
Beginning Games Programming
with Pygame Zero

Introduction
This is a worksheet for a hands-on guide to creating a first game with Pygame Zero. You will create
a simple graphical game. In this game the player will control a character that can be moved around
the screen to find food. The food must be collected before time runs out.

Installing Pygame Zero
Pygame Zero comes pre-installed on the Raspberry Pi, but needs to be installed on most other
systems. The simplest way to install Pygame Zero other systems is to install the Mu editor which
comes as a bundle with Pygame Zero installed. I also recommend the Mu editor on the Raspberry Pi
(which needs to be installed) as it's the easiest way to get started.

If using a Raspberry Pi then you can install Mu using

sudo apt install mu

for other operating systems it can be downloaded from https://codewith.mu/ (or see the instructions
for just installing Pygame Zero from
https://pygame-zero.readthedocs.io/en/latest/installation.html).

https://codewith.mu/
https://pygame-zero.readthedocs.io/en/latest/installation.html

You can then run Mu from the programming category in the application menu, or by typing
mu-editor from the command line.

If you can't or don't want to use Mu you can use any other editor on your system (eg. Leafpad or
Notepad), but you will then need to run the program from the command-line using pgzrun.

Getting Started with Mu
When you first start Mu then it will ask what mode you wish to run in. Unsurprisingly you should
select Pygame Zero. If you need to change the mode in future you can change t the mode using the
“Mode” button menu (top left).

To get started and test that everything is setup correctly create a first program file with the
following two lines:

WIDTH = 800
HEIGHT = 600

Save it as findfood.py

To test from Mu click on the Play button. You will need to save the file which by default is stored in
the mu_code directory.

If you want to run the program from outside of Mu then change to the appropriate directory and
enter

pgzrun findfood.py

When run you the program should create a new windows with a black background.

You can close the program by clicking on the x in the top right, or by pressing Stop from the Mu
menubar.

You've now created your first Pygame Zero file.

Adding a Background Image
You are now going to need some image files to include in the game. I have collected some images
that are suitable for the game, but feel free to choose something different or create your own if you
prefer.

You can get the required files from:
http://www.penguintutor.com /downloads/findfood-gamefiles.tgz

unzip them to your home directory using:

cd ~
tar -xvzf findfood-gamefiles.tgz

All the code files should be stored in the mu_code directory and in the case of the images into a sub
directory images.

This can be achieved through the file explorer or the following from the command line

cp ~/finding-food/images/* ~/mu_code/images/

http://www.penguintutor.com/downloads/findfood-gamefiles.tgz
http://www.penguintutor.com/downloads/findfood-gamefiles.tgz

Before starting the sprites you can replace the black background with a background image. This can
be achieved by adding the following line into your code (after the current WIDTH and HEIGHT
entries.

BACKGROUND_IMG = “grass-field”

def draw():
 screen.blit(BACKGROUND_IMG, (0,0))

Click on the Play button and you should now see the same screen from before, but it will now have
a green background.

This works by definding BACKGROUND_IMG which is a variable that holds the name of the
image. The image is entered as the filename without any path information or the .png suffix. On
recent versions of Pygame Zero then you can use the full filename if you prefer, but to maintain
compatibility with older versions of Pygame Zero the files must be in the images folder and not
include the suffix. This is the same for any images.

The line
def draw():

is defining the draw function. This is a Python function that Pygame Zero calls approximately 60
times per second. It should be used to tell Pygame Zero what should be displayed on the screen.

In this case the function calls screen.blit which displays a bitmap image at the appropriate position
(in this case 0,0 starting at the top left of the screen).

Creating a Sprite
A sprite is an image used in a computer game that is often created from a bitmap image. In this case
there will be two sprites, one for the player (an animal character) and the other for the food (bag of
animal food).

You will need several images for the sprites for the player character, so that you can show it facing
different directions and to make it appear to move. The minimum needed would ba an image with
the character facing each of the following directions: front, right, left and rear. To make the
movement a little more realistic additional images can be used with the legs moving between the
images. If you are artistic then you can create your own images, but in this case I have selected
some images under a creative-commons license. The example shown is a Unicorn, but it could be
replaced with any appropriate animal, such as the horse images included in the download (or with a
different character completely such as a car or boat).

The unicorn / horse images are from https://opengameart.org/content/lpc-horses-rework based on an
earlier design from: https://opengameart.org/node/69398. The images are provided as a sprite sheet
which contains all the sprites in one file. In some games the images can be used directly from the
sprite sheet, but in Pygame Zero we need these as separate images. I have extracted each of the
images into individual files named based on their direction and numbered 1 to 3. I have also
duplicated the second image for each of these to give a total of 4 images per direction.
Later you will use a bag of food, which is something I edited based on original image from Open
Clipart https://openclipart.org/detail/2413/dog-food.
For more creative commons licensed images use the search engine at:
https://search.creativecommons.org/

To add the first image update the code as shown:

WIDTH = 800
HEIGHT = 600

BACKGROUND_IMG = "grass-field"

player = Actor ("unicorn-right-1")
player.pos = 150,100

def draw():
 screen.blit(BACKGROUND_IMG,(0,0))
 player.draw()

The code that is shown in grey is existing code and the new lines are in black / coloured text.

In Pygame Zero a sprite is known as an actor. You can think of it as an actor on a stage (which is
similar terminology that Scratch uses), although in Pygame Zero terminology it is an Actor on the
screen. The actor takes an image as it’s argument, following the same rules as mentioned previously
when adding the background image (no path information or suffix).

The player.pos value is an attribute of the Actor, which determines the position of the actor on the
screen. Setting this to a specific x and y position will position the actor on the screen. The first
value is the x co-ordinate increasing from left to right and the second is the y co-ordinate from top
to bottom.

The image below shows the co-ordinate system with the unicorn positioned at 150, 100.

https://search.creativecommons.org/
https://openclipart.org/detail/2413/dog-food
https://opengameart.org/node/69398
https://opengameart.org/content/lpc-horses-rework

Moving the Sprite
Next you can have the sprite move around the screen. To have it move across the screen you just
need to change the player.pos value which takes the x and y position. Or to change only one
direction at at time you can use player.x or player.y as appropriate.

We could do this in the draw function used previously, but there is a separate function called the
update function that is intended for these kind of updates.

First add a global variable called delay_timer. This should be placed before the start of the draw
function.

a counter to delay between changes
delay_timer = 0

Then add the following code at the end of the file after the draw function

def update():
 global delay_timer
 if (delay_timer == 10):
 delay_timer = 0
 if (player.x < 750):
 player.x += 20
 else:
 delay_timer += 1
 return

Like the draw function the update function is run approximately 60 times per second. That would be
too quick for the character so the function has a delay factor which means that it only updates the
position of the Actor every 10 time times the update function is run. This is achieved by only
changing the sprites position when the timer reaches 10. It then increases the x position until the x
position reaches 750.

Although the image now moves across the screen it does not look particularly realistic.

This is the reason that there are multiple images. If the image is changed to one showing the legs
moving each time the image is moved then the Actor moves then the player can appear to walk.
This is similar to early “moving images” created using a zoetrope.

The complete code with updated images is shown below

WIDTH = 800
HEIGHT = 600

BACKGROUND_IMG = "grass-field"
IMG_PREFIX = "unicorn"

player = Actor (IMG_PREFIX+"-right-1")
player.pos = 150,100

a counter to delay between changes
delay_timer = 0

which of the 4 images to display (value from 1 to 4)
image_number = 1

def draw():
 screen.blit(BACKGROUND_IMG,(0,0))
 player.draw()

def update():
 global delay_timer, image_number
 if (delay_timer == 10):
 delay_timer = 0
 if (player.x < 750):
 player.x += 20
 image_number += 1
 if (image_number > 4):
 image_number = 1
 image_name = "{}-{}-{}".format(IMG_PREFIX,"right",image_number)
 player.image = image_name
 else:
 delay_timer += 1
 return

The image definition has been changed from a basic string to a prefix, direction and number. This
will allow the image to be updated based on the direction and between the 4 different images for
that direction.

The initial image is created using the following line:

player = Actor (IMG_PREFIX+"-right-1")

This uses the simple '+' concatenation which joins sub-strings into a single string. The image prefix
variable is used which will allow you to change the selected image if you wanted to use a different
character. For example if you change the earlier definition of IMG_PREFIX to use “horse” then it
will change the unicorn to a horse.

The next time the image is changed it is done using the following line, which uses the Python string
formatter.

image_name = "{}-{}-{}".format(IMG_PREFIX,"right",image_number)

The string formatting uses special codes within a string to indicate where the values will be
inserted. Each of the curly braces ‘{}’ are replaced by the appropriate argument to the format
comment. The first pair of brackets is replaced with the value of IMG_PREFIX (“unicorn”), the
second by the string indicating the direction (“right”) the third by the value of image_number
showing the image to be displayed (1 to 4). Which will give the same string as used previously.

This string is then used to set the player.image value which will replace the current image. The
Actor is displayed using the draw function as before and but it is changed in the update function.

The draw() vs the update() function
It is worth restating the purpose of the two different functions.

Draw function – updates the screen, include draw of any actors.
def draw():

Update function – use to handle updates to the players and check the status of the keyboard.
def update():

These functions are both called 60 times per second.

Note that the timing of the movement is only approximate. Although the update function should run
60 times every second the actual timing will depend upon a number of factors including whether the
system has sufficient resources available to meet that requirement. For more details see:
https://pygame-zero.readthedocs.io/en/stable/hooks.html#update

Controlling the Movement
To detect key presses on the keyboard there is a keyboard built-in. For each key there is an attribute
which is normally False and then changes to True when that key is pressed.

The following code can be used to determine if one of the arrow keys are pressed.

if (keyboard.up):
 direction = "up"
if (keyboard.down):
 direction = "down"
if (keyboard.left) :
 direction = "left"
if (keyboard.right) :
 direction = "right"

After adding the code to move the direction, the update function should look like the following:

def update():
 global delay_timer, image_number
 # Only move whilst key is pressed
 if (delay_timer == 10):
 delay_timer = 0

 direction = "none"
 if (keyboard.up):
 if (player.y > 40):
 player.y -= 20
 direction = "rear"
 if (keyboard.down):
 if (player.y < 560):
 player.y += 20

https://pygame-zero.readthedocs.io/en/stable/hooks.html#update

 direction = "front"
 if (keyboard.left) :
 if (player.x > 40):
 player.x -= 20
 direction = "left"
 if (keyboard.right) :
 if (player.x < 760):
 player.x += 20
 direction = "right"

 if (direction != 'none'):
 image_number += 1
 if (image_number > 4):
 image_number = 1
 image_name = "{}-{}-{}".format(IMG_PREFIX,direction,image_number)
 player.image = image_name
 else:
 delay_timer += 1
 return

Adding the food sprite
There is another image in the images directory called food.png. This will be the food that has to be
collected.

It is created as a new Actor and it's location determined using a random x and y co-ordinate.

To create a random location it uses the random module which should first be imported and then uses
the randint method which returns a random integer between the values given. The edge of the
screen is avoided to prevent the food being partly on and partly off the screen.

import random

WIDTH = 800
HEIGHT = 600

BACKGROUND_IMG = "grass-field"
IMG_PREFIX = "unicorn"

player = Actor (IMG_PREFIX+"-right-1")
player.pos = 150,100

food = Actor ("food")
food.pos = (random.randint (50, 750), random.randint (50, 550))

a counter to delay between changes
delay_timer = 0

which of the 3 images to display (value from 1 to 3)
image_number = 1

score = 0

def draw():
 screen.blit(BACKGROUND_IMG,(0,0))
 food.draw()
 player.draw()

def update():
 global delay_timer, image_number, score
 # Only move whilst key is pressed
 if (delay_timer == 10):
 delay_timer = 0

 direction = "none"
 if (keyboard.up):
 if (player.y > 40):
 player.y -= 20
 direction = "rear"
 if (keyboard.down):
 if (player.y < 560):
 player.y += 20
 direction = "front"
 if (keyboard.left) :
 if (player.x > 40):
 player.x -= 20
 direction = "left"
 if (keyboard.right) :
 if (player.x < 760):
 player.x += 20
 direction = "right"

 if (direction != 'none'):
 image_number += 1
 if (image_number > 4):
 image_number = 1
 image_name = "{}-{}-{}".format(IMG_PREFIX,direction,image_number)
 player.image = image_name

 if (player.colliderect(food)):
 score += 1
 food.pos = (random.randint (50, 750), random.randint (50, 550))

 else:
 delay_timer += 1
 return

The colliderect method is used to detect when the player actor reaches the food actor. It detects
when the rectangle containing the player actor overlaps with the rectangle containing the food actor.
This is called a collision.

When a collision is detected then the score is incremented and the food is moved to a new random
location.

Timer
A game is not going to be much fun unless it poses a challenge. The challenge of this game will be
of trying to get the food before the time runs out. The timer will start quite long with the timer
decreasing each time the food is eaten, so as to get harder each time some food is eaten.

A new variable is created called game_timer. This will hold a count-down value since the last time
the player ate some food. The initial count down will be set with the value from game_timer_start.
This is set at 10 seconds. The timer_decrement value is the amount that the timer will decrement
from the start time each time that a point is scored.

game_timer = 10
game_timer_start = 10
timer_decrement = 0.2

The value of the game_timer is then decremented by 0.017 seconds each update loop (which is the
length of time that should pass between each time the function is called).

To make the game more challenging as each point is scored then the game_timer is set a little lower
each time. This is done by the following formula.

game_timer = game_timer_start - (score * timer_decrement)

Remember that the timer is only approximate as there is no guarantee that the update function will
run at 60 times per second.

Display text
The final thing is to tell the player what score they achieved when the game is over.

The method to display the text is screen.draw.text. This needs to be within the draw function rather
than update.

display_text = “Game Over\nScore “+str(score)

screen.draw.text(display_text, fontsize=60, center=(100,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")

The arguments are mostly self explanatory. The color value is the colour of the text and scolor the
shadow. The color is set using RGB values representing the amount of Red,Green,Blue respectively
and the scolor using a string based on the hexadecimal value (similar to how colours are defined in
HTML / CSS). I have deliberately used both to show that you can use either, but you can use
whichever colour format you prefer.

Complete code
The code for the complete game is shown below:

import random

WIDTH = 800
HEIGHT = 600

BACKGROUND_IMG = "grass-field"
IMG_PREFIX = "unicorn"

player = Actor (IMG_PREFIX+"-right-1")
player.pos = 150,100

food = Actor ("food")
food.pos = (random.randint (50, 750), random.randint (50, 550))

a counter to delay between changes
delay_timer = 0

The game timer to restrict how long the player has to collect food

game_timer = 10
game_timer_start = 10
timer_decrement = 0.2

which of the 3 images to display (value from 1 to 3)
image_number = 1

score = 0

def draw():
 screen.blit(BACKGROUND_IMG,(0,0))
 if (game_timer <= 0):
 display_text = "Game Over\nScore "+str(score)
 screen.draw.text(display_text, fontsize=60, center=(400,300),
shadow=(1,1), color=(255,255,255), scolor="#202020")
 food.draw()
 player.draw()

def update():
 global delay_timer, image_number, score, game_timer
 if (game_timer <= 0):
 return
 else:
 game_timer -= 0.017

 # Only move whilst key is pressed
 if (delay_timer == 10):
 delay_timer = 0

 direction = "none"
 if (keyboard.up):
 if (player.y > 40):
 player.y -= 20
 direction = "rear"
 if (keyboard.down):
 if (player.y < 560):
 player.y += 20
 direction = "front"
 if (keyboard.left) :
 if (player.x > 40):
 player.x -= 20
 direction = "left"
 if (keyboard.right) :
 if (player.x < 760):
 player.x += 20
 direction = "right"

 if (direction != 'none'):
 image_number += 1
 if (image_number > 4):
 image_number = 1
 image_name = "{}-{}-{}".format(IMG_PREFIX,direction,image_number)
 player.image = image_name

 if (player.colliderect(food)):
 score += 1
 food.pos = (random.randint (50, 750), random.randint (50, 550))
 game_timer = game_timer_start - (score * timer_decrement)

 else:
 delay_timer += 1

 return

Future Improvements
You now have the starting point of a game, but it's only the start of the process of creating a game.

Here is a list of possible suggestions to improve the game, with hints on how they can be ahieved:

• Show the score on the screen as each point is scored.
◦ Use screen.draw.text() to display score at the top of the screen.

• Add a countdown timer to the screen.
◦ Display the game_timer on the screen. Note that the value may need to be adjusted so

that the game ends as soon as the display of the game timer reaches 0.
• Add obstacles that need to be avoided.

◦ Create new actors with the obstacles and test for collisions with the obstacles.
• Allow the player to play again after the end of the game.

◦ Wrap the entire game into a while loop with an option to play again after the player has
finished the game.

• Add tracking of a high score to provide additional challenge.
◦ To allow the high score to persist in new games it should be saved.

These suggestions and others have already been implemented in a similar game known as Compass
Game which is available from http://www.penguintutor.com/projects/compass-game
The Compass Game is a different game, but shares much of the same initial code. It has however
changed considerably converting much of the code to object orientated code and adding new
features.

Another option is to change the game by changing the sprites and perhaps the gameplay. The
previously mentioned Compass Game is similar in that regard. Instead of trying to reach food in
Compass Game the player has to go in the direction specified. It is possible to change the character
to a completely different creature, vehicle or even a space craft.

Updates and Other Projects
For a related project see the Space Asteroids game from the 2018 Raspberry Pi Birthday. This game
uses Pygame Zero and GPIO Zero http://www.penguintutor.com/projects/space-asteroids

For future updates on this and other projects follow PenguinTutor on Twitter, Facebook or YouTube.

http://www.penguintutor.com/projects/space-asteroids
http://www.penguintutor.com/projects/compass-game

	Introduction
	Installing Pygame Zero
	Getting Started with Mu
	Adding a Background Image
	Creating a Sprite
	Moving the Sprite
	The draw() vs the update() function

	Controlling the Movement
	Adding the food sprite
	Timer
	Display text
	Complete code
	Future Improvements
	Updates and Other Projects

