BEHAVIOR AND STRENGTH OF WELDED STUD SHEAR CONNECTORS

by Michelle Deanna Rambo-Roddenberry

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Civil Engineering

W. Samuel Easterling, Chairman
Thomas E. Cousins
Siegfried M. Holzer
Thomas M. Murray
Kamal B. Rojiani

April 8, 2002 Blacksburg, Virginia

Keywords: shear studs, shear connectors, composite beam, push-out test

BEHAVIOR AND STRENGTH OF WELDED STUD SHEAR CONNECTORS

by

Michelle Deanna Rambo-Roddenberry

W. Samuel Easterling, Chairman Civil Engineering

(ABSTRACT)

The behavior and strength of welded shear studs are subjects of ongoing study. In recent years, research has shown that the American Institute of Steel Construction (AISC) specification equations for shear stud strength are unconservative for studs placed in deck with ribs transverse to the steel beam. Twenty-four solid slab push-out tests, 93 composite slab push-out tests, and bare stud tests were performed to study the effects on stud strength of friction, normal load, position of studs in the ribs of steel deck, concrete strength, and stud properties. Stud diameters ranged from 3/8 in. to 7/8 in., deck heights ranged from 2 in. to 6 in., and both single and pairs of studs were tested. The push-out test results from this study were combined with other studies to propose a new stud strength prediction model. Three new beam tests were performed to study the effect of the stud position in the ribs of the steel deck. The results of these tests, along with 61 other beam tests, were used to verify the new stud strength prediction model. A reliability study was performed to determine resistance factors for stud strength and beam strength.

ACKNOWLEDGMENTS

The author would like to thank Dr. W. Samuel Easterling for his endless support, encouragement, and patience. The completion of this dissertation has been a journey, and Dr. Easterling has been an ideal traveling companion. She would also like to thank Dr. Thomas Murray for his humorous outlook on life and for always giving the best advice. A special thanks goes to Dr. Siegfried Holzer, Dr. Kamal Rojiani, and Dr. Thomas Cousins for serving on her committee and for always welcoming questions. Thanks also to all faculty members in the Structures Division, including Dr. Richard Barker, for sharing their many years of wisdom and providing the best education possible. They have all been an inspiration.

The experimental work and test specimen preparation would not have been possible without the help from Brett Farmer and Dennis Huffman. Thanks to both of them for being so reliable, helpful, and fun to work with. Thanks also to the research assistants who all worked as a team, helping each other in the lab – there are too many to name them all. Thanks to Sarah Carr and Brian Diaz for helping with many of the pushout tests.

The author would also like to thank her parents, Norman and Barbara Rambo, for believing in her and for encouraging her to continue her education. She would also like to thank her husband for his ongoing support and her son for his smiles and unconditional love. This research has required a great amount of financial support. Thank you to the Via family and the Charles E. Via, Jr. Department of Civil and Environmental Engineering for granting the fellowship that made studying and researching possible. Thank you to the American Institute of Steel Construction, American Iron and Steel Institute, NUCOR Research and Development, Steel Deck Institute, Tru-fit Corporation and TRW Nelson Stud Welding Division for sponsoring this research.

A final thank you to the many researchers at Virginia Tech and around the world who have studied the topic of shear studs over the past few decades. The world is blessed with some truly gifted engineers, whose ideas and methodologies blend to constantly improve the state-of-the-art.

TABLE OF CONTENTS

Abstr	act		ii
	wledo	nents	iii
		es	
Listo	f Tabla	S	
LISUU	I Table	5	, X II
Chard	have 1	In two duration	1
		Introduction	I
1.1		round	
1.2		ture Review	
1.3	Scope	of Research	41
Chan	ham 3	Duck Out Specimen Configuration and Test Ducedunes	12
Chapt 2 1		Push-Out Specimen Configuration and Test Procedures	
2.1	Introd	uction	43
2.2		fatrices	.43
	2.2.1		.43
		2.2.1.1 Effect of Flange Thickness (Series 1-4)	.45
		2.2.1.2 Effect of the Steel/Concrete Interface (Series 5-6)	
		2.2.1.3 Effect of Applying Normal Load (Series 7-8)	.46
	2.2.2	Composite Slab Push-Out Tests	_46
		2.2.2.1 Effect of Stud Diameter, Concrete Strength, and Deck Height,	.48
		2.2.2.2 Effect of Friction at the Deck/Beam Interface	48
		2.2.2.3 Effect of Tension in the Stud Shank	
2.3	Test S	pecimen Configuration and Construction	49
		General	49
		Solid Slab Specimens	49
	2.3.3		
2.4		ng Method and Instrumentation	
2.4			
2.3	Test P	rocedure	00
Chapt	ter 3	Push-Out Test Results	62
3.1		Slab Push-Out Test Results	
3.2		osite Slab Push-Out Test Results	
3.3		ssion of Solid Slab Push-Out Test Results	
5.5	3.3.1		64
	3.3.2	Effect of the Steel/Concrete Interface	-
	3.3.3		<u> </u>
3.4		11,5,0	-
5.4	3.4.1	ssion of Composite Slab Push-Out Test Results	
		Strong Position Stude	
	3.4.2	Weak Position Study	
	3.4.3		.72
	3.4.4	Deep Deck Tests	. /4
	3.4.5	7/8 in. Diameter Studs	_75

		Comparison of Push-Out Test Results with Existing Strength	
Predi	ction N	lethods	
4.1	Gener	al	
4.2	Solid	Slab Ultimate Strength Comparison	
4.3		osite Slab Ultimate Strength Comparison	
	4.3.1		
	4.3.2	CSA Provisions	
	4.3.3		
	4.3.4		
Chap	ter 5	Experimental Study Using and Results of Bare Stud Tests	
5.1	Introd	luction	104
5.2	Bare S	Stud Specimens	104
5.3	Test F	Procedure	106
5.4	Test F	Results	107
Chap	ter 6	Evaluation of Push-Out Test Results	
6.1		luction	110
6.2		tics Used in the Analysis of Data	112
6.3	Single	e Studs in Composite Slabs	113
	6.3.1	Strong Position Single Studs in 2 in. and 3 in. Deck	113
		Weak Position Single Studs in 2 in. and 3 in. Deck	
	6.3.3	\mathbf{U}	126
	6.3.4	Middle Position Single Studs in 1 in. and 1 ¹ / ₂ in. Deck	131
6.4		Definition of Strong and Weak Positions	
6.5	Multi	ple Studs per Rib	140
	6.5.1	Staggered Position Studs in 2 in. and 3 in. Deck	140
	6.5.2	Pairs of Strong Position Studs	
	6.5.3		
	6.5.4		
6.6	Concr	rete Strength	147
	6.6.1	Effect of Concrete Strength on Stud Strength	147
	6.6.2	Effect of Concrete Strength on Elastic Stiffness	150
6.7	Deck	Height	152
6.8		Height	153
6.9		al Load	155
	6.9.1	Effect of Normal Load on Stud Strength	155
	6.9.2	Effect of Normal Load on Elastic Stiffness	155
6.10	Reduc	etion Factor for $d/t > 2.7$	
6.11		on in Composite Slabs	161
6.12		nary of the Evaluation of Push-Out Test Results	
6.13	New S	Strength Prediction Model	165
6.14	VT Ez	xperimental and New Predicted Strengths	166

6.15	VT St	rength Model Compared with Published Data	167
-	ter 7		
7.1	Gener		
7.2	1	osite Beam Test Matrix	
7.3		osite Beam Test Specimen Configuration and Construction	
7.4		mentation of Composite Beam Tests	
7.5	Comp	osite Beam Test Procedure	185
7.6		ts of Composite Beam Tests	
	7.6.1		186
	7.6.2	Beam Test 1	187
	7.6.3	Beam Test 2	
		Beam Test 3	
7.7		ssion of VT Composite Beam Test Results	
	7.7.1	General	198
	7.7.2	AISC Predictions of Flexural Strength	199
	7.7.3	New Predictions for Flexural Strength	201
	7.7.4	AISC Predictions for Stud Strength	201
	7.7.5	New Predictions for Stud Strength	201
	7.7.6	Effects of Deck Height, Stud Position, and Pairing of Studs on Stud	
		Strength	202
Chap	ter 8	Evaluation of Composite Beam Tests at VT and Elsewhere	204
8.1	Gener	***************************************	
8.2	Comp	osite Beam Test Parameters	206
8.3	Comp	osite Beam Ultimate Strength Comparison	206
	8.3.1		206
		General	200
	8.3.2		
	8.3.2 8.3.3	AISC Flexural Theory	215
		AISC Flexural Theory AISC	215 217
		AISC Flexural Theory AISC 8.3.3.1 Flexural Strength	215 217 217
		AISC Flexural Theory AISC	215 217 217
	8.3.3	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength	215 217 217 217 217
	8.3.3	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method	215 217 217 217 217 224 224
Chan	8.3.3 8.3.4	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength	215 217 217 217 217 224 224 224 224
Chap 9.1	8.3.3 8.3.4 ter 9	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams	215 217 217 217 224 224 224 224 224
9.1	8.3.3 8.3.4 ter 9 Gener	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al	215 217 217 224 224 224 224 224 224
9.1 9.2	8.3.3 8.3.4 ter 9 Gener Develo	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al opment of Resistance Factors	215 217 217 224 224 224 224 224 227 227
9.1	8.3.3 8.3.4 ter 9 Gener Develo Calcul	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al opment of Resistance Factors lation of Resistance Factors	215 217 217 224 224 224 224 224 227 227 227 227 22
9.1 9.2	8.3.3 8.3.4 ter 9 Gener Develo	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al opment of Resistance Factors lation of Resistance Factors Resistance Factor for Stud Strength	215 217 217 224 224 224 224 227 227 227 227 233 233
9.1 9.2	8.3.3 8.3.4 ter 9 Gener Develo Calcul	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al opment of Resistance Factors lation of Resistance Factors Resistance Factor for Stud Strength 9.3.1.1 AISC Stud Strength Model	215 217 217 224 224 224 224 224 227 227 227 227 233 233 233
9.1 9.2	8.3.3 8.3.4 ter 9 Gener Develo Calcul	AISC Flexural Theory AISC 8.3.3.1 Flexural Strength 8.3.3.2 Shear Stud Strength New Strength Prediction Method 8.3.4.1 Flexural Strength 8.3.4.2 Shear Stud Strength Resistance Factor for Composite Beams al opment of Resistance Factors lation of Resistance Factors Resistance Factor for Stud Strength	215 217 217 224 224 224 224 227 227 227 233 233 233 233

	9.3.2.1 Beam Strength Using AISC Stud Strength Model	235
	9.3.2.2 Beam Strength Using New Stud Strength Model	237
9.4	Modified Resistance Factor for Composite Beams	238
9.5	New Modified Resistance Factor for Composite Beams	
9.6	Summary	
Chapt	ter 10 Summary, Conclusions, and Recommendations	
10.1	Summary	
10.2	Conclusions	
10.3	Recommendations	257
Refere	References	
Appendix A		
¥ 7°4		2/7

LIST OF FIGURES

<u>Fig.</u>		<u>Page</u>
1.1	Composite Beams Using Shear Stud Connectors	2
	(a) Non-Composite Solid Slab	
	(b) Composite Slab Using Cold-Formed Steel Deck	
1.2	Typical Dimensions and Details of a Push-Out Specimen at Virginia Tech	3
1.3	Push-Out Test of a Composite Slab with Formed Steel Deck	
1.4(a)	Strong Position Studs in a Composite Beam	5
1.4(b)	Weak Position Studs in a Composite Beam	5
1.5	Useful Stud Capacity, Q_{uc} , as determined by Chinin (1965)	0
2.1a	Solid Slab Push-Out Specimen with Studs Welded Centrally on Flange	51
2.1b	Solid Slab Push-Out Specimen with Studs Welded Off-Center on Flange	
2.2	Deck Details	53
2.3a	Composite Slab Push-Out Specimen with Studs in the "Strong" Position	55
2.3b	Composite Slab Push-Out Specimen with Studs in the "2Strong" Position	56
2.3c	Composite Slab Push-Out Specimen with Studs in the "Weak" Position	57
2.3d	Composite Slab Push-Out Specimen with Studs in the "Middle" Position	58
3.1	Stud Strength vs. Flange Thickness (Solid Slab Tests)	68
4.1	Experimental Strength vs. AISC Predicted Strength for Solid Slab Push-Out	
	Tests	81
4.2	Experimental Strengths vs. AISC Predicted Strengths for Composite Slab	
	Push-Out Tests	86
4.3	Experimental Strengths vs. CSA Predicted Strengths for Composite Slab	
	Push-Out Tests	91
4.4	Experimental Strengths vs. Eurocode 4 Predicted Strengths for Composite Sla	
	Push-Out Tests	96
4.5	Experimental Strengths vs. Johnson and Yuan Predicted Strengths for	
	Composite Slab Push-Out Tests	103
5.1	Bare Stud Shear Test Device	105
5.2	Bare Stud Shear and Bending Test Device	106
5.3	Shear Strength, as a Fraction of Tensile Strength, vs. Stud Diameter	. 107
5.4	Shear Strength vs. Moment Arm	108
6.1	Stud Diameter vs. Slip at Maximum Load for Single Strong Position Studs	116
6.2	Experimental Stud Strength vs. Stud Tensile Strength of Single Strong	
	Position Studs	
6.3	Effect of Concrete Strength on Stud Strength of Single Strong Position Studs	120
6.4	Experimental Stud Strength at or Before 0.2" Slip vs. Stud Tensile Strength	
	of Single Weak Position Studs	122
6.5	Effect of Concrete Strength on Stud Strength of Single Weak Position Studs.	. 125

LIST OF FIGURES (cont'd.)

<u>Fig.</u>		Page
6.6	Experimental Stud Strength vs. Deck Thickness for Single Weak Position Studs	
6.7	Ratio of Maximum Strength-to-First Peak Load vs. Deck Thickness for Single Weak Position Studs	128
6.8	Experimental Stud Strength vs. Stud Tensile Strength of Single Middle Position Studs	132
6.9	Experimental Stud Strength vs. Stud Tensile Strength of Single Middle Position Studs (Exponential)	134
6.10	Experimental Stud Strength vs. Stud Position	
6.11	Experimental Stud Strength vs. Concrete Cover	
6.12	Stud Strength vs. Concrete Strength	149
6.13 6.14	Experimental Stud Strength vs. Ratio of Stud Height-to-Rib Height Experimental Stud Strength vs. % Normal Load	
6.15	Experimental Stud Strength vg. d/t	150
6.16	Location of Friction Forces in a Solid Slab and a Composite Slab (after Lyons et al 1994)	
6.17	Experimental Stud Strength vs. Predicted Stud Strength for VT Tests Using New Model	175
6.18	Experimental Stud Strength vs. Predicted Stud Strength for Other Tests Using New Model	g 178
7.1	Positions of Studs in Beam Tests	
7.2	Beam Test Setup	100
7.3	Instrumentation of Beam Tests	
7.4	Beam Test 1 – Total Load vs. Deflection	
7.5	Beam Test 1 – Total Load vs. Slip	. 190
7.6	Beam Test 1 Showing Large Deflections	
7.7	Beam Test 1 Showing Web Yielding	191
7.8	Beam Test 1 Showing Deformed Stud After Removal of Concrete Slab and Steel Deck	
7.9	Beam Test 2 – Total Load vs. Deflection	. 193
7.10	Beam Test 2 – Total Load vs. Slip	. 194
7.11	Beam Test 3 – Total Load vs. Deflection	
7.12	Beam Test 3 – Total Load vs. Slip	
7.13	Beam Test 3 Showing Large Deflections	197
7.14	Beam Test 3 with Large Crack Transverse to the Beam	
8.1	Flexural Strength vs. Shear Connection Strength	205

LIST OF FIGURES (cont'd.)

<u>Fig.</u>		Page
8.2	Experimental-to-AISC Predicted Moment Capacity vs. Experimental %	
	Composite	220
8.3	Experimental-to-AISC Predicted Shear Stud Strength vs. Experimental %	
	Composite	223
8.4	Experimental-to-New Predicted Moment Capacity vs. Experimental %	
	Composite	225
8.5	Experimental-to-New Predicted Shear Stud Strength vs. Experimental %	
	Composite	226
9.1	Frequency Distribution of Load Effect Q and Resistance R (from Load 1993)	228
9.2	Definition of Reliability Index, β (from Load 1993)	229

LIST OF TABLES

<u>Table</u>		<u>Page</u>
2.1	Solid Slab Test Matrix	44
2.2	Composite Slab Test Matrix	47
3.1	Solid Slab Test Results	
3.2	Composite Slab Test Results	65-67
3.3	Effect of Stud Head on Stud Strength	
3.4	Strengths of 7/8 in. Diameter Studs	
4.1	AISC Ultimate Strength Comparison for Solid Slab Tests	80
4.2	AISC Ultimate Strength Comparison	84-85
4.3	CSA Ultimate Strength Comparison	
4.4	Eurocode 4 Ultimate Strength Comparison	94-95
4.5	Johnson and Yuan Ultimate Strength Comparison	101-102
5.1	Bare Stud Shear Test Results	107
5.2	Bare Stud Shear and Bending Test Results	108
6.1	Number of Push-Out Tests Used in Analysis By Category	
6.2	Slip at Maximum Load and Loads at 0.2 in. Slip for Single Strong Position	n
	Studs	
6.3	Predicted Stud Strengths of Single Strong Position Studs	118
6.4	Predicted Strengths of Single Weak Position Studs	
6.5	Effect of Deck Thickness on Ultimate and First Peak Strengths of Single	
	Weak Position Studs	
6.6	Effect of Deck Thickness on Predicted Strengths of Single Weak Position	
	Studs	129
6.7	Experimental and Predicted Strengths of Single Middle Position Studs	133
6.8	Experimental and Predicted Strengths of Single Middle Position Studs	
	(Exponential)	
6.9	Effect of Stud Position on Stud Strength	136
6.10	Verification of New "Weak Position" Definition	138
6.11	Staggered Position and Single Strong Position Stud Strengths	
6.12	Strengths of Single and Pairs of Strong Position Studs (Lyons' Tests)	
6.13	Strengths of Single and Pairs of Strong Position Studs	
6.14	Strengths of Single and Pairs of Middle Position Studs (Diaz's Tests)	
6.15	Strengths of Pairs of Studs and Single Studs Using Other Data	
6.16	Effect of Concrete Strength on Stud Strength	148
6.17	Effect of Concrete Strength on Elastic Stiffness of Studs	151
6.18	Effect of Deck Height on Stud Strength	152
6.19	Effect of Stud Height on Stud Strength (Lyons' Tests)	153
6.20	Effect of Normal Load on Elastic Stiffness of Studs	157
6.21	Effect of d/t on Stud Strength (Sublett et al 1992)	158

LIST OF TABLES (cont'd.)

Table Page Effect of d/t on Stud Strength (Diaz 1998)_____160 6.22 VT Experimental Strengths and New Predicted Strengths 168-174 6.23 VT Strength Model Compared with Published Data 176-177 6.24 7.1 Beam Test Parameters 180 Summary of Bending Strengths in Composite Beam Tests at VT 200 7.2 7.3 Summary of Stud Strengths in Composite Beam Tests at VT_____200 Comparison of Stud Strengths in 2" and 3" Deck 203 7.4 Comparison of Stud Strengths in Strong and Weak Positions 203 7.5 7.6 Comparison of Strong Position Stud Strengths in Singles and Pairs 203 Beam Test Parameters 207-210 8.1 8.2 Shear Stud Details for Beam Tests_____211-214 8.3 Beam Test Results (Flexural Strengths) 218-219 Beam Test Results (Shear Stud Strengths) 221-222 8.4 Statistics of Stud and Moment Strengths from Beam Tests 226 8.5 9.1 Phi Factors for Stud Strength from Push-Out Tests_____234 9.2 Stud Strength Phi Factors Using All Push-Out Tests 234 Phi Factors for Beam Strength Using AISC Stud Strength Model_____236 9.3 9.4 Phi Factors for Beam Strength Using New Method 238