
Kevin Grant
Chris Haseman

Develop and DesiGn

Final spine width: 0.452”

Beginning Android
Programming

Develop and Design

Beginning Android
Programming

Kevin grant and
Chris Haseman

PeachPit Press
www.peachpit.com

http://www.peachpit.com

Beginning android Programming: Develop and Design
Kevin Grant and Chris Haseman

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2014 by Kevin Grant and Chris Haseman

Editor: Clifford Colby
Development editor: Robyn Thomas
Production editor: Danielle Foster
Copyeditor: Scout Festa
Technical editors: Matthew Brochstein and Vijay Penemetsa
Cover design: Aren Straiger
Interior design: Mimi Heft
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

trademarks
Android is a trademark of Google Inc., registered in the United States and other countries. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this
book, and Peachpit was aware of a trademark claim, the designations appear as requested by the owner of the trademark. All
other product names and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended
to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-95656-9
ISBN-10: 0-321-95656-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

To my love, Erica, who’s encouraged me to dream bigger than I’ve ever imagined;
my mother, J’nette, who is my best friend and biggest fan;

and my grandmother, Helene, who always supported me in all of my endeavors.

—Kevin Grant

Acknowledgments
As always, I could spend more pages thanking people than are in the work itself. Here are a
few who stand out:

Cliff C. for getting me on board (and always letting me know the weather). Robyn T. for
her diligence in keeping us all on time, and deleting all of my superfluous words. Scout F.
for her tolerance of my grammar. Matthew B. for helping out while taking care of his new
baby boy. Vijay P. for coming in under a tight deadline and working till the end. The mobile
team at Tumblr for their encouragement (cleverly disguised as snark). The Android team at
Google for building great new tools and making every release feel like a birthday. Most of all,
Peachpit for giving me the opportunity to write for you.

iv Acknowledgments

About the Authors
Kevin Grant is an Android Engineer at Tumblr, a creative blogging platform in New York
City, where he focuses on application design, implementing the latest design paradigms, and
pushing the boundaries of the Android framework.

He began developing for Android in 2009, performing research at the University of
Nevada, Reno. After graduating, he was employed in Malmö, Sweden, where he further
honed his mobile skills in the Scandinavian startup scene.

Chris Haseman has been writing mobile software in various forms since 2003. He was
involved in several large projects, from MMS messaging to Major League Baseball. More
recently, he was an early Android engineer behind the doubleTwist media player and is now
the Engineering Manager for the Mobile team at Tumblr. He lives in Manhattan with his
wife, Meghan, and constantly debates shaving his beard.

About the Authors v

contents
Introduction . xii

Welcome to Android . xiv

Chapter 1 GettiNG starteD with aNDroiD . 2

Exploring Android Development Environments . 4

Eclipse (ADT Bundle) . 4

Android Studio . 4

Getting Everything Installed . 5

Installing Eclipse (ADT Bundle) for OS X, Linux, Windows 5

Installing Android Studio . 6

Updating the Android SDK . 7

Configuring Devices . 9

Virtual Device Emulator . 9

Working with a Physical Device . 12

Creating a New Android Project . 14

Running Your New Project . 18

Eclipse . 18

Android Studio . 19

Troubleshooting the Emulator . 21

Wrapping Up . 21

Chapter 2 exPLoriNG the aPPLicatioN Basics . 22

The Files . 24

The Manifest . 24

The Activity Class . 25

Watching the Activity in Action . 25

Implementing Your Own Activity . 26

The Life and Times of an Activity . 32

Bonus Round—Data Retention Methods . 35

The Intent Class . 37

Manifest Registration . 37

Adding an Intent . 38

Listening for Intents at Runtime . 39

Moving Your Own Data . 43

The Application Class . 45

vi contents

The Default Application Declaration . 45

Customizing Your Own Application . 45

Accessing the Application . 46

Wrapping Up . 47

Chapter 3 creatiNG User iNterfaces . 48

The View Class . 50

Creating a View . 50

Altering the UI at Runtime . 53

Handling a Few Common Tasks . 55

Creating Custom Views . 58

Resource Management . 62

Resource Folder Overview . 62

Values Folder . 64

Layout Folders . 64

Drawable Folders . 65

Layout Management . 66

The ViewGroup . 66

The AbsoluteLayout . 68

The LinearLayout . 70

The RelativeLayout . 76

Wrapping Up . 81

Chapter 4 acqUiriNG Data . 82

The Main Thread . 84

You There, Fetch Me That Data! . 84

Watchdogs . 85

What Not to Do . 86

When Am I on the Main Thread? . 86

Getting Off the Main Thread . 87

Getting Back to Main Land . 88

There Must Be a Better Way! . 88

The AsyncTask . 89

How to Make It Work for You . 91

A Few Important Caveats . 93

The IntentService . 94

Declaring a Service . 94

Fetching Images . 95

contents vii

Checking Your Work . 99

Wrapping Up . 100

Chapter 5 aDaPters, List Views, aND Lists . 102

Two Pieces to Each List . 104

ListView . 104

Adapter . 104

A Main Menu . 104

Creating the Menu Data . 104

Creating a ListActivity . 105

Defining a Layout for Your ListActivity . 106

Making a Menu List Item . 107

Creating and Populating the ArrayAdapter . 108

Reacting to Click Events . 108

Complex List Views . 110

The 1000-foot View . 110

Creating the Main Layout View . 110

Creating the ListActivity . 111

Getting Reddit Data . 112

Making a Custom Adapter . 114

Building the ListViews . 116

How Do These Objects Interact? . 119

More Than One List Item Type . 120

Wrapping Up . 121

Chapter 6 BackGroUND serVices . 122

What Is a Service? . 124

The Service Lifecycle . 124

Keeping Your Service Running . 125

Shut It Down! . 125

Communication . 125

Intent-Based Communication . 126

Binder Service Communication . 133

Wrapping Up . 138

Chapter 7 MaNy DeVices, oNe aPPLicatioN . 140

Uncovering the Secrets of the res/ Folder . 142

Layout Folders . 142

What Can You Do Beyond Landscape? . 148

viii contents

The Full Screen Define . 148

Limiting Access to Your App to Devices That Work 149

The <uses> Tag . 150

SDK Version Number . 150

Handling Code in Older Android Versions . 151

SharedPreferences and Apply . 151

Version Check Your Troubles Away . 152

Always Keep an Eye on API Levels . 153

Wrapping Up . 153

Chapter 8 MoVies aND MUsic . 154

Movies . 156

Adding a VideoView . 156

Setting Up for the VideoView . 157

Getting Media to Play . 157

Loading and Playing Media . 160

Cleanup . 161

The Rest, as They Say, Is Up to You . 161

Music . 162

MediaPlayer and State . 162

Playing a Sound . 162

Playing a Sound Effect . 163

Cleanup . 163

It Really Is That Simple . 164

Longer-Running Music Playback . 164

Binding to the Music Service . 165

Finding the Most Recent Track . 165

Listening for Intents . 167

Playing the Audio in the Service . 169

Cleanup . 174

Interruptions . 174

Wrapping Up . 175

Chapter 9 DeterMiNiNG LocatioNs aND UsiNG MaPs 176

Location Basics . 178

Mother May I? . 178

Be Careful What You Ask For . 178

Finding a Good Supplier . 178

contents ix

Getting the Goods . 179

The Sneaky Shortcut . 180

That’s It! . 180

Show Me the Map! . 181

Before We Get Started . 181

Getting the Library . 181

Adding to the Manifest . 183

Adjusting the Activity . 184

Creating a MapFragment . 184

Google Maps API Key . 185

Run, Baby, Run . 187

Wrapping Up . 189

Chapter 10 taBLets, fraGMeNts, aND actioN Bars, oh My 190

Fragments . 192

The Lifecycle of the Fragment . 192

Creating a Fragment . 193

Showing a Fragment . 194

Providing Backward Compatibility . 198

The Action Bar . 200

Setting Up the AppCompat library . 200

Showing the Action Bar . 204

Adding Elements to the Action Bar . 204

Wrapping Up . 209

Chapter 11 aDVaNceD NaViGatioN . 210

The View Pager . 212

Creating the Project . 212

onCreate . 213

The XML . 215

FragmentPagerAdapter . 215

DummyFragment . 217

The Navigation Drawer . 217

onCreate . 218

The XML . 221

Swapping Fragments . 222

Wrapping Up . 223

x contents

Chapter 12 PUBLishiNG yoUr aPPLicatioN . 224

Packaging and Versioning . 226

Preventing Debugging . 226

Naming the Package . 226

Versioning . 227

Setting a Minimum SDK Value . 228

Packaging and Signing . 228

Exporting a Signed Build . 228

Submitting Your Build . 232

Watch Your Crash Reports and Fix Them . 232

Update Frequently . 232

Wrapping Up . 233

Chapter 13 GraDLe, the New BUiLD systeM . 234

Anatomy of a Gradle File . 236

Buildscript and Plug-Ins . 237

The Android Stuff . 238

Build Types . 239

Adding Values to BuildConfig . 241

Product Flavors . 242

Build Variants . 243

Signing and Building . 244

Wrapping Up . 245

Index. 246

contents xi

IntroductIon
If you’ve got a burning idea for an application that you’re dying to share, or if you recognize
the power and possibilities of the Android platform, you’ve come to the right place. This is a
short book on an immense topic.

We don’t mean to alarm anyone right off the bat here, but let’s be honest: Android devel-
opment is hard. Its architecture is dissimilar to that of many existing platforms (especially
other mobile SDKs), there are many traps for beginners to fall into, and you might find
yourself running to the Internet for answers. In exchange for its difficulty, however, Google’s
Android offers unprecedented power, control, and—yes—responsibility to those who are
brave enough to develop for it.

This is where our job comes in. We’re here to make the process of learning to write amaz-
ing Android software as simple as possible.

Who are we to ask such things of you? Chris Haseman has been writing mobile software
in a professional capacity for ten years, and for five of those years, he’s been developing
software for Android. He’s also written code that runs on millions of handsets throughout
the world. Also, he has a beard. We all know that people with ample facial hair appear to be
more authoritative on all subjects.

Kevin Grant has been developing for Android since its inception and has worked on a
breadth of user-facing products, developing beautiful and intuitive interfaces for millions of
users. While he doesn’t have a beard, we all know that people with a perpetual five o’clock
shadow know how to get things done.

From here on out, we’re going to take this conversation into the first person. We banter
enough amongst ourselves—it’s not necessary to confuse you in the process. So without fur-
ther ado, in return for making this learning process as easy as possible, I ask for a few things:

 J You have a computer. My third-grade teacher taught me never to take anything for
granted; maybe you don’t have a computer. If you don’t already have a computer, you’ll
need one—preferably a fast one, because the Android emulator and Eclipse can use up a
fair amount of resources quickly.

 J You’re fluent in Java. Notice that I say fluent, not expert. Because you’ll be writing usable
applications (rather than production libraries, at least to start), I expect you to know the
differences between classes and interfaces. You should be able to handle threads and
concurrency without batting an eyelash. Further, the more you know about what hap-
pens under the hood (in terms of object creation and garbage collection), the faster and
better your mobile applications will be.

Note: Android is an equal-opportunity development platform. While I
personally develop on a Mac, you can use any of the three major platforms

(Mac, PC, or Linux).

xii IntroductIon

Yes, you can get through the book and even put together rudimentary applications with-
out knowing much about the Java programming language. However, when you encounter
problems—in both performance and possibilities—a weak foundation in the program-
ming language may leave you without a solution.

 J You have boundless patience and endless curiosity. Your interest in and passion for
Android will help you through the difficult subjects covered in this book and let you glide
through the easy ones.

Throughout this book, I focus on how to write features, debug problems, and make inter-
esting software. I hope that when you’ve finished the book, you’ll have a firm grasp of the
fundamentals of Android software development.

All right, that’s quite enough idle talking. Let’s get started.

who this Book is for
This book is for people who have some programming experience and are curious about the
wild world of Android development.

who this Book is Not for
This book is not for people who have never seen a line of Java before. It is also not for expert
Android engineers with several applications under their belt.

how yoU wiLL LearN
In this book, you’ll learn by doing. Each chapter comes with companion sample code and
clear, concise instructions for how to build that code for yourself. You’ll find the code
samples on the book’s website (www.peachpit.com/androiddevelopanddesign).

what yoU wiLL LearN
You’ll learn the basics of Android development, from creating a project to building scalable
UIs that move between tablets and phones.

Note: If you’re more interested in the many “whys” behind Android, this
book is a good one to start with, but it won’t answer every question you
may have.

IntroductIon xiii

http://www.peachpit.com/androiddevelopanddesign

welcome to AndroId
Eclipse and Android Studio are the two supported integrated develop-
ment environments (IDEs) for Android development, and you need only
one to follow along with the examples in this book. There are, however,
a few other tools you should be aware of that will be very useful now and
in your future work with Android. While you may not use all these tools
until you’re getting ready to ship an application, it will be helpful to know
about them when the need arises.

ECLIPsE (ADT BunDLE)

eclipse was the first
publicly available iDe for
android and has been in
use since 2008. previ-
ous iterations required
a complicated setup
process that involved
downloading multiple
pieces and duct-taping
them together. Now, with
the debut of aDt Bundle,
the process is much
easier. everything you
need to build an android
application in eclipse is in
one convenient bundle,
preconfigured to get you
up and running in under
five minutes.

AnDroID sTuDIo

a spinoff of the popular
Java iDe intellij, android
Studio is Google’s newest
solution to many of our
android development
woes. with android
Studio, android receives
a new unified build
system, Gradle, which is
fully integrated to allow
the utmost flexibility
in your development
process. it may be a little
rough around the edges,
and it may take a little
extra elbow grease, but
you’ll find that the time
invested will pay off in
the long run.

AnDroID sDK

the android SDK contains
all the tools you’ll need to
develop android applica-
tions from the command
line, as well as other tools
that will help you find
and diagnose problems
and streamline your
applications. whether
you use eclipse or android
Studio, the android SDK
comes preconfigured and
is identical for both iDes.

AnDroID sDK MAnAgEr

the android SDK man-
ager (found within the
SDK tools/ directory)
will help you pull down
all versions of the SDK,
as well as a plethora of
tools, third-party add-ons,
and all things android.
this will be the primary
way in which you get new
software from Google’s
headquarters in moun-
tain View, california.

xiv welcome to AndroId

AnDroID VIrTuAL
DEVICE MAnAgEr

android Virtual Device
manager is for those
developers who prefer to
develop on an emulator
rather than an actual
device. it’s a little slow,
but you can run an
android emulator for
any version of android,
at any screen size. it’s
perfect for testing screen
sizes, screen density, and
operating system ver-
sions across a plethora of
configurations.

HIErArCHy VIEWEr

this tool will help you
track the complex con-
nections between your
layouts and views as you
build and debug your
applications. this viewer
can be indispensable
when tracking down
those hard-to-understand
layout issues. You can
find this tool in the
SDK tools/ directory as
hierarchyviewer.

MonITor

also known as DDmS
(Dalvik Debug monitor
Server), monitor is your
primary way to interface
with and debug android
devices. You’ll find it
in the tools/ directory
inside the android SDK.
it does everything from
gathering logs, sending
mock text messages or
locations, and mapping
memory allocations to
taking screenshots. this
tool is very much the
Swiss army knife of your
android toolkit. along
with being a standalone
application, both eclipse
and android Studio users
can access this tool from
directly within their
programs.

grADLE

this is the new build
system in android Studio.
the beauty of Gradle is
that whether you press
“Build” from within the
iDe or build from the
command line, you are
building with the same
system. For general use,
there aren’t many com-
mands you will need to
know, but i cover basic
and advanced Gradle
usage at the end of
the book.

welcome to AndroId xv

Chapter 4

Acquiring Data

Although the prime directive of this chapter is to teach you how

to acquire data from a remote source, this is really just a sneaky

way for me to teach you about Android and the main thread. For

the sake of simplicity, all the examples in this chapter will deal

with downloading and rendering image data. In the next chapter,

on adapters and lists, I’ll introduce you to parsing complex data

and displaying it to users. Image data, as a general rule, is larger

and more cumbersome, so you’ll run into more interesting and

demonstrative timing issues in dealing with it.

83

The Main Thread
The Android operation system has exactly one blessed thread authorized to change anything
that will be seen by the user. This alleviates what could be a concurrency nightmare, such as
view locations and data changing in one thread while a different one is trying to lay them out
onscreen. If only one thread is allowed to touch the user interface, Android can guarantee
that nothing vital is changed while it’s measuring views and rendering them to the screen.
This has, unfortunately, serious repercussions for how you’ll need to acquire and process
data. Let me start with a simple example.

You There, FeTch Me ThaT DaTa!
Were I to ask you, right now, to download an image and display it to the screen, you’d prob-
ably write code that looks a lot like this:

public void onCreate(Bundle extra){

 try{

 URL url = new URL(“http://wanderingoak.net/bridge.png”);

 HttpURLConnection httpCon =

 (HttpURLConnection)url.openConnection();

 if(httpCon.getResponseCode() != 200) {

 throw new Exception(“Failed to connect”);

 }

 InputStream is = httpCon.getInputStream();

 Bitmap bitmap = BitmapFactory.decodeStream(is);

 ImageView iv = (ImageView)findViewById(R.id.main_image);

 iv.setImageBitmap(bitmap);

 }catch(Exception e){

 Log.e(“ImageFetching”,”Didn’t work!”,e);

 }

}

This is exactly what I did when initially faced with the same problem. While this code
will fetch and display the required bitmap, there is a very sinister issue lurking in the code—
namely, the code itself is running on the main thread. Why is this a problem? Consider that
there can be only one main thread and that the main thread is the only one that can interact
with the screen in any capacity. This means that while the example code is waiting for the
network to come back with image data, nothing whatsoever can be rendered to the screen.

84 Chapter 4 Acquiring DAtA

This image-fetching code will block any action from taking place anywhere on the device.
If you hold the main thread hostage, buttons will not be processed, phone calls cannot be
answered, and nothing can be drawn to the screen until you release it.

WaTchDogs
Given that a simple programmer error (like the one in the example code) could effectively
cripple any Android device, Google has gone to great lengths to make sure no single appli-
cation can control the main thread for any length of time. Starting in Android Honeycomb
(3.0), if you open any network connections on the main thread, your application will crash.
If you’re hogging too much of the main thread’s time with long-running operations, such as
calculating pi or finding the next prime number, your application will produce this disas-
trous dialog box (Figure 4.1) on top of your application.

This dialog box is unaffectionately referred to by developers as an ANR (App Not
Responding) crash. Although operations will continue in the background, and the user can
press the Wait button to return to whatever’s going on within your application, this is cata-
strophic for most users, and you should avoid it at all costs.

Figure 4.1 What the user sees when you hold
the main thread hostage.

the MAin threAD 85

Tracking Down anr crashes

anytime you see an aNr crash, android will write a file containing a full stack trace. You
can access this file with the following aDB command line: adb pull /data/anr/traces.txt.
this should help you find the offending line. the traces.txt file shows the stack trace
of every thread in your program. the first thread in the list is usually the one to look at
carefully. Sometimes, the long-running blocking operation will have completed before
the system starts writing traces.txt, which can make for a bewildering stack trace. Your
long-running operation probably finished just after android started to get huffy about
the main thread being delayed. In the example code that displays the image, however,
it will probably show that httpCon.getResponseCode() was the culprit. You’ll know this
because it will be listed as the topmost stack trace under your application’s thread list.

You can also check DDMS and look at the logcat tab. If you are performing network
requests on the main thread, you can look for a NetworkOnMainThreadException, which
should help you identify the location in your code where the error is originating.

WhaT NoT To Do
What kind of things should you avoid on the main thread?

 J Anything involving the network

 J Any task requiring a read from or write to the file system

 J Heavy processing of any kind (such as image or movie modification)

 J Any task that blocks a thread while you wait for something to complete

Excluding this list, there isn’t much left, so as a general rule, if it doesn’t involve setup or
modification of the user interface, don’t do it on the main thread.

WheN aM i oN The MaiN ThreaD?
Anytime a method is called from the system (unless explicitly otherwise stated), you can be
sure you’re on the main thread. Again, as a general rule, if you’re not in a thread created by
you, it’s safe to assume you’re probably on the main one, so be careful.

86 Chapter 4 Acquiring DAtA

GeTTinG Off The Main Thread
You can see why holding the main thread hostage while grabbing a silly picture of the
Golden Gate Bridge is a bad idea. But how, you might be wondering, do I get off the main
thread? An inventive hacker might simply move all the offending code into a separate thread.
This imaginary hacker might produce code looking something like this:

public void onCreate(Bundle extra){

 new Thread(){

 public void run(){

 try{

 URL url = new URL(“http://wanderingoak.net/bridge.png”);

 HttpURLConnection httpCon =

 (HttpURLConnection) url.openConnection();

 if(httpCon.getResponseCode() != 200){

 throw new Exception(“Failed to connect”);

 }

 InputStream is = httpCon.getInputStream();

 Bitmap bitmap = BitmapFactory.decodeStream(is);

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(bt);

 }catch(Exception e){

 //handle failure here

 }

 }

 }.start();

}

“There,” your enterprising hacker friend might say, “I’ve fixed your problem. The main
thread can continue to run unimpeded by the silly PNG downloading code.” There is, how-
ever, another problem with this new code. If you run the method on your own emulator,
you’ll see that it throws an exception and cannot display the image onscreen.

Why, you might now ask, is this new failure happening? Well, remember that the main
thread is the only one allowed to make changes to the user interface. Calling setImage
Bitmap is very much in the realm of one of those changes and, thus, can be done only
while on the main thread.

getting Off the MAin threAD 87

geTTiNg Back To MaiN LaND
Android provides, through the Activity class, a way to get back on the main thread as long
as you have access to an activity. Let me fix the hacker’s code to do this correctly. I don’t
want to indent the code into the following page, so I’ll show the code beginning from the
line on which the bitmap is created (remember, we’re still inside the Activity class, within
the onCreate method, inside an inline thread declaration) (why do I hear the music from
Inception playing in my head?).

If you’re confused, check the sample code for this chapter.

final Bitmap bt = BitmapFactory.decodeStream(is);

ImageActivity.this.runOnUiThread(new Runnable() {

public void run() {

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(bt);

 }

 });

//All the close brackets omitted to save space

Remember, we’re already running in a thread, so accessing just this will refer to the
thread itself. I, on the other hand, need to invoke a method on the activity. Calling Image
Activity.this provides a reference to the outer Activity class in which we’ve spun up this
hacky code and will thus allow us to call runOnUiThread. Further, because I want to access
the recently created bitmap in a different thread, I’ll need to make the bitmap declaration
final or the compiler will get cranky with us.

When you call runOnUiThread, Android will schedule this work to be done as soon as the
main thread is free from other tasks. Once back on the main thread, all the same “don’t be a
hog” rules again apply.

There MusT Be a BeTTer WaY!
If you’re looking at this jumbled, confusing, un-cancelable code and thinking to yourself,
“Self. There must be a cleaner way to do this,” you’d be right. There are many ways to handle
long-running tasks; I’ll show you what I think are the two most useful. One is the AsyncTask,
a simple way to do an easy action within an activity. The other, IntentService, is more com-
plicated but much better at handling repetitive work that can span multiple activities.

88 Chapter 4 Acquiring DAtA

The asyncTask
At its core, the AsyncTask is an abstract class that you extend and that provides the basic
framework for a time-consuming asynchronous task.

The best way to describe the AsyncTask is to call it a working thread sandwich. That is to
say, it has three major methods for which you can provide implementation.

 J onPreExecute takes place on the main thread and is the first slice of bread. It sets up the
task, prepares a loading dialog, and warns the user that something is about to happen.

 J doInBackground is the meat of this little task sandwich (and is also required). This
method is guaranteed by Android to run on a separate background thread. This is where
the majority of your work takes place.

 J onPostExecute will be called once your work is finished (again, on the main thread), and
the results produced by the background method will be passed to it. This is the other
slice of bread.

That’s the gist of the asynchronous task. There are more-complicated factors that I’ll
touch on in just a minute, but this is one of the fundamental building blocks of the Android
platform (given that all hard work must be taken off the main thread).

Take a look at one in action, and then we’ll go over the specifics of it:

private class ImageDownloader extends AsyncTask<String, Integer, Bitmap>{

 Override

 protected void onPreExecute(){

 //Setup is done here

 }

 @Override

 protected Bitmap doInBackground(String... params) {

 try{

 URL url = new URL(params[0]);

 HttpURLConnection httpCon =

 (HttpURLConnection) url.openConnection();

 if(httpCon.getResponseCode() != 200)

 throw new Exception(“Failed to connect”);

 }

 InputStream is = httpCon.getInputStream();

 return BitmapFactory.decodeStream(is);

the AsynctAsk 89

 }catch(Exception e){

 Log.e(“Image”,”Failed to load image”,e);

 }

 return null;

 }

 @Override

 protected void onProgressUpdate(Integer... params){

 //Update a progress bar here, or ignore it, it’s up to you

 }

 @Override

 protected void onPostExecute(Bitmap img){

 ImageView iv = (ImageView) findViewById(R.id.remote_image);

 if(iv!=null && img!=null){

 iv.setImageBitmap(img);

 }

 }

 @Override

 protected void onCancelled(){

 // Handle what you want to do if you cancel this task

 }

}

That, dear readers, is an asynchronous task that will download an image at the end of
any URL and display it for your pleasure (provided you have an image view onscreen with
the ID remote_image). Here is how you’d kick off such a task from the onCreate method of
your activity.

public void onCreate(Bundle extras){

 super.onCreate(extras);

 setContentView(R.layout.image_layout);

 ImageDownloader imageDownloader = new ImageDownloader();

 imageDownloader.execute(“http://wanderingoak.net/bridge.png”);

}

Once you call execute on the ImageDownloader, it will download the image, process it
into a bitmap, and display it to the screen. That is, assuming your image_layout.xml file
contains an ImageView with the ID remote_image.

90 Chapter 4 Acquiring DAtA

hoW To Make iT Work For You
The AsyncTask requires that you specify three generic type arguments (if you’re unsure
about Java and generics, do a little Googling before you press on) as you declare your
extension of the task.

 J The type of parameter that will be passed into the class. In this example AsyncTask code,
I’m passing one string that will be the URL, but I could pass several of them. The param-
eters will always be referenced as an array no matter how many of them you pass in.
Notice that I reference the single URL string as params[0].

 J The object passed between the doInBackground method (off the main thread) and the
onProgressUpdate method (which will be called on the main thread). It doesn’t matter in
the example, because I’m not doing any progress updates in this demo, but it’d probably
be an integer, which would be either the percentage of completion of the transaction or
the number of bytes transferred.

 J The object that will be returned by the doInBackground method to be handled by the
onPostExecute call. In this little example, it’s the bitmap we set out to download.

Here’s the line in which all three objects are declared:

private class ImageDownloader extends

 AsyncTask<String, Integer, Bitmap>{

In this example, these are the classes that will be passed to your three major methods.

onpreexeCute
protected void onPreExecute(){

}

onPreExecute is usually when you’ll want to set up a loading dialog or a loading spinner
in the corner of the screen (I’ll discuss dialogs in depth later). Remember, onPreExecute is
called on the main thread, so don’t touch the file system or network at all in this method.

doInBaCkground
protected Bitmap doInBackground(String... params) {

}

This is your chance to make as many network connections, file system accesses, or other
lengthy operations as you like without holding up the phone. The class of object passed to
this method will be determined by the first generic object in your AsyncTask’s class declara-
tion. Although I’m using only one parameter in the code sample, you can actually pass any
number of parameters (as long as they derive from the saved class), and you’ll have them
at your fingertips when doInBackground is called. Once your long-running task has been
completed, you’ll need to return the result at the end of your function. This final value will
be passed into another method called back on the main UI thread.

the AsynctAsk 91

Beware of LoaDing DiaLogs

remember that mobile applications are not like their web or desktop counterparts. Your
users will typically be using their phones when they’re away from a conventional com-
puter. this means, usually, that they’re already waiting for something: a bus, that cup of
expensive coffee, their friend to come back from the bathroom, or a boring meeting to
end. It’s very important, therefore, to keep them from having to wait on anything within
your application. Waiting for your mobile application to connect while you’re already
waiting for something else can be a frustrating experience. Do what you can to limit
users’ exposure to full-screen loading dialogs. they’re unavoidable sometimes, but mini-
mize them whenever possible.

ShowIng your progreSS
There’s another aspect of the AsyncTask that you should be aware of even though I haven’t
demonstrated it. From within doInBackground, you can send progress updates to the user
interface. doInBackground isn’t on the main thread, so if you’d like to update a progress bar
or change the state of something on the screen, you’ll have to get back on the main thread to
make the change.

Within the AsyncTask, you can do this during the doInBackground method by calling
publishProgress and passing in any number of objects deriving from the second class in
the AsyncTask declaration (in the case of this example, an integer). Android will then, on the
main thread, call your declared onProgressUpdate method and hand over any classes you
passed to publishProgress. Here’s what the method looks like in the AsyncTask example:

protected void onProgressUpdate(Integer... params){

 //Update a progress bar here, or ignore it, it’s up to you

}

As always, be careful when doing UI updates, because if the activity isn’t currently
onscreen or has been destroyed, you could run into some trouble. The section “A Few
Important Caveats” discusses the “bad things” that can happen.

onpoStexeCute
The work has been finished, or, as in the example, the image has been downloaded. It’s time
to update the screen with what I’ve acquired. At the end of doInBackground, if successful, I
return a loaded bitmap to the AsyncTask. Now Android will switch to the main thread and
call onPostExecute, passing the class I returned at the end of doInBackground. Here’s what
the code for that method looks like:

92 Chapter 4 Acquiring DAtA

protected void onPostExecute(Bitmap img){

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 if(iv!=null && img!=null){

 iv.setImageBitmap(img);

 }

}

I take the bitmap downloaded from the website, retrieve the image view into which it’s going
to be loaded, and set it as that view’s bitmap to be rendered. There’s an error case I haven’t cor-
rectly handled here. Take a second to look back at the original code and see if you can spot it.

a FeW iMporTaNT caveaTs
Typically, an AsyncTask is started from within an activity. However, you must remember that
activities can have short life spans. Recall that, by default, Android destroys and re-creates
any activity each time you rotate the screen. Android will also destroy your activity when the
user backs out of it. You might reasonably ask, “If I start an AsyncTask from within an activ-
ity and then that activity is destroyed, what happens?” You guessed it: very bad things. Try-
ing to draw to an activity that’s already been removed from the screen can cause all manner
of havoc (usually in the form of unhandled exceptions).

It’s a good idea to keep track of any AsyncTasks you’ve started, and when the activity’s
onDestroy method is called, make sure to call cancel on any lingering AsyncTask.

There are two cases in which the AsyncTask is perfect for the job:

 J Downloading small amounts of data specific to one particular activity

 J Loading files from an external storage drive (usually an SD card)

Make sure that the data you’re moving with the AsyncTask pertains to only one activity,
because your task generally shouldn’t span more than one. You can pass it between activities
if the screen has been rotated, but this can be tricky.

There are a few cases when it’s not a good idea to use an AsyncTask:

 J Any acquired data that may pertain to more than one activity shouldn’t be acquired
through an AsyncTask. Both an image that might be shown on more than one screen and
a list of messages in a Twitter application, for example, would have relevance outside a
single activity.

 J Data to be posted to a web service is also a bad idea to put on an AsyncTask for the fol-
lowing reason: Users will want to fire off a post (posting a photo, blog, tweet, or other
data) and do something else, rather than waiting for a progress bar to clear. By using an
AsyncTask, you’re forcing them to wait around for the posting activity to finish.

 J Last, be aware that there is some overhead for the system in setting up the AsyncTask.
This is fine if you use a few of them, but it may start to slow down your main thread if
you’re firing off hundreds of them.

You might be curious as to exactly what you should use in these cases. I’m glad you are,
because that’s exactly what I’d like to show you next.

the AsynctAsk 93

The inTenTservice
The IntentService is an excellent way to move large amounts of data around without
relying on any specific activity or even application. The AsyncTask will always take over the
main thread at least twice (with its pre- and post-execute methods), and it must be owned by
an activity that is able to draw to the screen. The IntentService has no such restriction. To
demonstrate, I’ll show you how to download the same image, this time from the Intent
Service rather than the AsyncTask.

DecLariNg a service
Services are, essentially, classes that run in the background with no access to the screen.
In order for the system to find your service when required, you’ll need to declare it in your
manifest, like so:

<?xml version=”1.0” encoding=”utf-8”?>

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 package=”com.peachpit.Example”

 android:versionCode=”1”

 android:versionName=”1.0”>

 <application

 android:name=”MyApplication”

 android:icon=”@drawable/icon”

 android:label=”@string/app_name”>

 <!—Rest of the application declarations go here -->

 <service android:name=”.ImageIntentService”/>

 </application>

</manifest>

At a minimum, you’ll need to have this simple declaration. It will then allow you to
(as I showed you earlier with activities) explicitly launch your service. Here’s the code
to do exactly that:

Intent i = new Intent(this, ImageIntentService.class);

i.putExtra(“url”, getIntent().getExtras().getString(“url”));

startService(i);

At this point, the system will construct a new instance of your service, call its onCreate
method, and then start firing data at the IntentService’s handleIntent method. The intent
service is specifically constructed to handle large amounts of work and processing off the
main thread. The service’s onCreate method will be called on the main thread, but subse-
quent calls to handleIntent are guaranteed by Android to be on a background thread (and
this is where you should put your long-running code in any case).

94 Chapter 4 Acquiring DAtA

Right, enough gabbing. Let me introduce you to the ImageIntentService. The first thing
you’ll need to pay attention to is the constructor:

public class ImageIntentService extends IntentService{

 public ImageIntentService() {

 super(“ImageIntentService”);

}

Notice that the constructor you must declare has no string as a parameter. The parent’s
constructor that you must call, however, must be passed a string. Your IDE will let you know
that you must declare a constructor with a string, when in reality, you must declare it with-
out one. This simple mistake can cause you several hours of intense face-to-desk debugging.

Once your service exists, and before anything else runs, the system will call your
onCreate method. onCreate is an excellent time to run any housekeeping chores you’ll need
for the rest of the service’s tasks (more on this when I show you the image downloader).

At last, the service can get down to doing some heavy lifting. Once it has been con-
structed and has had its onCreate method called, it will then receive a call to handleIntent
for each time any other activity has called startService.

FeTchiNg iMages
The main difference between fetching images and fetching smaller, manageable data is that
larger data sets (such as images or larger data retrievals) should not be bundled into a final
broadcast intent (another major difference to the AsyncTask). Also, keep in mind that the
service has no direct access to any activity, so it cannot ever access the screen on its own.
Instead of modifying the screen, the IntentService will send a broadcast intent alerting all
listeners that the image download is complete. Further, since the service cannot pass the
actual image data along with that intent, you’ll need to save the image to the SD card and
include the path to that file in the final completion broadcast.

the Setup
Before you can use the external storage to cache the data, you’ll need to create a cache folder
for your application. A good place to check is when the IntentService’s onCreate method
is called:

public void onCreate(){

 super.onCreate();

 String tmpLocation = Environment.getExternalStorageDirectory().getPath() +
 p CACHE_FOLDER;

 cacheDir = new File(tmpLocation);

 if(!cacheDir.exists()){

 cacheDir.mkdirs();

 }

}

the intentservice 95

a noTe on fiLe sysTems

relying on a file-system cache has an interesting twist with android. On most phones,
the internal storage space (used to install applications) is incredibly limited. You should
not, under any circumstances, store large amounts of data anywhere on the local file
system. always save it to a location returned from getExternalStorageDirectory.

When you’re saving files to the SD card, you must also be aware that nearly all pre-2.3
android devices can have their SD cards removed (or mounted as a USB drive on the
user’s laptop). this means you’ll need to gracefully handle the case where the SD card is
missing. You’ll also need to be able to forgo the file-system cache on the fly if you want
your application to work correctly when the external drive is missing. there are a lot of
details to be conscious of while implementing a persistent storage cache, but the benefits
(offline access, faster start-up times, fewer app-halting loading dialogs) make it more
than worth your effort.

Using Android’s environment, you can determine the correct prefix for the external file
system. Once you know the path to the eventual cache folder, you can then make sure the
directory is in place. Yes, I know I told you to avoid file-system contact while on the main
thread (and onCreate is called on the main thread), but checking and creating a directory is a
small enough task that it should be all right. I’ll leave this as an open question for you as you
read through the rest of this chapter: Where might be a better place to put this code?

the fetCh
Now that you’ve got a place to save images as you download them, it’s time to implement the
image fetcher. Here’s the onHandleIntent method:

protected void onHandleIntent(Intent intent) {

 String remoteUrl = intent.getExtras().getString("url");

 String location;

 String filename = remoteUrl.substring(

 remoteUrl.lastIndexOf(File.separator) + 1);

 File tmp = new File(

 cacheDir.getPath() + File.separator + filename);

 if (tmp.exists()) {

 location = tmp.getAbsolutePath();

 notifyFinished(location, remoteUrl);

 stopSelf();

 return;

 }

 try {

96 Chapter 4 Acquiring DAtA

 URL url = new URL(remoteUrl);

 HttpURLConnection httpCon = (HttpURLConnection) url.openConnection();

 if (httpCon.getResponseCode() != 200) {

 throw new Exception("Failed to connect");

 }

 InputStream is = httpCon.getInputStream();

 FileOutputStream fos = new FileOutputStream(tmp);

 writeStream(is, fos);

 fos.flush();

 fos.close();

 is.close();

 location = tmp.getAbsolutePath();

 notifyFinished(location, remoteUrl);

 } catch (Exception e) {

 Log.e("Service", "Failed!", e);

 }

}

This is a lot of code. Fortunately, most of it is stuff you’ve seen before.
First, you retrieve the URL to be downloaded from the Extras bundle on the intent. Next,

you determine a cache file name by taking the last part of the URL. Once you know what the
file will eventually be called, you can check to see if it’s already in the cache. If it is, you’re
finished, and you can notify the system that the image is available to load into the UI.

If the file isn’t cached, you’ll need to download it. By now you’ve seen the HttpUrl
Connection code used to download an image at least once, so I won’t bore you by covering it.
Also, if you’ve written any Java code before, you probably know how to write an input stream
to disk.

the Cleanup
At this point, you’ve created the cache file, retrieved it from the web, and written it to the
aforementioned cache file. It’s time to notify anyone who might be listening that the image
is available. Here’s the contents of the notifyFinished method that will tell the system both
that the image is finished and where to get it.

public static final String TRANSACTION_DONE =

 “com.peachpit.TRANSACTION_DONE”;

private void notifyFinished(String location, String remoteUrl){

 Intent i = new Intent(TRANSACTION_DONE);

 i.putExtra(“location”, location);

 i.putExtra(“url”, remoteUrl);

 ImageIntentService.this.sendBroadcast(i);

}

the intentservice 97

Anyone listening for the broadcast intent com.peachpit.TRANSACTION_DONE will be noti-
fied that an image download has finished. They will be able to pull both the URL (so they can
tell if it was an image it actually requested) and the location of the cached file.

renderIng the download
In order to interact with the downloading service, there are two steps you’ll need to take.
You’ll need to start the service (with the URL you want it to fetch). Before it starts, however,
you’ll need to register a listener for the result broadcast. You can see these two steps in the
following code:

public void onCreate(Bundle extras){

 super.onCreate(extras);

 setContentView(R.layout.image_layout);

 IntentFilter intentFilter = new IntentFilter();

 intentFilter.addAction(ImageIntentService.TRANSACTION_DONE);

 registerReceiver(imageReceiver, intentFilter);

 Intent i = new Intent(this, ImageIntentService.class);

 i.putExtra(“url”, getIntent().getExtras().getString(“url”));

 startService(i);

 pd = ProgressDialog.show(this,

 “Fetching Image”,

 “Go intent service go!”);

}

This code registered a receiver (so you can take action once the download is finished),
started the service, and, finally, showed a loading dialog box to the user.

Now take a look at what the imageReceiver class looks like:

private BroadcastReceiver imageReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String location = intent.getExtras().getString(“location”);

 if(TextUtils.isEmpty(location){

 String failedString = “Failed to download image”;

 Toast.makeText(context, failedString , Toast.LENGTH_LONG).show();

 }

 File imageFile = new File(location);

 if(!imageFile.exists()){

 pd.dismiss();

98 Chapter 4 Acquiring DAtA

 String downloadFail = “Unable to Download file :-(“;

 Toast.makeText(context, downloadFail, Toast.LENGTH_LONG);

 return;

 }

 Bitmap b = BitmapFactory.decodeFile(location);

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(b);

 pd.dismiss();

 }

};

This is a custom extension of the BroadcastReceiver class. This is what you’ll need to
declare inside your activity to correctly process events from the IntentService. Right now,
there are two problems with this code. See if you can recognize them.

First, you’ll need to extract the file location from the intent. You do this by looking for the
“location” extra. Once you’ve verified that this is indeed a valid file, you’ll pass it over to the
BitmapFactory, which will create the image for you. This bitmap can then be passed off to
the ImageView for rendering.

Now, to the things done wrong (stop reading if you haven’t found them yet—no cheat-
ing!). First, the code is not checking to see if the intent service is broadcasting a completion
intent for exactly the image originally asked for (keep in mind that one service can service
requests from any number of activities).

Second, the bitmap is loading from the SD card… on the main thread! Exactly one of the
things I’ve been warning you NOT to do.

checkiNg Your Work
Android, in later versions of the SDK tools, has provided a way to check if your application
is breaking the rules and running slow tasks on the main thread. The easiest way to accom-
plish this is by enabling the setting in your developer options (Figure 4.2). If you want more
fine-grained control of when it’s enabled (or you’re on a Gingerbread phone), you can, in any
activity, call StrictMode.enableDefaults(). This will begin to throw warnings when the
system spots main thread violations. StrictMode has many different configurations and set-
tings, but enabling the defaults and cleaning up as many errors as you can will work wonders
for the speed of your application.

Figure 4.2 Developer option for enabling
strict mode

the intentservice 99

The LoaDer

Loader is a new class that comes both in honeycomb and in the android Compatibility
library. Sadly, there is not enough space in this chapter to cover it in detail, but I will say
that it’s an excellent tool to explore if you must do heavy lifting off the main thread
repeatedly. It, like AsyncTask, is usually bound to an activity, but it is much better suited to
handle situations where a single task must be performed many times. the CursorLoader
subclass is great for loading cursors from your application’s ContentProvider, and for
tasks like downloading individual list items for a ListView, there is an AsyncTaskLoader.
Check the documentation for how best to use this new and powerful class.

WrappinG Up
That about covers how to load data. Remember, loading from the SD card, network transac-
tions, and longer processing tasks MUST be performed off the main thread, or your applica-
tion, and users, will suffer. You can, as I’ve shown you in this chapter, use a simple thread, an
AsyncTask, or an IntentService to retrieve and process your data. But remember, too, that
any action modifying any view or object onscreen must be carried out on the main thread
(or Android will throw angry exceptions at you).

Further, keep in mind that these three methods are only a few of many possible back-
ground data fetching patterns. Loaders, Workers, and ThreadPools are all other alternatives
that might suit your application better than the examples I’ve given.

Follow the simple rules I’ve outlined here, and your app will be fast, it will be responsive
to your users, it shouldn’t crash (ha!), and it will avoid the dreaded App Not Responding
notification of doom. Correct use and avoidance of the main thread is critical to producing
a successful application.

If you’re interested in building lists out of complex data from remote sources, the next
chapter should give you exactly what you’re looking for. I’ll be showing you how to render
a list of Twitter messages to a menu onscreen.

I’ll leave you with a final challenge: Enable Android’s strict mode and move the little file
accesses I’ve left in this chapter’s sample code off the main thread. It should be a good way to
familiarize yourself with the process before you undertake it on your own.

100 Chapter 4 Acquiring DAtA

This page intentionally left blank

Index

Numbers
0 arguments

PendingIntent, 130

requestCode, 130

using with communication, 130

symbol
: (colon), using with binder services, 134

A
AbsoluteLayout, 68–70

action bar

action views, 204

adding elements to, 204–208

AppCompat library, 200–203

documentation, 208

explained, 200

menu items, 204–205

showing, 204

tabs, 204, 207–208

view pager, 212–213

action views, using, 207

ActionBar.TabListener, implementing, 207

ActionBarToggleDrawer, setting as listener, 221

ActionBarToggleDrawer arguments

Activity, 220

CloseDrawerContentDescription, 220

DrawerImageResource, 220

DrawerLayout, 220

OpenDrawerContentDescription, 220

activities

basics, 26

creating screen layout, 28–29

data retention methods, 35–36

vs. fragments, 192

handling collisions, 42–43

implementing, 26–31

launching, 29–31

lifecycles, 32–33

methods, 32

NewActivity class, 27

onCreate method, 32–33

onDestroy method, 32, 35

onPause method, 32, 34

onResume method, 32

onStart method, 32

onStop method, 32, 34

public void onCreate(), 33–34

public void onResume(), 34

public void onStart(), 34

pushing button, 29–30

registering for events, 39

running, 34

saving primitives, 36

trying out, 31

Activity class

controlling single screens, 25

extending, 25–26

getting back to main thread, 88

activity declaration, adding, 26

Adapter class

customizing, 114–116

explained, 104

getCount(), 114

getItem(), 114

getItemId(), 114

getView(), 114, 117

interaction with ListView, 119–121

ADB (Android Debug Bridge), restarting, 21

ADT Bundle. See Eclipse (ADT Bundle)

AIDL (Android Interface Definition Language),
133–134

Android Debug Bridge (ADB), restarting, 21

246 Index

Android projects

creating, 14–16

R.java file, 63

running, 18–20

types, 14

view pager, 212

Android SDK

accessing, 121

updating, 7–8

Android Studio

AppCompat library, 200–203

creating key in, 231

creating projects, 14

exporting release build, 229

features, 4

installing, 6

keystore file, 230

maps, 182–183

running projects in, 19–20

updating Android SDK, 7

virtual device emulator, 9

Android versions

downloading, 8

handling older code, 151

SharedPreferences, 151

AndroidManifest.xml file, 238

android:name, 45

ANR (App Not Responding) crash, 85–86

API key, using with maps, 185–187

API levels, watching, 153

APK, producing final version of, 228–231

AppCompat library, setting up, 200–203

AppCompat project

adding as library project, 202

enabling, 202–203

importing, 201

Application class

customizing, 46

default declaration, 45

applications

accessing, 46–47

checking, 99

customizing, 45–46

updating frequently, 232–233

ArrayAdapter

creating, 108

populating, 108

AsyncTask abstract class

best practices, 93

doInBackground method, 89, 91

example, 89–90

generic type arguments, 91

ImageDownloader, 90

onPostExecute method, 89, 92–93

onPreExecute method, 89, 91

progress updates, 92

starting, 93

audio. See also sounds

calling play, 172–173

onCompletionListener, 173–174

playing in music service, 169–174

setDataSource, 169–174

auto image uploading, 126

AVD (Android Virtual Device) Manager, 9–12

b
background color

changing for list view, 117

gray, 79–80

backing up keystore file, 231

binary format, packed, 63

binder interfaces, using with services, 125

binder services. See also communication

: (colon), 134

AIDL (Android Interface Definition
Language), 133–134

binder and AIDL stub, 135–136

binding, 136–137

communicating with, 136–137

creating services, 134–135

IMusicService, 135

marshaling process, 134

requirements, 133

Index 247

BroadcastReceiver

class, 99

instance, 39–43

build files, adding signing keys to, 244–245

build types, using with Gradle files, 239–241

build variants, using with Gradle, 243–244

BuildConfig, adding values to, 241

builds, submitting, 232

buildscript, using with Gradle files, 237

Build.VERSION_CODE.GINGERBREAD, 152

Build.VERSION.SDK_INT, 152–153

buttons

layout folders example, 142–143

pushing, 29–30

sizes in LinearLayout, 74–75

C
cache folder, using with IntentService,

95–96

CameraUpdates, using with maps, 187–188

checking applications, 99

click events, reacting to, 108–109

click listener, registering, 57

code, handling in older versions, 151

colon (:), using with binder services, 134

command line

directories for installation, 5–6

using in Eclipse, 17

communication. See also binder services;
intent-based communication; services

binder interfaces, 125

intent broadcasts, 125

intent-based, 126–133

console statistics, seeing, 232–233

ContentProvider, using in communication,
128–129

crash reports, watching and fixing, 232

cursor loader, using for music playback, 166

custom views. See also views

class declaration, 59

extending, 59

customizing applications, 45–46

D
data. See also loading data

creating for main menu, 104–105

moving, 43–45

data retention methods

onRetainNonConfigurationInstance,
35–36

onSaveInstanceState, 35

debugging. See also troubleshooting

layout issues, 149

preventing, 226

DemoListFragment, 196

development environments

Android Studio, 4

Eclipse (ADT Bundle), 4

devices. See also working devices

unknown sources, 13

USB debugging, 13

working with, 12–13

dialogs, loading, 92

dip or dp (device-independent pixels), 53, 67

drawable folders, contents, 62–63, 65–66

DummyFragment, using with getPageTitle, 217

e
Eclipse (ADT Bundle)

AppCompat library, 201

creating key in, 231

creating projects, 14

creating projects from command line, 17

exporting release build, 229

features, 4

installing, 5

keystore file, 230

maps, 182–183

running projects in, 18–19

updating Android SDK, 7

virtual device emulator, 9

emulator. See virtual device emulator

exceptions, handling, 113

248 Index

exporting

release build in Android Studio, 229

release build in Eclipse, 229

signed build, 228–231

F
file storage, 95–96

files

AndroidManifest.xml, 24

manifest, 24

saving to SD cards, 96

FragmentActivity class

finding, 196

using with maps, 184

FragmentManager, using, 198

FragmentPagerAdapter

explained, 212

getCount method, 215

getItem method, 215–216

Locale.getDefault() function, 217

overriding getPageTitle, 216–217

fragments

vs. activities, 192

backward compatibility, 198–200

checking for, 197

compatibility library, 199–200

ContentFragment class, 194

creating, 193–194

DemoListFragment, 196

explained, 192

Gradle file, 198

lifecycles, 192–193

onCreate, 192

onCreateView, 192

onDestroy, 193

onDestroyView, 193

onDetach, 193

onPause, 192

onResume, 192

onStart, 192

onStop, 192

showing, 194–198

single text view, 195

startup lifecycle, 192

swapping for navigation drawer, 222

FragmentStatePagerAdapter, 212

G
getCount method

using with Adapter class, 114

using with FragmentPagerAdapter, 215

getExternalStorageDirectory, 96

getItem() method

FragmentPagerAdapter, 215–216

using with Adapter class, 114

getItemId(), using with Adapter class, 114

getLastKnownLocation, 180

getPageTitle function

DummyFragment, 217

overriding, 216–217

getView(), using with Adapter class, 114, 117

Google MapFragment. See MapFragment
component

Google Maps API key

signing up for, 185–186

using, 185–186

Google Play console statistics, 233

Gradle build file, using with maps, 182–183

Gradle files

Android versions, 238

AndroidManifest.xml file, 238

AppCompat library, 200

backward compatibility, 198

build types, 239–241

build variants, 243–244

buildscript, 237

buildToolsVersion, 238

compileSdkVersion, 238

compiling JAR files, 239

example, 236

minSdkVersion, 238

plugin: ‘android,’ 237

Index 249

Gradle files (continued)

product flavors, 242–243

repositories, 237

signing and building, 244–245

targetSdkVersion, 238

values for BuildConfig, 241

Gradle Plugin User Guide, accessing, 245

Gradle Wrapper (gradlew), using, 245

gray background, adding, 79–80

H
handling exceptions, 113

height and width, determining for views, 51, 53

I
@id/., referencing for layouts, 77

IDE XML editor, using, 28

IDEs (integrated development environments)

Android Studio, 4

Eclipse (ADT Bundle), 4

image fetcher, implementing, 96–97

ImageReceiver class, 98–99

images

downloading and displaying, 84–85

fetching with IntentService, 95–99

importing AppCompat project, 201

IMusicService, extending, 135

<include> tag, using with layout folders,
144–147

installation statistics, seeing, 232–233

installing

Android Studio, 6

Eclipse (ADT Bundle), 5

intent broadcasts, using with services, 125

intent-based communication. See also
communication

0 arguments, 130

auto image uploading, 126

ContentProvider, 128–129

declaring services, 126

extending services, 127

going to foreground, 129–131

notification, 130–131

overview, 126

PendingIntent, 130

registering content observer, 129

starting services, 127–128

IntentFilter instance, 39–43

intents

adding, 38–39

Airplane mode, 41–42

BroadcastReceiver instance, 39–43

creating receivers, 40

explained, 37

getting, 32

IntentFilter instance, 39–43

listening at runtime, 39–43

listening for, 167–169

manifest registration, 37–38

receiving, 37

reviewing, 44

stopping listening, 41

IntentService

BroadcastReceiver class, 99

cache folder for images, 95–96

cleanup, 97–98

declaring services, 94–95

fetching images, 95–99

ImageReceiver class, 98–99

notifyFinished method, 97–98

rendering download, 98

J
JAR files, compiling, 239

Java

in Java, 51–52

MATCH_PARENT definition, 53

text view, 52

views in, 51–52

WRAP_CONTENT definition, 53

Java vs. XML layouts, 55

250 Index

K
key

creating in Android Studio, 231

creating in Eclipse, 231

keystore file

backing up, 231

creating in Android Studio, 230

creating in Eclipse, 230

using with signing key, 245

l
landscape folder, using, 144

landscape layout, 72

layout folders

adding suffixes to, 148

contents, 62, 64–65

creating new layouts, 148–149

<include> tag, 144–147

landscape folder, 144

<merge> tag, 147

MVC (Model-View-Controller), 65

screen with buttons, 142–143

using, 144

layout issues, debugging, 149

layout management. See also picture viewer

AbsoluteLayout, 68–70

landscape mode, 72, 75

LinearLayout, 70–75, 107

for ListActivity, 106

RelativeLayout, 76–80

ViewGroup class, 66–67

LinearLayout

button size, 74

defining views in, 70–75

match_parent definition, 73

pixels, 74

specifying dimension, 107

using, 73–75

width setting, 73

Linux

installing Android Studio, 6

installing Eclipse (ADT Bundle), 5

list items, types of, 120–121

list view

building, 116–119

changing background color, 117

custom adapter, 114–116

exceptions, 113

ListActivity, 111–112

main layout view, 110–111

Reddit data, 112–114

RedditAsyncTask, 112–114

subreddits, 112–114

TextViews, 117–118

ListActivity. See also menu list item

behavior, 109

creating, 105, 111–112

declaring layout for, 106

ListView class

explained, 104

interaction with Adapter, 119–121

Loader class, 100, 168–169

loading data. See also data

AsyncTask abstract class, 89–93

IntentService, 94–100

main thread, 84–88

locations. See also maps

getLastKnownLocation, 180

getting for devices, 178

onLocationChanged method, 180

permissions, 178

receiving updates, 179–180

requestLocationUpdates method, 179–180

service suppliers, 178–179

logging, disabling prior to shipping, 230

Index 251

m
main menu

ArrayAdapter, 108

creating data, 104–105

example, 109

ListActivity, 105–106, 109

reacting to click events, 108–109

main thread

ANR (App Not Responding) crash, 85–86

AsyncTask abstract task, 89–93

best practices, 86

considering for services, 125

getting back to, 88

getting off, 87–88

IntentService, 94–99

Loader class, 100

managing, 84–85

verifying, 86

manifest files

AndroidManifest.xml, 24

android:name, 45

for maps, 183

manifest registration, 37–38

map view

CameraUpdates, 187–188

MarkerOptions, 187–188

running, 187–188

MapFragment component

adding to manifest, 183

creating, 184–185

described, 181

getting, 181–183

modifying, 184

maps. See also locations

adding to manifest, 183

adjusting activity, 184

API key, 185

FragmentActivity, 184

SDK manager options, 181

MarkerOptions, using with maps, 187–188

marshaling process, explained, 134

match_parent definition, 67

media. See also movies

loading data, 160–161

OnDestroy method, 161

onErrorListener, 161

playing, 160–161

media players, cleanup, 174

MediaPlayer states

Idle, 162

Initialized, 162

Playing, 162

Prepared, 162

MediaScanner, using, 159

menu. See main menu

menu items

adding to action bar, 205–206

reacting to clicks, 206–208

menu list item, creating, 107. See also
ListActivity

<merge> tag, using with layout folders, 147

messages, sending toasts, 41

movie playback process, 156

movies. See also media

adding VideoView, 156

getting media to play, 157–159

passing URIs to video view, 159

setting up VideoView, 157

moving data, 43–45

music

binding to music service, 165

cursor loader, 166

finding recent tracks, 165–167

Idle state, 162

Initialized state, 162

Loader class, 168–169

longer-running, 164

MediaPlayer and state, 162

playing sound effects, 163

playing sounds, 162–163

Playing state, 162

Prepared state, 162

252 Index

music playback

listening for intents, 167–169

process, 164

music service, playing audio in, 169–174

music software

audio focus, 174

headphone controls, 174

interruptions, 174–175

missing SD cards, 175

phone calls, 174

MVC (Model-View-Controller), 65

N
navigation, view pager, 212

navigation drawer

ActionBarDrawerToggle, 220

ActionBarToggleDrawer, 220

demo, 218

explained, 217

onCreate, 218–221

onItemClickListener, 219

setContentView, 219

setDisplayHomeAsUpEnabled, 219–220

standard icon, 218

swapping fragments, 222

visible shadow, 219

XML, 221

NewActivity class, creating, 27

Next button, 78–79

notification, using in communication, 130–131

notifyFinished method, 97–98

o
onBlind, using with services, 124

onClickListener, setting, 56–58

onCompletionListener, calling for audio,
173–174

onCreate method

calling order, 32–33

navigation drawer, 218–221

using with fragments, 192

using with services, 124

view pager, 213–214

onCreateView, using with fragments, 192

onDestroy method

calling, 32, 35

using with fragments, 193

using with media, 161

using with services, 125

onDestroyView, using with fragments, 193

onDetach, using with fragments, 193

onErrorListener, using with media, 161

onItemClickListener, using with navigation
drawer, 219

onLocationChanged method, 180

onPause method

calling order, 32, 34

using with fragments, 192

onResume method

calling order, 32

using with fragments, 192

onRetainNonConfigurationInstance
method, 35–36

onSaveInstanceState method, 35

onStart method

invoking, 32

using with fragments, 192

onStartCommand, using with services, 124

onStop method

calling order, 32, 34

using with fragments, 192

OS X

installing Android Studio, 6

installing Eclipse (ADT Bundle), 5

P
packages, naming, 226–227

packaging and signing, 228–231

packed binary format, 63

padding declaration, 78

page change listener, creating, 214

PendingIntent, flags associated with, 130

Index 253

physical devices, working with, 12–13

picture viewer, 67. See also layout
management

play, calling for audio, 172–173

playing

media, 160–161

sound effects, 163

sounds, 162–163

plugin: ‘android,’ using with Gradle, 237

Prev button, declaring, 78

primitives, saving, 36

product flavors, using with Gradle files,
242–243

project type, selecting, 14

projects

creating, 14–16

R.java file, 63

running, 18–20

view pager, 212

public void

onCreate(), 33–34

onResume(), 34

onStart(), 34

px (pixels), 53, 67

r
Reddit data, getting, 112–114

RelativeLayout

gray background, 79–80

nesting in, 80

Next button, 78–79

padding declaration, 78

Prev button, 78

referencing @id/., 77

release build, exporting, 229

repositories, using with Gradle, 237

requestLocationUpdates method, 179–180

res folder

contents, 62–63

drawable folders, 62–63, 65–66

layout folders, 62, 64–65, 142–147

naming conventions, 63

values folder, 62, 64

resource management, 62–63

resources, finding, 54

R.java file, 63

s
saving

files to SD cards, 96

primitives, 36

screen layout, creating, 28–29

screen sizes, handling, 65–66

screen with buttons, 142–143

screens, controlling, 25

SD cards, saving files to, 96

SDK Manager, opening, 7

SDK methods, version checking, 152

SDK value, setting minimum, 228

SDK version number, 150

services. See also communication

creating, 134–135

declaring, 94–95

explained, 124

keeping running, 125

lifecycles, 124

main thread, 125

onBlind, 124

onCreate, 124

onDestroy method, 125

onStartCommand, 124

startForeground method, 125

setContentView, using with navigation
drawer, 219

setDataSource, using with audio, 169–174

setDisplayHomeAsUpEnabled, using with
navigation drawer, 219–220

SharedPreferences, commit method, 151

signed build, exporting, 228–231

signing key, adding to build files, 244–245

sound effects, playing, 163

sounds, playing, 162–163. See also audio

254 Index

sp (scaled pixel), 53

startForeground method, using with
services, 125

storing files, 95–96

StrictMode.enableDefaults(), 99

T
tablets

building layouts for, 198

rendering on, 198

text editor, using, 28

text view, customizing, 59

thread. See main thread

toast, explained, 41

tracks, finding for music, 165–167

troubleshooting emulator, 21. See also
debugging

u
UI (user interface)

altering at runtime, 53–55

finding resources, 54

identifying views, 53–54

keeping views, 54–55

XML vs. Java layouts, 55

unknown sources, allowing, 13

updating

Android SDK, 7–8

applications frequently, 232–233

URIs, passing to video view, 159

USB debugging, enabling, 13

<uses> tag, using with working devices, 150

V
values folder

arrays, 64

colors, 64

contents, 62

dimensions, 64

strings, 64

styles, 64

version checking, 152

version codes

Build.VERSION_CODE.GINGERBREAD, 152

Build.VERSION.SDK_INT, 152–153

versioning, 227

video view, passing URIs to, 159

VideoView

adding for movies, 156

setting up for movies, 157

View class, explained, 50

view pager

action bar, 212–213

ActionBar navigation mode, 214

creating project, 212

explained, 212

FragmentPagerAdapter, 212, 215–216

FragmentStatePagerAdapter, 212

onCreate, 213–214

page change listener, 214

SectionPagerAdapter class, 214

XML, 215

ViewGroup class

extending, 66

picture viewer, 67

views. See also custom views

anonymous inner class objects, 58

centering between objects, 79

changing visibility, 55–58

customizing extended, 59–60

defining in LinearLayout, 70–75

dip or dp (device-independent pixels), 53

height and width, 51, 53

identifying, 53–54

keeping, 54–55

match_parent definition, 53

MATCH_PARENT definition, 53

onClickListener, 56–58

px (pixels), 53

retrieving, 54

sp (scaled pixel), 53

using extended, 60

Index 255

views (continued)

wrap_content definition, 53

WRAP_CONTENT definition, 53

in XML, 50–51

virtual device emulator

Snapshot option, 12

troubleshooting, 21

Use Host GPU option, 12

using, 9–12

visibility, changing for views, 55–58

W
width and height, determining for views, 51, 53

Windows

installing Android Studio, 6

installing Eclipse (ADT Bundle), 5

working devices. See also devices

limiting access to, 149–151

SDK version number, 150

<uses> tag, 150

X
XML

AbsoluteLayout, 68–70

custom views, 61–62

editing, 28

vs. Java layouts, 55

match_parent definition, 53

navigation drawer, 221

showing fragments, 194–197

view pager, 215

views in, 50–51

wrap_content definition, 53

XML files

packed binary format, 63

referencing resources, 63

XML terms

dip or dp (device-independent pixels), 67

match_parent definition, 67

px (pixels), 67

256 Index

This page intentionally left blank

Unlimited online access to all Peachpit, Adobe
Press, Apple Training, and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC, and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

Sign up today
peachpit.com/creativeedge

	Contents
	Introduction
	Welcome to Android
	CHAPTER 4 ACQUIRING DATA
	The Main Thread
	You There, Fetch Me That Data!
	Watchdogs
	What Not to Do
	When Am I on the Main Thread?
	Getting Off the Main Thread
	Getting Back to Main Land
	There Must Be a Better Way!
	The AsyncTask
	How to Make It Work for You
	A Few Important Caveats
	The IntentService
	Declaring a Service
	Fetching Images
	Checking Your Work
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

