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Chapter 1

Introduction

”From a certain temperature on, the molecules ’condense’ without attractive forces; that is, they accu-

mulate at zero velocity. The theory is pretty, but is there some truth to it?”

Albert Einstein, Letter to Ehrenfest 1924

1.1 What is a BEC?

In general, particles in a quantum-mechanical physical system can assume infinitely many
different states. One might ask the question whether it would be possible for all particles to
be in the same state and what this would mean for such a degenerate system. Quantum Field
Theory shows that there are two kind of particles: only those particles with an integer spin,
called bosons, are allowed to populate one state multiple times. The other kind of particles are
called fermions, of which only one can be in a specific quantum state. We remark that in 3
(or more) dimensions only these two distinctions between particles occur, while in 2D-systems
(quasi-)particles called Anyons can exist, which for example are needed to explain the fractional
quantum Hall effect.
The typical quantum system has one well-defined ground state, and a particle in this state has
the least possible energy. So, obviously, the system needs to be cooled down in order to have
many particles in the ground state. Interestingly, formation of BEC sets in at temperatures
considerably higher than the energy of the first excited state [1], showing that at this critical
temperature TC actually something very interesting happens.
A phase transition to such a macroscopic population of one single state at very low temperatures
was predicted in 1924 for ideal Bose gases by Satyendranath Bose [2] and Albert Einstein
[3]. Such a system possesses an extremely high coherence which motivates a very descriptive
visualization as a macroscopic matter wave: at low temperatures, the wave-like character of the
atoms dominates their behavior, and their wavelength grows. At some point, the waves start
to overlap and we can no longer distinguish between the atoms but instead have to think of
the whole condensate as a giant matter wave. In short, a BEC allows us to observe quantum-
mechanical features on a macroscopic level. We remark that a pair of two fermions is again a
bosonic particle. In a neutral atom, we have the same number of electrons (spin = 1/2) and
protons (spin = 1/2). Therefore the number of neutrons (also spin=1/2) determines whether
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the atom is a boson or a fermion: isotopes with an even number of neutrons are bosonic, those
with an odd number fermionic, so in theory, every element could be in a state of BEC.

In a physical system, depending on the temperature, the particles will populate the different
states, with the probability for states of higher energy exponentially lower than those with lower
energies, the distribution function being the Bose-Einstein or Fermi distribution, respectively,
and in classical physics or as an approximation in Quantum Mechanics, the Boltzmann distri-
bution. At zero temperature, all bosons should be in the ground state (or the ground states, if
they are degenerate). It became a challenge for experimental physicists to create a system with
a low enough temperature. As it turned out, this was actually a very daunting task, during the
completion of which several methods had to be invented and several Nobel Prizes were awarded
for these. The Nobel Prize for Physics in 2001 was jointly awarded to Eric Cornell and Carl
Wieman (University of Colorado) as well as Wolfgang Ketterle (MIT) for the creation of the
first BEC in 1995.

So, not until 70 years after its original prediction, Bose-Einstein condensation was first ob-
served in a gas consisting of around 2000 spin-polarized Rb87 atoms, which were enclosed in a
quadrupole trap, cf. [4]. The transition temperature for that experiment lies at about 170 ∗ 10−9

K, a temperature which could not be realized before. For BEC’s with other atoms, the needed
temperatures are of similar order, for spin-polarized Li7 atoms for example, TC = 400 ∗ 10−9

K.
One might at first raise the objection that at such low temperatures the alkali atoms should form
a solid; this is indeed a problem, however, a metastable gaseous state can be maintained within
the trap even at temperatures in the nanokelvin range. In the initial experiments the condensed
state could be kept for about ten seconds. Solidification is basically a three-body-process, so a
low density should help to extend the lifetime of the BEC.

1.2 Why are BEC’s interesting?

Physics as an empiric science obviously needs the experiment to confirm its theoretical models.
So, although the BEC-transition had been predicted many decades ago, it was still a huge
breakthrough to finally see its actual appearance in nature. Furthermore, BEC’s could be
applied in a multitude of fields, such as the construction of a quantum computer which uses
quantum logic (with so-called qubits) instead of the classical 0-1 transistors. A group at the
Max-Planck-Institute for Quantum Optics (MPQ) is currently conducting experiments of this
nature [5].

Since a BEC allows for the creation of UV-light or even X-rays, i.e. EM-waves with a con-
siderably lower wavelength than what could be achieved earlier, called atom-laser [6], many
more practical uses will be found, for example in the production of extremely small circuits
on semiconductors. When a BEC of Cesium was created for the first time in 2002 ( [7]), this
opened up new possibilities for measuring gravitational fields very accurately (Cesium is a prime
candidate since it has a large mass) as well as help with the defining of our fundamental unit
of time cf. [8].

In general, a BEC in an optical lattice behaves like a perfect (without impurities) solid state
body with a very high tunability of the system parameters which makes it very attractive to
work with.
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To simulate the effects of a strong magnetic field with the electrically neutral BEC-atoms, a
group in Munich recently developed a method by using a Raman Laser (in addition to the lasers
needed for the optical lattice) see [9]. This opens new possibilities to observe the behavior in
extremely strong magnetic fields.

As in solid state bodies, in a BEC in an optical lattice, band structures will appear. These
can be manipulated by superimposing phase-shifted lasers and can then be used to realize such
interesting phenomena like the Klein-tunneling [10].

There is indeed a wide range of applications for the theory of BEC, ranging from the extremely
small (the Higgs boson in the vacuum) to the extremely large (matter in the core of a neutron
star). It is no surprise that this field of research has attracted a lot of attention over the last
years and that we have chosen it to be the subject of this thesis.

1.3 Overview of this diploma thesis

After this introductory chapter we proceed directly to BEC’s in optical lattices in chapter 2.
We introduce and explain the Bose-Hubbard Hamiltonian and how the phase transition from
the superfluid to the Mott-insulator takes place. A very short and, owing to the theoretical
nature of this thesis, incomplete, overview of the most important experimental methods to
create a BEC is also given.

As the starting point of our calculations in chapter 3 we use the approximation that the wave
function of the system is essentially a classical state, namely the ground state with a small
correction, i.e. we start in the superfluid state. Our aim is to calculate the value for U/J where
the phase transition from the SF to the MI state takes place. This is done by observing the
ground state density n0: when it reaches zero, the system is in the Mott-insulator state. The
correlation of U/J and n0 is plotted by eliminating the chemical potential.

In chapter 4, in order to increase the magnitude of the interactions that should lead to the in-
sulator state, we include the next order in the interactions and represent them diagrammatically
by Feynman Diagrams.

We use these in chapter 5 by taking the zero temperature limit and again looking for the
critical value of U/J including the second order.

After showing that this path leads to problems, we try another way: instead of solving the
two fundamental equations by reinserting and eliminating as before, we try a purely numerical
calculation of the original equations with a self-written program thereby avoiding the afore-
mentioned problems. Chapter 6 shows the result, while the program and the result of some
unwieldy derivations can be found in the Appendix.

A short summary of this work is given in chapter 7.
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Chapter 2

BEC in optical lattices

”To coldly go where no one has gone before.”

Charles Seife, in an article about BEC

In this thesis, we will examine BEC’s in optical lattices. ”Optical” meaning that a (1-,2- or
3-dimensional) lattice of laser-light intensity minima and maxima is created, which due to the
Stark-Effect means that the atoms will be drawn to either the maxima or minima and repelled
by the other, respectively. We therefore get the two limiting cases:

- a very weak laser field, i.e. extremely shallow potential wells, means that the atoms are able
to move freely within the BEC (as mentioned, interactions between the atoms themselves are
typically very weak). This state is called ”superfluid”, and like a superfluid it has a linear
excitation spectrum without a gap.

- as the laser intensity is raised, the atoms become more and more trapped at the intensity
extrema. When they are highly localized, we speak of the BEC being in a ”Mott-insulator state”.
No excitations are possible for energies too low to allow the atoms to escape the potential wells.

As mentioned earlier, the phase transition that appears between these two extremes is what we
will investigate in this thesis, namely the one starting from the superfluid state and ending in
the Mott-insulator state. The other direction has been the topic of several works, cf. [11], [12].

2.1 Theoretical basics

We will now investigate BEC’s in optical cubic lattices from a theorist’s point of view. The
first successful experiment where a BEC could be confined in an optical lattice took place in
1997 at MIT [13].

2.1.1 Bose-Hubbard-Hamiltonian

A reasonable starting point for our calculations is the Bose-Hubbard-Hamiltonian, well-
known from Solid State Physics.

For example in [11] (in German) or in the seminal paper [14] the Bose-Hubbard Hamiltonian
has been shown to be a special case for the general Hamiltonian for interacting bosons:

5
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Ĥ =

∫
d3xΨ̂†(x)

[
− ~2

2m
∇2 + Vext

]
Ψ̂(x)+

1

2

∫ ∫
d3x1d

3x2Ψ̂
†(x1)Ψ̂

†(x2)Vint(x1,x2)Ψ̂(x1)Ψ̂(x2)

(2.1)

We will therefore not do a step-by-step derivation but instead just list the underlying assump-
tions:

• Only two-particle contact interaction
Due to the low density of atoms in a BEC it is generally assumed that the interaction
between the particles is of the form:

Vint =
4π~2as

m
δ(x1 − x2) , (2.2)

with as being the s-wave (i.e. lowest order) scattering length. This is valid to a high degree
of precision in a BEC because of the low particle density. Obviously, this enormously
facilitates all of our calculations and is a reason why a BEC is so attractive from a
theorist’s point of view. We refer to a recent work [15] where more realistic interactions
are examined.

• High localization
For highly localized particles it is more suitable to work with a basis that already has this
property. These are the Wannier functions, described below. Also, it is assumed that if a
particle is annihilated, it can only appear (”hop to”) at a neighboring lattice site. Effects
of beyond nearest-neighbor tunneling due to finite temperatures are the subject of [16].

• Lowest Band
Since we work at very low temperatures, it is reasonable to assume that the bosons do
not have enough energy to overcome the band gap. Therefore, as mentioned earlier, we
only use the Wannier functions for the lowest energy band. The changes when including
the other excited bands are discussed in [17].

• Periodicity
The external potential is assumed to be periodical, which is a given for the potential
created by the lasers but the influence of the harmonic trap is completely ignored. In, for
example, [18] the influence of the trapping potential is examined.

We now write down the Bose-Hubbard-Hamiltonian:

Ĥ =
1

2
U
∑

i

ĉ†i ĉ
†
i ĉiĉi − J

∑

<i,j>

ĉ†i ĉj − µ
∑

i

ĉ†i ĉi (2.3)

The sum is to be calculated over all lattice sites i, and ĉi denotes the (bosonic) annihilation
operator at the lattice site i. The chevrons under the sum < i, j > denote a summation of only
nearest neighbor sites i and j.

What do the different parts in (2.3) mean? The first term, called the interaction term, describes
an attractive force between atoms at the same site i. By using the commutation rules for bosonic
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annihilation and creation operators, we can also write this part as Un̂(n̂ − 1). Obviously, for
zero or one particle at one lattice site, no interaction energy should arise and we indeed see that
the contribution of this term to the Hamiltonian yields zero for these cases. The next term,
the so-called hopping term, describes the lowering of the energy by a moving (hopping) of one
particle from site j to a neighboring site i.

These two processes compete with each other to lower the energy, depending on the parameters
U and J and we can distinguish between the two cases where one of them dominates the
Hamiltonian:

if U ≫ J , the interactions between the bosons keep them in their respective lattice sites, they
will not hop, i.e. we have the Mott-insulator state.

If on the other hand, J ≫ U , the hopping is highly favored, the system is therefore in the
superfluid state.

We mentioned that it is very attractive to work with a BEC in an optical lattice because the
parameters can be changed very easily over a wide range. What is the relationship between the
adjustable laser strength V0 defined below in (2.13) and U or J?

Very often, the assumption of a harmonic potential (quadratic with a maximum at the lattice
sites) is made which very much simplifies the calculations. One should, however, use the
Wannier-functions, as mentioned above. Thus, the bosonic creation and annihilation operators
are expanded in the basis of the Wannier-functions w(x− xi):

Ψ̂† =
∑

i

ĉ†iw(x− xi)
∗, Ψ̂ =

∑

i

ĉiw(x− xi) (2.4)

The Wannier functions have long been used in the study of solid state physics. They are
calculated via a Fourier transformation of the Bloch functions:

w(x− xi) =

√
a

2π

∫

−π/a

π/a

dquq(x)e
−iqxi (2.5)

This is a 1-D Wannier-function, with uq(x) being a Bloch-function and a the lattice constant.

They are highly localized at the lattice sites xi (in contrast to Bloch functions which are
delocalized over the whole lattice), which makes them a suitable basis for our optical lattice.
Obviously, each energy band will in general have a different Wannier function, so if we would not
restrict ourselves to the lowest band only, they should be marked with an additional parameter
for the band index.

The Wannier functions are not uniquely defined by Eq. 2.5, because each of the wavefunctions
uq(x) could get a different phase factor which would not have an impact on each of the Bloch
functions but on the Wannier function it would indeed.

There is, however, for each band one uniquely determined maximally localized Wannier function
with the property that it is real, symmetric and decreasing exponentially [19].

A thorough numerical calculation of U and V by using Wannier functions can be found in [20]. It
turns out that that U depends polynomially on V0 and J depends exponentially on V0. Dividing
eq. 2.3 by J, we see that the influence of the laser strength seems only to manifest itself via
U/J , which will stay true for our further calculations in this thesis. But, this is not necessarily



8 2.1. THEORETICAL BASICS

Figure 2.1: J/U over Vr taken from [20]

always the case, since through Feshbach resonances it is possible to change the s-wave scattering
length as, thereby influencing the particle interaction.

Vr stands for the laser potential V0 in units of the recoil energy ER = ~2π2

2a2m
, with a being the

lattice spacing. Changing as would lead to a scaling of the y-axis with the factor a/as.

As mentioned, the two obvious choices for the starting point of further calculations are the
strong-coupling case where the hopping-term is introduced as a perturbation and the superfluid
phase in which the interaction is small.

2.1.2 Phase transitions

A very broad and fascinating area of physics is concerned with phase transitions. A well-known
everyday example is the evaporation or the solidification of liquid water: depending on external
variables, such as pressure and temperature, the system can assume different states, or phases,
in this case liquid, gaseous and solid. This diploma thesis will examine the phase transition
from the superfluid state to the Mott-insulator state of a BEC in an optical lattice, depending
on the externally adjustable laser strength. Common to all phase transitions is a discontinuity
in a derivative of the appropriate thermodynamic potential, which were therefore classified
according to when the first discontinuity appears (Ehrenfest classification). This has proven to
be too restrictive since there are examples for logarithmic and exponential singularities. Today,
one usually only differentiates between first-order phase transitions where at least one partial
derivative of a thermodynamic potential are discontinous, and second-order (or continous) phase
transitions.

The order parameter of a theory is a variable (in our case a scalar) defined such that it is
zero for one phase and nonzero in the other. For a BEC, the order parameter is the particle
density for the ground state, n0 (actually, it is its squareroot). Another prominent example is
the energy gap ∆ in superconductors.

Some assumptions have to be made as to how the order parameter appears in the thermody-
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namic potential. Some that have had much success are the Landau theory and the Φ4-theory.
A very thorough treatment of the latter topic can be found in [21].

Within the Landau theory, the grand-canonical potential Ω is expanded with respect to the
order parameter Ψ up to fourth order. For symmetry reasons, only even powers appear.

Ω = aΨ4 + bΨ2 + c (2.6)

We can calculate the order parameter by demanding that Ω has a minimum:

∂Ω

∂Ψ
= 4aΨ3 + 2bΨ = 0 (2.7)

and
∂2Ω

∂Ψ2
= 12aΨ2 + 2b > 0 (2.8)

In our coming calculations we will also derive the grand-canonical potential, but with respect
to n0 which is actually Ψ2. Of course, this will also give us the minimum of Ω:

∂Ω

∂Ψ2
=

∂Ω

∂Ψ

∂Ψ

∂Ψ2
=

∂Ω

∂Ψ

1

2Ψ
(2.9)

And, for Ψ 6= 0, both derivatives have the same set of solutions.

In this thesis, we will not analyze the regular phase transition to a BEC, but the phase transition
of a BEC in an optical lattice.Experimentally, the phase transition in an optical lattice was first
observed in 2002 [22]. This Mott-superfluid-transition is called a quantum phase transition, the
difference to the general phase transition being that it also takes place at zero temperature due
to quantum fluctuations.

The change to the superfluid state in He4 is obviously also a phase transition. One might ask
whether this is not another example of a Bose-Einstein condensate. Calculating TC , we get
3.14K, close enough to the experimental value Tλ = 2.18K for the so-called lambda-point where
superfluidity sets in. We now know that the reasonable assumption of a BEC was not entirely
correct. The fraction of the condensate at 0K is only about 1/12th, owing to the very strong
interactions in Helium. Furthermore, in 1972 He3 could be cooled down enough to about 2
millikelvin to exhibit a superfluid state (this feat was awarded the Nobel Prize in Physics in
1996 to David Lee, Robert Richardson and Douglas Osheroff). Since He3 consists of fermions,
this cannot be a pure Bose Einstein condensate, for only through the strong correlations between
the atoms they are able to form pairs, which then are bosons able to condensate in the ground
state. Much research has been done concerning the BCS-BEC crossover, which is achieved by
the use of Feshbach resonances [23].

2.2 Experimental realization

In this chapter we give an overview of the experimental methods used to create a Bose-Einstein-
Condensate and the difficulties that had to be overcome. Since this thesis will emphasize
theoretical calculations, just a rough overview will be provided. The methods used have become
even more refined during these last years, and we cannot explore all the details here.
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Figure 2.2: Phase diagram for T= 0 [24]. Only for integer density n there is a Mott insulator
(MI) phase, a small deviation ǫ means the system always has a small part of particles that
can move freely, a sign for the superfluid state (SF). The dashed line shows how changing
the chemical potential (which is in general space-dependent) means passing through several
different phases.
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As we already mentioned, the theoretical prediction of the occurrence of BEC took place many
decades before it could finally be experimentally realized. The main obstacle was to achieve
temperatures low enough to allow for a macroscopic population of the ground state, though at
the same time not allowing the atoms to solidify in the process. At the start of every BEC, a
gas has to be produced by heating the atoms which gain enough thermic energy that they can
leave the solid. Obviously, they then have a very high kinetic energy, which in the following
steps must be reduced in order to observe a BEC.

The basic principle here is that of Doppler cooling, so named because it exploits the Doppler-
shift of relative motion: due to the high velocity of the still hot particles, the frequency needed
for a transition between states is red-shifted. This can be used so that only particles around a
certain velocity absorb a photon from an external laser. After a very short time, the particle
transitions back to its former state by emitting again a photon. The difference is that during
the absorbtion the particle receives momentum from the photon which leads to a deceleration
while the emission spreads over all angels, i.e. no net momentum change occurs. More on Laser
Cooling can, for example, be found in [25]. For sodium, for example, a temperature as low as
240µK can be reached by the Doppler mechanism alone.

Additionally, in a magneto-optical trap (MOT) an inhomogeneous magnetic field is superim-
posed over the laser field for optical cooling. Due to the Zeeman-shift, the energy levels of the
particles change depending on their distance from the center of the trap in such a way that the
chance for absorbing a photon increases with the distance, resulting in a net force towards the
center, thereby trapping the particles.

The last and deciding step in creating a BEC is the evaporative cooling [26]. The basic idea
is that, as temperature is a measure for the mean energy per particle, the temperature must
decrease if the particles with the highest energy are removed.

The condition for an induced transition is:

gµBB = ~ω , (2.10)

with g the g-factor, µB the Bohr magneton and and ω the frequency of the field. The potential
seen by a particle in a magnetic field is

V = mF gµBB (2.11)

so by adjusting the spin state it is possible to change a particle from a low field seeking one to a
high field seeking one, which results in the particle leaving the trap. By lowering the magnetic
field, more particles will leave so trap so one can adjust the desired temperature (but accepting
that always particles are lost) until BEC can be achieved. This typically takes only several
seconds.

The BEC is then loaded into an optical lattice, for the 3D case generated by six counterprop-
agating lasers, creating standing waves in every direction. 1D or 2D optical lattices are also
possible to realize [27]. Also, a trapping potential is present to prevent loss. Under the assump-
tions that there is no interference (this can be done by taking orthogonal polarization vectors
as well as a tiny offset for the wavelengths) and neglecting the trapping potential, the laser
intensity is simply the sum

I = I0

d∑

i=1

sin2(
2π

λ
xi) (2.12)
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Figure 2.3: Particles in the potential of an optical lattice [28].

(with λ being the laser wavelength) .

Perturbation theory for an external electric field acting as the perturbation (Stark effect) shows
that there is a linear correlation between I and the potential. With these assumptions, the
potential for the optical lattice reads:

V = V0

d∑

i=1

sin2(
2π

λ
xi) (2.13)

We still haven’t answered the question how the existence of a BEC can actually be seen. Apart
from indirect features like the existence of a gap in the MI state, there is a visually appealing way
by creating time-of-flight (TOF) pictures. This means that the trap is switched off completely
and the particles expand freely. Neglecting gravity, the time ∆t a particle needs to cover the
distance ∆r is related to the wave vector k simply as:

~k = p = mv = m
∆r

∆t
(2.14)

By measuring the distance and the time, one can therefore observe how many particles are in
each k-state. For T < TC one should begin to see a peak for k = 0 which gets more and more
pronounced as the temperature is lowered.
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Figure 2.4: TOF picture of the formation of a BEC at the MPQ.
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Chapter 3

Effective Hamiltonian for the
Bogoliubov Approximation

”More is different.”

Aphorism by P.W. Anderson

In this chapter we will study the Bogoliubov approximation [29] [30] , which is a suitable ansatz
for the case that the optical lattice depth is sufficiently low, so that we can assume that the
BEC is essentially described by a macroscopic wave function plus a (small) correction term..

3.1 Bogoliubov Approximation

We call NS the number of lattice sites in the optical lattice we are studying, and write ĉ†i for
the creation operator which creates one particle at the lattice site with the coordinates ri.

Statistical calculations with bosons at very low temperatures necessitate a special treatment of
the ground state k = 0, which is macroscopically populated in the experiments we discuss here.
It is therefore suitable to Fourier-transform the creation and annihilation operators:

ĉi =
1√
Ns

∑

k

âke
−ik·ri , (3.1)

ĉ†i =
1√
Ns

∑

k

â†ke
ik·ri . (3.2)

The inverse relations are

âk =
1√
Ns

∑

i

ĉie
ik·ri , (3.3)

â†k =
1√
Ns

∑

i

ĉ†ie
−ik·ri . (3.4)

Note that the definitions are normalized in such a way that
∑

i ĉ
†
i ĉi =

∑
k â

†
kâk, which means

that the sum of all particle number operators taken over all sites ri equals the sum of all particle
number operators taken over all possible values for k. This sum obviously yields the value N ,

15
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the number of all particles, when applied to any state. In our calculations we shall make use of
the following representation of the Dirac Delta-function:

∑

i

ei(k−k′)·ri = NSδk,k′ . (3.5)

With that, we can prove the above statement:

∑

i

ĉ†i ĉi =
∑

i

1

NS

∑

k

â†ke
ik·ri

∑

k′

âk′e−ik′·ri =
1

NS

∑

k

â†k
∑

k′

âk′

(
NSδk,k′

)
=
∑

k

â†kâk . (3.6)

The Fourier components are operators which satisfy the ordinary commutation relations:

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 , (3.7)

and [
âk, â

†
k′

]
= δk,k′ . (3.8)

Eq. (3.7) is easy to prove, because âk and âk′ consist of sums of ĉi’s, which commute pairwise
due to the standard commutation relation [ĉi, ĉj] = 0. Likewise, all ĉ†i ’s commute because

[ĉ†i , ĉ
†
j] = 0. The last missing commutation relation describes a mixed pair of creation and

annihilation operators:

[
âk, â

†
k′

]
=

1

NS

[
∑

i

ĉie
ik·ri ,

∑

j

ĉ†je
−ik′·rj

]
=

1

NS

δi,j
∑

i,j

e−(k·ri−k′·rj)
[
ĉi, ĉ

†
j

]
=
[
ĉi, ĉ

†
i

]
δk,k′ = δk,k′ .

(3.9)

Plugging (3.1) and (3.2) in the Bose-Hubbard Hamiltonian (2.3) thus yields:

Ĥ =
1

2
U

1

N2
S

∑

i

∑

k

∑

k′

∑

k′′

∑

k′′′

â†kâ
†
k′ âk′′ âk′′′eiri·(k+k′−k′′−k′′′)

− J
1

NS

∑

<i,j>

∑

k

∑

k′

â†kâk′eik·ri−k′·rj − µ
1

NS

∑

i

∑

k

∑

k′

â†kâk′eik·ri−k′·ri . (3.10)

This expression can be simplified as follows: We discuss here only the case of a cubic lattice
with the lattice constant a, so that in the sum over next neighbors the sum over j just becomes
rj = ri ± aep with p as a unit vector denoting the direction the neighbored lattice site lies.
Therefore the Hamiltonian can be written as:

Ĥ =
1

2
U

1

N2
S

∑

k

∑

k′

∑

k′′

∑

k′′′

â†kâ
†
k′ âk′′ âk′′′

∑

i

eri·(k+k′−k′′−k′′′)

− J
1

NS

∑

i

∑

k

∑

k′

eiri·(k−k′)
∑

p=±1,2,...d

eiak
′·ep − µ

1

NS

∑

i

∑

k

∑

k′

â†kâk′eiri·(k−k′) . (3.11)
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By using the Euler-relation and the formula for the Delta-function (3.5), this gives:

Ĥ =
1

2

U

NS

∑

k

∑

k′

∑

k′′

∑

k′′′

â†kâ
†
k′ âk′′ âk′′′δ(k+k′),(k′′+k′′′) −

∑

k

[
µ+

d∑

p=1

2J cos(kpa)

]
â†kâk . (3.12)

In the following, the starting point for our calculations will be the superfluid phase, so that
almost all atoms in the trap occupy the ground state. If the laser strength is increased, one
observes a behavior typical of a second order phase transition, and the corresponding order
parameter can be shown to be

√
N0. We will see that this is approximately equal to the

expectation values of the creation and the annihilation operator for the ground state, < â0 > and
< â†0 >, respectively: Indeed, since it follows from the definition of the expectation functional
applied to an operator Â in the grand-canonical ensemble,

< Â >=
tr
(
e−β(Ĥ−µN̂)Â

)

tr
(
e−β(Ĥ−µN̂)

) 1 , (3.13)

that it is linear (the trace operator tr<.> is linear!), we have < â†0â0 >=< n̂0 >= N0

and < â0â
†
0 >=< â†0â0 + [â0, â

†
0] >=< â†0â0 − 1 >= N0 − 1 ≈ N0, since in the superfluid phase

N0 ≫ 1.

Furthermore, the expectation value of the hermitian conjugated operator is just the complex
conjugate of the operator’s expectation value:
< Ô† >=< Ô >∗, so that we obtain < â0 >=< â†0 >=

√
N0. In the deep superfluid regime,

we may thus assume that it is justified to write â0 =
√
N0 + δâ0 and likewise for the creation

operator, in both cases the deviation from the mean value
√
N0 is supposed to be small, so that

we can neglect higher orders.

In the next step, we sort the terms by their order in the fluctuations δâ0 and δâ†0. The zeroth
order terms are called Gross-Pitaevskii contributions, the first order terms vanish as we will
soon see, the second order ones are called Bogoliubov terms and the higher orders are neglected
for now. As the title of this thesis suggests, we will later also need the higher order terms, so
we here list all orders.

We introduce here the dispersion relation

ǫk = 2J
d∑

p=1

1− cos(kpa) . (3.14)

This choice of the sign for the dispersion relation is chosen so that in the limiting case a → 0 we
actually get the free dispersion ǫk ∝ k2: Taylor expansion at a = 0 up to second order yields:
ǫk ∝

∑d
p=1 1− (1−kp

2)+O(a3) ∝ k2, which is the expected quadratic dispersion. Furthermore,
we have ǫ0 = 0, so that the energy scale starts at zero and never gets negative.

With the abbreviation z = 2d, z being the number of nearest neighbors, we can also write
ǫk = Jz − 2J

∑d
p=1 cos(kpa).

1The term −µN̂ is already included in our Hamiltonian (2.3), so this term will not appear again in the
following calculations.
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We sort the orders by writing
∑

k
âk = â0 +

∑
k 6=0 âk.

0th order:
All sums are replaced by

√
N0 so only one term remains in this order:

H0
int =

1

2
UNSN

2
0 +N0(−Jz − µ) =

1

2
Un0N0 +N0(−Jz − µ) (3.15)

1st order:
Only one sum (= one fluctuation about N0) remains. There is no contribution from the quartic
sum since in the δk+k′,k′′+k′′′ we have one k 6= 0 and all others are zero, so all terms in first
order vanish. So we only have

−
∑

k

[
µ+

d∑

p=1

2J cos(kpa)

]
â†kâk (3.16)

2nd order:

H
(2)
int =

1

2
Un0

{
∑

k

â†k
∑

k′

â†
k′ +

∑

k

â†k
∑

k′′

âk′′ +
∑

k′

â†
k′

∑

k′′

âk′′

+
∑

k

â†k
∑

k′′′

âk′′′ +
∑

k′

â†
k′

∑

k′′′

âk′′′ +
∑

k′′

âk′′

∑

k′′′

âk′′′

}
δk+k′,k′′+k′′′ +

∑

k

(ǫk − µ)âkâ
†
k

(3.17)

3rd and 4th order:

H
(3)
int =

1

2

U

NS

√
N0

{
∑

k

â†k
∑

k′

â†
k′

∑

k′′

âk′′ +
∑

k

â†k
∑

k′

â†
k′

∑

k′′′

âk′′′

+
∑

k

â†k
∑

k′′

âk′′

∑

k′′′

âk′′′ +
∑

k′

â†
k′

∑

k′′

âk′′

∑

k′′′

âk′′′

}
δk+k′,k′′+k′′′ .

(3.18)

The first two and the last two terms are equal after renaming the summation indices, since this
change also does not affect the δ.

H
(4)
int =

1

2

U

NS

δk+k′,k′′+k′′′

∑

k

âk
†
∑

k′

âk′
†
∑

k′′

ˆak′′

∑

k′′′

ˆak′′′ (3.19)

As mentioned, our effective Hamiltonian will only include terms up to second order in the
fluctuations about

√
N0, the higher orders will only play a role in later chapters, where we will

perform a perturbation expansion.

We can simplify Ĥ(2): renaming indices, the second and third as well as the fourth and fifth
term are equal

Ĥeff = N0

(
1

2
Un0 − µ− zJ

)
+ η

[
∑′

k

â†kâk(ǫk − Jz − µ+ 2Un0) +
1

2
Un0

∑′

k

âkâ-k + â†-kâ
†
k

]

(3.20)



CHAPTER 3. EFFECTIVE HAMILTONIAN FOR THE BOGOLIUBOV
APPROXIMATION 19

Here η represents an artificial smallness to keep track of the order of the fluctuations. As soon
as we need quantitative results, we will set η = 1.

The aim of the Bogoliubov transformation is to achieve a diagonal Hamiltonian in new creation

and annihilation operators b̂k and b̂k
†
, which depend linearly on the old ones. To this end we

make the following ansatz:

b̂k = uk · âk + vk · â†−k ,

b̂†−k = v∗k · âk + u∗
k · â†−k . (3.21)

By taking the hermitian conjugate of the first equation and replacing k with -k we see by
comparing to the second equation that the coefficients uk and vk must not depend on the sign
of k:

uk = u−k ,

vk = v−k . (3.22)

Since we have shown in Eqs. (3.7) and (3.8) that âk and â†k obey the standard commutation
laws for creation and annihilation operators, we obtain

[b̂k, b̂
†
k′] = [ukâk + vkâ

†
−k, v

∗
k′ âk′ + u∗

k′ â
†
−k′ ] = uku

∗
k′ [âk, â

†
−k′] + vkv

∗
k′[â

†
−k, âk′ ]

= uku
∗
k′δk,k′ − vkv

∗
k′δk,k′ = (|uk|2 − |vk|2)δk,k′ ,

(3.23)

and see that, in order to retain the standard commutator relations, it is necessary that

|uk|2 − |vk|2 = 1 . (3.24)

This is also sufficient, since the remaining commutation relations are automatically fulfilled:

[b̂k, b̂k′ ] = [u(k)âk+v(k)â†−k, u(k
′)âk′+v(k′)â†

−k′] = [ukak, vk′a†
−k′]+[vka

†
−k, uk′ak′ ] = 0 , (3.25)

since in our sums the case k = 0 is excluded, so that always k 6= −k .

Correspondingly, we obtain

[b̂†k, b̂
†
k′ ] = [v∗k′ âk + u∗

kâ
†
-k, v

∗
k′ âk′ + u∗

k′ â
†
-k′ ] = [v∗k′ âk, u

∗
k′ â

†
-k′] + [u∗

kâ
†
-k, v

∗
k′ âk′ ] = 0 (3.26)

with the same reasoning as above.

We now impose further conditions for the coefficients uk and vk by requiring that the Hamil-
tonian (3.20) takes on a diagonal form like

Ĥeff = α +
∑′

k

(~ωk + β) +
∑′

k

~ωkb̂
†
kb̂k . (3.27)
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In the following steps, we will frequently use that the identity
∑

k
f(k) =

∑
k
f(-k) is valid for

any function f and, since our sums exclude k = 0, we see from Eq. (3.8) that we can write:
a−ka

†
k = a†ka−k.

Our effective Hamiltonian (3.20) thus has the alternative representation

Ĥeff = N0(
1

2
Un0 − µ− zt) +

1

2
η

[
∑′

k

(ǫk − Jz − µ+ 2Un0)+

∑′

k

Un0âkâ-k + Un0â
†
-kâ

†
k + (ǫk − Jz − µ+ 2Un0)â

†
kâk + (ǫk − Jz − µ+ 2Un0)â-kâ

†
-k

]
.

(3.28)

Now we use the inverse relations to (3.21),

âk = u∗
kb̂k − vkb̂

†
-k

â†−k = −v∗kb̂k + ukb̂
†
-k , (3.29)

and insert them in (3.44). Sorting by the different products of the new creation and annihilation
operators, we obtain:

b̂†kb̂k :
1

2

[
(ǫk − Jz − µ+ 2Un0) |uk|2 − Un0v

∗
kuk − Un0u

∗
kvk + ǫk − Jz − µ+ 2Un0) |vk|2

]
,

(3.30)

b̂-kb̂
†
-k :

1

2

[
(ǫk − Jz − µ+ 2Un0) |uk|2 − Un0v

∗
kuk − Un0u

∗
kvk + (ǫk − Jz − µ+ 2Un0) |vk|2

]
,

(3.31)

b̂†kb̂
†
k : − 1

2

[
2(ǫk − Jz − µ+ 2Un0)ukvk − Un0v

2
k − Un0u

2
k

]
, (3.32)

b̂-kb̂k : − 1

2

[
2(ǫk − Jz − µ+ 2Un0)u

∗
kv

∗
k − Un0v

∗2
k − Un0u

∗2
k

]
. (3.33)

We see that the last two equations are just complex conjugated to each other, if we remember
(3.1) and (3.22), but this is not quite true for (3.30) and (3.31), as we have to commute b̂k and
b̂†k. Since we demand that the b̂k‘s only appear in terms of the form ~ωkb̂

†
kb̂k, we have reduced

the number of equations to two, and additionally still the condition (3.24) :

−1

2

[
2(ǫk − Jz − µ+ 2Un0)ukvk − Un0v

2
k − Un0u

2
k

]
= 0 . (3.34)

1

2

[
(ǫk − Jz − µ+ 2Un0) |uk|2 − Un0v

∗
kuk − Un0u

∗
kvk + ǫk − Jz − µ+ 2Un0) |vk|2

]
= ~ωk .

(3.35)

Since we have more variables than equations, we cannot expect a unique solution, however,
that is not necessary at this point. First of all, we remark that a global phase factor cannot
change the Hamiltonian since it has U(1)-symmetry. Yet, we can answer the question how the
phases of uk and vk are related relative to each other. This can be seen from Eq. 3.35, where
the left-hand side must yield a real result. By writing uk = |uk| eiφuk and vk = |vk| eiφvk we
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see that after an arbitrary phase-shift the energy stays real iff φuk
− φvk = 0 2 or, equivalently,

φuk
= φvk . Later, we will proof that this also stays true for the second order terms. If we

assume at this point that the phase is arbitrary, the obvious choice is to make uk and vk real.

Now we can solve the above equations. First of all, u2
k − v2k = 1 implies that we can write

uk = cosh x and vk = sinh(x). Equation 3.34 is of the form

2α(cosh x sinh x)− β(cosh2 x+ sinh2 x) = 0 . (3.36)

We rearrange this to

β

α
= 2

cosh x sinh x

cosh2 x+ sinh2 x
= 2

sinhx
coshx

1 + sinh2 x
cosh2 x

= 2
tanhx

1 + tanh2 x
, (3.37)

which, by an addition theorem, is equal to tanh 2x. Using the following trigonometric identities,

cosh2 x =
1

2
(cosh 2x+ 1) =

1

2

(
1√

1− tanh2 2x
+ 1

)
=

1

2


 1√

1− β2

α2

+ 1


 (3.38)

=
1

2

(
α√

α2 − β2
+ 1

)
. (3.39)

we can now solve 3.35:

~ωk = α(cosh2 x+ sinh2 x)− 2β(sinh x cosh x) = α(
α√

α2 − β2
)− β2

α

α√
α2 − β2

(3.40)

=
α2 − β2

√
α2 − β2

=
√

α2 − β2, (3.41)

where we have used (3.36) to eliminate sinh x cosh x.

Writing out α and β yields:

|uk|2 = |vk|2 + 1 =
1

2

(
ǫk − Jz − µ+ 2Un0

~ω
+ 1

)
(3.42)

with the dispersion relation

~ωk =
√

(ǫk − Jz − µ+ Un0)2 + 2Un0(ǫk − Jz − µ+ Un0) . (3.43)

At last, we now can write down our diagonal effective Hamiltonian. We must not forget to
include 1

2
~ωk, which arises due to the commutation performed in (3.31).

Ĥeff = NS

(
1

2
Un2

0 − µn0 − Jzn0

)
+

1

2

∑′

k

[~ωk − (ǫk − Jz − µ+ 2Un0)] +
∑′

k

~ωkb̂
†
kb̂k

(3.44)

2The difference may also be a multiple of 2π, we neglect this ambiguity.
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3.2 The condensate density

We are ultimately interested in a relationship between the condensate density n0 and the
experimentally adjustable parameters U and J . Obviously, the number of all atoms must
equal the sum over the expectation values of all n̂k :

N = N0 +
∑′

k

< â†kâk > (3.45)

For calculating a trace we may use any basis, so in (3.45)we will choose one that is well-suited.
Due to the fact that there are only one-particle contributions in our Hamiltonian (3.44), the
occupancy number representation |nα1 , nα2 · · · > yields such a basis, since their elements are
eigenstates to Ĥ and to the new occupancy number operator b†kbk. The fact that all states used

for the trace are eigenstates to Ĥ simplifies the expectation value, since we can just apply Ĥ
in the denominator and the numerator and cancel the resulting eigenvalues. It just remains to
calculate tr(â†kâk). To this end, we express the old creation and annihilation operators by the
new ones via (3.29) and get:

N = N0 + η

[
∑′

k

< |uk|2 b̂†kb̂k + |vk|2 b̂−kb̂
†
−k − v∗ku

∗
kb̂−kb̂k − vkukb̂

†
kb̂

†
−k >

]
. (3.46)

The action of b̂†kb̂k = n̂k is obvious:

< nk1 , . . . |b̂†kb̂k|nk1 , · · · >=< nk1, . . . |nk|nk1 , · · · >= nk . (3.47)

Now, the first term in the sum is trivial, because the trace is a sum of its eigenstates. The second
term likewise, if we commute the operators, which gives an additional factor |vk|2. The third
and fourth term yield the expectation value zero, because they produce states with different
nk’s in the bra- and ket-vectors, which are orthogonal.

We introduce the particle density per site n:
n = N

NS

n = n0 + η <

[
1

NS

∑′

k

|uk|2 b̂†kb̂k + |vk|2 (b̂†kb̂k + 1)

]
> . (3.48)

We insert (3.42) and remember that < b̂†kb̂k > is described by the Bose distribution. Now we
have our result,

n = n0 + η
1

NS

[
∑′

k

ǫk − Jz − µ+ 2Un0

~ωk

·
(

1

eβ~ωk − 1
+

1

2

)
− 1

2

]
. (3.49)

Since the experiments which we aim to explain are carried out at extreme low temperatures of
the order of 10−8K, it is only natural to examine in particular the limit T → 0. This is easily
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done, since T → 0 means β → ∞ and therefore e−β~ω → 0. In the zero-temperature limit we
thus have:

n = n0 + η
1

NS

[
∑′

k

1

2

(ǫk − Jz − µ+ 2Un0)

~ωk

− 1

2

]
. (3.50)

For a numerical evaluation, we take the k’s to be sufficiently dense so that we may regard them
as quasi-continuous. This allows us to change the sum to an integral via the general formula:

∑

k

f(k) 7−→
∫

k

ρ(k)f(k)dk . (3.51)

Here ρ(k) denotes the density of states in k-space. Using periodic boundary conditions, the

states have a distance of 2π
a

in every direction, so that one state occupies a volume of
(
2π
a

)d
,

which gives a density of ρ(k) =
(

a
2π

)d
. Like in solid-state physics (the optical lattice has

obviously many similarities to the free electron model), we project all states in k-space onto
the first Brillouin zone

⊗d
i=1

(
−π

a
−→e i,

π
a
−→e i

)
.

Since we have originally just one state in a volume of the Brillouin zone, the density becomes
much larger if we only take the integral from −π/a to +π/a, namely by the factor NS, the
number of unit cells in k-space. We thus get:

n = n0 + η




1

NS

π/a∫

−π/a

NS

( a

2π

)d(1

2

(ǫk − Jz − µ+ 2Un0)

~ωk

− 1

2

)
ddk


 . (3.52)

For simplicity we introduce the dimensionless variable q := a
2π
k and get the following expression

that we will solve numerically:

n = n0 + η

1
2∫

− 1
2


1
2

(
ǫ( 2π

a
q) − Jz − µ+ 2Un0

)

~ω( 2π
a
q)

− 1

2


 ddq . (3.53)

3.3 The grand-canonical potential and self-consistency

In this section we check whether our whole idea of diagonalizing and neglecting higher terms in
the Hamiltonian is consistent with the basic rules of thermodynamics. In particular, we verify
that we can also calculate the particle density n by differentiating the grand-canonical potential
with respect to µ. The partition function Z is defined as tr(e−βĤ), where Ĥ is our effective
Hamiltonian (3.44). The so-called effective potential Veff is then calculated by − 1

β
lnZ. This is

not yet the grand-canonical potential, since we still have a dependency upon n0, which is itself
a function of µ. This dependency must be eliminated. At first we get

Veff = − 1

β
ln tr



e

−βNS(
1
2
Un2

0−µn0−Jzn0)+η

[

1
2

∑′

k

(~ωk−(ǫk−Jz−µ+2Un0))+

∑′

k

~ωkb̂
†
k
b̂k

]

 . (3.54)
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Like before, the appropriate basis for the calculation of the trace is the number occupancy
basis. The terms without operators can simply be taken out of the trace, so for now we will
look only at the last sum:

− 1

β
ln tr

(
e

∑′

k

−β~ωkb̂
†
k
b̂k

)
= − 1

β
ln

(
∑

nk1

e−βnk1

)(
∑

nk2

e−βnk2

)
· · · = − 1

β
ln
∏′

k

(
∑

nki

e−βnki

)

= − 1

β
ln
∏′

k

1

1− e−β~ωk

, (3.55)

where in the last step we have used the formula for the geometric series. By using the known
properties of the logarithm can now write down the final result for the effective potential:

Veff = NS

(
1

2
Un2

0 − µn0 − Jzn0

)
(3.56)

+ η

[
1

2

∑′

k

(~ωk − (ǫk − Jz − µ+ 2Un0)) +
1

β

∑′

k

ln
(
1− e−β~ωk

)
]

. (3.57)

As said before, Veff is not a thermodynamic potential, yet it will become the grand-canonical
potential Ω at the extremum with respect to n0: Solving ∂Veff

∂n0
= 0 yields n0extr and Veff(n0 =

n0extr , µ, T, V ) is Ω(µ, T, V ) . This we will calculate in the next step.

∂Veff

∂n0
= NS(−Jz − µ+ Un0) (3.58)

+ η

[
1

2

∑′

k

(
−2U +

∂~ωk

∂n0

)
+

1

β

∑′

k

1

1− e−β~ωk

(
−e−β~ωk

)
(−β)

∂~ωk

∂n0

]
(3.59)

By looking at (3.43), we can calculate that

∂~ωk

∂n0
=

U(2ǫk − 2Jz − 2µ+ 3Un0)

~ωk

, (3.60)

which we plug in and get:

0 = NS(−Jz − µ+ Un0) + η

{
U
∑′

k

[
(2ǫk − 2Jz − 2µ+ 3Un0)

~ωk

(
1

2
+

1

eβ~ωk − 1

)
− 1

]}
.

(3.61)

One important result from this equation is that, in the lowest order in η, we can write

n0 =
Jz + µ

U
+O(η) . (3.62)

We now re-insert this result in (3.61), and since we disregard orders of η higher than one, we
can just insert the lowest order for n0 in those terms that already are of first order in η.
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n0 =
Jz + µ

U
− η

[
1

NS

∑′

k

(2ǫk + Jz + µ)

~ωk

(
1

2
+

1

eβ~ωk − 1

)
− 1

]
+O(η2) . (3.63)

This result must be inserted in Eq.(3.57) in order to obtain the grand-canonical potential Ω up
to first order in η:

Ω = −NS

2U
(Jz + µ)2 +

η

2

∑′

k

(
~ω

(0)
k − ǫk − Jz − µ

)
+

1

β

∑′

k

ln
(
1− e−β~ω

(0)
k

]
. (3.64)

Here and in the following, we will often omit the O(η2), because we do not need to emphasize
every time that we neglect higher orders in η. Inserting (??) in (3.43) results in the zeroth
order of ~ωk.

~ωk
(0) =

√
(ǫk + µ− µ)2 + 2

[
(Jz + µ)2 − (zJ + µ) (−ǫk − Jz + µ)

]

=
√

ǫ2k + 2ǫk (Jz + µ) . (3.65)

For checking the self-consistency we now need the particle density n which we get with the help
of the grand-canonical potential: n = − 1

NS

∂Ω
∂µ
.

With very similar calculations as before, we get:

∂~ω
(0)
k

∂µ
=

ǫk

~ω
(0)
k

, (3.66)

and therefore:

n =
(Jz + µ)

U
+

1

NS
η

[
∑′

k

(−ǫk)

~ω
(0)
k

(
1

2
+

1

eβ~ω
(0)
k − 1

)
+

1

2

]
. (3.67)

To see the equivalence to (3.49), we insert the equation (3.63) for n0 and subtract:

n− n0 =
(Jz + µ)

U
− (Jz + µ)

U
+ η

1

NS

[
∑′

k

−ǫk + Jz + 2ǫk + µ

~ω
(0)
k

(
1

2
+

1

eβ~ω
(0)
k − 1

)
− 1 +

1

2

]

(3.68)

= η
1

NS

[
∑′

k

1

~ω
(0)
k

(
1

2
+

1

eβ~ω
(0)
k − 1

)
(ǫk + Jz + µ)− 1

2

]
(3.69)

We are almost done, we just remember that according to (3.62) we have in zeroth order
2 (Jz + µ) = 2Un0, so that

n− n0 = η
1

NS

[
∑′

k

1

~ω
(0)
k

(
1

2
+

1

eβ~ω
(0)
k − 1

)
(ǫk − Jz − µ+ 2Un0)−

1

2

]
. (3.70)
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We see that we have indeed gotten the same result as in (3.49) in two different ways, which shows
the inner consistency of the Bogoliubov approximation. We can now eliminate the chemical
potential µ, which we achieve by substituting Eq. (??) in (??), which yields

n− n0 = η
1

NS

[
∑′

k

1

~ωk

(
1

2
+

1

eβ~ωk − 1

)
(ǫk + Un0)−

1

2

]
, (3.71)

and we likewise get for the integral in (3.53):

n = n0 + η

1
2∫

− 1
2

[
1

2

(ǫ( 2π
a
q) + Un0)

~ω( 2π
a
q)

− 1

2

]
ddq , (3.72)

a result also obtained in [29].

We now check whether our result (3.71) gives the correct results in the limit U
J

→ 0, which
should of course result in the model for free Bosons. At first we take the temperature to be

zero, so we consider n − n0 = η
[∑′

k

1
~ωk

1
2
(−ǫk + 2Jz + Un0)− 1

2

]
. Now we only examine

the expression in the sum. We can easily perform the limit:

U

J
n0 +

ǫk
J

U
J
→0−→ ǫk

J√(
U

J
n0 +

ǫk
J

)2

+ 2
U

J
n0

(
U

J
n0 +

ǫk
J

)
U
J
→0−→
√(ǫk+Jz

J

)2
(3.73)

We now insert the definition (3.14) of ǫk and thus get

2
∑d

p=1 (1− cos(kpa))∣∣∣2
∑d

p=1 (1− cos(kpa))
∣∣∣
. (3.74)

Since |cos| ≤ 1, the enumerator is positive, so the fraction just gives the value +1. We also
see that in the sum we have the values +1

2
and −1

2
which cancel each other out, therefore the

result, as expected for Bosons at zero temperature, states that n = n0, i.e. all Bosons occupy
the ground state.

Next, we examine the case of a finite temperature. We encounter the same fraction as before,
which again gives the value +1, and so the result is

n = n0 + η
∑′

k

1

eβ~ωk − 1
, (3.75)

which is just the Bose-Einstein distribution, so again the correct limit is obtained.

3.4 Plots for T = 0

After having shown the inner consistency of our ansatz, we now turn to a plot of Eq. (3.53).
In order to do that, we have to have µ eliminated, which we already did in Eq. (3.72), which
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Figure 3.1: The condensate density n0 relative to n versus U
J
in d = 3 dimensions. The solid

line represents n=1, the dashed line stands for n = 0.5 .

we plot by numerical calculations. The Bogoliubov approach will be a good model in the deep
superfluid regime, since there most of the atoms populate the ground state. That in turn
means we do not make great errors when neglecting higher orders of η, which was introduced
as the deviation from the case that all atoms assume the state k = 0. In the figure we plot
the condensate fraction n0

n
versus U

J
. We expect that for U

J
= 0, all atoms occupy the ground

state, so the condensate fraction should be equal to one. For higher values of U
J
, the condensate

fraction decreases monotonically, until it (hopefully) reaches zero at a value we will call U
J crit

.
Monte-Carlo calculations [31] which have been shown to agree very well with the experimental
results [32] predict the critical value to be at about 29.

In Fig. (3.1) we plot the three-dimensional case with two different values for n. The plots show
that our theory unfortunately does not predict the quantum phase transition we hoped for. As
said before, the Bogoliubov approach will provide the best results in the deep superfluid phase,
and the phase transition seems to be beyond its area of validity. Indeed, we can see that this
must be the case: the phase transition is defined by the value of U

J
where n0 = 0. Inserting

that yields ~ω = ǫk which means the whole integrand in 3.72 becomes zero and we get n = 0,
therefore obviously no phase transition takes place within the simplifications of our model.

It is therefore necessary to modify our theory so that its scope reaches farther into the Mott-
insulator regime.

3.5 Popov approximation

The Popov approximation is an application of variational perturbation theory to expand the
area of validity of the Bogoliubov approach in the hopes of finding a phase transition at high
values of U/J . We follow an earlier work in our research group [33], who used the Path-Integral
formalism but, stemming from an operator-ordering ambiguity in this formalism, did not get
the same result we did.
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To this end, we make a variational ansatz for µ by setting

µ = M + η∆ , (3.76)

and replacing µ in Ω with again neglecting terms of higher order in η than one. We will call
the result Ω̃. Again, in the terms that already are in first order of η, we just need to insert the
zeroth order for µ.

Ω̃ = −NS

2U

(
J2z2 + 2JzM + 2Jzη∆+ 2Mη∆+M2

)

+ η
∑′

k

[
~ω̃

(0)
k − ǫk − 2Jz −M

2
+

1

β
ln
(
1− e−β~ω̃(0)

)]
+O

(
η2
)
. (3.77)

Here ω̃(0) is just ω(0) with µ replaced by M . We get rid of any remaining dependency on ∆ by
inserting the relation (3.76) again via ∆ = µ−M

η
:

Ω̃ = −NS

2U

(
J2z2 −M2 + 2Jzµ + 2Mµ

)

+ η
∑′

k

[
~ω̃

(0)
k − ǫk − 2Jz −M

2
+

1

β
ln
(
1− e−β~ω̃(0)

)]
+O

(
η2
)
. (3.78)

In order to eliminate the dependancy of ω̃
(0)
k on M we differentiate Ω̃ with respect to M , set

the result equal to zero and insert the solution, which is Mextr:

0 =
∂Ω̃

∂M
=

NS

U
(M − µ) + η

[
∑′

k

(ǫk)

~ω̃
(0)
k

(
1

2
+

1

eβ~ω̃
(0)
k − 1

)
− 1

2

]
. (3.79)

Obviously, under the sum just the same terms as in Eq. (3.67) arise, because the operations
are the same with the replacement µ 7−→ M .

We solve Eq. (3.79) for Mextr, which gives:

Mextr = µ− U

NS

η

[
∑′

k

(ǫk)

~ω̃
(0)
k

(
1

2
+

1

eβ~ω̃
(0)
k − 1

)
− 1

2

]
. (3.80)

In the next step, we calculate n (M) using N = nNS = −∂Ω
∂µ
. The chain rule and the fact that

Ω = Ω̃ (M) |M=Mextr allows to rewrite this as:

nNS = −∂Ω

∂µ
= −∂Ω̃ (µ,Mextr (µ))

∂µ

∣∣∣∣∣
M=Mextr

=

(
−∂Ω̃

∂µ
− ∂Ω̃

∂Mextr

∂Mextr

∂µ

)∣∣∣∣∣
M=Mextr

. (3.81)

But from the definition in Eq. (3.79) we see that ∂Ω̃
∂M

= 0, when M = Mextr, so
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Figure 3.2: The condensate density n0 relative to n versus U
J
in the Popov-approximation for

n = 1.

nNS = −∂Ω

∂µ
= −∂Ω̃

∂µ

∣∣∣∣∣
M=Mextr

3.78
=

NS

U
(Jz +Mextr) . (3.82)

We now need also n0 (Mextr) in order to write down an improved Eq. (3.63). That means, we
will again use the variational ansatz (3.76), this time in Eq. (3.63), which yields:

n0 =
Jz + µ

U
− η

1

NS

∑′

k

[
(2ǫk + Jz +M)

~ω̃
(0)
k

(
1

2
+

1

eβ~ω̃
(0)
k − 1

)
− 1

]
, (3.83)

where in terms that already are of first order in η, we just needed to substitute µ 7−→ M . Now
we use Eq. (3.80) to eliminate the chemical potential µ which yields:

n0 =
Jz +M

U
− η

1

NS

∑′

k

[
(ǫk + Jz +M)

~ω̃
(0)
k

(
1

2
+

1

eβ~ω̃
(0)
k − 1

)
− 1

2

]
. (3.84)

Now, we want to eliminate the parameter M , which is done by inserting Eq.(3.82) for M :

n0 =
Jz + (Un− Jz)

U
− η

1

NS

∑′

k

[
(ǫk + Jz + Un− Jz)

~ω̃k

(
1

2
+

1

eβ~ω̃k − 1

)
− 1

2

]

= n− η
1

NS

∑′

k

[
(ǫk + Un)

~ω̃k

(
1

2
+

1

eβ~ω̃k − 1

)
− 1

2

]
.

(3.85)

By comparing this result to (3.71), we see that the result of the Popov-approximation is almost
identical to the result we got before, except that we replaced n0 7−→ n in the sum, i.e. the
condensate density with the particle density.

This result could have been obtained much easier, since we could have seen from Eq.(3.49) that
n0 = n + O (η), which, when re-inserted would have yielded Eq.(3.85). We plot our newfound
results, and see that the Popov approximation has indeed succeeded in introducing a quantum
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Figure 3.3: The condensate density n0 relative to n versus U
J
in the Popov-approximation for

n = 2.
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Figure 3.4: The condensate density n0 relative to n versus U
J
in the Popov-approximation for

n = 3.
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phase transition. Looking back at fig. (2.2) we can also see the qualitatively correct behavior:
for greater n, J/U crit becomes smaller, i.e. U/Jcrit becomes larger. Encouraged by this positive
result, we now go to one order higher, in order to come closer to the expected value of 29 (as
mentioned above) for n = 1.
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Chapter 4

Beyond the Bogoliubov approximation:
second order

”If we are facing in the right direction, all we have to do is keep on walking.”

Buddhist Saying

As the title of this thesis suggests, we will not stop with the level of approximation we did
thus far but want to investigate also how to include higher orders. The terms of third (3.18)
and fourth (3.19) order in the fluctuations represent the perturbation V to our diagonalized
Hamiltonian.

4.1 How perturbation theory for T 6= 0 works

Quantum theory in the operator formalism is usually expressed in one of three choices: the
Schrödinger picture, in which the time evolution of the system manifests itself in the states,
whereas the operators can only be explicitly time-dependent. The Heisenberg picture turns
this around, here the states are time-invariant. For our purposes, we will use the Dirac (or
interaction) picture which already assumes that the Hamiltonian can be separated into a free,
time-independent part Ĥ0 and a perturbation V̂ : Ĥ = Ĥ0+ V̂ . The time evolution of the states
is governed by V̂ , whereas that of the operators depends only on Ĥ0 via ÂD(t) = e

i
~
Ĥ0tÂe−

i
~
Ĥ0t,

where Â denotes the operator in the Schrödinger picture. At t = 0 both pictures coincide. How
this is accomplished in detail can be found in every standard textbook, e.g. [34]. As we had
seen in the introduction, all interesting properties of a macroscopic system can be calculated by
the respective thermodynamic potential. We now give a short derivation for the perturbation
expansion of the grand-canonical potential in imaginary time:

The perturbation manifests itself twice in Ω, in the perturbation series of the time-evolution
operator Û and in the factor e−βĤ . We will see that it is much simpler to introduce the
Wick-rotation τ = it. In the Dirac-picture, the time-evolution operator Û obeys the following
equation of motion:

−~
∂Û (τ, τ ′)

∂τ
= V̂ (τ)Û(τ, τ ′) (4.1)

with the initial condition Û(τ, τ) = 1.

33
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Formal integration and n-times iteration of the result yields with setting τ ′ = 0:

Û(τ, 0)(n) =

n∑

k=0

1

k!

(−1

~

)k
τ∫

0

dτ1 . . . dτkT̂
(
V̂ (τ1) . . . V̂ (τk)

)
, (4.2)

where T̂ is the time-ordering operator 1, which sorts the operators in its argument with de-
creasing time from left to right.

From the explicit form of the Dirac time-evolution operator

Û(τ, τ ′) = e
Ĥ0
~

τe−
Ĥ0
~

(τ−τ ′)e−
Ĥ0
~

τ ′ (4.3)

and setting τ ′ = 0,it can easily be seen that e−
1
~
Ĥτ = e−

1
~
Ĥ0τ Û(τ, 0) . By setting τ = ~β, we

get for the partition function:

Z = tr
(
e−βĤ

)
= tr

(
e−βĤ0U(~β, 0)

)
(4.4)

=
∞∑

n=0

1

n!

(−1

~

)n
τ∫

0

dτ1 . . . dτntr{e−βĤ0 T̂
(
V̂ (τ1) . . . V̂ (τn)

)
} . (4.5)

This series conveniently sorts by the order in the perturbation V̂ and is the starting point for
further calculations in T > 0 perturbation theory.

4.2 The Wick theorem

In second quantization all operators are expressed by creation and annihilation operators. The
problem to tackle now is thus how the time-ordered product of several annihilation and creation
operators in the Dirac-picture looks like. An invaluable help when evaluation the time-ordered
product is the Wick-theorem ( [35], [36]). It states that the expectation value of a time-ordered
product of creation and annihilation operators is equal to the expectation value of the time-
ordered product of all possible pairs of creation and annihilation operators (one such pair
is called a contraction). Usually, the Hamiltonian conserves the particle number, therefore
only the pairs with one creation and one annihilation operator contribute. The expression
−〈T̂ (âk(τ)âk′(τ ′))〉 is called the free Green function Gk(τ, τ

′) and is a fundamental quantity
that will appear when we apply the Wick theorem. We remember that in the Dirac-picture the
time-dependence is of the form

Ô(τ) = e
1
~
Ĥ0τ Ôe−

1
~
Ĥ0τ . (4.6)

Using [b̂k, n̂k′ ] = [b̂k, b̂
†
k′ b̂k] = b̂k′[b̂k, b̂

†
k′]+[b̂k, b̂k′]b̂†

k′ = δk,k′ b̂k+0 and, similarly [b̂†k, n̂k′] = δk,k′ b̂†k,

we can show that for an Hamiltonian of the form Ĥ0 =
∑

k ~ωkn̂k we have

b̂k(τ) = e−
1
~
~ωkτ b̂k

1We remark that we use this definition since we will only work with bosons, for fermions the sign of the
permutation needed to yield the correct time ordering must be included.
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and
b̂†k(τ) = e

1
~
~ωkτ b̂†k , (4.7)

so the time-dependence appears in such a way that the usual commutation rules are kept i.e.
we can still speak of these operators as construction and annihilation operators.

Proof : We show that

b̂k(
∑

k′

~ωk′n̂k′)n = (~ωk +
∑

k′

~ωk′n̂k′)nb̂k (4.8)

for n ∈ N.

For n = 1, this follows from the remark above:

b̂k
∑

k′

~ωk′ n̂k′ = [b̂k,
∑

k′

~ωk′ n̂k′] +
∑

k′

~ωk′n̂k′ b̂k = ~ωkb̂k +
∑

k′

~ωk′n̂k′ b̂k (4.9)

The induction step follows similarly:

b̂k(
∑

k′

~ωk′ n̂k′)n+1 = b̂k(
∑

k′

~ωk′n̂k′)n
∑

k′

~ωk′n̂k′ = (~ωk +
∑

k′

~ωk′n̂k′)nb̂k
∑

k′

~ωk′ (4.10)

= (~ωk +
∑

k′

~ωk′ n̂k′)
n+1

b̂k X (4.11)

We can use this to see

b̂k(τ) = e
τ
~

∑

k′ ~ωk′ b̂ke
− τ

~

∑

k′ ~ωk′ = e
τ
~

∑

k′ ~ωk′ b̂k

∞∑

n=0

1

n!

−τ

~

n

(
∑

k′

~ωk′n̂k′)n (4.12)

= e−
τ
~

∑

k′ ~ωk′

∞∑

n=0

1

n!

[
−τ

~
(~ωk +

∑

k′

~ωk′ n̂k′)

]n
= e−

τ
~
ωk b̂k , (4.13)

where we used in the last step that
∑

k′ ~ωk′ n̂k′ commutes with c-numbers so we can use that
e

τ
~

∑

k′ ~ωk′e−
τ
~

∑

k′ ~ωk′ = 1.

(4.7) can be proven in a similar fashion, alternatively we remember that the property of two
operators being Hermitian is time-independent.

We will later need âk(τ) and âk(τ), so we calculate these too. Luckily, their time-dependence
is very similar:

âk(τ) = e
1
~
Ĥ0τ âke

− 1
~
Ĥ0τ = e

1
~
Ĥ0τ
(
ukb̂k − vkb̂

†
-k

)
e−

1
~
Ĥ0τ = ukb̂k(τ)− vkb̂-k(τ) (4.14)

and

âk(τ)
† = e

1
~
Ĥ0τ âke

− 1
~
Ĥ0τ = e

1
~
Ĥ0τ
(
ukb̂k − vkb̂

†
-k

)
e−

1
~
Ĥ0τ = ukb̂k(τ)− vkb̂-k(τ) . (4.15)

So, in a sense, including a time-dependence in the Dirac-picture and the Bogoliubov transfor-
mation commute, which is very comforting since in the following we can conveniently choose
which operation to perform first.
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Next, we observe that the Green function depends only on the time-difference of its arguments,
which is easily proven by using the trace’s cyclical commutativity:

Gk(τ
′, τ ′′) = Gk(τ

′ − τ ′′) =: Gk(τ) (4.16)

An interesting complication arises in our calculations because of the Bogoliubov transformation.
When calculating the trace in the free basis of the b̂k′s, the âk′s are not diagonal anymore. We
therefore also have to calculate the â− â and the â† − â† correlations. At this point one must
ask the question whether the ad-hoc prescription of the time-ordering operator acting just as
the unity operator at equal times stays valid when using the Bogoliubov transformation. This
is indeed the case, which we will later show for H(4) as an example by explicitly calculating the
contractions in two possible ways.

4.3 Beyond Bogoliubov

Via the Bogoliubov transformation we succeeded in getting one diagonalized part of the Hamil-
tonian, which we will denote Ĥ0, and the remaining terms of third and fourth order in the
fluctuations around the ground state, Ĥ3 and Ĥ4, which play the role of a perturbation. Up to
second order in this perturbation, we have:

Z(2) = tr

{
e−βĤ0

[
1+

~β∫

0

(Ĥ3(τ)+Ĥ4(τ))dτ+

~β∫

0

~β∫

0

(
Ĥ3(τ1) + Ĥ4(τ1)

)(
Ĥ3(τ2) + Ĥ4(τ2)

)
dτ1dτ2

]}

(4.17)

From the standard examples we expect for all expectation values of terms with an uneven
number of creation and annihilation operators to vanish. This is also true in our case since an
(un-)even number of â-operators implies an (un-)even number of b̂-operators. The expectation
value is calculated in the basis of eigenstates to Ĥ(0), so all terms containing only one power of
Ĥ(3) are zero.

We now encounter a little problem with defining the order of the perturbation, since we ac-
tually have combined two: first, the deviations from the condensate ground-state N0, which
we included up to second order. The higher orders then were introduced as a perturbation V̂ .

So, one could, for example, ask the question whether Ĥ(3)2 or Ĥ(4)2 should also belong to our
second order.

In the Path-Integral formalism the answer is widely known: the order of the loop-expansion

corresponds to the order of ~ (cf. [37]). We will see that the 2-loop-term consists of Ĥ
(4)

and

Ĥ(3)2.

4.4 The Ĥ(4) term

This term (cf. 3.19) is of the form
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Ĥ(4) =
1

2

U

NS
(
−1

~
)

~β∫

0

dτ
∑

k,k′,k′′,k′′′

δk+k′,k′′+k′′′ < T̂ (â†k(τ)â
†
k′(τ)âk′′(τ)âk′′′(τ)) > (4.18)

keeping in mind that all k-sums exclude the zero.

We rewrite this in terms of the b̂′ks via 3.29 and obtain the expression (without prefactors):

< (ukb̂
†
k − v∗kb̂-k)(uk′ b̂†

k′ − v∗k′ b̂-k′)(u∗
k′′ b̂k′′ − vk′′ b̂†

-k′′)(u
∗
k′′′ b̂k′′′ − vk′′′ b̂†

-k′′′) > (4.19)

We calculate the trace with the eigenstates of Ĥ0 which are also eigenstates to all n̂k, therefore
only terms with an equal number of creation and annihilation operators contribute, resulting
in six terms:

I. ukb̂
†
kuk′ b̂†

k′u∗
k′′ b̂k′′u∗

k′′′ b̂k′′′

II. ukb̂
†
kv

∗
k′ b̂-k′vk′′ b̂†

-k′′u∗
k′′′ b̂k′′′

III. v∗kb̂-kuk′ b̂†
k′vk′′ b̂†

-k′′u∗
k′′′ b̂k′′′

IV. ukb̂
†
kv

∗
k′ b̂-k′u∗

k′′ b̂k′′vk′′′ b̂†
-k′′′

V. v∗kb̂-kuk′ b̂†
k′u∗

k′′ b̂k′′vk′′′ b̂†
-k′′′

VI. v∗kb̂-kv
∗
k′ b̂-k′vk′′ b̂†

-k′′vk′′′ b̂†
-k′′′

Using Wick’s Theorem, there are two possible non-zero complete pairings of each term, we list
these 12 here. The two contractions are shown in the table, as well the final results and their
δ’s.

For brevity only the terms to I and II are listed:

Ia)

b†kb
†
k′bk′′bk′′′

Ib)

b†kb
†
k′bk′′bk′′′

IIa)

b†kb-k′b†
-k′′bk′′′

IIb)

b†kb-k′b†
-k′′bk′′′



38 4.4. THE Ĥ(4) TERM

I.a
ukuk′u∗

k′′u∗
k′′′

b̂†kb̂k′′ b̂†kb̂k′′ δk,k′′δk′,k′′′ = |uk|2 |uk′|2 〈n̂k〉〈n̂k′〉
I.b b̂†kb̂k′′′ b̂†

k′ b̂k′′ δk,k′′′δk′,k′′ = |uk|2 |uk′|2 〈n̂k〉〈n̂k′〉
II.a

ukv
∗
k′vk′′u∗

k′′′

b̂†kb̂-k′ b̂†
-k′′ b̂k′′′ δk,-k′δ-k′′,k′′′ = ukv

∗
kvk′′u∗

k′′〈n̂k〉〈n̂−k′′〉
II.b b̂†kb̂k′′′ b̂−k′ b̂†

−k′′ δk,k′′′δ−k′,-k′′ = |uk|2 |vk′ |2 〈n̂k〉〈n̂−k′+1〉
III.a

v∗kuk′vk′′uk′′′

b̂−kb̂
†
k′ b̂†

−k′′ b̂k′′′ δ−k,k′δ−k′′,k′′′ = v∗
k′uk′vk′′′u∗

k′′′〈n̂−k + 1〉〈n̂k′′′〉
III.b b̂−kb̂

†
−k′′ b̂†

k′ b̂k′′′ δ−k,−k′′δk′,k′′′ = |vk|2 |uk′ |2 〈n̂-k + 1〉〈n̂k′〉
IV.a

ukv
∗
k′u∗

k′′vk′′′

b̂†kb̂−k′ b̂k′′ b̂†
-k′′′ δk,−k′δk′′,−k′′′ = ukv

∗
kvk′′u∗

k′′〈n̂k〉〈n̂k′′ + 1〉
IV.b b̂†kb̂k′′ b̂−k′ b̂†

−k′′′ δk,k′′δ−k′,−k′′′ = |uk|2 |vk′ |2 〈n̂k〉〈n̂−k′ + 1〉
V.a

v∗kuk′u∗
k′′vk′′′

b̂−kb̂
†
k′ b̂k′′ b̂†

−k′′′ δ−k,k′δk′′,−k′′′ = ukv
∗
kvk′′u∗

k′′〈n̂−k + 1〉〈n̂k′′ + 1〉
V.b b̂−kb̂

†
−k′′′ b̂†

k′ b̂k′′ δ−k,−k′′′δk′,k′′ = |vk|2 |uk′ |2 〈n̂−k + 1〉〈n̂k′〉
VI.a

v∗kv
∗
k′vk′′vk′′′

b̂−kb̂
†
−k′′ b̂−k′ b̂†

−k′′′ δ−k,−k′′δ−k′,−k′′′ = |vk|2 |vk′|2 〈n̂−k + 1〉〈n̂−k′ + 1〉
VI.b b̂−kb̂

†
−k′′′ b̂−k′ b̂†

−k′′ δ−k,−k′′′δ−k′,−k′′ = |vk|2 |vk′|2 〈n̂−k + 1〉〈n̂−k′ + 1〉

Table 4.1: Terms coming from H(4)

As we have seen, a contraction of construction operators at equal times just corresponds to
their expectation value. We get for the above examples:

Ia) |uk|2 |uk′|2 < nk >< nk′ > δk,k′′δk′,k′′′

Ib) |uk|2 |uk′ |2 < nk >< nk′ > δk,k′′′δk′,k′′

IIa)ukv
∗
kvk′′uk′′′ < nk >< nk′′ > δk,-k′δ-k′′,k′′′

IIb)|uk|2 |vk′ |2 < nk > (< nk′ > +1)δk,k′′′δk′,k′′

It is an important observation that the initial δk+k′,k′′+k′′′ just acts as the identity operator.
That can be seen in 8 of the 12 terms (for example Ia, Ib, IIb) where two δ ’s arise from the
contractions which relate k′s from the same side in the initial δ. Take, for example Ia): we
have δk,k′′ and δk′,k′′′ so our initial δ takes the form δk+k′,k+k′ , which is trivially always equal
to one. Therefore, we still have two summations. In IIa) as an example for the remaining four
terms, we have δk,-k′ and δ-k′′,k′′′ , which implies δk−k,k′′−k′′ , also always equal to one.

Now we think about how we can use some symmetries to reduce the number of terms we need
to calculate. It is clear that

∑
k b̂k =

∑
k b̂-k. uk and vk are per definition symmetric. In the

same eight terms mentioned above the minus signs appear only pairwise on the δ′s (or not at
all) and since δ-k,-k′ = δk,k′, in these terms we can replace -k by k.

When introducing the Bogoliubov transformation we saw that a number of prefactors u and v
are valid solutions to our problem. We had assumed that the phases of uk and vk should be
equal. A posteriori we can see from our result that this assumption was correct, since in the
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Ĥ(3)-term the phase φ will cancel out also, as we will soon see.

By renaming the dummy integration variables we can reduce the number of different terms to
six. It is to be understood that we have two remaining k-sums, here named k and k′.

1)|uk|2 |uk′ |2 〈nk〉〈nk′〉 , (these are the terms Ia and Ib)

2)|vk|2 |vk′ |2 (〈nk〉+ 1)(〈nk′〉+ 1) (VIa and VI b)

3)|uk|2 |vk′|2 〈nk〉(〈nk′〉+ 1) (IIb, IIIb, IVb, Vb)

4)ukvkuk′vk′〈nk〉〈nk′〉 (once, this is IIa)
5)ukvkuk′vk′(〈nk + 1)〉(〈nk′〉+ 1) (Va)

6)ukvkuk′vk′〈nk〉(〈nk′〉+ 1) (IIIa and IVa)

Now that we have gathered all arising terms, we can proceed to sum them up. The time-
integral will be trivial, since from eq. (4.7) we see that the time-dependence is expressed by an
exponential function, but with different signs for creation and annihilation operators. Since a
contraction is always between these two, the time-dependence just cancels out and the integral
simply yields the prefactor ~β.

Ĥ(4) =
1

2

U

NS

∑

k,k′

−1

~
~β {[ukvk (2〈nk〉+ 1)uk′vk′ (2〈nk′〉+ 1)]

+2
[
u2
k〈nk〉+ v2k (〈nk〉+ 1)

] [
u2
k′〈nk′〉+ v2k′ (〈nk′〉+ 1)

]}
(4.20)

We will soon see how these terms appear in a diagrammatical depiction.

4.5 The Ĥ(3)2-term

We had already calculated the form of H(3) in 3.18.

Ĥ(3) =
√

N0
U

NS

{
∑

k,k′,k′′,k′′′

â†kâ
†
k′ âk′′δk+k′,k′′ + â†kâk′ âk′′δk,k′+k′′} (4.21)

In the Ĥ(3)2-term we therefore get the sum of four different expressions, each consisting of six
operators, three each at τ1 and three at τ2. For every expression, there are (6-1)!! = 15 possible
contractions. Luckily, we will be able to show that only those contracting different times will
contribute, that is only 24 contractions total.

As a first step we calculate the a-a correlations, remembering that the time-dependence depends
only on the time difference of the operators which we name τ and where no time is given it is
assumed to be the operator at time 0: â ≡ â(t = 0). The time-dependence was calculated in



40 4.5. THE Ĥ(3)2-TERM

(4.7):

〈T̂
(
â†k(τ)â

†
k′

)
〉 =〈T̂ ((ukb̂

†
k(τ)− v∗kb̂-k)(uk′ b̂†

k′(τ)− v∗k′ b̂-k′))〉

=− ukv
∗
k′〈T̂ b̂†k(τ)b̂-k′〉 − v∗kuk′〈T̂ b̂-k(τ)b̂†k′〉

=− ukv
∗
kδk,k′

{
e

τ
~
~ωk [Θ(τ)〈nk〉+Θ(−τ)〈n̂k + 1〉]

+e−
τ
~
~ωk [Θ(τ)〈n̂k + 1〉+Θ(−τ)〈n̂k〉]

}

=− ukv
∗
kδk,k′

{
Θ(τ)

[
〈n̂k〉e

τ
~
~ωk + 〈n̂k + 1〉e− τ

~
~ωk

]

+Θ(−τ)
[
〈n̂k + 1〉e τ

~
~ωk + n̂ke

− τ
~
~ωk

]}
(4.22)

Similarly, we get the remaining correlations:

〈T̂ (âk(τ)âk′)〉 =− u∗
kvkδk,−k′

{
Θ(τ)

[
〈n̂k + 1〉e− τ

~
~ωk + 〈n̂k〉e

τ
~
~ωk

]

+Θ(−τ)
[
〈n̂k〉e−

τ
~
~ωk + 〈n̂k + 1〉e τ

~
~ωk

]}
(4.23)

〈T̂
(
â†k(τ)âk′

)
〉 =δk,k′

{
Θ(τ)

[
|uk|2 〈n̂k〉e

τ
~
~ωk + |vk|2 〈n̂k + 1〉e− τ

~
~ωk

]

+Θ(−τ)
[
|uk|2 〈n̂k + 1〉e τ

~
~ωk + |vk|2 〈n̂k〉e−

τ
~
~ωk

]}
(4.24)

〈T̂
(
âk(τ)â

†
k′

)
〉 =δk,k′

{
Θ(τ)

[
|uk|2 〈n̂k + 1〉e− τ

~
~ωk + |vk|2 〈n̂k〉e

τ
~
~ωk

]

+Θ(−τ)
[
|uk|2 〈n̂k〉e−

τ
~
~ωk + |vk|2 〈n̂k + 1〉e τ

~
~ωk

]}
(4.25)

This also completes the proof that the phase for uk and vk indeed cancels out, as we had
assumed earlier, so in the following we will again take them to be real numbers.

A comparison shows that the first two terms are actually equal.

Similarly, interchanging τ1 and τ2 in one of the last two terms changes the sign of the exponential
function and the terms become equal.

Special attention should be paid to the δ′s, as we will use them in the following proof to show
that all contractions of equal-time-operators vanish.

There are six possibilities for contractions of operators with equal times to appear in the terms
(we omit the times and prefactors here):

b̂†k1
b̂†k2

b̂k3 = ...δk1,−k2δk1+k2,k3 = ...δ0,k3 = 0

b̂†k1
b̂†k2

b̂k3 = ...δk1,k3δk1+k2,k3 = ...δk2,0 = 0

b̂†k1
b̂†k2

b̂k3
= ...δk1,k3δk1+k2,k3 = ...δk2,0 = 0

b̂†k1
b̂k2 b̂k3 = ...δk2,−k3δk1,k2+k3 = ...δk1,0 = 0 (4.26)
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b̂†k1
b̂k2 b̂k3 = ...δk1,k2δk1,k2+k3 = ...δ0,k3 = 0

b̂†k1
b̂k2 b̂k3 = ...δk1,k3δk1,k2+k3 = ...δ0,k2 = 0

This leaves us with just six expressions for each of the four terms, 24 altogether. The very first
thought of reducing the number of terms is to check whether we can halve the terms by per-
muting two k’s, since at τ1 and τ2 there are always two creation or two annihilation operators.
We must not forget the original δ but it is easily seen that halving the terms is possible because
one always finds two terms with the same δ. The twelve terms can be reduced even further,
but this will be done in the next chapter where it can be visually seen which terms are equal.
We will take a little different approach than in the last chapter, since directly inserting the b̂′ks
would lead to a plethora of terms. Instead, we write down the expressions in terms of the â′ks,

calculate the arising contractions and only then change to the b̂′ks . The second column lists
the possible renaming of the variables, one for each of the twelve terms. The others are the
contracted operators and the last row shows all δ′s for each term. As before, we observe that
one of the original δ’s just acts as the unity operator, for example in the first term:
δk1,-k4 δk2,-k5 δk3,-k6 δk1+k2,k3 δk4+k5,k6 = δk1,-k4 δk2,-k5 δk3,-k6 δk1+k2,k3 δ-k1-k2,-k3

1.

âk4 ↔ âk5

â†k1â
†
k4 â†k2â

†
k5 âk3âk6 δk1,-k4 δk2,-k5 δk3,-k6 δk1+k2,k3

2. â†k1â
†
k4 â†k2âk6 âk3â

†
k5 δk1,-k4 δk2,k6 δk3,k5 δk1+k2,k3

3. â†k1âk6 â†k2â
†
k4 âk3â

†
k5 δk1,k6 δk2,-k4 δk3,k5 δk1+k2,k3

4.

âk5 ↔ âk6

â†k1â
†
k4 â†k2âk5 âk3âk6 δk1,-k4 δk2,k5 δk3,-k6 δk1+k2,k3

5. â†k1âk6 â†k2âk5 âk3â
†
k4 δk1,k6 δk2,k5 δk3,k4 δk1+k2,k3

6. â†k1âk6 â†k2â
†
k4 âk3âk5 δk1,k6 δk2,-k4 δk3,-k5 δk1+k2,k3

7.

âk4 ↔ âk5

â†k1â
†
k4 âk2â

†
k5 âk3âk6 δk1,-k4 δk2,k5 δk3,-k6 δk1,k2+k3

8. â†k1â
†
4 âk2âk6 âk3â

†
k5 δk1,-k4 δk2,-k6 δk3,k5 δk1,k2+k3

9. â†k1âk6 âk2â
†
k4 âk3â

†
k5 δk1,k6 δk2,k4 δk3,k5 δk1,k2+k3

10.

âk5 ↔ âk6

â†k1â
†
k4 âk2âk5 âk3âk6 δk1,-k4 δk2,-k5 δk3,-k6 δk1,k2+k3

11. â†k1â6 âk2âk5 âk3â
†
k4 δk1,k6 δk2,-k5 δk3,k4 δk1,k2+k3

12. â†k1âk6 âk2â
†
k4 âk3âk5 δk1,k6 δk2,k4 δk3,-k5 δk1,k2+k3

One can show that these 12 remaining terms can again be reduced to only four different expres-
sions, using that several contractions are equal, as seen on page 40.By interchanging k1 and k2,
the second and third and the fourth and sixth expression can be seen to be equal, respectively.
Similarly, by replacing k2 with k3 in the 7th and 8th as well as in the 11th and 12th term one gets
the same expression also. We have to take care if this stays correct for the original δ′s, which
is indeed the case as can be read off from the above table. The remaining four identifications
are listed.

• The fourth and seventh term are equal by changing τ1 ⇄ τ2 as well as k1 and k3 in the
seventh term.
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• The eleventh term becomes equal to the second by interchanging the times and {k1,k2,k3} →
{k3,k1,k2} .

• The first and tenth are obviously equal, considering that a − a and a† − a† correlations
are equal.

• Finally, the fifth and ninth term are equal by changing the times and substituting k1 ⇄ k3

in the ninth term.

In the next chapter the task will be to express these in terms of the b′ks.

We will now see how the tedious work of identifying equal terms can be approached much more
easily. If one were to tackle the next order in the perturbation, it would probably be wise to
find a recursive graphical construction within the framework explained in the next section.

4.6 Diagrammatical representation

A very intuitive description of the arising terms is given by drawing the so-called Feynman-
diagrams, a very powerful tool in quantum field theory . It is often possible to derive all terms in
a given order from a few combinatorial prescriptions (cf. for example [38]). We take a step back
before employing the Bogoliubov transformation: for the Ĥ(4)-term we had three â-correlations,
namely

â†kâ
†
k′ âk′′ âk′′′ (4.27)

â†kâk′′ â†
k′ âk′′′ (4.28)

â†kâk′′′ â†
k′ âk′′ . (4.29)

After renaming the (dummy integration) variables, the second and third term are equal. A
short calculation shows that we get the same twelve terms as in 4.1. Of course, we could have
chosen this way of getting all terms also, but the comparison of both calculations serves as
further justification of our ad-hoc rule how a contraction at equal times is to be treated.

Feynman graphs represent the terms in perturbation theory as follows: a local interaction (i.e.
at equal times, which is obviously not possible when including Relativity, therefore in Quantum
Field Theory this looks a bit different) is represented by a dot • and the contractions by lines
connecting the different times (or, as in the Ĥ(4)-term, equal times) with arrows indicating
which operators to contract. An outgoing line means a particle is created and an incoming line
stands for an annihilation of a particle. We adopt the convention that the contraction of two
creation operators is denoted by two arrows pointing towards one another, while two arrows
pointing away from each other represent the contraction of two annihilation operators (in the
usual problems without a Bogoliubov transformation these do not contribute).

The following Feynman rules apply for our problem:

For the correlations at equal times that appear for example in the Ĥ(4)-term we take the limit
for the above terms in such a way that τ → 0+. Thus it is assured that the correct order of the
operators is kept, i.e. in our case annihilation before creation.
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=

= −ukvkδk,k′

{
Θ(τ)

[
〈n̂k〉e

τ
~
ǫk + 〈n̂k + 1〉e− τ

~
ǫk
]
+Θ(−τ)

[
〈n̂k + 1〉e τ

~
ǫk + n̂ke

− τ
~
ǫk
]}

Contracting two creation or two annihilation operators yields the same result

= δk,k′

{
Θ(τ)

[
|uk|2 〈n̂k + 1〉e− τ

~
ǫk + |vk|2 〈n̂k〉e

τ
~
ǫk ] + Θ(−τ)[|uk|2 〈n̂k〉e−

τ
~
ǫk + |vk|2 〈n̂k + 1〉e τ

~
ǫk
]}

= δk,k′

{
Θ(τ)

[
|uk|2 〈n̂k〉e

τ
~
ǫk + |vk|2 〈n̂k + 1〉e− τ

~
ǫk ] + Θ(−τ)[|uk|2 〈n̂k + 1〉e τ

~
ǫk + |vk|2 〈n̂k〉e−

τ
~
ǫk
]}

= δk,k′

{
u2k〈nk + 1〉+ v2k〈nk〉

}

= δk,k′

{
u2k〈nk〉+ v2k (〈nk〉+ 1)

}

= = −δk,k′ {ukvk (2〈nk〉+ 1)}
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With these rules in mind, we can now list the diagrams that appeared in our calculations, along
with their multiplicity:

2 + + 4 + 8 + 8 +4

Figure 4.1: Feynman Diagrams for the 2nd order perturbation

We keep in mind that in the fourth diagram one k from an a− a† correlation is the one that is
appears on one side of the δ from the Fourier-transformation and is thus equal to the sum of
the other two k’s. In the fifth diagram, this is true for one k from an a− a correlation. For the
other two diagrams from the Ĥ(3)2-term we do not need to keep track of that.



Chapter 5

Calculations with the second order
approximation

”Always try to innovate. If you lose your old fitness, you lose out to Bose-Einstein condensation. I am

sure that companies that go under would feel better if they knew that they were victims of Bose-Einstein

condensation.”

Prof. Jennifer Tour Chayes at the MAA 2007 Hedrick Lecture

After having collected all terms in second loop-order, we can in a similar manner as in the
preceding chapters, again calculate the Effective Hamiltonian and the Free Energy. From this
we can ultimately calculate the particle density that can be checked for a phase transition as
well as be used to plot the time-of-flight pictures. In complete analogy to the proceedings in
chapter 3 and 4 we first write down the effective potential as

Veff = − 1

β
lnZ = − 1

β
ln

(
Z0

Z

Z0

)
= − 1

β
lnZ0 −

1

β
ln

Z

Z0

. (5.1)

The first term is just V
(0)
eff , the effective potential for the diagonalized Hamiltonian. The ex-

pansion of Z
Z0

is given in eq. 4.5. In short notation without the sums and integrals we thus get

(keeping in mind that the perturbation here is Ĥ(3) + Ĥ(4):

ln
Z

Z0

= ln

{
1− 1

~

(
Ĥ(3) + Ĥ(4)

)
+

1

~2

(
Ĥ(3) + Ĥ(4)

)2
+ ...

}
(5.2)

We have the Taylor-expansion ln (1 + x) ≈ x − x2

2
, which we do not calculate here as we have

already convinced ourselves that only Ĥ(4) and Ĥ(3)2 constitute the second loop order; all
remaining terms are either zero or from a higher order.

5.1 The zero-temperature limit

We have already reduced the number of different terms considerably, still there are definitely
too many to write them all down or try to go ahead and calculate the Free Energy. Therefore,
at this point we already carry out the zero-temperature limit T → 0. Since so far no way of

45
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measuring the temperature of a BEC has been found, we would have taken this limit anyway
somewhere along the line.

Let us therefore for now only concentrate on the dependency on T or, equivalently β.

In the Ĥ(4)-term the time-dependence of the operators, as mentioned, cancels out and the
one time-integral just gives ~β. This just cancels out with the − 1

β
from the definition of

the Effective Potential, so the temperature-dependency is only present in the 〈nk〉 ’s. Since
limβ→∞〈nk〉 = limβ→∞

1
eβ~ωk

= 0, only those terms survive that do not include an 〈nk〉. From
the first diagram (neglecting other prefactors and sums) we thus only have a term with v2kv

2
k′

and from the second also only one term with ukvkuk′vk′ .

The other terms are a little more involved: in eqs. 4.22 ff. we see the time-dependent correla-
tions. In the Ĥ(3)2-term all arising terms contain three a-correlations, all with τ1 and τ2.

We would now like to see correlations in the four Feynman-diagrams expressed via the bk’s.
Luckily, by a few considerations we can substantially reduce the number of arising terms.
We see that each contraction consists of a term with Θ(τ) or a Θ(−τ). From the properties of
Heaviside-functions it follows that multiplying the same Θ′s is just again the Heaviside-function
while multiplying two with a different sign of the argument yields zero. That still leaves quite
a lot of terms, so let us now take the zero-temperature limit to simplify these.

At first we shall have a look at the simple a− a correlations and then see how we can translate
those results to the actual terms that appear in perturbation theory. We see that the β-
dependence manifests itself in one of four different possible combinations:

1.
∫ ~β

0

∫ ~β

0
Θ(τ1 − τ2)e

~ωk(τ1−τ2)〈nk〉dτ1dτ2

2.
∫ ~β

0

∫ ~β

0
Θ(τ1 − τ2)e

~ωk(τ2−τ1)〈nk + 1〉dτ1dτ2

3.
∫ ~β

0

∫ ~β

0
Θ(τ2 − τ1)e

~ωk(τ1−τ2)〈nk + 1〉dτ1dτ2

4.
∫ ~β

0

∫ ~β

0
Θ(τ2 − τ1)e

~ωk(τ2−τ1)〈nk〉dτ1dτ2

First of all, we see that the first and fourth as well as the second and third term are actually
the same, so we analyze the two different terms by use of the integrals

~β∫

0

~β∫

0

Θ(τ1 − τ2)e
ωk(τ1−τ2)dτ1dτ2 =

~β∫

0

eωkτ1dτ2

τ1∫

0

e−ωkτ2dτ2 =
1

ωk

~β∫

0

eωkτ1
(
1− e−ωτ1

)
dτ1

=
1

ωk

~β∫

0

(eωkτ1 − 1) = −~β

ωk

+
1

ω2
k

(
e~ωkβ − 1

)

and
~β∫

0

~β∫

0

Θ(τ2 − τ1)e
ωk(τ1−τ2)dτ1dτ2 =

~β

ωk

+
1

ω2
k

(
e−~ωkβ − 1

)
.
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Realizing that the first term only appears in conjunction with 〈nk〉 and the second term with
〈nk + 1〉, we can now calculate the zero-temperature limit:

limT→0 −
1

β

[
−~β

ωk

+
1

ω2
k

(
e~ωkβ − 1

)]
〈nk〉 = limT→0 −

1

β

[
−~β

ωk

+
1

ω2
k

(
e~ωkβ − 1

)] 1

eβ~ωk − 1

= limT→0 −
1

β

[
−~β

ωk

1

eβ~ωk − 1
+− 1

β

1

ω2
k

]
= 0 ,

and for the other term

limT→0 −
1

β

[
~β

ωk

+
1

ω2
k

(
e−~ωkβ − 1

)]
〈nk + 1〉

= limT→0 −
1

β

[
~β

ωk

+
1

ω2
k

(
e−~ωkβ − 1

)] eβ~ωk

eβ~ωk − 1

= limT→0 −
1

β

[
~β

ωk

eβ~ωk

eβ~ωk − 1
+

1

ω2
k

(
1

eβ~ωk − 1
− eβ~ωk

eβ~ωk − 1

)]

= − ~

ωk

.

We have used that 〈nk + 1〉 = eβ~ωk

eβ~ωk−1
and limT→0〈nk + 1〉 = 1.

We now look at the terms in Ĥ(3)2 , which are of a similar form but the argument of the
exponential in the time-integral is a sum of three ω′s which is then multiplied with three n′

ks.
We keep in mind that due to the original δ from the Fourier-transformation, it is ωk3 = ωk1+k2.

Examining the terms one can first of all conclude that the −1 from the integration can never
give any contribution, since either it is multiplied with only 〈nk + 1〉 ’s which would give
a constant but zero with the prefactor 1

β
or there is at least one 〈nk〉 involved which goes

exponentially to zero when β → ∞. The exponential function in the enumerator together
with the particle number expectation values is a product of three terms of the form we already
examined above. They all tend to zero. Remaining is the first term ± 1

β
~β
ω

which is multiplied
with the corresponding nk’s, where ω has been defined as ±ωk1 ±ωk2 ±ωk3 . Similarly as before,
all terms except those only with 〈nk + 1〉 ’s vanish in our limit. So, the only contribution is of
the form

− 1

β

~β

ωk1 + ωk2 + ωk3

=
−~

ωk1 + ωk2 + ωk3

(5.3)

This is valid for all Feynman-diagrams, only the prefactors uk, vk will of course vary.

One may ask whether it would be necessary to further examine terms such as 1
ωk1

−ωk2
+ωk3

where

the denominator could potentially become zero. Luckily, this does not pose a problem: since

in these cases the integrand is e0 = 1, the double time-integral will simply result in ( (~β)
2

2
).

Even with the − 1
β
this expression would seem to diverge, but there is at least one exponential

dampening present in the form of an 〈nk〉. (Only the case would be problematic when only
nk + 1 would be present, but this term, as seen above has the denominator ωk1 + ωk2 + ωk3 , so
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can never be zero as the energy ~ωk must always be greater than zero as can be seen from its
definition.)

Let us gather all terms for the Effective Potential we now have. For the terms from the second
order, this is done by collecting all terms with the same θ (i.e. once for θ(τ1 − τ2) and once for
θ(τ2 − τ1)) and for those only the 〈nk + 1〉’s and noting their prefactors. We also name the k’s
in such a way that k′′ = k + k′.

T=0

=
∑

k,k′ v2kv
2
k′

T=0

=
∑

k,k′ ukvkuk′vk′

T=0

=
∑

k,k′,k′′=k+k′
−~

(ωk+ω
k′+ω

k′′ )

[
v2kv

2
k′u2

k′′ + u2
ku

2
k′v2k′′

]

T=0

=
∑

k,k′,k′′=k+k′
−~

(ωk+ω
k′+ω

k′′ )

[
v2k (−uk′vk′)u2

k′′ + u2
k (−uk′vk′) v2

k′′

]

T=0

=
∑

k,k′,k′′=k+k′
−~

(ωk+ω
k′+ω

k′′ )

[
(−ukvk) (−uk′′vk′′)u2

k′ + (−ukvk) (−uk′′vk′′) v2
k′

]

T=0

=
∑

k,k′,k′′=k+k′
−~

(ωk+ω
k′+ω

k′′)
2 [(−ukvk) (−uk′vk′) (−uk′′vk′′)]

Figure 5.1: Feynman Diagrams for the 2nd order perturbation

The prefactors in the Effective Potential are for the first two diagrams (since they come from
the Ĥ(4)-term ) −1

~
and for the others 1

2!~2
, in addition to their multiplicity. By taking the zero-

temperature limit, we have thus reduced the number of terms enough to be able to calculate
the particle number density again, this time including the second order perturbation and hope
to calculate a phase transition in better agreement with the experimental results.
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5.2 The density including the second order perturbation

The Effective Potential up to second order at zero temperature reads:

Veff = NS

(
1

2
Un2

0 − µn0 − Jzn0

)
+ η

1

2

∑

k

(~ωk − ǫk + Jz + µ− 2Un0)

+ η2
∑

k,k′,k′′=k+k′

{
U

2NS

(
2v2kv

2
k′ + ukvkuk′vk′

)
+N0

U2

2N2
S

−1

~ωk + ~ωk′ + ~ωk′′

(5.4)

[
4
(
v2kv

2
k′u2

k′′ + u2
ku

2
k′v2k′′

)
+ 8

(
v2k(−uk′vk′)u2

k′′ + u2
k(−uk′vk′)v2k′′

)
+ 8

(
(−ukvk)u

2
k′ (−uk′′vk′′)

)

+ (−ukvk) v
2
k′ (−uk′′vk′′)) + 4 (2(−ukvk)(−uk′vk′)(−uk′′vk′′))

]}

We execute the same steps as before: deriving Veff with respect to n0, setting the result equal
to zero and solving and reinserting for n0. Then, using the particle density equation

− 1

NS

∂Veff

∂µ
= n (5.5)

we eliminate µ and can plot n0/n over U/J . This time, we hope to get to see a phase transition.

We recollect the important expressions as well as their zeroth order denoted by (0) and meaning
that the substitution Un0 → Jz + µ has taken place.

ǫk = Jz − 2J
d∑

i

cos(kia) (5.6)

~ωk =
√
(ǫk − Jz − µ+ Un0)2 + 2Un0(ǫk − Jz − µ+ Un0) (5.7)

~ω
(0)
k =

√
ǫk2 + 2ǫk(Jz + µ) (5.8)

∂~ωk

∂n0
=

U(2ǫk − 2Jz − 2µ+ 3Un0)

~ωk

(5.9)

∂~ωk

∂n0

(0)

=
U(2ǫk + Jz + µ)

~ω
(0)
k

(5.10)

v2k + 1 = u2
k =

1

2

(
ǫk − Jz − µ+ 2Un0

~ωk

+ 1

)
(5.11)

u2
k

(0)
=

1

2

(
ǫk + Jz + µ

~ω
(0)
k

+ 1

)
(5.12)
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When deriving with respect to n0, we will need
∂v2

k

∂n0
, which is obviously the same as

∂u2
k

∂n0
:

∂v2k
∂n0

=
1

2

2U~ωk − (ǫk − Jz − µ+ 2Un0)
∂~ωk

∂n0

(~ωk)2
(5.13)

∂v2k
∂n0

(0)

=
1

2

2U~ω
(0)
k − (ǫk + Jz + µ)U 2ǫk+Jz+µ

~ωk

(~ωk)(0)
2 (5.14)

The expression ukvk can be simplified:

√
1

2

(
ǫk − Jz − µ+ 2Un0

~ωk

+ 1

)√
1

2

(
ǫk − Jz − µ+ 2Un0

~ωk

− 1

)
=

√
1

4

U2n0
2

~ωk2 =
1

2

Un0

~ωk

,

(5.15)
where we have used the third binomial formula as well as ( 5.7 ), and the fact that U ,n0 and
~ωk are not negative so we do not need to include a modulus when taking the square root.

∂ukvk
∂n0

=
1

2

U~ωk − Un0
∂~ωk

∂n0

~ω2
k

(5.16)

∂ukvk
∂n0

(0)

=
1

2

U~ω
(0)
k − U(Jz + µ)(2ǫk + Jz + µ)

~ω
(0)
k

2 (5.17)

The now following procedures are very complex and we will not write down each one in detail.

The steps are:

• Deriving the Effective Potential including the second order with respect to n0.

• Solving for n0. We get n0 in zeroth and first order, which are of course the same terms
as in chapter 3 and a new second order,n0

(2).

• Inserting n0 while disregarding orders higher than two. The n0’s which are originally in
zeroth order thus get replaced by the whole expression when we solved for n0. In second
order we just replace n0 by its zeroth order approximation, i.e. n0 =

Jz+µ
U

, just like before.

Any n0 appearing in first order has to be replaced by an approximation up to first order,
which is

n0
(0) + ηn0

(1) =
Jz + µ

U
− η

∑

k

(2ǫk + Jz + µ)

~ω
(0)
k

− 1 (5.18)

A little complication arises here because n0 appears in first order in a square root in ~ωk.
Here it is necessary to perform a Taylor-expansion of the square root to get the correct
expressions up to second order (see below).

• After thus having calculated the grand-canonical potential, we differentiate with respect
to µ to get the particle density n.
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• Solving this equation for the chemical potential and again reinserting, we can eliminate
µ.

• By setting n = 1 (one could also choose another density) we can proceed to plot the
equation

n− n0 = f(n, U/J) (5.19)

and hope for a solution, meaning that n0 → 0 for a particular value of the experimental
parameters U/J which could of course be compared to the experiment.

Unfortunately, after having done all these things, we encountered a surprising problem: in the
terms appear infrared divergencies, obviously a problem when we turn from sums to integrals
which run over the zero. This problem was also encountered in [39] when calculating the second
order perturbation theory via the formulism of path integrals.

This means we will have to be content to prove the existence of these divergencies and thereby
show that the method of reinserting unfortunately is not feasible. For brevity, we will omit in
the following calculations the contribution from the H(3)2-term. It can easily be seen that those
omitted terms cannot cancel out the divergencies we write down now, because the rest. So, if
we encounter divergencies in the rest, the whole Hamiltonian has to have them.

Veff = NS

(
1

2
Un2

0 − µn0 − Jzn0

)
+ η

1

2

∑

k

(~ωk − ǫk + Jz + µ− 2Un0)

+ η2
∑

k,k′,k′′=k+k′

U

2NS

(
2v2kv

2
k′ + ukvkuk′vk′

)
(5.20)

n0 has to be inserted basically in five different places: in the first one it needs to be squared,
so we get

(n0
(0) + ηn0

(1) + η2n0
(2))

2
= n0

(0)2 + 2ηn0
(0)n0

(1) + η2n0
(1)2 + 2η2n0

(0)n0
(2) +O(η3) . (5.21)

Depending on the place of the n0, the zeroth, first, or second order approximation has to be
inserted. We have

n0
(2) = −1

2

∑

k

∂~ωk

∂n0

(1)

− 1

2

∑

k

∑

k′

2(
∂vk

2

∂n0

vk′
2 +

∂vk′
2

∂n0

vk
2) +

∂ukvk
∂n0

uk′vk′ +
∂uk′vk′

∂n0

ukvk

= −1

2

∑

k

∂~ωk

∂n0

(1)

−
∑

k

∑

k′

2
∂vk

2

∂n0
vk′

2 +
∂ukvk
∂n0

uk′vk′ , (5.22)

where we have used that Un0(0) = Jz + µ.

The square root appearing in the ~ωk in first order has to be expanded up to first order, yielding
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√
(ǫk + ηn0

(1))
2
+ 2U(n0

(0) + ηn0
(1))(ǫk + ηUn0

(1))

=
√

ǫk2 + 2ǫkUn0
(0) + η

2ǫkn0
(1)U + n0

(0)n0
(1)U2

√
ǫk2 + 2ǫkUn0

(0)

= ~ωk
(0) + η

2ǫkn0
(1)U + n0

(0)n0
(1)U2

~ωk
(0)

. (5.23)

Similarly, we perform an expansion of ∂~ωk

∂n0
:

∂~ωk

∂n0

(1)

= U2(
2ǫk′ + Un0

˜~2ωk′
(0)

− 1)
ǫk − Un0

~̃ωk
(0)

3 (5.24)

One should take care that the sum which appears in n0
(1) needs to run over a index different

from k.

With that, we can write down the grand-canonical potential. We limit ourselves to the second
order, the zeroth and first remain the same as in the earlier chapters, of course.

Ω(2) =
1

2
Un0

(1)2 +
1

2

∑

k

[~ωk
(1) − 2Un0

(1)] +
U

2

∑

k

∑

k′

2v2k
(0)
u2
k′

(0)
+ ukvk

(0)uk′vk′
(0) (5.25)

Interestingly, n0
(2) cancels out in Ω, which is very convenient since that means we will not need

the derivatives of H(4).

In the next step, we take the derivatives with respect to the chemical potential in order to solve
for the particle density. When reinserting, we use a tilde,”˜”, to denote the result, so as not to
create a confusion with ”(0)”.

∂~ωk
(0)

∂µ
=

ǫk

~ωk
(0)

(5.26)

~̃ωk
(0) =

√
ǫk2 + 2ǫkUn (5.27)

∂ũkvk(0)

∂µ
=

1

2

U

~̃ωk
(0)

(1− Un

ǫ2k + 2ǫkUn
) (5.28)

∂˜vk2
(0)

∂µ
=

1

2~̃ωk
(0)

(1− ǫk
2 + ǫkUn

ǫ2k + 2ǫkUn
) (5.29)

∂˜~ωk
(1)

∂µ
= −U

ǫk′(2ǫk + Un)(−ǫk′ + Un)

2~ωk~ωk′
3 −U

ǫk(2ǫk + Un)(1− 2ǫ
k′+Un

2~ωk

)

~ωk
3 +U

1− 2ǫ
k′+Un

~ω
k′

~ωk

(5.30)
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We will now examine the behavior for small k, i.e. the infrared domain.

We begin with ǫk, which was basically 1− cos(k), which, as we remarked earlier, results in the
k2-behavior of ǫk for small k.

For ~̃ωk
(0) we can therefore observe a linear dependency on k for small k:

√
ǫk
√

ǫk + Un ∼
√
k2
√
k2 + const. ∼ k (5.31)

ñ0
(1) ∼ ǫk + 2Un

~̃ωk
(0)

− 1 ∼ k +
1

k
+ const. ∼ 1

k
(5.32)

∂ñ0
(1)

∂µ
∼ 1

~̃ωk
(0)

ǫk(ǫk + 2Un)

~̃ωk
(0)

∼ k3 + k +
1

k
+ const. ∼ 1

k
(5.33)

ũkvk(0) ∼
Un

~̃ωk
(0)

∼ 1

k
(5.34)

∂ũkvk(0)

∂µ
∼ 1

~̃ωk
(0)

(1− Un

ǫk2 + 2Un
) ∼ 1

k
(1− 1

k4 + 1
) ∼ 1

k
(5.35)

˜vk2
(0) ∼ ǫk + Un

~̃ωk
(0)

− 1 ∼ k2 + const.

k
+ const. ∼ 1

k
(5.36)

∂ ˜vk2
(0)

∂µ
∼ 1

~̃ωk
(0)

(1− ǫk
2 + ǫkUn

ǫ2k + 2ǫkUn
) ∼ 1

k
(const.− k4 + k2

k4 + k2
) ∼ 1

k
(5.37)

And, finally

∂˜~ωk
(1)

∂µ
=

ǫk′(2ǫk + Un)(−ǫk′ + Un)

2~ωk~ωk′
3 − U

ǫk(2ǫk + Un)(1 − 2ǫ
k′+Un

2~ωk

)

~ωk
3 + U

1− 2ǫ
k′+Un

~ω
k′

~ωk

∼ k′2(k2 + const.)(k′2 + const.)

kk′3
− k(k2 + const.)(1− k′+const.

k
)

k3
+

1− k′2+const.
k′

k

∼ 1

kk′
− 1

kk′
+

1

kk′
∼ 1

kk′
. (5.38)

Looking back at 5.25, we see that k and k’, respectively, diverge at most linearly. This does not
present a problem, since when integrating and switching to spherical coordinates, we get from
the Jacobian a k2 (or k′2), so the integrals possess a finite value.

So far, the calculated terms do not give any divergencies. Problems arise only when taking the
derivatives ∂vk

2

∂n0
and ∂vkuk

∂n0
, which we will show now.

We have the needed derivatives already calculated, see 5.17, 5.14 and 5.24.

Eliminating µ (here we simply need to insert the lowest order) yields
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∂ũkvk(0)

∂n0
=

1

2
(

U

~̃ωk
(0)

− U2n(2ǫk + Un)

~̃ωk
(0)

3 ) (5.39)

∂ṽk(0)
2

∂n0
=

1

2
(

2U

~̃ωk
(0)

− (ǫk + Un)U(2ǫk + Un)

~̃ωk
(0)

3 ) (5.40)

and

∂˜~ωk
(1)

∂n0

= U2(
2ǫk′ + Un

˜2~ωk′
(0)

− 1)
ǫk − Un2

~̃ωk
(0)

3 . (5.41)

We have the product of two vk
2’s and two ukvk’s so when deriving and renaming we get twice

the product where one part has been derived. We also include all the prefactors from ??,
resulting in the three terms:

−1

2
22vk

2∂vk′
2

∂n0
= −2

1

2
(
ǫk + Un

~ωk

− 1)
1

2

[
2U

~ωk′

− (ǫk′ + Un)U(2ǫk′ + Un)

~ωk′3

]
(5.42)

−1

2
2ukvk

∂uk′vk′

∂n0

= − Un

2~ωk

1

2

[
U

~ωk′

− U2n(2ǫk′ + Un)

~ωk′
3

]
(5.43)

− 1

2U

∂~ωk
(1)

∂n0
= −−Unk′

(1)(ǫk − Un)2

~ωk
3 (5.44)

From these three equations we extract the ”problematic” terms, i.e. those which diverge with
a power greater than two. This only happens where the third power of ~ω appears in the
denominator.

1

2
(
ǫk + Un

~ωk

− 1)
−U3n2

~ωk′
3

1

4

Un

~ωk

U3n2

~ωk′
3 (5.45)

1

2

U3n2

~ωk
3 (

−2ǫk′ − Un

2~ωk′

+ 1)

where the last factor in the third equation is nk′
(1).

Although the terms look very similar (when swapping the variables in the third equation), they
unfortunately do not quite cancel each other out, we get stuck with

U4n2

2~ωk~ωk′
3 (5.46)

so we see that the term is divergent, at least in one variable.

With that, we have shown that our original ansatz unfortunately cannot lead to a useful ap-
proximation in second order. One possible solution could be to just cancel the divergent term,
viewing it as ”unphysical”. We decided not to do that.
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5.3 Can Popov help us?

Maybe the variational ansatz µ → M + η∆ can help us once again, as it did before.

Unfortunately, no. Inserting the relation above in Ω cf. 3.64 yields for the lowest order:

−NS

2U
(Jz + µ)2 → −NS

2U
(Jz +M + η∆)2 (5.47)

Consequently, deriving yields:

∂(Jz +M + η∆)2

∂M
= 2(Jz +M + η∆) (5.48)

With the elimination of ∆ via ∆ = µ−M
M

we see that M does not appear anymore. Therefore,
we are unable to solve for M and reinsert.

The situation was different when we only included the first order, because then we actually
discarded a term in the quadratic µ. VPT thus will not help us here, we have to concede at
this point that we will not be able to get a result for the second order.
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Chapter 6

Calculations without reinserting

”I wish to God these calculations had been executed by steam.”

Charles Babbage

6.1 Why we cannot see a phase transition

We now show that the condition ∂Veff

∂n0
for n0 does not have a solution for n0 = 0 when reinserting.

(Since both equations have to be satisfied for a solution, our whole system of equations cannot
have a solution.)

When deriving and going to n0 → 0 we encounter the problem, for example in ~ωk, that we
have to take the root of a square which results in the modulus if negative values are possible:

√
(ǫk − Jz − µ)2 = |ǫk − Jz − µ| (6.1)

Taking all the derivatives, then taking the limit of a vanishing condensate density yields

expression expression taken at n0 = 0 |ǫk − Jz − µ| > 0 |ǫk − Jz − µ| < 0

~ωk |ǫk − Jz − µ| ǫk − Jz − µ −(ǫk − Jz − µ)

∂~ωk

∂n0
2U ǫk−Jz−µ

|ǫk−Jz−µ|
2U −2U

uk
2 1

2
( ǫk−Jz−µ
|ǫk−Jz−µ|

+ 1) 1 0

vk
2 1

2
( ǫk−Jz−µ
|ǫk−Jz−µ|

− 1) 0 -1

∂uk
2

∂n0
= ∂vk

2

∂n0

1
2
( 2U
|ǫk−Jz−µ|

− ǫk−Jz−µ

|ǫk−Jz−µ|2
2U ǫk−Jz−µ

|ǫk−Jz−µ|
) 0 0

ukvk 0 0 0

∂ukvk
∂n0

U
2|ǫk−Jz−µ|

U
2ǫk−Jz−µ

−U
2ǫk−Jz−µ

So, we see that any term that includes as a factor ukvk or ∂uk
2

∂n0
, (or ∂vk

2

∂n0
) goes to zero when n0

goes to zero.
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Thus we see that the derivative of H(4) becomes zero for n0 → 0.

The H(3)2-term is a little bit more involved: since it is multiplied with n0, the derivative is of
the form (...) + n0

∂(...)
∂n0

. The second part is zero, what about the first?

It consists of a product of 1
~ωk+~ω

k′+~ω
k′′
and 7 terms, divided in 4 subgroups. These groups are

(without prefactors):

I. v2kv
2
k′u2

k′′ + u2
ku

2
k′v2k′′

II. v2k(−uk′vk′)u2
k′′ + u2

k(−uk′vk′)v2k′′

III. (−ukvk)u
2
k′(−uk′′vk′′) + (−ukvk)v

2
k′(−uk′′vk′′)

IV. (−ukvk)(−uk′vk′)(−uk′′vk′′)

Let us first look at the terms which are derived: in I, each term in the derivative has to include

either
∂v2

k

∂n0
or

∂u2
k

∂n0
which means, as was just proved, that they are all zero.

In II, we have either again the derivatives as in I that make it go to zero, but we also have the
part where only the ukvk gets derived. But, we have the product of a u2

k with a v2
k′ which is

again zero, but we have to proof this.

A case distinction for the moduli for three k′s would suggest 8 different possibilities, but actually
there are only 6: since k′′ = k+k′, the sign of k is already determined when the signs of k and
k′ are equal. From the v2k(−uk′vk′)u2

k′′ term only those parts of the integration remain where
k < 0 and k′′ > 0. That is only one: k < 0,k′ > 0,k′′ > 0.
From the u2

k(−uk′vk′)v2
k′′ term, likewise only one is nonzero, namely the one for which k >

0,k′ < 0,k′′ < 0 is valid.

In the limit n0 → 0 we thus have for II: −1 ∗ U
2(ǫ

k′−Jz−µ)
∗ 1 + 1 ∗ −U

2(ǫ
k′−Jz−µ)

∗ (−1) = 0.

In III and IV, at least one ukvk does not get derived, so all contributions are zero.

Now to the part, where these terms are not derived (but 1
~ωk+~ω

k′+~ω
k′′

is):

in I, the requirement for both terms to be nonzero is for k and k′ to have the same sign, but
for k′′ to have the other sign. As we mentioned above, this is impossible due to the definition
of k′′.

In II, III and IV, at least one ukvk in each term results in zero for all of them.

We have thus shown that the second order cannot give any new results compared to the first
order approximation. Therefore, we will try another way that avoids the reinserting.

6.2 Numerical calculations

As we have seen, the method of reinserting and then taking the limit n0 → 0 the k-integrals
results in IR-divergencies. Therefore, we take a step back and this time do not reinsert but
rather solve the system of implicit equations

∂Veff

∂n0
= 0 (6.2)
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Figure 6.1: Numerical calculations without reinserting for the first order.

−1

NS

∂Veff

∂µ
= n (6.3)

simultaneously. This has the advantage that we do not add a further error which occurs when
omitting higher terms in the resubstitutions, but the disadvantage that we now have to deal with
a system of two coupled implicit equations instead of one. This will be solved by a numerical
program written in C which is included in the appendix.

The needed derivatives are extremely complicated, namely the derivative of H(3)2. Therefore,
we will not write down a step-by-step calculation as this would be very tiresome for us and the
reader. The result can be found in the appendix. It has been calculated symbolically by using
Mathematica.

The program works as follows: it first looks for solutions to one equation (of course, one has to
allow for an error since numerically, the equation will never be exactly zero.). These solutions
are inserted in the second equation, and if they solve that equation too, we save the result and
plot it.

Of course, we get more solutions than there are in reality, since they all fall within the error
interval. Still, one can see the expected behavior, n0 starting at 1 for U/J = 0 (for a vanishing
lattice, all particles are in the superfluid state) and then decreasing for higher values of U/J .
At U/J = 26, however, no further solutions are found at all. This is very close to the expected
value of 29, but should not be interpreted as such. The value of n0 is clearly still very much
too large to suggest the transition to the MI state.

For the second order, we also see the qualitatively expected behavior, furthermore the conden-
sate density decreases faster than in the first order, as it should be. Unfortunately, again no
phase transition takes place.
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Figure 6.2: Numerical calculations without reinserting for the first and second order.



Chapter 7

Summary and Outlook

”Study the past, if you would divine the future.”

Confucius

In this thesis we tried to find the critical value for U/J that takes a BEC in an optical lattice
from the superfluid to the Mott-insulator state, which should be revealed as the point where
the condensate density goes to zero.

The Bogoliubov transformation was introduced in chapter 3 in order to describe the BEC
in the superfluid state as basically the (classical) ground state plus a small correction. When
we were not able to identify a phase transition, we turned to Variational Perturbation theory
which was successful in the way that we now had a critical value although its value was much
larger than other calculations predicted.

Hoping to refine this result, in chapter 4 we developed a diagrammatical representation for
the second order perturbation, of which we took the zero-temperature limit in chapter 5 in
order to see whether now a phase transition would arise. Unfortunately, this did not happen
as we encountered infrared divergencies and we also showed that VPT would not help us this
time.

In chapter 6 we gave a proof that reinserting can never lead to a new solution for one of the
two equations. The problem with the divergencies appeared when we reinserted the equations
into themselves in order to sort for the orders in the perturbations. Therefore, we took a step
back and solved both equations numerically as they originally were. We saw that including
the second order in the numerical calculations was indeed an improvement in the way that the
condensate density decreases faster than in first order. But unfortunately, in both plots, n0 still
did not reach zero for some U/J .

At this point, we must conclude that including the second order perturbation did not give
the result we hoped for. It is questionable whether including even higher orders would lead
to a successful outcome. The mathematical effort needed would also increase dramatically, a
numerical calculation as we have done will probably not be feasible for the next few years due
to the limts of computing power .

With the method of treating the interactions only approximately it seems not possible to get
”enough” interaction in order to reach the MI state. Other models should be explored which,
for example, treat the interactions exactly but approximate the kinetic energy.
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Appendix

”Computers are useless. They can only give you answers.”

Pablo Picasso

We used Mathematica to symbolically derive the Effective Potential with respect to n0 and µ.
The second order contributions to each are inserted in the functions f2 and g2, respectively.
This is the result as well as the file f.h used later when numerically integrating in C. The naming
of the variables and functions should be self-explanatory, expparam standing for U/J , density
for n0 and chempot for µ. We set the density per site as n = 1.

#define Power (x , y ) pow (x , y )

DBL ukvk (DBL fhomega )
{
return ( 0 . 5∗ expparam∗ dens i ty / fhomega ) ;

}

DBL uksquare (DBL fek , DBL fhomega )
{
return ( 0 . 5 ∗ ( ( fek−6−chempot+2∗expparam∗ dens i ty ) / fhomega+1) ) ;
}

DBL vksquare (DBL fek , DBL fhomega )
{
return ( 0 . 5 ∗ ( ( fek−6−chempot+2∗expparam∗ dens i ty ) / fhomega−1) ) ;
}

DBL f2 ( )
{
return ( expparam∗(−( dens i ty ∗Power ( expparam , 2 ) ∗(−2∗chempot + 3∗

dens i ty ∗expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam /(2 .∗ fhomega2 ) ) ∗

fukvk1 + 2∗expparam∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam +
fek2 )∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek2 ) ) / (2 .∗Power (
fhomega2 , 3 ) ) +

expparam/fhomega2 )∗ f vksquare1
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−( dens i ty ∗Power ( expparam , 2 ) ∗(4∗(−(expparam∗(−chempot + 2∗ dens i ty ∗
expparam + fek12 )∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /
( 2 .∗Power ( fhomega12 , 3 ) ) +

expparam/fhomega12 )∗ fuksquare1∗
fuksquare2 + 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /
( 2 .∗Power ( fhomega12 , 3 ) ) +

expparam /(2 .∗ fhomega12 ) ) ∗ fuksquare2∗
fukvk1 − 8∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam +

fek12 )∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /

( 2 .∗Power ( fhomega12 , 3 ) ) +
expparam/fhomega12 )∗ fuksquare1∗

fukvk2 − 8∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam +
fek1 ) ∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) / (2 .∗
Power ( fhomega1 , 3 ) ) +

expparam/fhomega1 ) ∗ fuksquare12 ∗
fukvk2 − 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /
( 2 .∗Power ( fhomega12 , 3 ) ) +

expparam /(2 .∗ fhomega12 ) ) ∗ fukvk1 ∗
fukvk2 + 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) / (2 .∗
Power ( fhomega1 , 3 ) ) +

expparam /(2 .∗ fhomega1 ) )∗ fuksquare2∗
fukvk12 −

8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗(−2∗chempot + 3∗ dens i ty ∗
expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam /(2 .∗ fhomega2 ) ) ∗

fukvk1 ∗ fukvk12 +
16∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek2 )∗(−2∗

chempot + 3∗ dens i ty ∗expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam/fhomega2 )∗

fukvk1 ∗ fukvk12 −
8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗(−2∗chempot + 3∗ dens i ty ∗

expparam + 2∗ f ek1 ) ) /
( 2 .∗Power ( fhomega1 , 3 ) ) + expparam /(2 .∗ fhomega1 ) ) ∗

fukvk2 ∗ fukvk12 −
8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗(−2∗chempot + 3∗ dens i ty ∗

expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam /(2 .∗ fhomega2 ) ) ∗

fuksquare12 ∗ f vksquare1 +
4∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek2 )∗(−2∗

chempot + 3∗ dens i ty ∗expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam/fhomega2 )∗
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fuksquare12 ∗ f vksquare1 −
8∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek12 )∗

(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /
( 2 .∗Power ( fhomega12 , 3 ) ) +

expparam/fhomega12 )∗ fukvk2 ∗
f vksquare1 + 4∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam

+ fek1 ) ∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) / (2 .∗

Power ( fhomega1 , 3 ) ) +
expparam/fhomega1 ) ∗ fuksquare12 ∗

f vksquare2 + 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /

( 2 .∗Power ( fhomega12 , 3 ) ) +
expparam /(2 .∗ fhomega12 ) ) ∗ fukvk1 ∗

f vksquare2 + 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) / (2 .∗

Power ( fhomega1 , 3 ) ) +
expparam /(2 .∗ fhomega1 ) )∗ fukvk12 ∗

f vksquare2 + 4∗(−(expparam∗
(−chempot + 2∗ dens i ty ∗expparam + fek12 ) ∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek12 ) ) /

( 2 .∗Power ( fhomega12 , 3 ) ) +
expparam/fhomega12 )∗ f vksquare1 ∗

f vksquare2 − 8∗(−( dens i ty ∗Power ( expparam , 2 ) ∗
(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗ f ek2 ) ) / (2 .∗

Power ( fhomega2 , 3 ) ) +
expparam /(2 .∗ fhomega2 ) )∗ fuksquare1∗

f vksquare12 +
4∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek2 )∗(−2∗

chempot + 3∗ dens i ty ∗expparam + 2∗ f ek2 ) ) /
( 2 .∗Power ( fhomega2 , 3 ) ) + expparam/fhomega2 )∗

fuksquare1∗ f vksquare12 +
4∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek1 )∗(−2∗

chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) /
( 2 .∗Power ( fhomega1 , 3 ) ) + expparam/fhomega1 )∗

fuksquare2∗ f vksquare12 −
8∗(−(expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek1 )∗(−2∗

chempot + 3∗ dens i ty ∗expparam + 2∗ f ek1 ) ) /
( 2 .∗Power ( fhomega1 , 3 ) ) + expparam/fhomega1 )∗

fukvk2 ∗ f vksquare12 ) ) /
( 2 . ∗ ( fhomega1 + fhomega2 +

fhomega12 ) ) +
( dens i ty ∗Power ( expparam , 2 ) ∗ ( ( expparam∗(−2∗chempot + 3∗ dens i ty ∗

expparam + 2∗ f ek1 ) ) /
fhomega1 + ( expparam∗(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗

f ek2 ) ) /
fhomega2 + ( expparam∗(−2∗chempot + 3∗ dens i ty ∗expparam + 2∗
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fek12 ) ) /
fhomega12 ) ∗

(8∗ fuksquare2∗ fukvk1 ∗
fukvk12 −

8∗ fukvk1 ∗ fukvk2 ∗
fukvk12 −

8∗ fuksquare12 ∗ fukvk2 ∗
f vksquare1 + 8∗ fukvk1 ∗
fukvk12 ∗ f vksquare2 +

4∗ fuksquare12 ∗ f vksquare1 ∗
f vksquare2 + 4∗ fuksquare1∗ fuksquare2∗
f vksquare12 −

8∗ fuksquare1∗ fukvk2 ∗
f vksquare12 ) ) /

( 2 .∗Power ( fhomega1 + fhomega2 +
fhomega12 , 2 ) ) −

(Power ( expparam , 2 ) ∗(8∗ fuksquare2∗ fukvk1 ∗
fukvk12 −

8∗ fukvk1 ∗ fukvk2 ∗
fukvk12 −

8∗ fuksquare12 ∗ fukvk2 ∗
f vksquare1 + 8∗ fukvk1 ∗
fukvk12 ∗ f vksquare2 +

4∗ fuksquare12 ∗ f vksquare1 ∗
f vksquare2 + 4∗ fuksquare1∗ fuksquare2∗
f vksquare12 −

8∗ fuksquare1∗ fukvk2 ∗
f vksquare12 ) ) /

( 2 . ∗ ( fhomega1 + fhomega2 +
fhomega12 ) ) ) ;

}

DBL g2 ( )
{
return ( ( dens i ty ∗Power ( expparam , 2 ) ∗(−chempot + 2∗ dens i ty ∗expparam +

fek2 ) ∗ fukvk1 ) /
( 2 .∗Power ( fhomega2 , 3 ) ) +

2∗expparam ∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek2 , 2 ) / (2 .∗
Power ( fhomega2 , 3 ) ) −
1/ (2 .∗ fhomega2 ) )∗ f vksquare1

+
( dens i ty ∗Power ( expparam , 2 ) ∗(4∗( Power(−chempot + 2∗ dens i ty ∗expparam

+ fek12 , 2 ) /
( 2 .∗Power ( fhomega12 , 3 ) ) −

1/ (2 .∗ fhomega12 ) )∗ fuksquare1∗
fuksquare2 + (4∗ dens i ty ∗expparam∗
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(−chempot + 2∗ dens i ty ∗expparam + fek12 ) ∗ fuksquare2∗
fukvk1 ) /Power ( fhomega12 , 3 ) −

8∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek12 , 2 ) /
( 2 .∗Power ( fhomega12 , 3 ) ) −

1/ (2 .∗ fhomega12 ) )∗ fuksquare1∗
fukvk2 − 8∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek1 , 2 ) /

( 2 .∗Power ( fhomega1 , 3 ) ) − 1/ (2 .∗ fhomega1 ) )∗
fuksquare12 ∗ fukvk2 −

(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek12 ) ∗
fukvk1 ∗
fukvk2 ) /Power ( fhomega12 , 3 ) +

(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek1 )∗
fuksquare2∗
fukvk12 ) /Power ( fhomega1 , 3 ) +

16∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek2 , 2 ) / (2 .∗Power (
fhomega2 , 3 ) ) −
1/ (2 .∗ fhomega2 ) ) ∗ fukvk1 ∗

fukvk12 −
(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek2 )∗

fukvk1 ∗
fukvk12 ) /Power ( fhomega2 , 3 ) −

(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek1 )∗
fukvk2 ∗
fukvk12 ) /Power ( fhomega1 , 3 ) +

4∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek2 , 2 ) / (2 .∗Power (
fhomega2 , 3 ) ) −
1/ (2 .∗ fhomega2 ) ) ∗ fuksquare12 ∗

f vksquare1 − (4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗
expparam + fek2 ) ∗
fuksquare12 ∗ f vksquare1 ) /

Power ( fhomega2 , 3 ) −
8∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek12 , 2 ) /

( 2 .∗Power ( fhomega12 , 3 ) ) −
1/ (2 .∗ fhomega12 ) )∗ fukvk2 ∗

f vksquare1 + 4∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek1
, 2 ) /
( 2 .∗Power ( fhomega1 , 3 ) ) − 1/ (2 .∗ fhomega1 ) )∗

fuksquare12 ∗ f vksquare2 +
(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek12 ) ∗

fukvk1 ∗
f vksquare2 ) /Power ( fhomega12 , 3 ) +

(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek1 )∗
fukvk12 ∗
f vksquare2 ) /Power ( fhomega1 , 3 ) +

4∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek12 , 2 ) /
( 2 .∗Power ( fhomega12 , 3 ) ) −

1/ (2 .∗ fhomega12 ) )∗ f vksquare1 ∗
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fvksquare2 + 4∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek2
, 2 ) /
( 2 .∗Power ( fhomega2 , 3 ) ) − 1/ (2 .∗ fhomega2 ) )∗

fuksquare1∗ f vksquare12 −
(4∗ dens i ty ∗expparam∗(−chempot + 2∗ dens i ty ∗expparam + fek2 )∗

fuksquare1∗
f vksquare12 ) /Power ( fhomega2 , 3 ) +

4∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek1 , 2 ) / (2 .∗Power (
fhomega1 , 3 ) ) −
1/ (2 .∗ fhomega1 ) ) ∗ fuksquare2∗

f vksquare12 −
8∗(Power(−chempot + 2∗ dens i ty ∗expparam + fek1 , 2 ) / (2 .∗Power (

fhomega1 , 3 ) ) −
1/ (2 .∗ fhomega1 ) ) ∗ fukvk2 ∗

f vksquare12 ) ) /
( 2 . ∗ ( fhomega1 + fhomega2 +

fhomega12 ) ) −
( dens i ty ∗Power ( expparam , 2 ) ∗(−((−chempot + 2∗ dens i ty ∗expparam +

fek1 ) /fhomega1 ) −
(−chempot + 2∗ dens i ty ∗expparam + fek2 ) / fhomega2 −
(−chempot + 2∗ dens i ty ∗expparam + fek12 ) / fhomega12 )
∗(8∗ fuksquare2∗ fukvk1 ∗

fukvk12 −
8∗ fukvk1 ∗ fukvk2 ∗
fukvk12 −

8∗ fuksquare12 ∗ fukvk2 ∗
f vksquare1 + 8∗ fukvk1 ∗
fukvk12 ∗ f vksquare2 +

4∗ fuksquare12 ∗ f vksquare1 ∗
f vksquare2 + 4∗ fuksquare1∗ fuksquare2∗
f vksquare12 −

8∗ fuksquare1∗ fukvk2 ∗
f vksquare12 ) ) /

( 2 .∗Power ( fhomega1 + fhomega2 +
fhomega12 , 2 ) ) ) ;

}

This is the program used for the simultaneous solving of two coupled implicit equations. It is
written in the C programming language.

#include <s t d i o . h>
#include <math . h>

typedef int INT ;
typedef double DBL;
#define pi 3 .14159
#define n 1 // one p a r t i c l e per s i t e
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#define NEQ 7 // number o f i n t e r v a l s per dimension , 13 f o r the
f i r s t order

DBL expparam , density , chempot ; // U/J , n 0 , chemica l p o t e n t i a l
DBL eq [NEQ+1] [NEQ+1] [NEQ+1] ; // a l l p o s s i b l e v a l u e s f o r eq are

e vu l a t e d beforehand to save computing time
DBL fek1 , fek2 , fek12 , fhomega1 , fhomega2 , fhomega12 , fukvk1 , fukvk2

, fukvk12 , fuksquare1 , fuksquare2 , fuksquare12 , fvksquare1 ,
fvksquare2 , fvksquare12 ;

DBL eq (DBL q1 , DBL q2 , DBL q3 )
{
return (−2.0 ∗ cos ( 2 . 0 ∗ pi ∗ q1 ) −2.0 ∗ cos ( 2 . 0 ∗ pi ∗ q2 ) −2.0

∗ cos ( 2 . 0 ∗ pi ∗ q3 ) ) ;
}

DBL homega (DBL feq )
{
return ( s q r t (pow ( f eq − chempot + expparam ∗ density , 2) + 2 .0 ∗

expparam ∗ dens i ty ∗ ( f eq − chempot + expparam ∗ dens i ty ) ) ) ;
}

#include ” f . h” // the second order terms

DBL f (INT n1 , INT n2 , INT n3 ) // in tegrand f o r the f i r s t
order o f the

{
DBL r , f eq = eq [ n1 ] [ n2 ] [ n3 ] ;
DBL fhomega = homega ( f eq ) ;

r = (2 . 0 ∗ f eq − 2 . 0 ∗ chempot + 3 .0 ∗ expparam ∗ dens i ty ) / ( 2 . 0 ∗
fhomega ) − 1 . 0 ;

// p r i n t f (”% f %f %f %f \n”, n1 , n2 , n3 , r ) ; This i s f o r t e s t i n g
purposes .

return ( r ) ;
}

DBL g (INT n1 , INT n2 , INT n3 ) // in tegrand f o r the f i r s t
order o f the

{
DBL r , f eq = eq [ n1 ] [ n2 ] [ n3 ] ;
DBL fhomega = homega ( f eq ) ;

r = ( f eq − chempot + 2 .0 ∗ expparam ∗ dens i ty ) / fhomega − 1 . 0 ;
// p r i n t f (”% f %f %f %f \n”, n1 , n2 , n3 , r ) ;
return ( r ) ;
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}

DBL numitg (DBL f ( ) ) // numerical i n t e g r a l f o r a func t i on with
th ree v a r i a b l e s , e . g . f o r the f i r s t order

{
DBL dq , z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 , max , min , u = 0 . 0 , o = 0 . 0 ;
INT n1 , n2 , n3 ;

dq = 1 .0 / NEQ; // s t ep l en gh t

for ( n1 = 0 ; n1 < NEQ; ++n1 )
for ( n2 = 0 ; n2 < NEQ; ++n2 )
for ( n3 = 0 ; n3 < NEQ; ++n3 )
{
z0 = f (n1 , n2 , n3 ) ;
z1 = f (n1 , n2 , n3 + 1) ;
z2 = f (n1 , n2 + 1 , n3 ) ;
z3 = f (n1 , n2 + 1 , n3 + 1) ;
z4 = f ( n1 + 1 , n2 , n3 ) ;
z5 = f ( n1 + 1 , n2 , n3 + 1) ;
z6 = f ( n1 + 1 , n2 + 1 , n3 ) ;
z7 = f ( n1 + 1 , n2 + 1 , n3 + 1) ;

max = z0 ; min = z0 ;
i f ( z1 > max) max = z1 ; i f ( z1 < min ) min = z1 ;
i f ( z2 > max) max = z2 ; i f ( z2 < min ) min = z2 ;
i f ( z3 > max) max = z3 ; i f ( z3 < min ) min = z3 ;
i f ( z4 > max) max = z4 ; i f ( z4 < min ) min = z4 ;
i f ( z5 > max) max = z5 ; i f ( z5 < min ) min = z5 ;
i f ( z6 > max) max = z6 ; i f ( z6 < min ) min = z6 ;
i f ( z7 > max) max = z7 ; i f ( z7 < min ) min = z7 ;

u += min ; o += max ;
}

return ( ( u + o ) ∗ dq ∗ dq ∗ dq / 2 . 0 ) ; // Mi t t e lw e r t von Ober−
und Untersumme

}

DBL numitg6 (DBL f ( ) ) // numerical i n t e g r a l f o r a func t i on with s i x
v a r i a b l e s , e . g . f o r the second order

{
DBL dq = 1 .0 / NEQ, z , max , min , u = 0 . 0 , o = 0 . 0 ;
INT n1x , n1y , n1z , n2x , n2y , n2z ;
INT k1x , k1y , k1z , k2x , k2y , k2z ;

for ( n1x = 0 ; n1x < NEQ; ++n1x )
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for ( n1y = 0 ; n1y < NEQ; ++n1y )
for ( n1z = 0 ; n1z < NEQ; ++n1z )
for ( n2x = 0 ; n2x < NEQ; ++n2x )
for ( n2y = 0 ; n2y < NEQ; ++n2y )
for ( n2z = 0 ; n2z < NEQ; ++n2z )
{
i f ( n1x + n2x >= NEQ) continue ; // wegen k3 = k1 + k2
i f ( n1y + n2y >= NEQ) continue ;
i f ( n1z + n2z >= NEQ) continue ;
max = −999.9; min = 99 9 . 9 ;
for ( k1x = n1x ; k1x <= n1x + 1 ; ++k1x )
for ( k1y = n1y ; k1y <= n1y + 1 ; ++k1y )
for ( k1z = n1z ; k1z <= n1z + 1 ; ++k1z )
for ( k2x = n2x ; k2x <= n2x + 1 ; ++k2x )
for ( k2y = n2y ; k2y <= n2y + 1 ; ++k2y )
for ( k2z = n2z ; k2z <= n2z + 1 ; ++k2z )
{
//here , a l l p o s s i b l e f unc t i on va l u e s are c a l c u l a t e d

b e f o r e f i s c a l l e d

f ek1 = eq [ k1x ] [ k1y ] [ k1z ] ;
f ek2 = eq [ k2x ] [ k2y ] [ k2z ] ;
f ek12 = eq [ k1x+k2x ] [ k1y+k2y ] [ k1z+k2z ] ;
fhomega1 = homega ( f ek1 ) ;
fhomega2 = homega ( f ek2 ) ;
fhomega12 = homega ( f ek12 ) ;
fukvk1 = ukvk ( fhomega1 ) ;
fukvk2 = ukvk ( fhomega2 ) ;
fukvk12 = ukvk ( fhomega12 ) ;
fuksquare1 = uksquare ( fek1 , fhomega1 ) ;
fuksquare2 = uksquare ( fek2 , fhomega2 ) ;
fuksquare12 = uksquare ( fek12 , fhomega12 ) ;
fvksquare1 = vksquare ( fek1 , fhomega1 ) ;
fvksquare2 = vksquare ( fek2 , fhomega2 ) ;
fvksquare12 = vksquare ( fek12 , fhomega12 ) ;
z = f ( ) ;
i f ( z > max) max = z ; i f ( z < min ) min = z ;
}

u += min ; o += max ;
}

return ( ( u + o ) ∗ pow (dq , 6) / 2 . 0 ) ;
}

DBL impf ( ) // the complete im p l i c i t f unc t i on f o r the
d e r i v a t i on with r e s p e c t to n 0

{



72

DBL r ;

r = −6.0 − chempot + expparam ∗ dens i ty + expparam ∗ numitg ( f ) +
numitg6 ( f 2 ) ; // f o r c a l c u l a t i n g only up to f i r s t order , d e l e t e
+ numitg6 ( f2 )

return ( r ) ;
}

DBL impg ( ) // the complete im p l i c i t f unc t i on f o r the p a r t i c l e
d en s i t y

{
DBL r ;

r = −n + dens i ty + 0 .5 ∗ numitg ( g ) + numitg6 ( g2 ) ; // f o r
c a l c u l a t i n g only up to f i r s t order , d e l e t e + numitg6 ( g2 )

return ( r ) ;
}

ca l c eq ( ) // here , a l l the v a l u e s f o r eq are c a l c u l a t e d and saved
{
INT n1 , n2 , n3 ;

for ( n1 = 0 ; n1 <= NEQ; ++n1 )
for ( n2 = 0 ; n2 <= NEQ; ++n2 )
for ( n3 = 0 ; n3 <= NEQ; ++n3 )

eq [ n1 ] [ n2 ] [ n3 ] = eq ( (DBL) n1 / NEQ − 0 . 5 , (DBL) n2 / NEQ −
0 . 5 , (DBL) n3 / NEQ − 0 . 5 ) ;

}

#define EPSF 0 .5 // the a l l owed error i n t e r v a l in which we taka
s o l u t i o n s as zero

#define EPSG 0 .3

main (INT argc , STR argv [ ] ) // when execut ing , i t i s necessary
to s p e c i f y the output f i l e , e . g . . . . . > out . t x t

{
DBL rf , rg ;

ca l c eq ( ) ;

p r i n t f ( ”expparam dens i ty chempot r f rg\n”) ;
f p r i n t f ( s tde r r , ”expparam dens i ty chempot r f rg \n”) ;
for ( expparam = 75 . 0 0 ; expparam <= 140 . 0 ; expparam += 1 .000 )
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// the chosen range f o r our v a r i a b l e s
{
for ( dens i ty = 0 . 2 0 ; dens i ty <= 0 . 9 5 ; dens i ty += 0 . 0 1 )
{
for ( chempot = 6 . 0 ; chempot <= 20 . 0 ; chempot += 0 . 1 )
{
f p r i n t f ( s tde r r , ”%f %f %f \ r ” , expparam , density , chempot ) ;

f f l u s h ( s t d e r r ) ;
rg = impg ( ) ;
i f ( rg >= −EPSG && rg <= EPSG) // only i f g i s w i th in

i t s error i n t e r v a l l , t h e re can be a s o l u t i o n
{
r f = impf ( ) ;
i f ( r f >= −EPSF && r f <= EPSF) // only i f both f un c t i on s are

w i th in t h e i r error i n t e r v a l l , we assume a s o l u t i o n
{
p r i n t f ( ”%f %f %f %f %f \n” , expparam , density , chempot , r f , rg

) ; f f l u s h ( stdout ) ; // output monitor
f p r i n t f ( s tde r r , ”%f %f %f %f %f \n” , expparam , density ,

chempot , r f , rg ) ; f f l u s h ( s t d e r r ) ; // output f i l e
}

}
}

}
}

}



74



Bibliography

[1] W. Nolting. Grundkurs Theoretische Physik 6: Statistische Physik. Springer, 2004.

[2] S. Bose. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26:178, 1924.

[3] A. Einstein. Quantentheorie des einatomigen idealen Gases. Sitzber. Kgl. Preuss. Akad.
Wiss. 1925, page 261, 1925.

[4] M. H. Anderson, J.R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Ob-
servation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269:198,
1995.

[5] Sherson et al. Quantum computation architecture using optical tweezers. Phys. Rev. A,
84:032322, 2011.

[6] A. Aspect and others (ed.). Bose-Einstein Condensates and Atom Lasers. Kluwer Aca-
demic Publishers, 2002.

[7] T. Weber. Bose-Einstein Condensation of Cesium. Science, 299:232, 2003.

[8] G. Campbell and W. Philips. Ultracold atoms and precise time standards. Phil. Trans. R.
Soc. A, 369:4078, 201.

[9] Aidelsburger et al. Experimental realization of strong effective magnetic fields in an Optical
Lattice. Phys. Rev. Letters, 107:255301, 2011.

[10] T. Salger, C. Grossert, S. Kling, and M. Weitz. Klein-Tunneling of a quasirelativistic
Bose-Einstein condensate in an optical lattice. Phys. Rev. Lett., 107:240401, 2011.

[11] A. Hoffmann. Bosonen im Optischen Gitter. Diploma Thesis, Freie Universität Berlin,
2007.

[12] M. Ohliger. Spinor Bosons in Optical lattices. Diploma Thesis, Freie Universität Berlin,
2008.

[13] D. Stamper-Kurn, M Andrews, A. Chippakur, S. Inouye, H. Miesner, J. Stenger, and
W. Ketterle. Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett., 80:2027,
1998.

[14] D. Jaksch and P. Zoller. The cold atom Hubbard toolbox. Annals of Physics, 315:52,
2005.

75



76 BIBLIOGRAPHY

[15] S. Grishkevich, S. Sala, and A. Saenz. Theoretical description of two ultracold atoms in
finite three-dimensional optical lattices using realistic interatomic interaction potentials.
Phys. Rev. A, 84:062710, 2011.

[16] D. Baillie and P. Blakie. Finite-temperature theory of superfluid bosons in optical lattices.
Phys. Rev. A, 80:033620, 2009.

[17] J. Larson, A. Collin, and J. P. Martikainen. Multiband bosons in optical lattices. Phys.
Rev. A, 79, 2009.

[18] S. Giampolo, F. Illuminati, G. Mazzarella, and S. DeSiena. Influence of trapping potentials
on the phase diagram of bosonic atoms in optical lattices. Phys. Rev. A, 70:061601, 2004.

[19] W. Kohn. Analytic Properties of Bloch Waves and Wannier Functions. Phys. Rev.,
115:809, 1959.
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