur i t y -Re la ted JDK Annotat i ons Used by E JB 3 .0

Programming WebLogic Enterprise JavaBeans, Version 3.0 A-31

javax.annotation.security.DenyAll

Description
Target: Method

Specifies that no security role is allowed to access the annotated method, or in other words, the
method is excluded from execution in the EJB container.

This annotation does not have any attributes.

javax.annotation.security.PermitAll

Description
Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access the
annotated method.

This annotation does not have any attributes.

javax.annotation.security.RolesAllowed

Description
Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the EJB.

If you specify it at the class-level, then it applies to all methods in the bean class. If you specify
it at the method-level, then it only applies to that method. If you specify the annotation at both
the class- and method-level, the method value overrides the class value.

You create security roles in WebLogic Server using the Administration Console. For details, see
Manage Security Roles.

EJB 3 .0 Metadata Annota t ions Refe rence

A-32 Programming WebLogic Enterprise JavaBeans, Version 3.0

Attributes

javax.annotation.security.RunAs

Description
Target: Class

Specifies the security role which actually executes the EJB in the EJB container.

The security role must exist in the WebLogic Server security realm and map to a user or group.
For details, see Manage Security Roles.

Attributes

Table A-24 Attributes of the javax.annotation.security.RolesAllowed Annotation

Name Description Data Type Required?

value List of security roles that are allowed to access methods of
the bean class.

String[] Yes.

Table A-25 Attributes of the javax.annotation.security.RunAs Annotation

Name Description Data Type Required?

value Specifies the security role which the EJB should run as. String Yes.

