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Abstract 
This report gives an overview of the main findings from the Behavior-based Predictive 
Safety Analytics – Pilot Study project. The main objective of the project was to investigate 
the possibilities of developing statistical models predicting individual driver crash 
involvement based on individual driving style, demographic and behavioral history 
variables, using large sets of naturalistic driving data. The project was designed as a pilot 
project with the objective of providing the basis for a future more comprehensive research 
effort. Based on Second Strategic Highway Research Program (SHRP2) data, a subset 
of behavior and crash data including 2,458 drivers was created for analysis. The data 
were analyzed to investigate to what extent these drivers were differentially involved in 
crashes and near crashes, to what extent this was associated with individual 
characteristics, and if it is possible to predict individual drivers’ crash and near crash 
involvement based on variables representing individual characteristics. The results 
clearly demonstrated the presence of differential crash and near crash involvement and 
showed significant associations between enduring personal factors and crash 
involvement. Moreover, logistic regression and random forest classifiers were relatively 
successful in predicting crash and near crash involvement based on individual 
characteristics, but the ability to specifically predict involvement in crashes was more 
limited. 
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Introduction 

The general aim of this project was to investigate the possibilities of developing statistical 
models to predict individual driver crash involvement based on driving style, demographic, and 
behavioral history data. Such models have a range of applications, in particular in the areas of 
fleet safety management and insurance. Although the relationship between individual driver 
characteristics and road safety has a long research history, the advent of large sets of naturalistic 
driving data, which include a significant number of crashes as well as driver behavior and 
demographics data, allows for exciting new research possibilities.  

Today, there are two main sources of naturalistic driving data that contain a sufficient amount of 
crash and behavioral data to be used for the present purposes: (1) the Second Strategic Highway 
Research Program (SHRP 2) dataset and (2) commercial fleet- and behavior change management 
programs offered by in-vehicle monitoring systems (e.g., Lytx and SmartDrive systems), which 
collect tens of thousands of crashes annually. SHRP 2 was a large-scale project, carried out by 
the Virginia Tech Transportation Institute (VTTI) and funded by the Transportation Research 
Board, that collected over 30 million passenger vehicle miles of continuous video and vehicle 
sensor data, and recorded over 2,000 crashes and 7,000 near-crashes (Dingus et al., 2015; 
Hankey et al., 2016). By contrast, the data collected by Lytx and SmartDrive (Lytx, 2017, 
SmartDrive, 2017) is event-triggered, consisting of 10–20 s epochs of video and sensor data. Of 
key importance for this project, SmartDrive also collects exposure data (driving time and 
mileage) for each driver. The total mileage amounts to billions of miles, resulting in the capture 
of tens of thousands of crashes and even more near-crashes and non-conflict events. For each 
event, a range of driver behaviors and other safety relevant observations are manually coded by 
trained data reductionists. 

The main objective of this project was to conduct a pilot investigation into how such large sets of 
naturalistic crash and behavior data can be used to establish predictive models of crash 
involvement. The work included a thorough state-of-the-art review of previous work (See 
Appendix A) in this area, including the development of a conceptual framework for relating 
behavior to crash causation and risk. Based on this, different proof-of-concept analyses and 
modeling efforts were conducted. This work also involved collaboration with Mr. Felix Dreger 
and Dr. Joost de Winter from Delft University in The Netherlands. Mr. Dreger visited VTTI for 
1 month during the course of the project. The work subsequently resulted in three publications 
(two accepted and one to-be-submitted), co-authored by the entire research team. These are 
described in more detail in subsequent sections of this report. 

A further objective of the project was to investigate to what extent the commercial data collected 
by Lytx and SmartDrive could be made available for academic research. To this end, members of 
the research team visited both companies in San Diego. Both companies were generally 
interested in collaborating around this topic and, and as long as the data can be completely 
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anonymized, there are no fundamental barriers for making this data available to academic 
researchers. This initial contact eventually resulted in a collaborative modeling effort with 
SmartDrive, which was conducted as part of the project. This was not included in the original 
work plan, but was conducted through an extension of the present project. This work was 
conducted separately from the main part of the project as it required a non-disclosure agreement 
(NDA) between SmartDrive, VTTI, and San Diego State University. Due to the NDA, and the 
fact that this analysis was not completed at the time of this writing, the results are not reported 
here. The intention is to publish these results in an academic journal pending SmartDrive’s 
approval of the disclosed content. 

A final goal was to develop a curriculum for undergraduate and graduate studies on behavior-
based predictive safety analytics with a module in a graduate-level course. However, due to 
resource constraints, and since it was not clear what graduate course might be the target for this 
module, the course material was not developed in this pilot project. Thus, the main educational 
component is a general curriculum for such a module, which is included at the conclusion of this 
report. 

The pilot project was designed with the objective of providing the basis for more comprehensive 
research efforts in the future. The analyses conducted in this project barely scratched the surface 
of what can be done in this area and, as further described below, a range of open issues were 
identified that could be addressed in a future project. This report provides an overview of the 
main results obtained relative to the main research questions stated in the project work plan. 

Background 

Drivers are the contributing factor in the majority of road crashes and understanding the 
relationship between individual driver characteristics and crash involvement has been a long-
standing goal in road safety research (e.g., Elander et al., 1993; Guo et al., 2010; McKenna, 
1983). It is well known that a small proportion of drivers often account for a major proportion of 
crashes (Sagberg et al., 2015), a phenomenon often referred to as the Pareto principle or the 80–
20 rule, that has also been observed in many other domains. Thus, it is of great value to be able 
to identify these risky drivers before crashes happen. For example, is a driver who is regularly 
speeding and/or tailgating, and/or has a history of traffic violations, more likely to crash than a 
driver adopting a less aggressive driving style who has received no tickets in the past? If so, can 
such risky drivers be reliably identified based on individual driver characteristics, such as 
observed driving style, demographics, personality screening, or behavioral history.  

Such behavior-based predictive safety analytics (BPSAs) have a wide range of applications. In 
particular, in the commercial fleet safety management and auto insurance domains, a range of 
commercial applications are already used to capture risky driving styles (e.g., in terms of the 
number of hard braking event per vehicle mile traveled). Moreover, in order to counter driver 
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shortage in the US trucking industry, current investigations are being made into the possibility of 
recruiting younger drivers provided they pass a screening of crash-predictive personal 
characteristics (Boris & Luciana, 2017). 

However, the success of BPSAs ultimately hinges on the establishment of models able to reliably 
relate individual driver characteristics to actual crash risk; this relationship is currently poorly 
understood. Traditionally, the main reason for this has been the lack of data containing a 
sufficient number of detailed crash recordings and recorded driving behavior, demographics and 
screening data collected over an extensive time period before the crash. In recent years, this 
picture has started to change due to the advent of naturalistic driving studies. However, existing 
naturalistic driving analyses have typically focused on the relationship between the engagement 
in potentially distracting secondary tasks (or other driver behaviors/states) and crash risk, with 
the primary goal to identify risky tasks/behaviors/states (e.g., Dingus et al., 2016). Such studies 
are valuable for informing human-machine interaction design and distraction policy. However, 
the present effort focuses on the relationship between individual driver characteristics and crash 
involvement, with the primary goal of identifying risky drivers. As mentioned above, this 
analysis has its key applications in the context of fleet safety and insurance.  

To obtain a deeper understanding and develop reliable predictive models of the relationship 
between individual driver behavior and crashes requires big datasets that include a large number 
of drivers, driving exposure for each driver, records of behaviors in non-conflict situations and, 
critically, a large number of crashes for the same driver population. Today, such datasets do 
exist. The SHRP 2 study, which is the largest publicly funded naturalistic driving effort to date, 
involved over 30 million vehicle miles, 3,000 vehicles, over 3,500 drivers and collected about 
2,000 crashes (Dingus et al., 2015; Hankey et al., 2016). Although this dataset may be useful to 
explore the possibilities of establishing behavior-risk mappings at the individual level, the 
number of crashes is still relatively limited when broken down into specific categories, or when 
crashes of lower severity (e.g., curb strikes) are removed. Ideally, in order to establish 
relationships between individual behavior and crash risk, even larger naturalistic crash datasets 
are needed. Today, such datasets are becoming available as more vehicles are equipped with 
video logging systems. In particular, commercial programs for improving driver behavior, such 
as those offered by the companies Lytx and Smartdrive, can generate large sets of naturalistic 
crash and behavior data. Both companies have equipped on the order of hundreds of thousands of 
vehicles with event video data recorders and collected tens of thousands of crashes per year 
along with millions of annotated behavioral events and billions of miles driven. This type of 
video-based naturalistic crash data will proliferate even further in the near future1 and, when 

                                                 
 

1 For example, providers of traditional fleet management services such as Omnitracs are now offering video-based 
recording of safety-critical events. 
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combined with appropriate analytics methods, will become a true game changer for road safety. 
However, these datasets are proprietary and subject to ethical, legal and business constraints. 

The objective of the present pilot project was to address a set of general research questions in 
order to lay the foundation for a larger effort on predictive crash analytics using large naturalistic 
crash and behavior data sets. In particular: 

1. How can the relationship between individual driver behavior/driving style and crashes 
be conceptualized? For example, how are the concepts of “behavior” and “driving style” 
best defined for purposes of behavior-based predictive safety analytics? How can we best 
think about the mechanisms whereby these behaviors may produce crashes? 

2. What are the minimum requirements on behavioral and crash data for enabling 
predictive crash analytics on a larger scale? For example at what level of detail do 
behaviors need to be coded? Is a generic “event-based” coding sufficient, or is a more 
detailed time-series coding required? 

3. What statistical methods are most appropriate for modeling the relationship between 
individual driver behaviors/driving styles and crashes based on naturalistic data? Are 
existing statistical modeling techniques sufficient or do they need to be further developed to 
utilize naturalistic data properly?  

4. How can commercial naturalistic data be made available for analysis while respecting 
legal, ethical and business constraints? For example, who owns the data? What degree of 
anonymization is needed to protect the data? What would be the motivation of commercial 
entities to share this data? 

This final report provides an overview of the main results from the project. Details can be found 
in the specific publications found in Appendix B (de Winter et al., 2018; Huang et al., in review).  

Conceptual Framework, Data and Modeling 
Approaches 

Conceptual Framework 
To guide the development of predictive models for individual crash involvement, a conceptual 
framework was developed defining a set of key terms and concepts useful for the present 
purposes. The framework is presented in more detail in the state-of-the-art review developed in 
the project (Engström et al., 2017; Appendix A). 

Early work addressing the role of individual driver factors in the causation of (mainly non-
traffic, work-related) crashes introduced the concept of “accident proneness” to account for the 
common observation that road crashes, or incidents in other domains, are typically not 
distributed among individuals in a way that could be explained by chance alone. The adequacy of 
this concept has been debated over the years (see review by McKenna, 1983) and today, at least 



 5 

in the context of traffic safety, it has largely been abandoned in favor of the “differential crash 
involvement” concept. The basic idea underlying differential crash involvement is that some 
drivers have certain personal characteristics that make them more likely to become involved in 
crashes. For example, this may be related to a stronger propensity for risk taking among certain 
drivers, leading these drivers to look away from the road for longer periods and more frequently 
than the average driver, increasing the risk for an off-road glance to co-occur with an unexpected 
event (e.g., a lead vehicle braking), leading to a crash. However, drivers’ behavior, off road 
glances in this example, is also determined by more temporary driver factors, such as a strong 
motivation to send a text message, or situational factors, such as driving in dense traffic requiring 
frequent mirror checks. 

Knipling (2009) suggests a general distinction between personal and situational risk factors. The 
former refers to factors related to things “inside” the driver (explained further below) while 
situational factors refer to all other types of factors “outside” the driver, such as traffic, roadway, 
weather and the vehicle.  

Personal factors may be further divided into temporary and enduring factors. The former relates 
to things that typically change from day-to-day or hour-to-hour, such as illness, sleepiness, and 
mood. In contrast, enduring factors, also referred to as constitutional personal driver factors 
(Knipling, 2009), refer to long term or permanent characteristics, such as gender, age, 
personality, driving experience, physical/sensory-motor abilities, skills, medical conditions and 
health, psychiatric and behavioral disorders, etc. This project was mainly concerned with 
enduring personal factors, since these are the fundamental factors underlying differential crash 
involvement. However, crashes often involve an interaction between enduring personal factors, 
temporary personal factors, and situational factors, and the relative contributions of these 
different types of factors to crash genesis are often difficult to disentangle (Elander et al., 1993). 

Figure 1 provides a general illustration of these concepts. Current behavior, both driving and 
non-driving, is influenced by situational factors as well as temporary and enduring personal 
factors. This results in behavioral outcomes that may be successful (i.e., the situation played out 
as expected) or unsuccessful, leading to crashes, traffic conflicts (e.g., near crashes), violations, 
and convictions. These events constitute the driver’s behavioral history and certain events may 
become recorded in crash databases, naturalistic driving data, inspection records (for commercial 
vehicles), legal records, etc. Importantly, all this takes place in a sociocultural context, such as a 
national or workplace culture (Sagberg et al., 2015). Enduring personal factors will be reflected 
in recurring observable behavioral patterns as well as behavioral history, although both are also 
influenced by temporary personal and situational factors. Some of these recurring behaviors, 
such as tailgating, speeding, or distraction, may be associated with increased crash risk. Hence, 
by developing statistical models that map from direct measurements of enduring personal factors 
(e.g., personality tests), observable driving style, and/or behavioral history to crash involvement, 
it may be possible to identify unsafe drivers before they become involved in crashes.  
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Figure 1. Conceptual framework for differential crash involvement. 

Data 
Dataset Construction 
A subset of the SHRP 2 data was used to construct the datasets used for the analyses in the 
project. The datasets used for each analysis differed somewhat in the details (as outlined in the 
individual publications), but were generally constructed as described in the following. 

For each individual driver, six consecutive calendar months were extracted beginning from the 
second month of data collection (study period, months 2–7) to account for any first-month 
effects, such as the observer effect (see Figure 2). This 6-month data interval was used to 
calculate driving style measures and crash/near crash involvement. In addition, questionnaire 
data for each participant, collected prior to the start of the SHRP 2 data collection, was retrieved. 

 

Figure 2. Overview of the study design with independent variables (blue) and dependent variables (red). 

In addition, a range of further inclusion criteria were applied. In particular, drivers selected for 
the present analysis were required to have participated in SHRP 2 data collection for at least 7 
months, and to have driven more than 1,000 miles in the 6-month study period (see Huang et al., 
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in review for a more detailed description of these criteria). This resulted in a dataset of 2,458 
drivers and 3.91 million trips, amounting to a total of 27.16 million miles of driving distance and 
0.69 million driving hours.  

Modeling 
Independent and Dependent Measures 
The following independent measures were included in the analysis. 

Demographics: A Driver Demographic Questionnaire was used in SHRP 2 to investigate a 
variety of participant demographic information. The present analysis selected two variables from 
this questionnaire: age and gender. Age was stratified into three age groups: younger than 25 
years, between 25 and 55 years, and older than 55 years. This was done for two reasons. First, 
SHRP 2 oversampled younger and older drivers, so the sample size was equivalent between the 
age groups. Second, prior research shows that drivers between 25 and 55 years of age have 
comparable crash risks (Ryan et al., 1998). 

Driving history: A Driving History Questionnaire was used to obtain self-reported driving 
history information about participants, including driving experience, past violations and crashes, 
and training received. The present analysis included two variables from this questionnaire: self-
reported violations and self-reported crashes in the past 3 years. These two independent variables 
were recoded into binary variables indicating whether the participant had at least one violation 
(or crash) in the last 3 years or not.  

Driving style: Driving style here refers to persistent driving patterns characteristic for individual 
drivers (Sagberg et al., 2015). In the present study it was operationalized, based on Simons-
Morton et al. (2013), in terms of the rates (numbers per mile) of six types of kinematic events 
calculated in the study period based on specific thresholds for each dependent variable. The six 
kinematic events were hard starts, stops, left turns, right turns, left yaw movement, and right yaw 
movement. Multiple events were counted as one if the interval between them was less than 1 
second and events were removed if their event duration was less than half a second. The analysis 
built logistic regressions between each dependent variable and each driving style measure across 
different g-force thresholds (e.g., see Figure 3) and, for each driving style variable, selected the 
specific g-force level thresholds with the minimum Akaike Information Criterion (AIC) value, 
indicating the highest quality of statistic model (see Figure 4). AIC is an estimator of the relative 
quality of statistical models or the relative information lost when a given model is used, and 
minimum AIC was used to ensure the goodness of fit by maximizing likelihood as well as to 
prevent overfitting by minimizing the number of parameters. These thresholds were identified 
across all drivers who had relevant data in the 6-month time period.  

An example demonstrating the calculation of two of the driving style measures, hard starts and 
hard stops, is shown in Figure 3. This plot includes data from one trip (on May 21, 2011) and one 
driver. In this example, purple lines (+0.24g and +0.33g) result in different numbers of hard 
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starts (1 and 0) and red lines (-0.24g and -0.29g) result in different numbers of hard stops (4 and 
2). 

 

Figure 3. Kinematic events, consisting of hard starts and hard stops at different levels (purple and red lines, 
respectively) based on time series data, acceleration X.  

The full set of thresholds identified for crash and near crash (CNC)-involved drivers that were 
used in this analysis is presented below in Figure 4.  

 

Figure 4: AIC values of logistic regression models between CNC and each driving style measure at 46 g-force 
thresholds. 

Personality: Three self-report questionnaires were included from the SHRP 2 study: a modified 
version of the Manchester Driver Behavior Questionnaire (M-DBQ) containing 24 items 
answered on a 6-point Likert scale (Reason et al., 1990; Lajunen and Summala, 2003), the 
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Sensation Seeking Scale-form V (SSS-V) with 40 items (Zuckerman, 1994; Jonah, 1997), and a 
risk-perception questionnaire (Dingus et al., 2015). A principal component analysis (PCA) was 
used to group by the highest factor loadings and the components were interpreted as (1) slips, (2) 
violations, and (3) lapses. The mean score of each scale was calculated and used in further 
analyses.  

The SSS-V is a self-report survey where respondents selected one of two choices that better 
described their feelings or likes (Zuckerman, 1994). The present analysis used the total score of 
the SSS-V to indicate the degree to which the participant engaged in sensation seeking behavior. 

A risk-perception questionnaire was created for the SHRP 2 data collection (Dingus et al., 2015). 
The questions assessed the perceptual risk with driving behaviors on a seven-point Likert scale 
ranging from “No Greater Risk” to “Much Greater Risk.” Most items provided little variance 
across drivers, so only one item was selected for inclusion. The item selected was “If you were to 
engage in changing lanes suddenly to get ahead in traffic, how do you think that would affect 
your risk of a crash?”  

Dependent Measures – Crash and Near Crash Involvement  
In the SHRP 2 dataset, safety critical events (SCEs) (i.e., crash, near crash, crash-relevant, non-
conflict, subject conflict) were manually validated and coded by trained data reductionists. Only 
CNCs, as defined as in Hankey et al. (2016), were used in the present analysis. For this analysis, 
crashes of all severity levels were used. Two dependent variables represented CNC involvements 
of individual drivers: CNC is a binary variable indicating whether the participant was involved in 
zero or at least one CNC event in the study period; crash is a binary variable indicating whether 
the participant was involved in zero or at least one crash event in the study period. A driver was 
labeled as a CNC- or crash-involved driver if they had at least one CNC or crash in the study 
period.  

Statistical Models  
Two types of classification models were investigated with the goal of identifying CNC- (or 
crash-) involved drivers based on the independent measures described above: logistic regression 
and random forest (RF) classification.  

Logistic regression is a statistical classification method that was used in this analysis to model 
the probability of a SHRP 2 participant being a CNC- or crash-involved driver. First, logistic 
regression was used to model the probability of a participant being a CNC- or crash-involved 
driver (for a similar use, see Guo and Fang, 2013). The dependent variable (CNC or crash) is a 
binary variable and is assumed to follow a Bernoulli distribution with a probability (pi). This 
probability is associated with a set of covariates by a logit link function where the set of 
covariates are all potential independent variables:  

logit(p𝑖𝑖) = log � p𝑖𝑖
1−p𝑖𝑖

� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1 + +𝛽𝛽2𝑥𝑥𝑖𝑖,2 + ⋯+ +𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘 = 𝑿𝑿𝒊𝒊𝜷𝜷   (1) 
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where Xi is the matrix of predictors for individual i, and β is the vector of regression parameters. 
Both forward and backward variable selections were performed and the best model was selected 
based on the minimum AIC value. A driver is predicted as a CNC- or crash-involved driver if 
this probability is greater than a predefined threshold value (e.g., p0 = 0.5). The Odds Ratio (ORj 

= exp(βj)) is the change in probability of being a CNC-involved driver versus not being a CNC- 
involved driver associated with a variable j.  

Second, RF classification, proposed by Breiman (2001), was used for classification and 
regression. This method creates a series of decision trees (i.e., forest), each of which is used to 
solve the classification problem individually. The final result is obtained based on the majority 
vote across all decision trees. The decision tree algorithm, introduced by Breiman in 1984, uses a 
recursive binary splitting approach to grow a tree by selecting a predictor and a cut point for that 
predictor to split the data into two parts. This procedure is iterated at several steps to create a 
dendrogram type of structure (i.e., a decision tree). At each splitting step, different criteria can be 
used to identify the best split (i.e., best classification). 

The prediction performance of the models was evaluated in terms of the recall rate (or 
sensitivity), precision (positive predictive value), and accuracy. In the context of this study, the 
recall rate is the number of correctly predicted CNC- or crash-involved drivers divided by the 
total number of CNC- or crash-involved drivers. The precision is the number of correctly 
predicted CNC- or crash-involved drivers divided by the total number of drivers predicted by a 
model to be CNC- or crash-involved. Finally, the accuracy is the fraction of all drivers correctly 
classified as either CNC- (or crash-) involved or not involved. 

Results 

Three main analyses were conducted on the SHRP 2 data and reported in separate publications. 
First, a descriptive analysis was conducted to investigate to what extent SHRP 2 drivers were 
differentially involved in crashes and CNCs (Huang et al., 2018). Second, a correlational analysis 
of the association between self-reported driver behavior/personality scores and crash involvement 
was conducted (de Winter et al., 2018). The goal of the third analysis, which was the main analysis 
in this project, was to investigate to what extent it is possible to predict drivers’ crash and/or CNC 
involvement based on the independent variables described above (Huang et al., in review). 

Analysis of Differential Crash Involvement 
In this analysis, the study period of 6 months (see Figure 2) was further divided into two phases: 
Phase I (months 2–4) and Phase II (months 5–7). The purposes of analyzing 6 months and 
dividing into two phases were three-fold: (1) it allowed for prediction of Phase II metrics based 
on Phase I variables; (2) the computational undertaking of mining continuous data was time-
prohibitive; and (3) including a 6-month time period maximized the number of participants 
involved while maintaining a suitable amount of data for analyses. In each phase, the number of 



 11 

CNC events per 1,000 miles driving distance was calculated and drivers were divided into high- 
and low risk groups depending on whether they accounted for 80% of the total CNC rate (total 
risk). The cut-off percentage was also varied to investigate the sensitivity to this criterion. Thus, 
drivers who accounted for 80% of the total CNC rate (total risk) in the respective phase were 
classified as high-risk drivers in that phase. The remaining drivers were classified as low-risk 
drivers. Table 1 summarizes the results of this classification. The table shows that the data 
strongly indicates the presence of differential CNC involvement. That is, a small proportion of 
drivers (25.4% in Phase 1) account for the great majority (80%) of CNCs, results that are very 
similar to the classic 80–20 rule. 

Table 1. Summary Table of Proportions of Drivers Accounting for a Major (70%, 80%, 90%, 95%) 
Proportion of Risk 

Proportions of low/high risk drivers in 
Phase I 

Proportions of low 
risk drivers in 

Phase II 

Proportions of high 
risk drivers in 

Phase II 

Relative Risk 

Low-risk drivers (74.6%) 1107 (61.2%) 243 (13.4%) 2.23 (1.90, 2.61) 

High-risk drivers (25.4%) 275 (15.2%) 184 (10.2%)  

The main goal of the analysis was then to investigate to what extent this differential crash 
involvement could be explained in terms of enduring personal factors. To this end, Chi-squared 
and Wilcoxon rank sum statistical tests were used to examine the differences between the high 
and low-risk groups as classified during Phase I with respect to the independent variables 
described above. The results of these comparisons are shown in Table 2. As the table shows, 
most of the personal characteristics were statistically significantly associated with participants’ 
classifications as high or low-risk drivers.  

Table 2. Comparisons between the High and Low Risk Groups in Phase I 

Variable Type of 
data 

Tests of 
group 

differences 

Sample 
size p-value Effec

t size Effect description 

Age Categorical 
Chi-
squared 
test 

1799 0.011 0.13 ⇓ 

High-risk drivers have a higher 
proportion of drivers in the 
younger age groups and lower 
proportion of drivers in the 
middle and senior age groups. 

Violations Categorical 
Chi-
squared 
test 

1807 0.018 0.06 ⇑ 

High-risk drivers have a higher 
proportion of drivers with at 
least one self-reported violation 
in the past three years.  

DBQ 1 - slips Continuous 
Wilcoxon 
rank sum 
test 

1800 0.009 0.08 ⇑ 

High-risk drivers have a 
significantly higher average 
DBQ1 score than low-risk 
drivers  
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Variable Type of 
data 

Tests of 
group 

differences 

Sample 
size p-value Effec

t size Effect description 

DBQ 2 - 
violations Continuous 

Wilcoxon 
rank sum 
test 

1800 < 0.001 0.13 ⇑ 

High-risk drivers have a 
significantly higher average 
DBQ2 score than low-risk 
drivers.  

SSQ total 
score Continuous 

Wilcoxon 
rank sum 
test 

1801 < 0.001 0.13 ⇑ 

High-risk drivers have a 
significantly higher average 
sensation seeking score than 
low-risk drivers.  

Risk-
perception – 
lane change 

Continuous 
Wilcoxon 
rank sum 
test 

1781 0.008 0.08 ⇓ 

High-risk drivers have a lower 
average risk-perception score on 
sudden lane changes than low-
risk drivers. 

Number of 
hard starts per 
mile in Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.26 ⇑ 
High-risk drivers have a 
significantly higher average hard 
start rate than low-risk drivers.  

Number of 
hard stops per 
mile in Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.35 ⇑ 
High-risk drivers have a 
significantly higher average hard 
stop rate than low-risk drivers.  

Number of 
hard left turns 
per mile in 
Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.25 ⇑ 

High-risk drivers have a 
significantly higher average hard 
left turn rate than low-risk 
drivers.  

Number of 
hard right 
turns per mile 
in Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.22 ⇑ 

High-risk drivers have a 
significantly higher average hard 
right turn rate than low-risk 
drivers.  

Number of 
hard left yaws 
per mile in 
Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.12 ⇑ 

High-risk drivers have a 
significantly higher average hard 
left yaw rate than low-risk 
drivers.  

Number of 
hard right 
yaws per mile 
in Phase I 

Continuous 
Wilcoxon 
rank sum 
test 

1809 < 0.001 0.18 ⇑ 

High-risk drivers have a 
significantly higher average hard 
right yaw rate than low-risk 
drivers.  

Note: The phi coefficient was used to compute the effect size of categorical variables and Cliff's delta was used to 
compute the effect size of continuous variables. Gender, Number of Previous Crashes, and DBQ 3 – lapses were 
included in this analysis but were non-significant. 

An analysis was also conducted on the consistency of the high- and low-risk classification (based 
on the 80% criterion) of drivers across the two phases. As shown in Table 1, 10.2% of the drivers 
were consistently classified as high-risk drivers in Phase I and II, and 28.6% (15.2% + 13.4%) of 
drivers’ statuses were inconsistent. This analysis indicated the consistency of the high/low 
classification was moderate, at 71.4% across low- and high-risk drivers. However, only 40% of 
the high-risk drivers in Phase I were still classified as high-risk drivers in Phase II. Despite this, 
the relative risk of being classified as a high-risk driver in Phase II given high-risk classification 
in Phase I was significant at 2.23 [95% Confidence Interval (CI) = (1.90, 2.61)].  
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These results clearly demonstrate the phenomenon of differential CNC involvement, although it 
was only partially explained by the enduring personal factors included in the present analysis. 
CNC involvement was at least somewhat persistent over time for individual drivers. Taken 
together, these results show that enduring personal factors play a role in CNC involvement, 
although CNCs are also influenced to a large extent by other factors unrelated to enduring 
individual driver characteristics (or other enduring personal factors not included in the present 
analysis).  

Association between Self-Reported Driver Behavior/Personality and 
Crash Involvement  
A second analysis was specifically focused on the association between scores on the DBQ and 
the SSS, other involvement in crashes of different severity levels, and involvement in near 
crashes, driving style variables and demographics (age and gender). The results were published 
in de Winter et al. (2018) as commentary to an earlier paper by Martinussen et al. (2017), which 
analyzed correlations between the DBQ and recorded violations and crashes. The original study 
(Martinussen et al., 2017) found a moderate association between the DBQ violation score and 
actual traffic offences, but no significant association between DBQ scores and crashes. The 
present analysis (de Winter et al, 2018), which used the SHRP 2 dataset (but using the full data 
rather than the 6-month periods used in the other two analyses), generally confirmed these 
findings. DBQ-violations and SSS scores showed moderate correlations (around 0.2) with near-
crashes, certain driving style measures (hard turns) and age, but low (0.02-0.1) correlations with 
crashes, depending on crash severity and at fault classification.  

Classification of Crash Involved Drivers Based on Enduring Personal 
Factors 
The third analysis aimed to develop statistical models for classifying drivers involved in CNCs 
based on variables representing enduring personal characteristics.  

Two types of classification models were investigated with the goal of identifying CNC- (crash-) 
involved drivers based on the independent self-reported and driving style variables described 
above: logistic regression and RF classification. As described above, separate logistic regression 
was initially conducted for each of the driving style measures to determine optimal g-force 
threshold values based on minimum AIC.  

The models’ prediction performance was evaluated in terms of the recall rate (or sensitivity), 
precision (positive predictive value), and accuracy. In the context of this study, the recall rate is 
the number of correctly predicted CNC- or crash- involved drivers divided by the total number of 
CNC- (crash-) involved drivers. The precision is the number of correctly predicted CNC- 
(crash-) involved drivers divided by the total number of drivers predicted by a model to be CNC- 
(crash-) involved. Finally, the accuracy is the fraction of all drivers correctly classified as either 
CNC- (crash-) involved or not involved. 
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The full dataset of 2,458 drivers was randomly partitioned into two balanced groups: a training 
set (70%, 1,720 drivers) and a test set (30%, 738 drivers).  

The prediction performance results for the logistic regression models (LR_Crash and LR_CNC) 
are shown Table 3 and Table 4. Table 3 shows that LR_CNC (CNC involvement) has high recall 
rates of about 70% and good accuracy rates of about 60% for the training and test sets. Table 3 
also shows that LR_crash (crash involvement) has very low recall rates of about 0 for both sets, 
which may be the result of imbalanced datasets between drivers with or without crash events in 
the study period.  

Table 3. The Prediction Performance of Logistic Regression Models 

Models  Training Set   Test Set  

 Recall Precision Accuracy Recall Precision Accuracy 

LR_CNC 0.691 0.613 0.589 0.723 0.644 0.619 

LR_Crash 0.010 0.429 0.817 0.000 0.000 0.802 

 

Table 4. The Confusion Matrices of Logistic Regression Models 

 

The corresponding results for the RF models (RF_Crash and RF_CNC) are shown in Table 5 and 
Table 6. Table 5 shows that RF_CNC has a high recall and a good accuracy rates that are very 
close to the results of logistic regression models for the test set. Also, as shown by the confusion 
matrices in Table 6, the model performance on predicting crash involvement is very similar to 
the logistic regression model, where almost all drivers are classified as not crash-involved, 
indicating that the model failed to learn to recognize crash-involved drivers. Further results are 
reported in Huang et al. (in review). 

Table 5. Prediction Performance of Random Forest Models 

Models  Training Set   Test Set  
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 Recall Precision Accuracy Recall Precision Accuracy 

RF_CNC 1.000 1.000 1.000 0.745 0.652  0.633 

RF_Crash 1.000 1.000 1.000 0.014 0.333 0.800 

 

Table 6. Confusion Matrices of random Forest Models 

 

Discussion 

The main objective of this pilot project was to address a set of general research questions in 
order to lay the foundation for a larger effort on predictive crash analytics using large naturalistic 
crash and behavior datasets. In addition, a set of specific analyses were conducted with the 
purpose of demonstrating how this type of analysis can be carried out using large-scale 
naturalistic driving data and identifying open issues that can be addressed in the envisioned 
follow-up project. 

The results of these analyses clearly demonstrate the presence of differential CNC involvement 
in line with the Pareto 80–20 rule. Moreover, this is at least partly related to enduring personal 
factors associated with individual drivers (Huang et al., 2018). The results from the classification 
models (Huang et al, in review) further showed that a driver’s CNC involvement can be 
predicted with some degree of accuracy, precision, and recall based on measures representing 
enduring personal factors, such as driving style, demographics, personality, behavioral history, 
etc. However, these enduring personal factors seem more weakly correlated with crashes than 
with near crashes (de Winter et al., 2018) and the present classification models were 
unsuccessful in predicting crash involvement as opposed to CNC involvement. As further 
discussed in Huang et al. (in review), the fact that the training set contained more examples of 
near crashes than crashes likely led to better classification of the former (see de Winter et al., 
2018). Another potential reason for the different model performances could be that the current 
predictor variables mainly capture individual characteristics related to aggressive driving and 
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aggressive driving may be more strongly associated with near crashes than with crashes. By 
contrast, crashes may, to a larger extent than near crashes, be associated with driver inattention 
combined with rare/unexpected circumstances. This is supported by existing naturalistic driving 
analyses of driver inattention and crash/near crash involvement, which typically found eyes-off-
road to be more common in crashes than in near crashes (Klauer et al., 2006; Victor et al., 2015). 
Thus, one interesting avenue of further research would be to investigate to what extent driver 
inattention is associated with enduring personal factors (e.g., individual drivers may differ 
consistently in their willingness to engage in secondary tasks) and whether independent measures 
of secondary task engagement would bear a stronger relationship with crash involvement than 
the present variables.  

In any case, it would be premature to dismiss the possibilities of predicting crash involvement 
from enduring personal factors solely based on the present results, and there are several ways the 
classification models may be improved and there are other ways of analyzing these data that may 
shed further light on the relationship between enduring personal factors and crash involvement. 
In particular, there is much room for developing more sophisticated driving style indicators that 
may have a stronger relationship to crash involvement. Some potential candidates include jerk 
(Bagdadi and Varhelyi, 2011) and various measures based on speeding and close following (see 
Sagberg et al., 2015). Moreover, as previously mentioned, the current predictors are mainly 
related to aggressive driving; including indirect or direct measures of “inattention propensity” 
may help to improve model predictions for crashes. These are all examples of possibilities that 
could be further investigated in a follow-up project. 

Following, the more general research questions posed in the work plan are discussed based on 
the project results. 

How can the relationship between individual driver behavior/driving style and crashes be 
conceptualized?  

A conceptual framework was outlined based on existing literature, in particular Knipling (2009), 
and described in detail in Engström et al. (2017). A key idea is that driving style—persistent 
driving patterns characteristic of an individual driver (Sagberg et al, 2015)—can be understood 
as the manifestation of enduring personal factors related to demographics, personality, etc. 
Enduring personal factors combine with temporal personal factors, such as distraction and 
fatigue, and situational factors to produce a behavioral history of crashes, violations, etc. 
Accordingly, crashes generally occur due to interactions between enduring and temporal 
personal factors and situational factors, and can thus potentially be predicted, at least to some 
extent, based on variables that reflect individual characteristics (i.e., enduring personal factors). 
This framework proved very useful in guiding the present analyses and it is recommended that it 
be adopted in the potential follow-up project. 



 17 

What are the minimum requirements on behavioral and crash data for enabling predictive 
crash analytics on a larger scale?  

To enable the type of predictive models addressed by the present study, the data needs to contain 
detailed information on driver behavior as well as a large number, at least on the order of 
thousands, of crashes for the same drivers. The behavior observation data should include driving 
exposure data in mileage and/or driving hours and preferably be recorded continuously in order 
to obtain true rates of behavioral events. Driver screening (questionnaire) data on personality, 
self-reported driving history, etc. is also very useful as a complement to the observational data. 
Moreover, crashes and near crashes should ideally be coded with respect to severity and type.  

The only currently existing naturalistic dataset meeting all these criteria is the SHRP 2 dataset 
used here. However, as discussed above, the number of crashes in SHRP 2 was still found to be 
too small for the present analysis, especially if lower severity crashes, such as tire strikes are 
taken out. The fact that the present, albeit limited, classification models only achieved successful 
performance on CNC data (dominated by near crashes) may be at least partially explained by the 
relatively small number of crashes. Commercial naturalistic datasets (e.g., SmartDrive and Lytx) 
contain larger numbers of crashes but are, due to their event-based nature, typically limited with 
respect to the information available on behavior in non-conflict situations. The rapid 
development of data logging technologies, in particular video analytics techniques able to 
automatically detect a variety of driver behaviors in normal (non-conflict) driving, offer great 
promise in generating novel types of large-scale naturalistic driver behavior and crash datasets 
that can be used for behavior-based predictive analytics. 

What statistical methods are most appropriate for modeling the relationship between 
individual driver behaviors/driving styles and crashes based on naturalistic data?  

The two classification models employed in the present analysis, logistic regression and RF, 
yielded very similar results, indicating that, at least for this classification task, it was more the 
data than the type of model that influenced the results. In addition, a number of other statistical 
approaches were tested in the project, such as the prediction of individual crash and CNC rates 
based on Poisson and negative binomial regression. However, these attempts were largely 
unsuccessful, possibly due to the fact that the crash/CNC data contained a large point mass of 
zero values (i.e., drivers with no crashes or near crashes), leading to distributions very different 
from the Poisson or negative binomial distributions. 

How can commercial naturalistic data be made available for analysis while respecting 
legal, ethical, and business constraints?  

The discussions with Lytx and SmartDrive showed that there is a general interest from both 
companies to participate in academic research projects like the present one, and the collaboration 
with SmartDrive further showed that, as long as the data is completely anonymized, there are no 
fundamental barriers for sharing the data for academic research. A non-disclosure agreement was 
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needed in order to protect the company’s proprietary information, but this did not preclude the 
publication of the results in academic journals.  

Conclusions and Recommendations 

As described above, the results from the pilot project clearly demonstrated an association 
between individual enduring personal factors and the involvement in crashes and near crashes, 
while the prediction of crash involvement was less successful. This is likely due to a combination 
of the relatively low proportion of crash-involved drivers in the training data and a weak 
association between the currently used predictor variables and individual crash involvement. 
However, the current driving style variables were relatively simple and, in a follow-up project, 
there is clearly much room for exploring whether other types of metrics representing individual 
characteristics, such as close following and speeding behaviors and “inattention proneness” may 
be more strongly associated with crash involvement. It would also be interesting to analyze more 
thoroughly why the present models were able to predict individual involvement in near crashes, 
but not crashes. It is also recommended that future work involve a more in-depth exploration of 
alternative analytics models and different ways of organizing the behavioral and CNC data. 
Finally, it would be interesting to see to what extent the same model yields similar results on 
different datasets, such as SHRP 2 versus SmartDrive data.  

To conclude, this pilot project represented an initial exploration of applying predictive analytics 
models to identify unsafe drivers based on naturalistic driving data. The project generated some 
interesting and promising results but barely scratched the surface with regard to the possibilities 
of performing this type of analysis. These possibilities could be explored in a follow-up project 
with a larger budget and scope.  

Additional Products 

Since this was a pilot project with limited scope and budget, the additional products are limited to 
the master dataset produced and a curriculum for a course module on Behavior-based Predictive 
Analytics, further described below. The final project dataset can be found on the Safe-D Dataverse. 

Education and Workforce Development Products 
Curriculum for a Course Module on Differential Crash Involvement and Behavior-based 
Predictive Analytics 
A curriculum for a small course module on behavior-based predictive analytics is outlined in 
Appendix C. This is mainly intended as a guide and the module scope and content needs to be 
adapted to the context where it is to be applied (e.g., a larger graduate-level course on traffic 
safety). 

https://dataverse.vtti.vt.edu/dataverse/safed
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Technology Transfer Products  
The project has resulted in two publications and one presentation to date:  

De Winter, J. C. F, Dreger, F. A., Huang, W., Miller, A., Soccolich, S., Ghanipoor Machiani, S., 
& Engstrom, J. (2018). The relationship between the Driver Behavior Questionnaire, 
Sensation Seeking Scale, and recorded crashes: A brief comment on Martinussen et al. 
(2017) and new data from SHRP 2. Accident Analysis and Prevention, 118, 54-56. 

Huang, W., Engstrom, J., Miller, A., Jahangairi, A., Ghanipoor Machiani, S., Dreger, F. A., 
Soccolich, S., & de Winter, J. C. F. (2018). Modeling Differential Crash Involvement 
Based on SHRP 2 Naturalistic Driving Data. Accident Analysis and Prevention. Manuscript 
submitted for publication. 

Huang, W., Engstrom, J., Miller, A., Dreger, F. A., Soccolich, S., de Winter, J. C. F., & Ghanipoor 
Machiani, S. (2018). Analysis of Differential Crash and Near-Crash Involvement Based on 
Naturalistic Driving Data. Presented at the 7th International Symposium on Naturalistic 
Driving Research. Blacksburg, Virginia. 

Data Products  
The uploaded dataset from this project to the Safe-D collection on VTTI Dataverse contains 
2,800 drivers from the SHRP 2 data collection. Data include questionnaire factors on driver 
behaviors and risk perception, exposure metrics based on time, hours, and trips, crash-related 
data, and driver behavior variables mined from the 6-month study period. All data is at the 
driver-level and is continuous. 

Appendix D contains the data dictionary used for the dataset, including the variables, variable 
labels, data types, and minimum/maximum values.  

  

https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/464GB9
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Abstract 

The report reviews the current state of the art in the field of Behavior-based Predictive Safety 
Analytics (BPSA). BPSA, as conceived here, addresses the relationship between drivers’ 
personal characteristics, associated recurring behaviors and crash involvement. It is today well 
established that drivers are differentially involved in crashes and that these individual differences 
are associated with enduring personal factors such as demographics, health, personality and 
acquired skills. Moreover, the individual characteristics are reflected in recurring patterns of 
observable driver behaviors and records of behavior history (e.g., past traffic violations). Based 
on screening of personal characteristics and recording of their behavioral manifestations, 
statistical models can be developed that predict crash involvement for individual drivers. Such 
models can be used to identify risky drivers proactively and have a range of industrial 
applications, in particular in the domains of vehicle fleet management and usage-based 
insurance. 

This review starts by outlining some key concepts related to differential crash involvement. 
Existing research on crash involvement prediction for individual drivers is then reviewed, 
focusing on three general types of independent variables (1) enduring personal factors, (2) 
behavioral history and (3) observable behavior. The report also reviews the main statistical 
concepts and techniques that have been used to model differential crash involvement, as well 
existing industrial applications.  

It is concluded that research on BPSA, and differential crash involvement in general, is relatively 
scattered with few links between academic research and industrial development. Also, for the 
two main application domains, fleet management and usage-based insurance (UBI), the 
development of predictive analytics models appears to proceed more or less in parallel. 
Moreover, somewhat surprisingly, existing large sets of naturalistic driving data has so far not 
been extensively used in this context, at least not in academic research. It is clear that there is a 
need for more systematic and targeted academic research on BPSA with a great potential to 
rapidly advance the state-of-the-art in the field.  
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Introduction 

In-depth crash investigation studies (e.g., Treat et al., 1977; Craft and Preslopsky, 2009) as well 
as naturalistic driving studies (Dingus et al., 2006; Dingus et al., 2016) have consistently shown 
that driver factors play a role in the great majority of all crashes. Driver factors contributing to 
crashes include temporary behaviors or states such as driver distraction and fatigue but also more 
enduring personal characteristics such as (lack of) skills, acquired habits, health issues and 
personality-related factors (Knipling, 2009). This report focuses on the role of enduring personal 
characteristics and the degree to which crash involvement for an individual driver can be 
predicted based on such factors or their behavioral manifestations.  

While the old concept of “accident proneness” (Greenwood and Woods, 1929) has been more or 
less abandoned today, there is substantial evidence for differential crash involvement for both 
commercial and private drivers (e.g., Hanowski et al., 2000; Knipling, 2009; Knipling et al., 
2004; Soccolich, Hickman and Hanowski, 2011; Simons-Morton et al., 2012; Guo and Fang, 
2013). That individual differences play a key role in crash involvement is also a view widely 
held by safety managers in the transportation industry (Knipling et al., 2004). These differences 
have been related to a range of personal factors, such as gender, age, personality and health and 
may be manifested in recurrent patterns of observable driving behavior (e.g., speeding, close 
following and secondary task engagement) as well in records of behavioral history such as past 
violations, convictions and crashes.  

The main focus of the present report, and the Behavior-based Predictive Safety Analytics 
(BPSA) project as a whole, is on the relationship between observable recurring patterns of driver 
behavior, that is the driving style of the individual driver (Sagberg et al., 2015), and crash risk. 
The advent of large sets of naturalistic driving data, including both a large number of crashes and 
records of driving behavior, yields exciting new possibilities in creating predictive models 
mapping from individual behavior patterns to crash involvement. Compared the more traditional 
approach of predicting individual crash involvement based on drivers’ crash, violation and 
conviction records which accumulate over years (e.g., Murray et al., 2005, 2006; Lueck and 
Murray, 2011), the behavioral data needed for predictive models based on driving style can be 
collected in weeks (Guo and Fang, 2013; Smartdrive, 2017). While the focus of this review is on 
observable behavior, risk prediction based on direct screening of individual characteristics as 
well as behavioral history is also covered. These variables can be combined with observable 
behavior variables in multifactorial risk prediction models (e.g., “big data” analytics techniques).  

As further reviewed below, predictive safety analytics have many applications, in particular in 
the areas of driver selection, fleet management and usage-based insurance, and there is a strong 
current commercial interest in these techniques. Furthermore, an enhanced understanding of the 
relationship between individual driver behavior and crash risk is of key importance for 
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estimating potential safety benefits of automated driving (AD) systems, since one of the key 
expected benefits of AD is the elimination of unsafe driving behaviors. 

The report is organized as follows. The next section introduces some key concepts relevant to the 
topic of differential crash involvement among drivers. Section 3 reviews existing literature on 
individual crash involvement prediction based on (1) the direct measurement/screening of 
enduring personal factors, (2) behavioral history and (3) observable driver behavior. Section 4 
then reviews statistical modelling techniques commonly used in differential crash involvement 
research and Section 5 gives examples of existing applications. Finally, Section 6 provides a 
summary and some general conclusions.  

Differential crash involvement: Key concepts 

Crash causation 
Crashes typically occur through interaction between a multitude of factors related to the driver, 
the vehicle and the environment or current traffic situation. A useful way to think about crash 
causation is in terms of the Swiss cheese model (Reason, 1990) which pictures crash defenses as 
layered slices of Swiss cheese with holes in them. The holes represent different limitations in the 
defenses and when they become aligned a crash occurs. Knipling (2009) conceptualizes the 
Swiss cheese model specifically in terms of the relationship between driver error and crashes. 
Here, the slices represent things like “behavior while driving”, “attention” and “road and traffic 
events” whereas the holes represents potential crash causation factors such “tailgating”, 
“distraction” and “car cutting in”. As Knipling (2009) points out, one limitation of the Swiss 
cheese metaphor when applied to driving is that any single factor (hole) may cause a crash 
although, in practice, crashes are caused by the interaction of two or more factors. Based on 
these ideas, Knipling (2009) outlines the more concrete Crash Trifecta model, further developed 
by Dunn, Hickman and Hanowski (2015). The key idea is that many crashes can be generally 
described in terms of three general elements which may or may not occur in combination (1) 
unsafe pre-incident behavior or maneuver (e.g., speeding, tailgating, unsafe turn), (2) transient 
driver inattention (e.g., an off-road glance) and (3) an unexpected traffic event (e.g., unexpected 
braking by the vehicle ahead). 

Personal versus situational crash causation factors 
The key question for present purposes is how one might think about the role of individual driver 
factors in crash causation. Early work addressing this question was motivated by observations 
that, after controlling for non-personal factors, crashes (or accidents in other domains) are 
typically not distributed among individuals in a way that could be explained by chance alone. In 
order to account for this individual variation, the concept of “accident proneness” was introduced 
(e.g., Greenwood and Woods, 1919). Thus, accident proneness was essentially a statistical 
concept ignoring the actual mechanisms underlying the individual differences. The adequacy of 
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this concept has been debated over the years (see review by McKenna, 1983) and today it is 
largely abandoned in favor of the “differential crash involvement” concept. The basic idea 
underlying differential crash involvement is that some drivers have certain personal 
characteristics that make them more likely to become involved in crashes. For example, this may 
be related to a stronger propensity for risk taking among certain drivers, leading these drivers to 
look away from the road for longer periods and more frequently than the average driver, 
increasing the risk for an off-road glance to co-occur with an unexpected event (e.g., a lead 
vehicle braking), thus leading to a crash. However, importantly, drivers’ behavior (off road 
glances in this example) is also determined also by more temporary driver factors (e.g., a strong 
motivation to send a text message) or situational factors (e.g., driving in dense traffic requiring 
frequent mirror checks). 

Knipling (2009) suggests a general distinction between personal and situational risk factors. The 
former refers to factors related to things “inside” the driver while situational factors refer to all 
other types of factors “outside” the driver, such as traffic, roadway, weather and the vehicle.  

Personal factors may be further divided into temporary and enduring factors. The former relates 
to things that typically changes from day-to-day or hour-to-hour like colds, sleepiness and mood. 
By contrast, enduring factors, also referred to as constitutional personal driver factors (Knipling, 
2009), refer to long term or permanent characteristics of a person such as gender, age, 
personality, driving experience, physical/sensory-motor abilities, skills, medical conditions and 
health, psychiatric & behavioral disorders etc. The present report is mainly concerned with 
enduring personal factors, since these are the fundamental factors underlying differential crash 
involvement.  

Enduring factors may manifest themselves in terms of observable driver behavior patterns (e.g., 
speeding, close following, hard braking, involvement in traffic conflicts, engagement in 
distraction, fatigue etc.) as well as in (driving and non-driving) behavioral history (e.g., the 
number of crashes or violations in the past 3 year, criminal records, credit history etc.). Driving 
behaviors may then contribute to crash causation in different ways. As mentioned above, and 
reviewed in further detail below, there is strong evidence that enduring personal factors influence 
crash involvement beyond mere chance. However, it is also clear that they often interact with 
situational factors and temporary personal factors in non-trivial ways in producing crashes. For 
example, while the occurrence of driver fatigue can be regarded a temporary factor, there is 
strong evidence that the susceptibility to fatigue is an enduring factor (Knipling et al., 2004). A 
similar argument may be made for the role of alcohol in crash causation, as the effect of alcohol 
on behavior may depend strongly on enduring personality-related factors (see review in Elander 
et al., 1993). Thus, crashes often occur through an interaction between enduring personal factors, 
temporary personal factors and situational factors and the relative contributions of these different 
types of factors to crash genesis are often difficult to disentangle (Elander et al., 1993).  
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Figure 1 provides a general illustration of these concepts. Current (driving and non-driving) 
behavior is influenced by situational factors as well as temporary and enduring personal factors. 
This results in behavioral outcomes that may be successful (i.e., the situation played out as 
expected) or unsuccessful, leading for example to crashes, traffic conflicts (e.g., near crashes), 
violations and convictions. These events constitute the driver’s behavioral history and certain 
events may become recorded in crash databases, naturalistic driving data, inspection records (for 
commercial vehicles), legal records, etc. Importantly, all this takes place in a sociocultural 
context (e.g., a national or workplace culture; Sagberg et al., 2015). Enduring personal factors 
will be reflected in recurring observable behavioral patterns as well as behavioral history, 
although both are also influenced by temporary personal and situational factors. Some of these 
recurring behaviors (e.g., tailgating, speeding, distraction) may be associated with increased 
crash risk. Hence, by developing statistical models that map from direct measurements of 
enduring personal factors (e.g., personality tests), observable driving style and/or behavioral 
history to crash involvement, it may be possible to identify unsafe drivers and before they 
become involved in crashes. The specific focus of this review is on such predictive models. 
Thus, while the literature on the general relationship between enduring personal factors, 
observable behavior, behavioral history and crash involvement is extensive, the scope of the 
present review is limited to studies that developed actual predictive models with the purpose to 
identify unsafe drivers. General overviews of research on individual driver characteristics and 
road safety is given in Knipling et al. (2004) and Knipling (2009). Sagberg et al. (2015) provides 
an extensive review of research related to driving style and safety. 

  

Figure 1. Conceptual framework for BPSA and differential crash involvement 
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At fault 
 
In road safety research, a common distinction is that between “at-fault” and “not-at-fault 
crashes”. In the context of differential crash involvement research, such a distinction becomes 
particularly important as it would be expected that (both enduring and temporary) personal 
factors would play a stronger role in “at-fault” crashes. However, since “fault” refers to legal 
culpability rather than actual causal mechanisms alternative terms are preferable. For example, 
"active" versus "passive" crashes (Elander et al., 1993; West et al., 1992) refer to whether or not 
the behavior of the reporting driver played a role in the causation of the crash (and not whether 
the driver was legally responsible, which depends on the jurisdiction in the region where the 
crash took place). A study in which reported crashes were classified as active or passive showed 
that, whereas crash involvement in a 1-year period doubled the odds of crash involvement in a 
subsequent 2-year period, active crash involvement quadrupled the odds of a further active crash 
(West et al., 1992). Thus, more reliable measures of differential crash involvement could be 
obtained by focusing on active crashes only. 

Exposure 
A fundamental issue in differential crash involvement research is exposure (e.g., on what types 
of roads/traffic the driver is driving and how much or for how long). If exposure is not controlled 
for, it is impossible to determine whether individual differences in crash involvement is related 
to personal factors or just a result of some drivers simply being exposed to more risk than others 
(McKenna, 1983). As reviewed below, this has traditionally been a major issue in studies based 
on recorded or self-reported behavior history (crashes, violations etc.) where objective exposure 
data is typically not available and subjectively reported exposure is always subject to uncertainty 
(Elander et al., 1993). Thus, one of the key advantages of naturalistic driving data in differential 
crash involvement research is that precise estimates of exposure is typically readily available. 

Review of existing factors and models predicting 
individual crash involvement 

This section is structured based on the concepts introduced in the previous section (Figure 1). 
The next subsection addresses models predicting individual crash involvement directly on the 
basis of (measured or identified) ensuring personal factors such as age, gender, health and 
personality. Section 0 then reviews models based on behavioral history while section 0 focuses 
on predictive models based on observable driving behavior.  
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Enduring personal factors  
Age and experience 
Age is a key potential predictor of crash involvement. It is well-established that teenage drivers 
and older drivers are generally overrepresented in crash statistics (Massie et al., 1995; NHTSA, 
2012). However, it is challenging to disentangle effects of age from effects of driving experience 
on crash risk where, traditionally, a key reason has been the lack of exposure information. For 
commercial vehicle drivers, even if exposure is available, the situation is further complicated by 
the fact that younger drivers are typically hired by different types of companies than older 
drivers and drive different types of vehicles (Knipling et al., 2004). These issues do not seem to 
apply to the same extent for young car drivers, and a recent review by McCartt et al. (2009) 
concluded that, for young car drivers, age and experience seem to affect crash risk independently 
of each other. 

Effects of old age on crash risk are more uncertain. Some studies have found an 
overrepresentation of drivers older than 65 years in crashes per mile, but this may also be related 
to their typical low mileage (Elander, 1993). Older drivers also tend to self-regulate to limit their 
exposure to difficult driving situations (Ball et al., 1998), thus compensating for potential 
physical, perceptual or cognitive impairments. Knipling et al., (2004) suggests that there is little 
evidence of increased crash risk for older truck drivers, but a recent review concluded that crash 
risk among truck drivers starts increasing after the age of 63 (Duke, Guest and Boggess, 2010). 
A key issue here is that effects of age may be confounded due to better (safer) truck drivers 
staying longer on the job while the worst truck drivers (with a bad crash history) may get fired or 
change career voluntarily. 

Statistical models using age as a predictor have yielded somewhat mixed results. Soccolich et al. 
(2011) investigated the extent to which age and a range of other anthropometric variables (see 
below) for truck drivers predicted their involvement in safety-critical events (crashes, near 
crashes, crash-relevant conflicts and non-intentional lane departures) in naturalistic commercial 
vehicle data. In a first step, drivers were grouped into three risk categories (Safe, Average and 
Risky) by means of statistical clustering. Next, differences in various demographics variables 
between the risk groups were tested (ANOVAs and Fisher’s tests). It was found that the average 
age did not distinguish significantly between the risk groups. 

In a study using naturalistic driving data collected from private passenger cars (the 100-car 
study; Dingus et al., 2005), Guo and Fang (2013) developed a statistical model for predicting 
crash and near crash (CNC) involvement in based on age, personality and critical incident rate. 
Results for the two latter factors are discussed further below. With respect to age, it was found 
that drivers under 25 years of age were strongly overrepresented in CNCs compared to drivers 
older than 25 years. In a negative binomial regression model, ‘age under 25 years’ versus ‘25-55 
years’ significantly predicted CNC rate. Moreover, similar to Soccolich et al. (2011), the drivers 
were classified into three risk categories (Low, Moderate, High risk) by means of cluster analysis 
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based on their CNC rates. Logistic regression models were then developed classifying 
high/moderate risk drivers vs. low risk drivers, or high risk drivers vs. moderate/low risk drivers. 
It was found that age was a significant predictor, but only in the former model. The discrepancy 
between the two studies may possibly be explained by the different driver populations, where 
teenage drivers most likely strongly contributed to the age effect in Guo and Fang (2013) while 
this age group was absent in the commercial vehicle dataset analyzed by Soccolich et al. (2011). 

Abdel-Aty and Radwan (2000) used negative binomial models to test the effect of roadway 
conditions on accident occurrence. Researchers included permanent roadway features (such as 
lane, shoulder, and median widths and the roadway curvature, as well as several others). These 
researchers also considered how driver demographic variables, such as age or gender, affected 
the relationship between accident involvement and roadway features by building separate 
negative binomial models for each demographic variable level and comparing them. The models 
indicated female drivers experienced significantly more accidents than male drivers in the 
following roadway conditions: narrow lane width, reduced median width, larger number of 
traffic lanes, and heavy traffic volume. Age was also found to be associated with significant 
differences in accident rate by roadway features. Young drivers experienced more accidents on 
roadway curves and both young and older drivers had more accidents on roadways with reduced 
shoulder or median widths or heavy traffic. Speeding was associated with more accidents in 
males and young drivers. 
 
To summarize, age appears to be a relatively reliable predictor of crash involvement, but mainly 
for passenger car driver populations involving young drivers, especially teenagers, and/or in 
combination with other variables such as roadway features. 
 
Gender 
Gender does not seem to be a strong predictor of crash risk. For example, in the analysis of Guo 
and Fang (2013), gender did not have a significant impact on CNC risk and was thus dropped 
from the model. In line with this Soccolich et al. (2011) did not find any differences due to 
gender between the three risk groups.  

A recent white paper by CEI (2017) reports on the use of demographics information in a 
predictive safety analytics model developed for commercial vehicle fleets. The model includes 
age and gender as well as other demographics information such the industry in which the fleet 
operates and whether the driver assigned management role. However, no results on the predictive 
value of these variables are presented. 

Health 
Many studies have demonstrated a relationship between various anthropometric and health 
variables and involvement in crashes or other safety critical events. This includes obesity 
(Wiegand, Hanowski and McDonald, 2009; Anderson, Godava and Steffan, 2012), fatigue and 
sleep disorders (Howard et al., 2004), ADHD (Segal and Habinski, 2006).  
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Sagberg (2006) estimated relative crash risk in terms of odds ratios for a range of medical 
conditions and found significantly increased risk for the following conditions: non-medicated 
diabetes (OR = 3.08), a history of myocardial infarction (OR = 1.77), using glasses when driving 
(OR = 1.26), myopia (OR = 1.22), sleep onset insomnia (OR = 1.87), frequent tiredness 
(OR = 1.36), anxiety (OR = 3.15), feeling depressed (OR = 2.43), taking antidepressants 
(OR = 1.70) and for patients that had suffered a stroke (OR = 1.93).  

However, these types of factors have seldom been used in predictive models intended to identify 
high risk drivers, one reason being that many of these conditions are relatively rare. One 
exception is Soccolich et al. (2011; see above) who, in their model based on naturalistic truck 
data, found that drivers who suffered head injury, inner ear problem, arthritis and motion 
sickness were significantly overrepresented in the high risk group.  

Personality 
Personality can be broadly construed as enduring psychological traits that affect behavior, or as 
“a style of interaction with the world” (Knipling, 2009). It is typically measured by means of 
subjective instruments representing different personality dimensions. One influential approach is 
the NEO inventory, also known as the “big-five” personality factors: neuroticism, extroversion, 
openness to experience, agreeableness and conscientiousness (e.g., Dahlen and White, 2006). 
Some evidence suggests that low agreeableness and low conscientiousness are the NEO 
dimensions most related to vehicle crash risk (Boris and Luciana, 2017). Schwebel et al. (2006) 
suggest that most personality dimensions proposed in the literature can be grouped into three 
main categories: (1) sensation seeking, (2) conscientiousness (here viewed as the antonym to 
impulsiveness) and (3) anger/hostility.  

There is substantial evidence for a relationship between personality characteristics and unsafe 
driving behavior (Boris and Luciana, 2017; Jonah, 1997; Knipling et al., 2004; Knipling, 2009; 
Schwebel, 2006). Ulleberg and Rundmo (2003) further suggested, based on questionnaire data, 
that the relationship between personality traits and risky driving is mediated primarily through 
attitudes. On the other hand, Wilson and Greensmith (1983) did not find any difference in 
personality measures between groups of accident-involved and accident-free drivers, while they 
found several differences in driving behavior variables (see below). However, their personality 
inventories differed from those used in most other studies.2 

Guo and Fang (2013) included the NEO five factor personality inventory in their statistical 
model developed to predict crashes and near crashes (CNC) in the 100-car study dataset based on 
age, personality and critical incident events (see above and further below). It was found that the 
five NEO variables correlated strongly and they were thus reduced to a single dimension by 

                                                 
 

2 The personality screening instruments used by Wilson and Greensmith (1983) were the Eysenck Personality Inventory, Form A; 
the IPAT anxiety questionnaire and the Parry aggression and anxiety questionnaire. 



 35 

means of PCA before being used in the model. In a negative binomial regression model the 
composite personality variable was found to be a significant predictor of CNC rate. However, the 
personality score was not a significant predictor in the logistic regression model classifying high 
vs. moderate/low risk drivers (or high/moderate vs. low risk drivers). 

 

Behavioral history 
One important line of research on individual crash risk has related drivers’ behavioral history in 
terms of past inspection violations, convictions and crashes to future crash risk. A key advantage 
of this approach is the availability (at least in the US) of large amounts of violation, conviction3 
and historical crash data from government records (e.g., the Motor Vehicle Record, the 
Commercial Driver's License Information System (CDLIS) and the Motor Carrier Management 
Information System (MCMIS). It is also common practice among carriers to monitor drivers and 
evaluate them based on the number a crashes and or traffic violations in a certain time period 
(e.g., 3 years).  

Studies have typically demonstrated strong relationships between behavioral history variables 
and crash involvement, both for private and commercial drivers. For example, West et al. (1992) 
reported that the odds of having a crash in a 2-year period were doubled for private car drivers 
who had had one or more crashes in the preceding year. Several commercial vehicle studies have 
demonstrated a significant relationship between traffic citation and conviction history and crash 
rates at the carrier level (Lantz and Blevins, 1997; Lantz, Loftus and Keane, 2004; Knipling, 
Olsen and Prailey; 2004). However, due to the high turnover of driver at fleets, carrier-level 
safety measures based on individual driver behavior may not be stable over time. For this reason, 
the American Transportation Research Institute (ATRI) conducted a study in 2005 with the goal 
to predict crash involvement from individual truck driver behavior history (Murray, Lantz and 
Kepler, 2005; Murray et al., 2006) which was more recently followed up with a similar study 
(Lueck and Murray, 2011). Both studies were based on behavior history data from CDLIS and 
MCMIS.  
 
CDLIS is a nationwide source of commercial drivers’ traffic conviction data and MCMIS is a 
centralized database of carrier-based information about accidents and roadside inspections of 
commercial motor vehicles and drivers, originally collected at the state-level and maintained by 
FMCSA. Violations are issued to drivers during roadside inspections when inspectors discover 
that a driver and/or vehicle is not in compliance with one or more of the Federal Motor Carrier 
Safety Regulations (FMCSRs) and are recorded in MCMIS. By contrast, convictions, recorded in 
CDLIS, represent cases where a driver has been issued a citation and being found guilty of the 

                                                 
 

3 Convictions refer to the subset of citations that have gone through the adjudication process. 
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specific charge in court. Thus, a similar behavior may show up both as a violation and as a 
conviction but there is not necessarily a one-to-one relationship between them.  

In the 2005 study (Murray et al., 2005; Murray et al., 2006), drivers that had a roadside 
inspection during the prior three months (February to April 2004) were identified in MCMIS. 
This lead to a sample of 540,750 US drivers. For these drivers, inspection violations, convictions 
and crashes that occurred during the period of February 2001-April 2004 were obtained from 
MCMIS and CDLIS. A Chi-square analysis (methodological details are not reported) showed 
that a variety of violations and convictions, as well as past crashes, were strongly associated with 
increased future crash probability. However, it is not clear from the report if the three-year data 
sample was split up in some way to test the predictability of behaviors recorded during the first 
period on crashes during the second period.  

With respect to violations, the highest increase in crash likelihood was obtained for the following 
behaviors (percentages indicate the increase in crash likelihood): 

• Reckless driving violation (325%)  
• Improper turn violation (105%) 
• Improper lane change violation1 (78%) 
• Failure to yield right of way violation (70%) 
• False/no log book violation (51%) 

The top-five convictions associated with crash risk were  

• Improper or erratic lane changes conviction (100%)  
• Failure to yield right of way conviction (97%)  
• Improper turn conviction (94%) 
• Failure to keep in proper lane conviction (91%) 

Finally, a past crash increased the crash likelihood by 87 percent. The authors also fitted a 
logistic regression model to predict crash risk by means of stepwise inclusion of the 
violation/conviction/crash variables.  

In the 2011 replication of the 2005 ATRI study (Lueck and Murray, 2011), US drivers that 
received a roadside inspection or had been involved in a crash during January to March 2010 
were included in the analysis, resulting in 587,772 drivers. Violations, convictions and crashes 
that occurred during the calendar year 2008 were then used to predict crash involvement during 
2009. A Chi-square analysis similar to that performed in the 2005 study yielded the following 
results for violations: 
 

• Improper passing violation (88%) 
• Hours-of-Service violation (45%) 
• False/no log book violation (42%) 
• An Improper Lane Change violation (41%) 
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• A Following Too Close violation (41%) 

The convictions most associated with an increase in crash risk were: 

• A Failure to Use/Improper Signal conviction (96%) 
• An Improper Passing violation (88%) 
• An Improper Turn conviction (84%) 
• An Improper or Erratic Lane Changes conviction (80%) 
• An Improper Lane/Location conviction (68%) 

A past crash was associated with an increased likelihood of 88%. 

While the majority of the behaviors analyzed (73.5%) had a stable relationship to crash risk for 
the two ATRI studies, there were also several major differences. For example, half of the top-ten 
behaviors in the 2005 study were non-significant in the 2011 study. In general, the associations 
between behaviors and crash involvement were weaker in the 2011 study. 

The authors discuss different possible explanations for these discrepancies including changes in 
how conviction data is handled, technological advances (e.g., replacing log books with electronic 
data recorders), a reduced overall prevalence of violations/convictions and crashes (reducing 
statistical significance) and the successful implementation of countermeasures addressing several 
of the most problematic behaviors during the six years that passed between the studies. 

A recent white paper by the fleet management company CEI (CEI, 2017) describes a driver risk 
prediction model based on a 5-year behavior history data enhanced with driver demographics 
(e.g., age and gender) and geographic data, employing modern “big data” predictive analytics 
techniques. The company claims that this model outperforms traditional models based on 
behavior history only and is able to predict actual crash involvement with a high degree of 
accuracy. However, no details of the model are disclosed. 

As mentioned above, and discussed in Knipling (2009), a general issue with this type of behavior 
history analysis is that exposure data is not available. It is thus theoretically possible that the 
obtained relationship between historical behaviors and future crash risk is at least partially 
confounded by driving exposure (i.e., the drivers who drove the most had the most crashes as 
well as violations and convictions). The same holds for studies based on self-reported crashes, 
although some of these have addressed this problem by also including self-reported driving 
exposure (Elander et al., 1993). 

Observable driving behavior  
There is a long-standing tradition of research indicating a relationship between individual 
characteristics of observable patterns of driving behavior and crash involvement (Sagberg et al., 
2015). As noted above, a key advantage of using observable behavior data as input to crash 
prediction models is that behavioral events (such as speeding or high g-forces) occur more 
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frequently than, for example, violations and convictions, which enables predictions based on a 
shorter time window of data. This is important especially for evaluating newly licensed drivers 
and commercial drivers that are new to a company. Moreover, when naturalistic driving data is 
used to obtain observable behavior, exposure information is normally readily available.  

In a classical study, Tillmann and Hobbs (1949) performed interviews with crash-involved and 
crash-free taxi drivers during taxi trips. They observed that taxi drivers with a high previous 
crash involvement… 

 “…were easily distracted while driving. They tended to be readily annoyed at other motorists 
on the road, often criticizing their own driving mistakes in others. Horn honking and racing other 
cars away from a stop light were their specialties. (p. 325; cited by Sagberg et al., 2015).  

By contrast, taxi drivers with low crash rate…  

“…were serious when driving and often refused to talk. They tended to be courteous to other 
drivers on the road and stated that they were conscious of the fact that the other driver might 
do the wrong thing. They appreciated the possible limitations of their vehicle.” (p. 326; cited by 
Sagberg et al., 2015). 

Based on these results, their oft-cited conclusion was “a man drives as he lives”. 

Probably the earliest attempts to identify risky drivers based on actual driving behavior 
measurements is the work by Greenshields and Platt (Greenshields, 1963; Greenshields and Platt, 
1967) based on the “Drivometer”, an early apparatus for automatically collecting driving data in 
an instrumented vehicle. An initial study (Greenshields, 1963) demonstrated that a group of 
drivers with a history of high crash involvement exhibited significantly more frequent accelerator 
pedal reversals than a control group of driving instructors. In a second study (Greenshields and 
Platt, 1967), drivers recruited based on insurance data were divided into four categories: (1) 
drivers with high previous crash involvement (but low number of violations), (2) drivers with a 
high number of traffic violations (but low number of crashes), (3) novice drivers and (4) a 
control group of ordinary drivers and driving instructors with low crash involvement. The 
participants drove a pre-defined route during which a variety of driving behavior measures were 
collected by vehicle sensors combined with real-time observer event annotation. A discriminant 
classifier which included the variables running time (the total time the vehicle was moving), 
accelerator pedal reversals, brake applications, "gross" steering-wheel reversals, and "micro" 
steering-wheel reversals was able to classify a set of novel participants (previously unseen by the 
model) into the four groups with an accuracy of 67-100%. 
 
Wilson and Greensmith (1983) conducted a similar using the same “Drivometer” apparatus 
developed by Greenshields and Platt, but included a wider range of driving performance 
variables. One hundred drivers were categorized into six groups based on self-reported accident 
involvement, driving exposure (mileage per year) and gender. The driving variables used in the 
analysis included:  

• Run time 
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• Speed changes 
• Fine steering reversals 
• Coarse steering reversals 
• Accelerator applications 
• Brake applications 
• Moderate lateral acceleration events (> 0.15 g was reached on a bend for 1 s or longer) 
• Strong lateral acceleration events (> 0.3 g was reached on a bend for 1 s or longer) 
• Gear changes 
• Mean clear speeds (the speed in free driving conditions at a certain location) 
• Signals (all signals made by the subject whether by hand or mechanically) 
• Frequency of overtaking 
• Frequency of being overtaken 

As mentioned above, the study also involved several personality inventories but the personality 
scores did not differ between any of the participant groups. The participants drove a pre-defined 
route of about 50 km in different road types and conditions (rural, secondary and main highway). 
It was found that compared to accident-involved drivers, accident free drivers had a higher 
frequency of fine steering wheel reversals, drove at lower mean clear speeds, overtook other 
drivers less frequently, and were overtaken more frequently. Discriminant functions were used to 
classify individual drivers into their respective groups and 76% of the accident free drivers and 
68% of the accident-involved drivers were correctly classified (it appears that the model was 
tested on the same dataset used to train it). The general conclusion from the study was that 
accident-involved drivers to a greater extent continually moves about in traffic and drive at faster 
preferred speeds.  

West et al. (1993) had 48 drivers driving a pre-define route under observation by a test leader 
and also collected self-reports on crash involvement during the past three years. A logistic 
regression analysis showed that preferred speed on the motorway, but not maximum speed, 
significantly predicted self-reported crash involvement. 

It should be noted that the studies reviewed so far all were controlled experiments, using pre-
defined routes, where some performance measures were only taken at pre-defined locations (e.g., 
preferred speed on a motorway section). This likely helped to isolate the effects of personal 
factors by at least partly controlling for variance induced by situational factors (e.g., variations in 
road layout, traffic density etc.). This probably greatly simplified the classification task but such 
luxury is clearly not available to applied crash prediction models that have to deal with real-
world driving data. 

A series of roadside naturalistic observation studies by Evans and Wasielewski (Evans and 
Wasielewski, 1982, 1983; Wasielewski, 1984) investigated the relationship between headway, 
speed, accident involvement as well as several other variables. Headways and free-driving speed 
on an urban highway were measured from the roadside and the drivers and the vehicles’ license 
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plate were photographed. From the license plate number, information regarding the vehicle and 
the vehicle owner, including gender, age and driving record (previous accidents and violations) 
was obtained. The results demonstrated significant, but relatively weak, correlations between the 
drivers’ accident involvement history and the adopted headway (Evans and Wasielewski, 1982, 
1983) as well as between accident involvement history and free speed (Wasielewski, 1984). 
Furthermore, it was demonstrated that the adopted speeds and headways for the same driver 
showed some consistency across repeated observations. However, the correlations between the 
repeated measures were quite weak indicating a strong influence of situational factors. The 
studies also found correlations between accident involvement and other driver characteristics and 
behavior variables such age, gender, violation points and seat belt use.  

af Wåhlberg (e.g., 2006) has developed and evaluated the “celeration behavior theory” 
suggesting that “…all speed changes denote a (very miniscule) risk of accident, and therefore 
predict that the sum of all such changes (celerations) of a driver will be equal to his/her accident 
record, when both variables have been standardized.” The term “celeration” here refers to the 
sum of longitudinal and lateral, positive and negative, accelerations. The theory has been tested 
in several studies with Swedish transit bus drivers driving fixed routes, for which crash records 
were available from the bus company. The study described in af Wåhlberg (2006) was based on 
data from 3 years involving about 250 drivers. The association between celeration measurements 
and accident involvement was quantified in terms of Pearson correlations. The correlations 
between the number of accidents and mean longitudinal acceleration (which for practical reasons 
was used as a proxy for celeration in this study) were in the range of 0.2-0.3 depending on the 
driver sample used. The corresponding correlations for speed measures were slightly lower, 
around 0.2. 

Bagdadi and Varhelyi (2011) investigated the relationship between jerk (i.e., the time derivative 
of acceleration) and self-reported crash involvement using an existing dataset of 166 car drivers 
in Sweden. Using Poisson regression modelling, they found jerk rate to be a significant predictor 
of self-reported crash involvement.   

The studies reviewed so far have suffered from a number of issues, such as limited sample sizes, 
the use of pre-determined routes which restricts the influence of situational factors compared to 
everyday, naturalistic driving and/or the lack of exposure (mileage) information in the accident 
records or self-reported accident involvement (as noted above, this is also a problem in the 
behavioral history studies). Thus, a major breakthrough in the study of individual driver risk has 
come with the advent of large-scale naturalistic driving data. This allows individual driving 
behavior variables to be associated with observed crashes and near crashes in the same dataset, 
accounting for exposure in a precise way. Moreover, video-recordings allow for a detailed 
analysis of crash and near crash causation and risk. 

Probably the first published application of naturalistic driving data to crash prediction at the 
individual level is the study by Simons-Morton et al. (2012), who analyzed the relationship 
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between gravitational-force (g-force) events and at fault crash/near crash (CNC) rate for 42 
newly licensed teenage drivers. Data for each driver was collected for 18 months. Five different 
types of g-force events where calculated: rapid starts (>0.35 g), hard stops (<-0.45 g), hard 
left/right turns (<+-0.05 g) and yaw (6 degrees in 3 seconds). These were combined into a 
composite metric used in the statistical modelling (models retaining the individual metrics were 
also tested but did not improve performance over the models using the composite metric). The 
results showed a strongly significant Spearman correlation of 0.6 between the composite metric 
of g-force events and CNC rates during the 18 month period. Furthermore, a logistic regression 
model showed that the rate of g-force events in the prior month predicted CNC risk (for the 
presence of a crash) in the following month with a 76% prediction accuracy. A further analysis 
reported in Simons-Morton et al. (2013) found that the g-force rates for individual drivers during 
the first 6 months were similar to individual rates during the next two 6 month periods, 
demonstrating consistency in individual risky driving. 
 
Guo and Fang (2013) conducted a similar analysis using the 100-car naturalistic driving study 
data. As reviewed above, they found that age and personality were significant predictors of CNC 
rate. However, the strongest predictor was the rate of critical-incidence events (CIEs). CIE were 
not directly measured but coded in the data based on: (1) Identification of events where the car 
sensors exceeded a specified value (e.g., brake response of >0.6 g (the exact kinematic criteria 
are not reported), (2) when the driver pressed an incident push-button and (3) through data 
reductionists’ judgments when reviewing the video. As also mentioned above, a logistic 
regression model based on the three predictors successfully classified drivers into two risk 
categories defined by clustering the rate of CNC involvement.  

While these naturalistic driving studies have significantly advanced the state of the art in 
predictive analytics modelling of individual risk, a key limitation is that the CNCs that the 
models are trained to predict are dominated by low-severity crashes and near-crashes. Today, the 
SHRP 2 naturalistic study, with more than 3500 vehicles, provides a much larger dataset with a 
significant number of crashes (+1500), many of which are relatively severe. However, to the 
knowledge of the authors, the SHRP 2 dataset has so far not been analyzed with respect to 
individual driver risk. 

Even larger sets of video-recorded naturalistic events exists are today collected by private 
companies such as Lytx and SmartDrive who instrument hundreds of thousands of vehicles with 
event-triggered video data recorders as part of safety management services offered to 
commercial vehicle fleets. Videos of safety critical events identified by kinematic triggers (and 
more recently also by means of onboard sensors), are further analyzed by data reductionists in 
order to identify and annotate unsafe behaviors. The reduced data is then used by fleets to 
identify risky drivers and coach them towards safer driving. As a result, thousands of crashes and 
large quantities of behavioral events are collected each month. Behavior-based predictive safety 
analytics is a key part of the services offered by these companies. Although no published studies 
are available on these models, some general descriptions of methodologies and results are 
available in recent white papers. 
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SmartDrive (2017) offers a relatively detailed description of how this type of event-triggered 
naturalistic driving data can be used to estimate individual driver risk, although no technical 
details are disclosed. The SmartDrive white paper argues that historical collision data is 
inadequate and impractical for identifying risky drivers since (1) collisions are rare and (2) some 
drivers do not continue driving after they have a collision. The paper acknowledges the 
traditional approach (review in the previous section) of using motor vehicle records, traffic 
citations and roadside inspection to estimate a drivers’ risk rate but argues that, since also this 
data is relatively sparse, it is better suited to evaluate risk at the fleet level. It is suggested that a 
better approach is to observe driver behaviors and link these behaviors to collision involvement 
by means of predictive analytics models. This shorter timescale also enables more effective 
interventions for risky drivers.  

The white paper (SmartDrive, 2017) describes an example analysis using data from more than 
27,000 drivers, sampled over two years, resulting in 6.3 million video recordings associated with 
18.6 million driving hours. This data clearly confirms the phenomenon of differential crash 
involvement: A small proportion of the drivers typically account for a large proportion of the 
crash risk. SmartDrive calculates the driver risk in terms of a safety score based on behavioral 
observations in triggered video events. These events may be triggered by strong g-forces but also 
by other information such as sensor information available from the vehicle’s onboard data 
networks. It is argued that video observation is superior to merely analyzing driving performance 
data since the video helps to clarify whether the event is actually safety relevant. SmartDrive also 
collects continuous exposure information for the risk calculations. The behavior observation data 
is then correlated with past collisions through predictive algorithms (not further disclosed in the 
paper). These correlations are calculated separately for each industry (service, transit and 
trucking). SmartDrive claim to have identified 27 observable behaviors that occur at least 20% 
more frequently for collision-involved drivers than non-collision drivers. Of these, 14 behaviors 
occur at least 50% more frequently for collision drivers. Though all behaviors are not disclosed 
in the paper, some examples are included, such as talking on a hands free mobile phone (26 vs 17 
observations per 1000 driving hours), an unfastened driver’s seatbelt, (14 vs 12 observations per 
1000 driving hours) and mobile phone texting/dialing (1.6 vs. 1.3 observations per 1000 driving 
hours).  

The paper presents results showing that the safety scores for collision drivers are strongly 
increased compared to non-collision drivers for (70%, 49% and 40% for public transit, service 
and trucking industries respectively). Furthermore, the safety score correlates with collision rate. 
The key advantage, compared to the traditional behavior history approach, is that these 
predictions can be obtained based on a past time window of weeks rather than months or years.  

Lytx has recently issued a similar white paper (Lytx, 2017), albeit somewhat less detailed than 
SmartDrive (2017). Like SmartDrive, Lytx argues for the strong value of video in understanding 
crash causation (as opposed to driving performance indicators typically calculated based on 
vehicle data commonly in “Telematics” fleet management devices; see the “Applications” 
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section below). The white paper describes results from a study based on 10,000 drivers from 50 
fleets who triggered more than 150,000 events. Collision likelihood is presented for various 
behaviors such as not checking mirrors (2 times risk increase), running a stop sign (1.8 times risk 
increase), food/drink distraction (1.8 times risk increase) and driving at a following distance of 
1.25-1.75 s (1.6 times risk increase). However, the white paper does not disclose any further 
information on how these numbers were obtained. 

To summarize, the idea of predicting individual crash involvement based on observable driving 
behavior is not new and predictive models based on collected data dates back to the 1960’s. 
However, until recently research in this domain has been subject to a number of challenges 
related to a lack of a common source of exposure, behavior and crash data. In recent years, this 
situation has changed due to the advent of large scale naturalistic driving data, including very 
large event-triggered datasets collected by the private sector from fleets of hundreds of thousands 
of vehicles). However, somewhat surprisingly, academic research using naturalistic driving data 
to study differential crash involvement is still relatively sparse although existing studies have 
shown very promising results (e.g., Simons-Morton et al., 2012; Guo and Fang, 2013).  

Statistical models for predicting individual crash 
involvement  

Research on predicting individual crash involvement has employed a wide variety of statistical 
techniques. This section provides an overview of the main types of models found in the 
literature. In addition, more advanced machine learning techniques such deep learning have 
recently become popular in the context of “big data analytics” with the increase in both available 
computational power and the amount of raw data (Goodfellow, Bengio, & Courville, 2016). 
Since these techniques are potentially applicable in the present context, they are reviewed here as 
well.  
 
A general distinction can be made between regression and classification models. The key 
difference between regression and classification is the nature of dependent variable. Regression 
is the technique used to predict a numeric value of the dependent variable (e.g. the frequency of 
crash), on the basis of one or more independent variables. By contrast, classification models 
predict which of a set of categories (e.g. low and high risk driver) a new observation belongs to, 
on the basis of a training set of data containing observations whose category membership is 
known (supervised learning) or unknown (unsupervised learning). Moreover, regression analysis 
can also be used to investigate causal or correlated relationships between the independent and 
dependent variables.  
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Regression models  
A commonly used statistical method in the field of driving safety and crash risk is the Poisson 
regression model. Poisson regression models predict the frequency of discrete events as a 
function of an exposure variable and at least one covariate. These properties make the model a 
natural fit for predicting discrete events in driving data, which may include crashes, drowsiness 
epochs, or other safety-related events (Knipling et al., 2004). Examples of exposure measures 
include hours or vehicle miles traveled. Because drivers can contribute to several discrete events, 
a driver’s safety-related events are correlated. To account for this models typically include a 
random effects variable.  

It is important to be aware of a key assumption of the Poisson distribution: the assumption that 
the mean and variance of the predicted variable must be equal in value. In data sets where this 
assumption has been violated, the data are said to be exhibiting under- or overdispersion (the 
variability of the data is less than or greater than expected if the data followed a Poisson 
distribution). In these cases, negative binomial regression models have been used and is now 
established as an industry standard (e.g., Guo and Fang, 2013; Shankar, Mannering, and Barfield, 
1994; Abdel-Aty and Radwan, 2000).  

Poisson and negative binomial models have become widely-accepted methods to evaluate the 
relationship between discrete events (e.g., crashes or near crashes) and driver-related factors, 
such as driver demographics or measures of personality. Example applications in the behavior-
based predictive analytics field include Guo and Fang (2013) and Özkan et al. (2006). 
Interestingly, as mentioned above, these statistical techniques formed the basis for the early work 
on accident proneness in the early 20th century (Greenwood and Woods, 1929; see McKenna, 
1983).  

Classification models 
As mentioned above, classification models can be further divided into those using unsupervised 
and supervised learning respectively. Examples of these techniques are reviewed below. 

Unsupervised learning 
Cluster analysis is a statistical method used to categorize individual drivers into different risk 
groups with similar meanings (homogeneous groups), which minimize within-group variation 
and maximize between-group variation (Constantinescu, Marinoiu, & Vladoiu, 2010). In the 
context of different crash involvement research, cluster analysis is typically used to divide 
subjects into “high risk” versus “low risk” groups, for example, based on their crash/SCE rate 
(e.g., Guo and Fang, 2013; Soccolich et al., 2011; reviewed above) or braking process features 
including maximum deceleration, average deceleration, and kinetic energy reduction (Wang et 
al., 2015). 

Through cluster analysis, risk groups (high-, moderate-, and low-risk groups) can be identified. 
ANOVA and Fisher’s tests can then be adopted to investigate the effects of each independent 
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variable. If the independent variable is continuous, ANOVA can be used to investigate whether 
means of that variable were significantly different across the different risk groups (Soccolich et 
al., 2011). If the independent variable is categorical, Fisher’s test can be used to investigate 
whether that variable was equally distributed across different risk groups.  

Principal Component Analysis (PCA) is a statistical method used to identify a smaller set of 
uncorrelated significant principal components (PCs) orthogonally transformed from a set of 
correlated observed variables, which reduces the dimensionality of the redundant and correlated 
variables and eliminates the multicollinearity issue in subsequent modeling. The first PC 
accounts for the highest proportion of the variability of the data, and each succeeding PC 
accounts for the highest possible variance among the remaining components (Constantinescu et 
al., 2010; Guo and Fang, 2013; Guo, Fang, & Antin, 2015).  

As reviewed above, Guo & Fang (2013) used PCA to eliminate the multicollinearity among 
personality measures. In this case, the first PC (67.3% of the variability) was selected to 
represent the personality scores using the eigenvalue-one criterion. Guo, Fang, & Antin (2015) 
modelled the CNC rates based on 53 assessment metrics, which were divided into four categories 
including physical ability, visual ability, health, cognitive ability. In order to eliminate the 
multicollinearity within categories, PCA was performed for each category and significant 
components were selected to represent each category using the eigenvalue-one criterion. As a 
result, 16 PCs instead of 53 metrics were used to model CNC rate.  

Another unsupervised technique is latent class analysis, which is useful for identifying 
unmeasured class membership and can be used to group drivers into categories based on their 
behaviors, similar to clustering or principle component analysis. Unmeasured class membership 
are represented by latent variables, variables that are not observed, but are underlying and 
inferred from other variables, such as driving style. Latent class analysis uses a probabilistic 
model to describe classes based on these latent variables, as opposed to Bayesian modeling and 
clustering which find similarities between observed cases with no inference on underlying 
variables. Roman et al. (2015) used a latent class growth model to predict unsafe behaviors in 
novice drivers over time by classifying them based on self-report behavioral questionnaires over 
a six-year study period.  
 
Supervised learning 
Supervised learning is used to train models to classify data (in the present context personal 
factors, behavior history or observable behavior) into a set of pre-defined target categories (e.g., 
high-risk versus low-risk drivers) for which training data (associated input and target pairs) is 
available.  

Logistic regression is a statistical method used to model the probability of being a high-risk 
driver (Guo & Fang, 2013) or the probability of encountering a crash (Murray, Lantz, & Keppler, 
2005). The dependent variable is a binary variable and is assumed to follow a Bernoulli 



 46 

distribution with a probability (p𝑖𝑖). This probability is associated with a set of covariates by a 
logit link function. 

logit(p𝑖𝑖) = log �
p𝑖𝑖

1 − p𝑖𝑖
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1 + +𝛽𝛽2𝑥𝑥𝑖𝑖,2 + ⋯+ +𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘 

The Odds Ratio (OR𝑗𝑗 = exp (β𝑗𝑗)) is calculated to quantitatively evaluate the impact of each 
variable. The OR represents the relative odds of being a risky driver or encountering a crash for 
every one unit increase in a continuous variable, or relative risk between two levels of a 
categorical variable. For example, Guo & Fang (2013) concluded that CIE rate had a significant 
impact on the probability of being a high-risk driver, and that every one unit increase in CIE rate 
will increase the relative odds of being a high-risk driver by 41% (OR = 1.41).  

Another classification technique that has been utilized in predicting individual crash risk is 
discriminant analysis. Discriminant analysis is used in a similar manner to logistic regression, 
but can predict two or more classes of events using one or multiple continuous or binary 
independent variables and may include non-linear relationships. As reviewed above, discriminant 
analysis was used by Greenshields and Platt (1967) in their early work on predicting crash 
involvement from recorded driver behavior patterns. More recently, Ba and authors (2017) use a 
linear and quadratic discriminant analysis and a supervised learning model with behavioral and 
physiological features to predict crashes in driving simulator data. Driver-related variables, 
including individual demographics, driving history, and driving behaviors related to vehicle 
control were included in the model to predict crash outcome. The authors found inclusion of 
drivers’ states and traits as inputs into the model explained additional variance above vehicle-
only dynamics in predicting crashes.  
 
More advanced machine learning techniques have been used to predict crash risk among drivers 
based on their behaviors and characteristics, along with other factors that may influence crash 
risk including environmental variables. Zhu and authors (2017) created a model of the behavior-
risk relationship using a hierarchical Bayesian network model, presenting each driver with an 
individual confidence level and each node in the neural network with its own distribution. Using 
GPS driving observations and driver characteristics, the authors found that the inclusion of driver 
behaviors and inputs, contextual information, such as environmental factors, and the interactive 
effects between driver and environment, lead to the best performing model, identifying certain 
driver behaviors and characteristics as leading to higher crash risk, such as age, gender, speed 
relative to other vehicles, and freeway merging speed. A second study created a Bayesian 
network modeling crash risk based on locations and similar driver-related parameters using 
simulated data (Gregoriades & Mouskos, 2013).  
 
Deep learning, a technique that allows a computer system to improve with experience and data in 
prediction, is a kind of machine learning with a lot of flexibility and power by representing the 
world as a nested hierarchy of concepts (Goodfellow et al., 2016). Performing a deep learning 
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algorithm allows a computer to build complex representations out of simpler representations. For 
example, in the context of machine vision, computers are able to identify an object based on 
simple representations of data, like the inputted pixels, then examining the pictures for edges, 
corners and contours, and object parts. In the context of driver risk, the input of driver history, 
characteristics and demographics, behaviors, and environmental factors could lead to an accurate 
algorithm capable of predicting an individual’s crash risk.  
 
While some studies have used a machine learning approach (e.g. decision-tree modeling, Hu et 
al., 2017; elastic net regularized multinomial logistic regression, Arbabzadeh & Jafari, 2017) to 
determine crash risk based on driver behaviors and other variables, few have utilized deep 
learning algorithms to predict crash risk of individuals from driver behavior and characteristics. 
Yin and authors (2017) used convolutional neural network to reduce a large amount of 
naturalistic data using inputs they created based on lane deviation and following distance. They 
then used a trained Gradient Boosting Decision Tree to characterize vehicle operators as either 
good or bad drivers. The authors allude to their classification of bad drivers as having a higher 
crash risk, but were unable to test this model with current data, as there are no crashes to 
supervise the neural network.  

Applications 

This section reviews existing applications of behavior-based predictive safety analytics, focusing 
on general domains of (1) fleet management and (2) usage based insurance (UBI). 

Fleet Management 
Applications of predictive analytics for differential crash involvement using telematics and 
onboard safety monitoring systems have provided fleet management companies with a powerful 
decision-making tool for risk assessment. Data analytics could impact fleet operations in several 
aspects from accident prevention and driver selection, training, and retention to liability and 
maintenance.  

Vehicle crashes are one of the leading causes of death in US (National Highway Traffic Safety 
Administration [NHTSA], 2015). Considering that fleet employees spend most of their time on 
the road, they are highly affected by these statistics. A portion of these accidents such as 
accidents caused by driver distraction, driving under influence, and speeding are preventable 
accidents if the driver in question does not fail to exercise every reasonable precaution to prevent 
the accident. Preventing these accidents is of vital importance for fleet managers not only in 
terms of saving lives but also due to liability exposure and financial losses. Accidents contribute 
to 14% of a fleet’s total expenses (Suizo, 2015). Traditionally, addressing driver behavior and 
errors was a reactive task. With the advent of telematics and data collection devices on board, 
this task is now becoming more proactive. Advances in accident prevention technologies using 
data analytics techniques have made it possible to reduce number of preventable crashes 
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resulting in saving money and reducing injuries and fatalities. For example, CEI company (“CEI 
Fleet Driver Management,” n.d.) reports an average of 15% reduction in accident rate using their 
fleet driver safety and risk management application.  

Applications of onboard safety monitoring systems extend beyond crash prevention. It is 
applicable to avoiding litigation and mitigating liability; in an event of an accident, a provable 
history of dedication to safety matters (Omnitracs, 2016). For example, a record of interventions 
could help with avoiding negligent entrustment issues (“CEI Fleet Driver Management,” n.d.) 
and exonerating the driver and protecting from liability. Data could also be used to assess 
involvement in the accident and estimate the potential payout with more accuracy and set reserve 
accordingly (Omnitracs, 2016). Monitoring telemetry data could also offer insights into vehicle 
preventive maintenance and productive maintenance scheduling by providing operational 
updates and identifying possible failures (“Designing a Connected Vehicle Platform on Cloud 
IoT Core | Solutions,” n.d.). 

Another application of telemetry data for fleet management is related to behavior-based safety 
(BBS) programs. BBS programs have been deployed across a variety of industries. However, 
application of BBS to changing behavior and reducing crashes in commercial fleets has 
challenges including observation difficulties, infrequency of crashes and violations, and delayed 
feedback and consequences that are usually tied to outcomes rather than to behavior. Onboard 
safety monitoring systems and predictive data analytics allow to overcome these challenges 
(Knipling & Hyten, 2015). Through the use of telematic data, techniques for identifying high-
risk drivers has advanced significantly. Instead of traditional measures of high-risk drivers such 
as driving records, traffic violations, and accident report, real time behavior of drivers is 
monitored and analyzed to provide scores of risky behaviors. As noted above, companies such as 
Lytx, and SmartDrive, and more recently Omnitracs, offer event-based video analytics, where 
safety-critical events and associated unsafe behaviors are captured on video and annotated by 
human reductionists. Predictive analytics provides information on risk indicators (e.g., hard 
braking and speeding), safety guidelines violations, frequency of risky behaviors, and distracted 
or fatigued driver. Also, drivers being aware that their performance is being observed and 
rewarded influences driver behavior in a positive way (Omnitracs, 2016). Data could be 
leveraged to identify driving trends, verify existing training modules, develop targeted driver 
training (“Bendix Commercial Vehicles Systems LLC,” n.d.), automatically notify driver and 
manager, assign remedial fleet driver safety training (“CEI Fleet Driver Management,” n.d.), and 
understand driver learning curves (“Lytx, Inc.,” n.d.). Hickman and Hanowski (2010) evaluated 
the effect of the Lytx driving behavior management service. Their results showed that the two 
subject carriers significantly reduced the mean rate of recorded safety-related events/10,000 
VMT from baseline to intervention by 38.1 and 52.3 percent.  

As reviewed in further detail above, Lytx and SmartDrive today offer predictive analytics as part 
of their driving behavior management service. These companies both collect a large number of 
crashes as part of their operations, which is used to develop predictive models mapping from 
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driver behaviors captured in the event videos to crash risk (Lytx, 2017; SmartDrive, 2017). 
These models can then be used to identify unsafe drivers based on their observable behavior, as 
part of the behavior management services offered to fleets. 

Furthermore, in the trucking industry a key current motivation for the development of models 
relating personal characteristics to crash risk based is the current shortage of drivers. Current 
legislation prevents drivers younger than 21 years from operating across states due to their 
known over-involvement in crashes. If younger drivers in the 18-20 age range could be identified 
based on predictive analytics, they may potentially be incorporated into the work force (Boris 
and Luciana, 2017). However, due to the over-involvement of young drivers in crashes (Massie 
et al., 1995; NHTSA, 2012), there is a need for a model that can help predicting the safety of 
young drivers based on individual characteristics. ATRI has recently initiated a project with the 
goal to investigate these possibilities (Boris & Luciana, 2017). 

 

Usage-Based Insurance (UBI) 
In addition to fleet management and driver selection, an important application of onboard safety 
monitoring systems and big data analytics is Usage-Based Insurance (UBI). Group behavior-
based factors such as credit scores, gender, age, marital status that are traditionally used to score 
driving risk and set insurance rates could result in undercharging or overcharging customers due 
to generalizations (Huetter, 2017). Monitoring driving behavior allows insurers to use true causal 
risk factors to assess risks and develop UBI rating plans (Karapiperis et al., 2015). UBI aims at 
personalizing insurance rates based on how and how much customer drives. Insurance policies 
such as pay-as-you-drive (PAYD), pay-as-you-drive-as-you-save (PAYDAYS), and pay-how-
you drive (PHYD) are some examples of UBI programs. Data for UBI programs can be collected 
through a dongle plugged into the vehicle, a mobile application, or directly from the car itself 
(Huetter, 2017). An example of UBI service provider is Progressive Snapshot program 
(“Progressive Casualty Insurance Company,” n.d.). Progressive’s UBI technology collects 
information on risky driving behavior such as hard braking, fast acceleration, and phone usage 
while driving. The application provides driving tips such as avoiding weekend night time driving 
and reducing mileage by carpooling to save on insurance rates. 

Although the value of individual-based driving data in determining accurate premium was 
recognized in the early days of automobile insurance history (Dorweiler, 1929), it was not 
practical due to the lack of technology. With telematics being introduced to the insurance market 
in the late 1990s, and evolution of onboard monitoring technology, the insurance market is 
moving toward telematics-based UBI programs (Karapiperis et al., 2015). Soon, UBI will 
become the primary means of automotive underwriting (Huetter, 2017), which has encouraged 
research and development in this area. For example, Händel et al. (2014) presented a framework 
for deployment of a smartphone-based measurement system for road vehicle traffic monitoring 
and UBI. Soleymanian et al. (2016) examined the effect of the UBI policy on changing the 
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customers’ driving behavior. They concluded that safer drivers and adopters of UBI have higher 
retention rates. They also found that after UBI adoption, the drivers improved their driving 
behavior, resulting in lower risk of an accident (Soleymanian et al., 2016), which is expected 
considering that under UBI, policyholders are incentivized to adopt risk-minimizing behaviors 
(Karapiperis et al., 2015).  

The actual behavior analytics models used in the existing UBI products are typically not 
disclosed, and many UBI products are still based on exposure (i.e., mileage) rather than observed 
driver behavior. Thus, development of UBI services seems rather disconnected from both the 
fleet management applications reviewed in the previous section and the academic research on 
differential crash involvement reviewed in Chapter 3.  

Discussion and Conclusions 

As the present review shows, predicting crash involvement for individual drivers based on driver 
characteristics and associated behavioral manifestations is a broad topic with a long history 
dating back at least 70 years. Due to the lack of detailed exposure, behavior and crash data from 
a single source, much research in this area has traditionally relied on self-reported data (e.g., 
driving style questionnaires and self-reports on past crashes; see e.g., Elander et al., 1993 and 
Sagberg et al., 2006). Early anecdotal evidence suggested that unsafe driving styles are strongly 
associated with drivers’ general behavioral history (Tillman and Hobbs, 1949). More recently, it 
has been demonstrated that individual crash involvement can been predicted based on historical 
crash/violation/conviction data available in government records (e.g., Lueck and Murray, 2006).  

As early as in the 1960’s, successful attempts were made to distinguish crash-involved and 
crash-free drivers based on patterns of observable driving behavior (Greenshields and Platt, 
1967), although, importantly, these results were based on data collected from pre-defined routes 
which strongly reduced the influence of non-personal situational factors. Nevertheless, this work 
identified a number of promising behavioral predictors of individual crash risk such as g-forces 
(acceleration jerk), preferred (free) speed, close following and steering reversals. More recent 
work has mainly focused on behavioral measures related to high g-forces (af Wahlberg, 2006; 
Bagdadi & Varhelyi, 2011; Simons-Morton et al., 2012), probably because these are somewhat 
less influenced by situational factors than speed, headway and steering measures.  

In recent years, the advent of naturalistic driving data has offered new possibilities in studying 
differential crash involvement. First, this data enables precise estimation of driving exposure. 
Second, naturalistic data contains observable behavior as well as safety critical events for the 
same drivers and the larger naturalistic driving datasets, in particular SHRP 2, includes a 
significant amount of real crashes. Somewhat surprisingly, published academic studies on 
differential crash involvement using naturalistic driving data are relatively rare (Simons-Morton 
et al., 2012 and Guo and Fang, 2013, are two notable exceptions). The large quantities of 
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naturalistic behavior and crash data collected through commercial operations by fleet/driver 
management companies such as Lytx and SmartDrive opens up further opportunities to advance 
the understanding of differential crash involvement. Analytics models for predicting individual 
crash involvement based on tens of thousands of drivers, including previously unseen quantities 
of recorded behaviors and crashes (on the order of tens to hundreds of thousands), are being 
developed in-house by both companies (SmartDrive 2017, Lytx, 2017). However, it should be 
noted that these models are, so far, based mainly on manually annotated behaviors rather than 
actual patterns of driving. It is interesting to note that no existing academic study seems to have 
addressed individual risk prediction based on a larger set of naturalistic crashes and actual 
driving performance data. 

The statistical methods applied in this domain have developed over the years, and today Poisson 
and negative binomial regression models are established as an “industry standard” for modelling 
the relationship between behavior and crash/incident rates. Logistic regression is the standard 
model used for classification. More advanced contemporary machine learning approaches such 
as Deep Learning, commonly used for other types of “big data analytics” have not been 
extensively used for the prediction of individual crash risk but it seems likely that this will be an 
important direction in which the field will develop in the coming years. 

In general, academic research on this topic is rather scattered and often not connected to 
industrial applications. For example, there are few links between applied research on predicting 
crash involvement from violations and convictions for commercial vehicle drivers (e.g., Murray 
and Lueck, 2011) and more basic research on the relationship between driving style and safety 
(reviewed in Sagberg et al., 2015). There are several driver risk prediction applications already in 
us in the fleet management and insurance domains, offered by companies such as Ominitracs, 
SmartDrive, Lytx, Bendix, Progressive and StateFarm. However, these applications have 
typically been developed through in-house proprietary R&D and thus not disclosed or validated 
in published research.  
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Appendix B. Publication Manuscripts 

The relationship between the Driver Behavior Questionnaire, 
Sensation Seeking Scale, and recorded crashes: A brief comment on 
Martinussen et al. (2017) and new data from SHRP 2 
 

De Winter, J. C. F, Dreger, F. A., Huang, W., Miller, A., Soccolich, S., Ghanipoor Machiani, S., 
& Engstrom, J. (2018). The relationship between the Driver Behavior Questionnaire, 
Sensation Seeking Scale, and recorded crashes: A brief comment on Martinussen et al. 
(2017) and new data from SHRP 2. Accident Analysis and Prevention, 118, 54-56. 

J. C. F. de Wintera, F. A. Dregerb, W. Huangc, A. Millerc, S. Soccolichc, S. Ghanipoor Machianid, 
J. Engströmc 
  
aDepartment of BioMechanical Engineering, Delft University of Technology, The Netherlands 
bDepartment of Cognitive Robotics, Delft University of Technology, The Netherlands 
cVirginia Tech Transportation Institute, U.S.A. 
dSan Diego State University, U.S.A. 
  
The recently published paper by Martinussen et al. (2017) is a unique large-sample study (N = 
3,683) on the relationship between the Driver Behavior Questionnaire (DBQ) and recorded 
violations and crashes.  
 
There are two important findings. First, the authors found that 22.4% of participants who were 
classified into the ‘violating unsafe drivers’ group (based on a cluster analysis of self-reported 
answers to the DBQ and Driver Skill Inventory, DSI) were involved in a recorded traffic law 
offence. This percentage is 2.8 times as high as the average of the other three groups (‘skilled safe 
drivers, ‘unskilled safe drivers’, and ‘low confidence safe drivers’). This finding is consistent with 
a meta-analysis which showed that a moderate correlation (r = 0.24) exists between the DBQ 
violations score and recorded measures of speed/speeding (De Winter et al., 2015). 
 
Second, the authors found that the four groups did not differ in recorded crash rates. It is important 
to emphasize, however, that only 1.1% of the participants were involved in a crash (despite the 6-
year recording period). This low percentage means that the ‘violating unsafe drivers’ group 
contained only 6 or 7 crash-involved drivers (estimated from sample sizes reported in Martinussen 
et al., 2014). Considering that traffic violations correlate with crashes (Cooper, 1997; Factor, 2014) 
and young males are overinvolved in crashes (OECD, 2006), it would be inappropriate for one to 
conclude from their data that the ‘violating unsafe drivers’ group (consisting of 74% males with a 
mean age of 39 years) is equally safe as the other three groups (consisting overall of 47% males 
with a mean age of 54 years). With simulations, De Winter et al. (2015) showed that if crash rates 
are low, then correlations with crash involvement are necessarily small (see also Af Wåhlberg & 
Dorn, 2009).  
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Here, we report on DBQ-crash correlations in a newly accessed dataset from the Strategic Highway 
Research Program (SHRP 2) naturalistic driving study (Dingus et al., 2015). The dataset comprised 
3,215 drivers. We removed drivers with less than 7 months of participation and drivers who drove 
less than 100 miles, leaving data for 2,790 drivers. The mean study length across drivers was 1.31 
years (SD = 0.51 years). In case no more than two DBQ items were missing for a driver, then the 
scores for these items were replaced with the value from the single ‘nearest neighbor’ variable 
(1NN); otherwise, the DBQ data for that driver were discarded. Accordingly, DBQ data were 
available for 2,737 drivers. Participants’ scores for the Sensation Seeking Scale Form V (SSS) 
were retrieved as well (N = 2,781). Whether the DBQ and SSS correlate with recorded crashes has 
been a much-debated topic (e.g., Af Wåhlberg, 2010; De Winter et al., 2015). 
 
First, we applied principal component analysis on the 24-item DBQ. Inspection of the scree plot 
(see supplementary material, Figure S1) suggested that a three-component solution was 
appropriate. The three components were obliquely rotated (Promax) and interpreted as (1) slips, 
(2) violations, and (3) lapses (see Table S1 for loadings). Component scores were calculated using 
the regression method. Next, Spearman rank-order correlations were computed between the self-
report scores (DBQ scores and SSS score) on the one hand, and relevant study variables (age, 
gender, crash involvement, driving style) on the other (Table 1). 
 
The results in Table 1 confirm the well-known phenomenon that older drivers report fewer 
violations than younger drivers and that females report fewer violations but more errors than males. 
It is also found that DBQ errors and DBQ violations correlate with self-reported crashes in the past 
three years, and with objective crashes and near-crashes during the naturalistic driving study 
period. These correlations were overall small yet mostly statistically significant. The correlations 
were stronger for DBQ violations and SSS than for DBQ slips and lapses. For crashes of the highest 
severity level (airbag, injury, rollover), the correlation with DBQ violations was small (ρ = 0.02). 
Only 3% of drivers were involved in this type of crash. For all crashes, the correlation with DBQ 
violations was somewhat stronger (ρ = 0.06), and for near-crashes, the correlation with DBQ 
violations was moderate (ρ = 0.20). These findings support the previous assertion that correlations 
are smaller if the mean (and therefore the variance) of the number of crashes is higher (Af 
Wåhlberg & Dorn, 2009; De Winter et al., 2015). 
 
Table 1 also shows that the DBQ violations score was associated with a more adverse driving style 
(hard starts, stops, and turns), with correlations between 0.04 and 0.24. Finally, it can be observed 
that the pattern of correlations for the SSS was similar to that for DBQ violations (Table 1; Figure 
S2). This is also reflected in the fact that the DBQ violations score was associated with the SSS 
score (ρ = 0.36), whereas the correlations between the SSS and DBQ slips and DBQ lapses were 
smaller (ρ = 0.09 and ρ = 0.10, respectively). 
 
Table 1. Spearman rank-order correlations between Driver Behavior Questionnaire (DBQ) scores, Sensation 
Seeking Scale (SSS) scores, and study variables 
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Study variable M SD 

ρ 

DBQ  

slips 

ρ 

DBQ 

violations 

ρ 

DBQ 

lapses 

ρ 

SSS 

Age group (1 = 16–19 years, 17 = 95–99 years) 6.1113 4.679 0.00 -0.33* -0.10* -0.43* 

Gender (0 = male, 1 = female) 0.5219 0.4996 0.07* -0.06* 0.19* -0.15* 

Distance driven in study period (miles) 10371.74 7283.22 0.04 0.18* 0.03 0.11* 

Number of self-reported crashes in past 3 
years (0, 1, 2+) 0.319 0.5815 0.10* 0.13* 0.09* 0.10* 

Number of recorded crashes in study period 0.605 1.1488 0.04* 
(0.04) 

0.06* 
(0.04*) 

0.05* 
(0.05*) 

0.10* 
(0.09) 

Number of recorded near-crashes in study 
period 2.1846 3.35 0.04* 

(0.03) 
0.20* 
(0.15*) 0.03 (0.02) 0.20* 

(0.18*) 

Number of recorded at-fault crashes in study 
period  0.4989 1.0664 0.05* 

(0.04*) 
0.05* 
(0.03) 

0.05* 
(0.05*) 

0.10* 
(0.09*) 

Number of recorded at-fault near-crashes in 
study period 1.2885 2.3802 0.05* 

(0.04) 
0.18* 
(0.15*) 0.02 (0.02) 0.20* 

(0.18*) 

Number of recorded severity 1 crashes in study 
period 0.0333 0.1835 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.02 (0.02) 

Number of recorded severity 2 crashes in study 
period 0.0656 0.2711 0.02 (0.02) 0.06* 

(0.06*) 
-0.01 (-
0.01) 

0.05* 
(0.05*) 

Number of hard starts per mile in a 6-month 
period 0.0458 0.0786 -0.02 0.07* -0.01 0.10* 

Number of hard stops per mile in a 6-month 
period  0.1312 0.1384 0.03 0.04* 0.04* 0.08* 

Number of hard left turns per mile in a 6-
month period  0.1665 0.1457 -0.03 0.21* 0.01 0.27* 

Number of hard right turns per mile in a 6-
month period  0.1629 0.1341 -0.03 0.24* 0.02 0.27* 

Note. * p < .05. Correlations for the number of crashes per mile are reported in parentheses. Severity 1 crashes are defined as 
airbag/injury/rollover, high delta-V crashes (virtually all would be police reported). Severity 2 crashes are defined as police-
reportable crashes (including police-reported crashes, as well as others of similar severity which were not reported) (Dingus et al., 
2015). Hard starts, stops, and turns are defined as incidences where the acceleration exceeded 0.30 g (Jun et al., 2007). The sample 
sizes per cell are reported in the supplementary materials (Table S2). 
 
Finally, although many of the correlations shown in Table 1 are statistically significant and 
theoretically interesting, we wish to caution that they are not necessarily practically significant. A 
boxplot of the SSS scores for non-crash-involved drivers and crash-involved drivers (Fig. 1, top) 
shows that there is a high degree of overlap of the SSS distributions of both groups, even though 
the difference was strongly significant, t(2779) = 5.55, p = 3.07*10-8, Cohen’s d = 0.22. For near-
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crashes, the effect was somewhat stronger (Fig. 1, bottom), t(2779) = 8.77, p = 2.97*10-18, Cohen’s 
d = 0.35. 

  

 
Figure 1. Top: Sensation Seeking Scale scores for drivers who are not involved in a crash (N = 1,766) and 
drivers who are involved in a crash (N = 1,015). Bottom: Sensation Seeking Scale scores for drivers who are 
not involved in a near-crash (N = 917) and drivers who are involved in a near-crash (N = 1,864). The red box 
shows the 25th and 75th percentiles, respectively. The markers represent the individual drives. 
 
In conclusion, we support the findings and interpretations by Martinussen et al. (2017) and hope 
that the above points are a useful addendum. It appears that DBQ violations, as well as the SSS, 
exhibit small associations with crash involvement, and small to moderate associations with near-
crash involvement and driving style. The predictive validity of DBQ errors (slips and lapses) 
appears to be weak. Future research should examine the validity of near-crashes as a proxy for 
crashes. 
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Supplementary material 
 

 
Figure S1. Eigenvalues of the correlation matrix of the 24 items of the Driver Behavior Questionnaire (DBQ), 
sorted in descending order (‘scree plot’). Also shown are the percentages of variance explained (being 
proportional to the eigenvalue) for the first five components prior to rotation.  
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Figure S2. Mean Driver Behavior Questionnaire (DBQ) violations score and mean Sensation Seeking Scale 
score per age group. The sample sizes per age group are shown at the top of the figure. Results for 90–94 
years and 95–99 years are not shown because of small sample size (n = 6 and 2, respectively). The age group 
was not known for 14 of 2,790 drivers. 
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Table S1. Principal component loadings of 24 Driver Behavior Questionnaire (DBQ) items, for the first three 
components after Promax rotation. 

 
 
Table S2. Sample sizes for each of the variables, and for each pair of variables. 

Study variable  
DBQ 

slips 

DBQ 

violations 

DBQ 

lapses 
SSS 

 N 2,737 2,737 2,737 2,781 

Age group (1 = 16–19 years, 17 = 95–99 years) 2,776 2,723 2,723 2,723 2,767 

Gender (0 = male, 1 = female) 2,790 2,737 2,737 2,737 2,781 

Distance driven in study period (miles) 2,790 2,737 2,737 2,737 2,781 

# DBQ item DBQ slips DBQ violations DBQ lapses

1 Attempt to drive away from traffic lights in the wrong gear 0.05 0.11 0.18

2 Become impatient with a slow driver in the fast lane and pass on the right -0.25 0.74 0.21

3 Drive especially close to a car in front as a signal to the driver to go faster or get out of the way -0.20 0.79 0.11

4 Attempt to pass someone that you hadn’t noticed to be making a left turn 0.15 0.43 0.09

5 Forget where you left your car in a parking lot -0.01 -0.04 0.65

6
Turn on one thing, such as your headlights, when you mean to switch on something else, such as 
the windshield wipers 0.26 -0.10 0.45

7 Realize that you have no clear recollection of the road along which you have just been traveling -0.15 0.22 0.66

8 Cross an intersection knowing that the traffic lights have already changed from yellow to red 0.05 0.39 0.28

9 Fail to notice that pedestrians are crossing when turning onto a side street from a main road 0.49 0.03 0.18

10
Angered by another driver’s behavior, you catch up to them with the intention of giving him/her 
“a piece of your mind.” 0.27 0.51 -0.26

11 Misread the signs and turn the wrong direction on a one-way street 0.51 -0.16 0.19

12 Disregard the speed limits late at night or early in the morning -0.09 0.62 0.19

13 When turning right, nearly hit a bicyclist who is riding along side of you 0.72 -0.06 -0.30

14
Attempting to turn onto a main road, you pay such close attention to traffic on the road you are 
entering that you nearly hit the car in front of you that is also waiting to turn. 0.48 0.03 0.12

15 Drive even though you realize you might be over the legal blood alcohol limit 0.01 0.36 -0.03

16
Have an aversion to a particular class of road user, and indicate your hostility by whatever means 
you can 0.37 0.38 -0.33

17
Underestimate the speed of an oncoming vehicle when attempting to pass a vehicle in your own 
lane 0.49 0.08 0.07

18 Hit something when backing up that you had not previously seen 0.52 -0.18 0.09

19
Intending to drive to destination A, you ‘wake up’ to find yourself on a road to destination B, 
perhaps because destination B is a more common destination. 0.06 0.05 0.57

20 Get into the wrong lane approaching an intersection 0.25 -0.06 0.42

21 Miss “Yield” signs, and narrowly avoid colliding with traffic having the right of way 0.73 -0.12 -0.01

22 Fail to check your rearview mirror before pulling out, changing lanes, etc. 0.31 0.11 0.17

23 Get involved in unofficial ‘races’ with other drivers 0.10 0.49 -0.15

24 Brake to quickly on a slippery road or steer the wrong way into a skid 0.45 0.01 0.12
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Study variable  
DBQ 

slips 

DBQ 

violations 

DBQ 

lapses 
SSS 

Number of self-reported crashes in past 3 years 
(0, 1, 2+) 2,781 2,731 2,731 2,731 2,772 

Number of recorded crashes in study period 2,790 2,737 2,737 2,737 2,781 

Number of recorded near-crashes in study 
period 2,790 2,737 2,737 2,737 2,781 

Number of recorded at-fault crashes in study 
period  2,790 2,737 2,737 2,737 2,781 

Number of recorded at-fault near-crashes in 
study period 2,790 2,737 2,737 2,737 2,781 

Number of recorded severity 1 crashes in study 
period 2,790 2,737 2,737 2,737 2,781 

Number of recorded severity 2 crashes in study 
period 2,790 2,737 2,737 2,737 2,781 

Number of hard starts per mile in a 6-month 
period 2,779 2,726 2,726 2,726 2,770 

Number of hard stops per mile in a 6-month 
period  2,779 2,726 2,726 2,726 2,770 

Number of hard left turns per mile in a 6-
month period  2,779 2,726 2,726 2,726 2,770 

Number of hard right turns per mile in a 6-
month period  2,779 2,726 2,726 2,726 2,770 

Note. DBQ = Driver Behavior Questionnaire, SSS = Sensation Seeking Scale.  
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Abstract 

It is well established that some drivers are more likely to become involved in crashes than 
others, a phenomenon known as differential crash involvement. The objective of the present 
analysis was to investigate, using the SHRP 2 dataset, to what extent it is possible to predict 
crash and/or near crash involvement for individual drivers based on enduring personal factors 
related to demographics, driving history, personality, and observed driving style. Two types of 
classification models, logistic regression and random forest, yielding similar results, were able to 
correctly identify 72–75% of the CNC-involved drivers (recall) and of those drivers predicted by 
the models to be involved in a CNC during the study period, 64–65% were correct predictions 
(precision). Therefore, the present results show that it is possible to predict CNC (mainly near-
crash) involvement for individual drivers with some degree of accuracy, while this seems to be 
more difficult for crashes alone. 

Keywords:  

Differential crash involvement; Naturalistic driving study; Enduring personal factors; 

1. Introduction 

It is well established that individual drivers are differentially involved in crashes and that 
these individual differences are at least partly associated with enduring personal factors such as 
demographics, health, personality, and acquired skills (de Winter et al., 2018; Guo and Fang, 
2013; Hanowski et al., 2000; Huang et al., 2018; Knipling, 2009, 2004; McKenna, 1983; 
Simons-Morton et al., 2012; Soccolich et al., 2011). Whether drivers’ crash involvement can be 
reliably predicted from such enduring personal factors is an issue of great interest for vehicle 
fleet management, insurance industries, driver education, and enforcement. 
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Indeed, numerous studies have found a predictive relationship between various specific 
variables reflecting enduring individual factors and crash involvement. This includes 
demographics (e.g., age; McCartt et al., 2009), personality (e.g., Boris and Luciana, 2017; 
Dahlen and White, 2006), behavioral history such as traffic violations and convictions (e.g., 
Lueck and Murray, 2011; Murray et al., 2006) and recorded driving style (see review in Sagberg 
et al., 2015); see Engström et al. (2017) for a more detailed review of these and related studies. 

Traditionally, crash involvement data in studies on individual crash involvement are 
based on self-reports (e.g., West et al., 1993) or crash databases that can be linked back to 
individual drivers (e.g., Lueck and Murray, 2011; Murray et al., 2006). As discussed in Knipling 
(2009), a general issue with traditional studies on individual differential crash involvement is that 
driving exposure is typically unavailable (although some studies have estimated exposure from 
self-reports; see e.g. West et al., 1993). It is thus possible that the observed relationships between 
individual characteristics (in particular related to driving style behavioral history) and crash risk 
are at least partially confounded by driving exposure. For example, the drivers who drove the 
most may have had the most crashes as well as the highest number of unsafe driving events, 
traffic violations, and convictions.  

The advent of large sets of naturalistic driving data (e.g., Hankey et al., 2016) offers 
exciting new possibilities in creating predictive models which map individual behavioral patterns 
to crash involvement. The key advantage of using naturalistic driving data to study differential 
crash involvement is that it typically includes study participant demographic, behavioral history, 
and personality screening data, observed/recorded behaviors, crash and near-crash involvement 
as well as driving exposure in a single dataset. Moreover, the behavioral data needed for 
predictive models based on driving style can be collected in weeks as opposed to the months or 
years it takes for behavioral history data (such as convictions and violations) to accumulate (Guo 
and Fang, 2013; SmartDrive, 2017). 

Studies of differential crash involvement using naturalistic driving data are so far 
relatively sparse. One of the earliest published application of naturalistic driving data to 
crash/near crash (CNC) involvement prediction at the individual level is the study by Simons-
Morton et al. (2012), who analyzed the relationship between gravitational-force (g-force) events 
and at fault CNC rate for 42 newly licensed teenage drivers. Data for each driver was collected 
for 18 months. Five different types of g-force events were calculated: rapid starts (> 0.35 g), hard 
stops (< -0.45 g), hard left/right turns (< -0.05 g or > 0.05 g), and fast yaw rate (>2 degrees per 
second). These were combined into a composite metric used in the statistical modelling. The 
results showed a strongly significant Spearman correlation of 0.6 between the composite metric 
of g-force events and CNC rates during the 18-month period. Furthermore, a logistic regression 
model showed that the rate of g-force events in the prior month predicted CNC involvement in 
the following month with a 76% prediction accuracy. A further analysis reported in Simons-
Morton et al. (2013) showed that the g-force rates for individual drivers during the first 6 months 
were similar to individual rates during the next two 6 month periods, demonstrating consistency 
in individual risky driving. 

 Guo and Fang (2013) conducted a similar analysis using the 100-car naturalistic driving 
study data (Dingus et al., 2006) and found that age, personality, and the rate of critical-incidence 
events (CIEs) were predictive of CNC involvement. CIEs were not directly measured but coded 
in the data based on: Identification of events (1) where the car sensors exceeded a specified value 
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(e.g., brake response greater than a set threshold g-force value, (2) when the driver pressed an 
incident push-button and (3) through human judgments when reviewing the video. A logistic 
regression model based on the three predictors successfully classified drivers into two risk 
categories defined by clustering the rates of CNC involvement. 

While these naturalistic driving studies have significantly advanced the state of the art in 
predictive modelling of individual risk, a key limitation is that the CNCs that the models were 
developed to predict are dominated by low-severity crashes and near-crashes. Today, the The 
Second Strategic Highway Research Partnership (SHRP 2) Naturalistic Driving Study, with more 
than 3500 vehicles, provides a much larger dataset with a significant number of crashes (about 
2000), many of which are relatively severe. However, to the knowledge of the authors, no 
published studies have so far analyzed the SHRP 2 dataset with respect to individual driver risk. 

In recent analyses using the SHRP 2 data, we have established that there is an 
association, albeit a relatively weak one, between individual driver characteristics and CNC 
involvement (de Winter et al., 2018; Huang et al., 2018). The goal of the present analysis was to 
investigate to what extent it is possible to classify drivers into high/low-risk categories (defined 
by actual crash and near-crash involvement) based on demographics/personality screening data 
and basic driving style indicators similar to those employed by Simons-Morton et al. (2012) and 
typically used in current usage-based insurance (UBI) applications.  

2. Method 

2.1. The SHRP 2 data set 

The SHRP 2 NDS collected data for over more than 30 million vehicle miles traveled, 
and recorded over 2,000 crashes and 7,000 near-crashes. The naturalistic driving data were 
collected automatically from key-on to key-off for every trip taken in one of the volunteer 
participants’ vehicles. The SHRP 2 NDS included over 3,500 participants, aged 16 to 98, who 
resided near the following six site centers: Buffalo, NY; Tampa, FL; Seattle; Durham, NC; 
Bloomington, IN; and State College, PA. The expected duration of participation per driver was 
12 months, but not all drivers completed the full study period. More information about the SHRP 
2 NDS is available in Dingus et al. (2015) and Hankey et al. (2016). 

2.2. Study design 

For the present analysis, a subset of the SHRP 2 data was used for each individual driver, 
consisting of six consecutive months beginning from the second month of data collection, that is, 
months 2-7, referred to in the following as the study period (See Figure 1). For each participant, 
questionnaire data, collected prior to the start of the data collection, was retrieved from the 
SHRP 2 database, and both driving style measures from time series data and CNC involvements 
were calculated for the study period (see details in section 2.4).  
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Figure 1. Overview of the study design with independent variables (blue) and dependent variables (red). 

2.3. Data selection and inclusion criteria 

Drivers included in this study had seven months of SHRP 2 data collection participation, 
at least 1,000 driving miles in the 2 to 7 month period, and complete questionnaire data. Trips 
selected for each driver had more than 10 seconds of moving time, a non-zero driving distance, 
and at least partial date and time information to be included in the analysis. These screening 
criteria applied in a step-by-step fashion resulted in a dataset of 2,458 drivers (see Table 1) 
across 3.91 million trips, amounting to a total of 27.16 million miles driving distance and 0.69 
million driving hours.  

Table 1. Criteria for step-by-step removal of drivers from the dataset used for analysis  

Criterion Number of drivers removed 

1. The driver had less than 7 months participation 402 

 2. All trips for the driver were either less than 10 seconds moving time, had 
zero distance or lacked date and time information 

13 

4. The driver recorded less than 1000 miles distance in the study period 260 

5. The driver had incomplete questionnaire data 82 

 

2.4. Measures 

2.4.1. Independent variables – questionnaire data 

The self-reported questionnaire data used in the analysis represented personal 
characteristics of individual drivers and were grouped into three categories: 

Demographics: A demographic questionnaire was used in SHRP 2 to investigate a 
variety of demographic information about the participant. The present analysis only selected two 
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variables from this questionnaire: age and gender. Age was stratified into three age groups: 
younger than 25 years, between 25 and 55 years, and older than 55 years. 

Driving history: A driving history questionnaire was used to obtain self-reported driving 
history information about the participant, including driving experience, violations and crashes 
during the past three years, and training received. The present analysis included two variables 
from this questionnaire: self-reported violations and self-reported crashes in the past three years. 
These two independent variables were recoded into binary variables indicating whether or not 
the participant had at least one violation (or crash) in the last three years.  

Personality: Three self-report questionnaires were included from the SHRP 2 study: a 
modified (Dingus et al., 2015) version of the Manchester Driver Behavior Questionnaire (M-
DBQ; Reason et al., 1990; Lajunen and Summala, 2003) containing 24 items answered on a 6-
point Likert scale, the Sensation Seeking Scale-form V (SSS-V; Zuckerman, 1994; Jonah, 1997) 
with 40 items (Dingus et al., 2015), and a Risk-Perception Questionnaire (Dingus et al., 2015).  

The M-DBQ is a self-report driver behavior survey, participants indicate (from 0 = 
“Never” to 6 = “Nearly All the Time”) how often they commit each described error (accidental) 
or violation (deliberate), where the concepts of errors and violations derive from the work of 
Reason (1990). A principal component analysis (PCA) with oblique rotation was applied on the 
24-item M-DBQ . For the calculation of the subscales, the item ‘Attempt to drive away from 
traffic lights in the wrong gear’ was removed because of its non-applicability in the USA. In 
accordance with de Winter et al. (2018) a three-component solution was identified using a scree-
plot. The items were grouped by the highest factor loadings and the components were interpreted 
as (1) slips, (2) violations, and (3) lapses. The mean score of each scale was calculated and used 
in further analyses. Ten items were assigned to slips, eight items to violations, and five items to 
lapses (see Annex). 

The SSS-V is a self-report survey where respondents chose which of two choices better 
describes their feelings or likes (Zuckerman, 1994). The present analysis used the total score of 
the SSS-V, to indicate the degree to which the participant engages in sensation seeking behavior. 

A risk-perception questionnaire created for the SHRP 2 data collection (Dingus et al., 
2015) was also included. The questions assess the perceptual risk with driving behaviors on a 
seven-point Likert scale ranging from ‘No Greater Risk’ to ‘Much Greater Risk’. Most items 
provided little variance across drivers, so only one item was selected for inclusion. The item 
selected was “If you were to engage in changing lanes suddenly to get ahead in traffic, how do 
you think that would affect your risk of a crash?”  

2.4.2. Independent variables – recorded driving style  

Driving style here refers to persistent driving patterns for individual drivers (Sagberg et 
al., 2015) identified using continuous time series driving data. In the present study, driving style 
was operationalized based on Simons-Morton et al. (2013) in terms of the rates (number per 
mile) of six types of kinematic events calculated for the study period based on specific g-force or 
yaw rate thresholds for each metric. These kinematic events consisted of hard starts, stops, left 
turns, right turns, left yaw movement, and right yaw movement. Multiple events were counted as 
one if the interval between them was less than one second and events were removed if their event 
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duration was less than half a second. The present analysis built logistic regressions between each 
dependent variable and each driving style measure at 46 different g-force thresholds and, for 
each driving style variable, selected the specific g-force level thresholds with the minimum 
Akaike Information Criterion (AIC) value, indicating the highest quality of statistic model. AIC 
is an estimator of the relative quality of statistical models (or the relative information lost when a 
given model is used), and minimum AIC was used to ensure the goodness of fit (by maximizing 
likelihood) as well as prevent overfitting (by minimizing the number of parameters).  

An example illustrating the calculation of two of the driving style measures, hard starts 
and hard stops, is plotted below (Figure 2). In this example, purple lines (+0.24 g and +0.33 g) 
result in different numbers of hard starts (1 and 0) and red lines (-0.24 g and -0.29 g) result in 
different numbers of hard stops (4 and 2). This plot includes data from one trip (May 21st, 2011) 
and one driver. 

 
Figure 2. Kinematic events, consisting of hard starts and hard stops at different levels (purple and red lines, 
respectively) based on time series data, acceleration X. 

2.4.3. Dependent variables – crash and near crash involvement measures 

In the SHRP 2 dataset, safety critical events (SCEs) (i.e., crash, near crash, crash-relevant 
conflicts, subject conflicts) have been manually validated and coded by trained data 
reductionists. Only crashes and near crashes were used in the present analysis. A crash is defined 
as any contact that the subject vehicle has with an object, either moving or fixed, at any speed in 
which kinetic energy is measurably transferred or dissipated, and is coded at four levels of 
severity. A near crash is defined as any circumstance that requires a rapid evasive maneuver 
(e.g., steering, braking, accelerating, or combination of control inputs) by the subject vehicle or 
any other vehicle, pedestrian, cyclist, or animal to avoid a crash (see Hankey et al., 2016).  
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Crashes in the SHRP 2 dataset have been further coded into four severity levels (Hankey 
et al., 2016): 

• Level 1 (Severe Crash): Any crash that includes an airbag deployment; any known injury of 
driver, pedal cyclist, or pedestrian (one sufficient to warrant a doctor’s visit, including those 
self-reported and those apparent from video); a vehicle rollover; a high Delta-V; or vehicle 
damage requiring towing. A high Delta-V is defined as a change in speed of the subject 
vehicle in any direction during impact greater than 20 mph (excluding curb strikes) or (more 
commonly) acceleration on any axis greater than +/-2 g (excluding curb strikes). 

• Level 2 Crash Moderate Severity: Not a level 1 crash; minimum of approximately $1,500 
worth of damage as estimated from video. It also includes crashes that reach acceleration on 
any axis greater than +/-1.3 g (excluding curb strikes). Examples are most large animal and 
sign strikes. 

• Level 3 Crash Minor Severity: Not a level 1 or 2 crash; the vehicle makes physical contact 
with another object or departs the road but sustains only minimal or no damage. This 
includes most road departures (unless criteria for a more severe crash are met), small animal 
strikes, all curb and tire strikes potentially in conflict with oncoming traffic, and other curb 
strikes with an increased risk element (i.e., the crash may have been worse if the curb had not 
been there). 

• Level 4 Crash Tire Strike, Low Risk: Not a level 1, 2, or 3 crash; the tire is struck with little 
or no risk element (e.g., clipping a curb during a tight turn). 

For this analysis, crashes of all severity levels were used. Two dependent variables 
represented crash and near crash involvements of individual drivers: 

Crash or Near Crash (CNC) is binary variable, indicating whether the participant was 
involved in zero or at least one crash or near crash event in the study period.  

Crash is a binary variable, indicating whether the participant involved zero or at least one 
crash event in the study period. 

A driver was labelled as a CNC- or crash-involved driver if the driver had at least one 
CNC or crash in the study period.  

2.5. Statistical models  

Two types of classification models were investigated with the goal to identify CNC- 
(crash-) involved drivers based on the independent self-reported and driving style variables 
described above: logistic regression and random forest classification (as described above, 
separate logistic regression was initially conducted for each of the driving style measures to 
determine optimal g-force threshold values based on minimum AIC).  

The prediction performance of the models was evaluated in terms of the recall rate (or 
sensitivity), precision (positive predictive value), and accuracy. In the context of this study, the 
recall rate is the number of correctly predicted CNC- or crash- involved drivers divided by the 
total number of CNC- (crash-) involved drivers. The precision is the number of correctly 
predicted CNC- (crash-) involved drivers divided by the total number of drivers predicted by a 
model to be CNC- (crash-) involved. Finally, the accuracy is the fraction of all drivers correctly 
classified as either CNC- (crash-) involved or not involved. 
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2.5.1. Logistic regression 

Logistic regression is a statistical classification method that was used to model the 
probability of being a CNC- or crash-involved driver (for a similar use, see Guo and Fang, 
2013). The dependent variable (CNC or Crash) is a binary variable and is assumed to follow a 
Bernoulli distribution with a probability (p𝑖𝑖). This probability is associated with a set of 
covariates by a logit link function where the set of covariates are all potential independent 
variables:  

logit(p𝑖𝑖) = log � p𝑖𝑖
1−p𝑖𝑖

� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1 + +𝛽𝛽2𝑥𝑥𝑖𝑖,2 + ⋯+ +𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘 = 𝑿𝑿𝒊𝒊𝜷𝜷   (1) 

and 𝑿𝑿𝒊𝒊 is the matrix of predictors for individual i, and 𝜷𝜷 is the vector of regression parameters. 
Both forward and backward variable selections were performed and the best model was selected 
based on the minimum AIC value. A driver will be predicted as a CNC- or crash-involved driver 
if this probability is greater than a predefined threshold value (e.g., 𝑝𝑝0 = 0.5). The Odds Ratio 
(OR𝑗𝑗 = exp (β𝑗𝑗)) is the change in probability of being a CNC driver versus not being a CNC 
involved driver associated with a variable j.  

2.5.2 Random forest classification 

Random forest (RF) classification, proposed by Breiman (2001), is an ensemble learning 
method that can be used for both classification and regression problems. This method creates a 
series of decision trees (i.e., forest), each of which is used first to solve the classification problem 
individually. Subsequently, the final result is obtained based on the majority vote across all 
decision trees. The decision tree algorithm, introduced by Breiman (1984), uses a recursive 
binary splitting approach to grow a tree by selecting a predictor and a cut point for that predictor 
to split the data into two parts. This procedure is iterated at several steps to create a dendrogram 
type of structure (i.e., a decision tree). At each splitting step, different criteria can be used to 
identify the best split (i.e., best classification). The criterion used in this study is the Gini Index 
G (Hastie et al., 2009) (see Table for definitions of the terms and indices):  

𝐺𝐺 = ∑ 𝑝𝑝𝑘𝑘𝑚𝑚(1 − 𝑝𝑝𝑘𝑘𝑚𝑚)𝐾𝐾
𝑘𝑘=1    (2) 

At each step, the predictor that results in the highest decrease in the Gini Index is 
selected.  

Table 2. Definitions of terms and indices in equation (2). 

Variable Definition 

K Number of classes 

k Class k 

𝒙𝒙𝒊𝒊𝒎𝒎 : Predictor vector of 𝑖𝑖𝑡𝑡ℎ observation in node m 

𝒚𝒚𝒊𝒊𝒎𝒎 : Target value of 𝑖𝑖𝑡𝑡ℎ observation in node m 

𝒑𝒑𝒌𝒌𝒎𝒎 : Proportion of class 𝑘𝑘 observations in node m ( 1
𝑁𝑁𝑚𝑚

∑ 𝐼𝐼(𝑦𝑦𝑖𝑖𝑚𝑚 = 𝑘𝑘)𝑥𝑥𝑖𝑖
𝑚𝑚 ) 
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𝑰𝑰(𝒚𝒚𝒊𝒊𝒎𝒎 = 𝒌𝒌) : 1 if 𝑦𝑦𝑖𝑖𝑚𝑚 = 𝑘𝑘, and 0 otherwise 

𝑵𝑵𝒎𝒎  Number of observations received at node m 

 

3. Results 

3.1 Training and test data 

The full dataset of 2458 drivers was randomly partitioned into two balanced groups: a 
training set (70%, 1720 drivers) and a test set (30%, 738 drivers). Table shows that (1) 
percentages of CNC- or crash-involved drivers in these three datasets were consistent; (2) the 
proportions of CNC and non-involved drivers were roughly equal, and (3) there were about four 
times more drivers that were not involved in a crash during the study period than drivers that had 
a crash during that period as operationalized using the crash variable.  

Table 3. Frequency table for full dataset, training and test sets separately. 

Percentage of drivers Full dataset Training set Test set 

 (2458 drivers) (1720 drivers) (738 drivers) 

CNC = 1 (at least one CNC event) 55.5% 55.1% 56.2% 

Crash = 1 (at least one crash event) 18.6% 18.2% 19.6% 

 

3.2. Determining g-force thresholds for the driving style measures 

In order to find suitable values for the thresholds of the driving style (g-force) measures, 
logistic regressions were built between each dependent variable (CNC and Crash) and each 
driving style measure at 46 different g-force threshold levels (see Figures 3 and 4). The 
thresholds were chosen based on the minimum AIC value for each variable. 
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Figure 3. AIC values of logistic regression models between CNC and each driving style measure at 46 g-force 
thresholds. 

Note. Red lines indicate the selected gravitational level with the minimum AIC value for each 
driving style measure. 
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Figure 4. AIC values of logistic regression models between crash and each driving style measure at 46 
different g-force or yaw rate thresholds. 

Note. Red lines indicate the selected gravitational level with the minimum AIC value for each 
driving style measure. 

The selected g-force levels for six driving style measures for each dependent variable are 
summarized in Table 4. Six driving style measures at specific g-force levels were selected as 
predictors in the logistic regression model to predict CNC- or crash-involved drivers. 

Table 4. Thresholds of gravitational forces for each driving style measure for the two dependent variables 
(CNC and crashes) 

Driving Style Measures Time-Series Data Source 
Gravitational 

Levels 
Gravitational 

Levels 

  CNC Crash 

Hard starts Acceleration X > + 0.33 g > + 0.24 g 

Hard stops Acceleration X < - 0.29 g < - 0.24 g 

Hard left turns Acceleration Y < - 0.42 g < - 0.29 g 

Hard right turns Acceleration Y > + 0.44 g > + 0.27 g 

Hard left yaws Gyro Z < - 41 deg/s < - 24 deg/s 

Hard right yaws Gyro Z > + 38 deg/s > + 22 deg/s 
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3.3. Logistic regression models 

Logistic regression modeling (LR) was implemented in the R software environment. The 
present analysis built a logistic regression model for each dependent variable, CNC-involvement 
and crash-involvement. The logistic regression model for predicting CNC involvement is 
henceforth referred to as LR_CNC while the model predicting crash involvement is referred to as 
LR_Crash. The variable selection results were the same regardless of whether forward or 
backward selection (with the minimum AIC value) was used.  

The prediction performance results of logistic regression models are shown in Table 5 
and Table 6. Table 6 shows that the LR_CNC model applied to the test data has a high recall rate 
(72%) and relatively good precision and accuracy rates (64% and 62% respectively). As also 
shown in Table 5, the LR_Crash model has a high accuracy (80%) on the test set. However, as is 
clear from the confusion matrices in Table 6, this is due to the model ignoring the crash-involved 
category, thus classifying all drivers but one as not crash-involved. Hence the accuracy trivially 
reflects the proportion of non-crash involved drivers in the data. 

Table 5. The prediction performance of the logistic regression models. 

Models  Training Set    Test Set  

 Recall  Precision Accuracy   Recall  Precision Accuracy  

LR_CNC 0.691 0.613 0.589  0.723 0.644 0.619 

LR_Crash 0.010 0.429 0.817  0.000 0.000 0.802 

 

Table 6. The confusion matrices of the logistic regression models. 

 

The logistic regression results for the LR_CNC model are shown in Table 7 (the results 
for the LR_Crash model are not shown as this classifier failed to predict any crashes). The self-
reported violations, hard start rate, M-DBQ 2 (violations), SSS-V total score, and hard left yaw 
rate show statistically significant effects on the probability of being a CNC-involved driver. 
However, it should be noted that these results are somewhat hard to interpret as the odds ratios 
vary significantly in size and confidence intervals for some of the driving style variables. This 
may be due to a relatively high threshold level resulting from the threshold determination 
procedure illustrated in Figures 3 and 4. This leads to very few instances of non-zero values for 
these variables, making the statistical results brittle.  
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Table 7. Logistic regression models outputs. 

LR_CNC Model       

Effect Estimate Std. Error z value p-Value  Odds ratio [95% CI] 

Intercept -0.593 0.320 -1.850 0.064 . 0.553 [0.294, 1.033] 

Self-reported violation [1-0] 0.426 0.112 3.804 <0.001 *** 1.531 [1.230, 1.908] 

SSS-V total score 0.022 0.008 2.714 0.007 ** 1.022 [1.006, 1.039] 

M-DBQ 2 - violations 0.233 0.137 1.694 0.090 . 1.262 [0.967, 1.656] 

Risk-taking lane change -0.055 0.035 -1.590 0.112  0.946 [0.884, 1.013] 

Hard start rate 5.245 2.175 2.411 0.016 * 189.642 [3.750, 17864.073] 

Hard stop rate 0.733 0.403 1.818 0.069 . 2.081 [0.959, 4.665] 

Hard left yaw rate 23.252 8.598 2.704 0.007 ** 1.25E+10 [3.59E+03, 7.62E+17] 

Note: . = p-value<0.1; * = p-value <0.05; ** = p-value <0.01; *** = p-value <0.001 

3.4. Random forest models 

Random forest modeling (RF) was implemented in the R software environment using the 
“randomForest” package (Liaw and Wiener, 2002). Two tuning parameters needed to be 
determined to develop a random forest model, namely total number of trees and the number of 
randomly selected predictors to grow each tree. By experimenting different values, 500 and 4 
were used for these parameters, respectively. Three random forest models were developed, and 
the results are shown in Tables 8 and 9.  

Table 8 shows that RF_CNC has high recall rate and good accuracy rate that are very 
close to the results of logistic regression models for the test set. Also, shown by the confusion 
matrices in Table 9, the model performance on predicting crash involvement is also very similar 
to the logistic regression model, where almost all drivers are classified as not crash-involved, 
indicating that the model failed to learn to recognize crash-involved drivers. 

Table 8. The prediction performance of random forest models. 

Models 
 Training Set  Test Set 

Recall Precision Accuracy  Recall Precision Accuracy 

RF_CNC 1.000 1.000 1.000  0.745 0.652  0.633 

RF_crash 1.000 1.000 1.000  0.014 0.333 0.800 

  

Table 9. The confusion matrices of random forest models. 
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While developing the random forest model, predictor importance is internally calculated 
by measuring the Gini Index decrease caused by each predictor averaged across all trees. The 
results for the CNC model are shown in Figure 5 (again, results for the crash prediction model 
are not included). As can be seen from the plot, the most important variables in predicting CNCs 
are hard stop rate, hard start rate, hard left turn rate, hard right turn rate, hard left yaw rate, and 
hard right yaw rate. These results, where the driving style variables are indicated as the most 
important predictors, yield a somewhat different picture than the logistic regression model above, 
where also self-reported violation/crash and SSS-V total score showed up as significant 
predictors.  

 
Figure 5. Importance of predictors in random forest model predicting CNCs based on mean decrease in Gini 
Index. High mean decreases in Gini reflect high importance 

4. Discussion 

The goal of the present analysis was to investigate, using the SHRP 2 dataset, to what 
extent it is possible to predict crash and/or near crash involvement for individual drivers based 
on enduring personal factors related to demographics, driving history, personality, and observed 
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driving style. Two types of classification models, logistic regression and random forest, were 
employed and yielded similar results. 

In line with previous results based on naturalistic driving data (Guo and Fang, 2013; 
Simons-Morton et al., 2012), it was demonstrated that individual driver involvement in crashes 
or near crashes (CNC) in previously unseen (test) data can be predicted with some accuracy (62-
63%) based on enduring personal factors. Moreover, the models were able to correctly identify 
72-75% of the CNC-involved drivers (recall) and of those drivers predicted by the models to be 
involved in a CNC during the study period, 64-65% were correct predictions (precision). It 
should be noted that CNC involvement here mainly included involvement in near-crashes 
(55.5% of the drivers were involved in a CNC while only 18.6% were involved in a crash during 
the study period). 

The present study is, to our knowledge, the first to, relate enduring personal factors 
specifically to crash (rather than CNC) involvement based on naturalistic driving data. However, 
the results here were somewhat less encouraging. Both models essentially failed to recognize 
crash-involved drivers and classified almost all driver as non-crash-involved. This result is likely 
a combination of the relatively low proportion of crash-involved drivers in the training data and a 
weak association between the currently used predictor variables and individual crash 
involvement. Thus, optimal classification performance could be obtained by trivially classifying 
all data points into the dominant category (i.e., non-involvement in crashes). 

The present results thus show that it is possible to predict CNC (mainly near-crash) 
involvement for individual drivers with some degree of accuracy, while this seems to be more 
difficult for crashes alone. In a companion commentary, using a nearly identical dataset as in the 
present study, de Winter et al. (2018) looked specifically at correlations between, on the one 
hand, the Driver Behavior Questionnaire and the Sensation Seeking Scale and, on the other, 
crash and near crash involvement (as well as some of the g-force driving style measures 
investigated here). In line with the present results, the correlations between DBQ (Violations 
sub-scale) and SSS scores and near crashes were substantially higher (around 0.20) than the 
corresponding correlations for crashes (around 0.05-0.10). de Winter et al. (2018) also found 
relatively high correlations between the DBQ and the present g-force metrics. 

Hence, taken together, these studies, as well as a complementary analysis presented in 
Huang et al. (2018), indicate that both near crash and crash involvement is associated with, and 
can to some extent be predicted from, enduring personal factors, but that the association is 
relatively weak. This indicates that the involvement in crashes and near crashes is also strongly 
influenced by more temporary personal as well as situational factors. This is in line with existing 
crash causation models, such as the Swiss cheese and the Crash Trifecta models (see Knipling, 
2009) which suggest that multiple driver and situational factors typically have to align to produce 
a crash. This suggests that, rather than assuming a direct relationship between personal factors 
and crashes, the relationship is more complex and moderated/mediated by other temporal and 
situational factors. Hence, it might be interesting to explore more complex models including 
such factors as co-variates.  

Moreover, the results indicate that enduring personal factors, at least those represented by 
the present predictor (independent) variables, appear to have a stronger association with near 
crashes than with crashes. It is difficult, based on the present results, to draw any strong 
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conclusions on why this may be the case but some speculation may be warranted. First, the fact 
that the training set contained more examples of near crashes than crashes is probably led to 
better classification of the former (see de Winter et al., 2018). Another potential reason could be 
that the current predictor variables mainly capture individual characteristics related to aggressive 
driving and that aggressive driving may be more strongly associated with near-crashes than with 
crashes. This notion is supported by the relatively high correlations between driving style and 
personality questionnaire (DBQviolation and SSS-V) scores and near crashes/g-force measures 
found by de Winter et al. (2018). By contrast, crashes may to a larger extent than near crashes be 
associated with driver inattention combined with rare/unexpected circumstances. This is 
supported by existing naturalistic driving analyses of driver inattention and crash/near crash 
involvement, which typically found eyes-off-road to be more common in crashes than in near 
crashes (Klauer et al., 2006; Victor et al., 2015). Driver inattention is most likely also strongly 
associated with enduring personal factors (e.g., individual drivers may differ consistently in their 
willingness to engage in secondary tasks), but such these characteristics may not be well-
captured by the present predictor variables.  

It is also possible that near-crashes recorded in naturalistic driving studies are to a greater 
extent than crashes related to the behavior of the observed driver. For example, near crashes 
where the subject vehicle is almost struck in the rear were typically not recorded in SHRP 2 
(detecting such events would require rear proximity sensors which were not included in SHRP 2) 
while rear-end striking crashes are.  

In any case, it would clearly be premature to dismiss the possibilities of predicting crash 
involvement from enduring personal factors solely based on the present results, and there are 
several ways the classification models may be improved and other ways of analyzing this data 
which may shed further light on the relationship between enduring personal factors and crash 
involvement.  

First, while SHRP 2 is the largest naturalistic data collection to date, the number of 
crashes recorded is still relatively limited, especially more severe crashes (the present dataset is 
dominated by minor severity Level 3 and tire strike/low risk Level 4 crashes). Thus, it is possible 
that the results would have been different if a larger set of severe crashes were available. Such 
datasets do exist today in the commercial sector and have been used in related analyses (e.g., 
SmartDrive, 2017).  

Second, the current driving style variables were relatively simple (g-force events), 
building on existing studies (Simons-Morton et al., 2012) and typically used in existing 
applications in the auto insurance domain (e.g., Drive Safe and Save by StateFarm and Snapshot 
offered by Progressive). Also, the current data-driven approach for finding optimal g-force 
threshold values based on AIC values of individual logistic regression models for each variable, 
was clearly associated with certain issues. In particular, this approach yielded high thresholds for 
some variables, with only few drivers having non-zero values, leading to brittle statistical results. 
There is clearly much room for developing more sophisticated driving style indicators that may 
have a stronger relationship to crash involvement. Some potential candidates include jerk 
(Bagdadi and Varhelyi, 2011) and various measures based on speeding and close following (see 
Sagberg et al., 2015). Moreover, as suggested above, the current predictors are mainly related to 
aggressive driving and including indirect or direct measures of “inattention propensity” may help 
to improve model predictions for crashes. 
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Annex 

   Component  

 ᴵ (Slips) ᴵᴵ (Violations) ᴵᴵᴵ (Laps) 

Item    

Attempt to drive away from traffic 
lights in the wrong gear -0.103 -0.079 -0.148 

Become impatient with a slow 
driver in the fast lane and pass on 
the right 

0.214 -0.732 -0.168 

Drive especially close to a car in 
front as a signal to the driver to go 
faster or get out of the way 

0.153 -0.788 -0.046 

Attempt to pass someone that you 
hadn’t noticed to be making a left 
turn 

-0.124 -0.463 -0.058 

Forget where you left your car in a 
parking lot 0.059 0.016 -0.714 

Turn on one thing, such as your 
headlights, when you mean to 
switch on something else, such as 
the windshield wipers 

-0.266 0.089 -0.449 

Realize that you have no clear 
recollection of the road along which 
you have just been traveling 

0.121 -0.193 -0.667 

Cross an intersection knowing that 
the traffic lights have already 
changed from yellow to red 

-0.048 -0.385 -0.281 

Fail to notice that pedestrians are 
crossing when turning onto a side 
street from a main road 

-0.527 -0.011 -0.128 

Angered by another driver’s 
behavior, you catch up to them with 
the intention of giving him/her “a 
piece of your mind.” 

-0.235 -0.497 0.218 

Misread the signs and turn the 
wrong direction on a one-way street -0.554 0.153 -0.145 
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* bold when assigned to component 

Disregard the speed limits late at 
night or early in the morning 0.102 -0.625 -0.187 

When turning right, nearly hit a 
bicyclist who is riding along side of 
you 

-0.72 0.083 0.282 

Attempting to turn onto a main 
road, you pay such close attention to 
traffic on the road you are entering 
that you nearly hit the car in front 
of you that is also waiting to turn. 

-0.479 -0.014 -0.114 

Drive even though you realize you 
might be over the legal blood 
alcohol limit 

-0.006 -0.395 0.039 

Have an aversion to a particular 
class of road user, and indicate your 
hostility by whatever means you can 

-0.393 -0.340 0.302 

Underestimate the speed of an 
oncoming vehicle when attempting 
to pass a vehicle in your own lane 

-0.5 -0.124 -0.002 

Hit something when backing up that 
you had not previously seen -0.514 0.197 -0.099 

Intending to drive to destination A, 
you ‘wake up’ to find yourself on a 
road to destination B, perhaps 
because destination B is a more 
common destination. 

-0.041 -0.051 -0.593 

Get into the wrong lane 
approaching an intersection -0.313 0.066 -0.364 

Miss “Yield” signs, and narrowly 
avoid colliding with traffic having 
the right of way 

-0.733 0.117 0.047 

Fail to check your rearview mirror 
before pulling out, changing lanes, 
etc. 

-0.4 -0.117 -0.071 

Get involved in unofficial ‘races’ 
with other drivers -0.035 -0.52 0.124 

Brake to quickly on a slippery road 
or steer the wrong way into a skid -0.466 -0.027 -0.077 
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Appendix C. Course Curriculum 

Curriculum for a Course Module on Differential Crash Involvement and Behavior-based 
Predictive Analytics 
Learning Objective 

The objective of this course module is to provide students with an enhanced understanding of 
how drivers’ involvement in crashes can be related to, and predicted based on, individual 
characteristics.  

Content 

The course will address theoretical concepts related to individual driving style and differential 
crash involvement, statistical techniques for analyzing and predicting individual crash 
involvement, as well as practical applications, for example in the context of driver education and 
screening, insurance, and fleet management.  

The module will consist of three lectures, which may be reduced or expanded based on the 
general course in which the module is taught: 

Lecture 1. The concept of differential crash involvement. This lecture will provide a historical 
background to the study of how individual characteristics are related to crashes and introduce 
key theoretical concepts commonly used in this context. 

Example literature:  

Elander, J., West, R., & French, D. (1993). Behavioral correlates of individual differences in 
road traffic crash risk: An examination of methods and findings. Psychological Bulletin, 113, 
279–294. 

Knipling, R.R., 2009. Safety for the long haul: Large truck crash risk, causation, & prevention. 
American Trucking Association Arlington, VA. 

McKenna, F. P. (1983). Accident proneness: A conceptual analysis. Accident Analysis and 
Prevention, 15, 65–71. 

Sagberg, F., Selpi, Piccinini, G. F. & Engström, J. 2015. A Review of Research on Driving 
Styles and Road Safety. Human Factors, 57(7), 1248–75. 

Lecture 2: Statistical modeling of differential crash involvement. This lecture will introduce 
the key statistical methods typically used in differential crash involvement research, including 
Poisson and negative binomial regression, logistic regression and machine learning techniques, 
and discuss example applications, such as modeling individual crash rates, classifying drivers 
into risk groups, etc. 
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Example literature: 

Guo, F., & Fang, Y. (2013). Individual driver risk assessment using naturalistic driving data. 
Accident Analysis & Prevention, 61, 3–9. https://doi.org/10.1016/j.aap.2012.06.014 

Simons-Morton, B.G., Zhang, Z., Jackson, J.C., Albert, P.S., 2012. Do Elevated Gravitational-
Force Events While Driving Predict Crashes and Near Crashes? Am. J. Epidemiol, 175(10), 
1075–1079. doi:10.1093/aje/kwr440 

Lecture 3: Applications: This lecture will focus on real-world applications of research on 
differential crash involvement, in particular in the areas of driver education and evaluation, 
insurance, and commercial fleet management. 

Example literature: 

Boris and Luciana (2017). Developing a Younger Driver Assessment Tool. Technical 
Memorandum #1. American Transportation Research Institute (ATRI). 

Huetter, J. (2017). Progressive: Usage-based insurance is the future, likely assisted by OEM data. 
Retrieved from http://www.repairerdrivennews.com/2017/05/17/progressive-usage-based-
insurance-is-the-future-likely-assisted-by-oem-data/ 

Lytx. 2017. Industry insights: Beyond telematics: How video predicts risky behavior. Lytx White 
Paper. 

Murray, D. C., Lantz, B., & Keppler, S. A. (2005). Predicting Truck Crash Involvement: 
Developing a Commercial Driver Behavior-Based Model and Recommended Countermeasures. 
Retrieved from https://trid.trb.org/view.aspx?id=771443 

SmartDrive. (2017). Measuring driver risk with video-based analytics. San Diego, California: 
SmartDrive Systems. 

Target audience 

This course module mainly targets graduate students in the field of transportation human 
factors/traffic safety analysis, and could be part of a graduate course on these topics. However, 
given the strong industrial interest in this topic, it is possible that the course could also be given 
in an industrial context, targeting, for example, insurance or fleet management professionals. 

  

https://trid.trb.org/view.aspx?id=771443
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Appendix D. Data Dictionary of Variables 
Behavior-based Predictive Safety Analytics – Driver Behaviors and Outcomes 

Data Dictionary of Variables 
 

Variable Name Variable Label Brief Notation Data Type Minimum Maximum 

driverID Driver ID Driver ID Discrete 3 5081966 

DBQ1 Driver Behavior Questionnaire 
(DBQ) Factor 1: Errors 

Questionnaire 
data 

Continuous 1 3.1 

DBQ2 DBQ Factor 2: Violations Questionnaire 
data 

Continuous 1 5.25 

DBQ3 DBQ Factor 3: Slips/Lapses Questionnaire 
data 

Continuous 1 5.33 

RP1_Minor Risk Perception Factor 1: Minor 
Offenses 

Questionnaire 
data 

Continuous 1 7 

RP2_Major Risk Perception Factor 2: Major 
Offenses 

Questionnaire 
data 

Continuous 1 7 

RP3_Dist Risk Perception Factor 3: 
Distraction-related Behaviors 

Questionnaire 
data 

Continuous 1 7 

studyLength Length of study in months Whole 
participation 

Continuous 210 1055 

percRemovedTrips Percent of removed trips (due to 
various reasons) 

Whole 
participation 

Continuous 0.0291 0.9892 

DistanceInMile Distance driven in miles for 
duration of study 

Whole 
participation 

Continuous 7.923 59274.452 

DurationInHour Duration driven in hours for 
duration of study 

Whole 
participation 

Continuous 0.357 1317.747 

numTrips Number of trips for duration of 
study 

Whole 
participation 

Continuous 7 7156 

DistanceInMile_six Distance driven in miles for six 
month study period 

Six months 
participation 

Continuous 0 17905.208 

DurationInHour_six Duration driven in hours for six 
month study period 

Six months 
participation 

Continuous 0 537.811 

numTrips_six Number of trips driven for six 
month study period 

Six months 
participation 

Continuous 0 3220 

Crash_six Number of crashes for six month 
study period 

Six months 
participation 

Continuous 0 10 
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Variable Name Variable Label Brief Notation Data Type Minimum Maximum 

NearCrash_six Number of nearcrashes for six 
month study period 

Six months 
participation 

Continuous 0 19 

atFaultCrash_six Number of at fault crashes for six 
month study period 

Six months 
participation 

Continuous 0 10 

atFaultNearCrash_six Number of at fault near crashes 
for six month study period 

Six months 
participation 

Continuous 0 15 

Severity1Crash_six Number of severity 1 crashes for 
six month study period 

Six months 
participation 

Continuous 0 1 

Severity2Crash_six Number of severity 2 crashes for 
six month study period 

Six months 
participation 

Continuous 0 2 

RearEndStriking_six Number of rear end strikings for 
six month study period 

Six months 
participation 

Continuous 0 14 

atFaultCNC_six Number of at fault crash and near 
crashes for six month study 
period 

Six months 
participation 

Continuous 0 16 

CNC_six Number of crash and near crashes 
for six month study period 

Six months 
participation 

Continuous 0 20 

atFaultCNC_six_Bin Presence or absence of an at fault 
crash / near crash during the six 
month study period 

Six months 
participation; 
Binary DV 

Continuous 0 1 

CNC_six_Bin Presence or absence of a crash / 
near crash during the six month 
study period 

Six months 
participation; 
Binary DV 

Continuous 0 1 

atFaultCrash_six_Bin Presence or absence of an at fault 
crash during the six month study 
period 

Six months 
participation; 
Binary DV 

Continuous 0 1 

Crash_six_Bin Presence or absence of a crash 
during the six month study period 

Six months 
participation; 
Binary DV 

Continuous 0 1 

MRate_atFaultCNC_six Rate of at fault crash / near 
crashes by mileage for six month 
study period 

Six months 
participation; # 
events per mile 

Continuous 0 0.017 

MRate_CNC_six Rate of crash / near crashes by 
mileage for six month study 
period 

Six months 
participation; # 
events per mile 

Continuous 0 0.017 

MRate_atFaultCrash_six Rate of at fault crashes by 
mileage for six month study 
period 

Six months 
participation; # 
events per mile 

Continuous 0 0.004 
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Variable Name Variable Label Brief Notation Data Type Minimum Maximum 

MRate_Crash_six Rate of crashes by mileage for six 
month study period 

Six months 
participation; # 
events per mile 

Continuous 0 0.004 

MRate_hardstart_six_24 Rate of hard starts by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX > 0.24g 

Continuous 0 3.166 

MRate_hardstart_six_25 Rate of hard starts by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX > 0.25g 

Continuous 0 2.870 

MRate_hardstart_six_30 Rate of hard starts by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX > 0.30g 

Continuous 0 1.979 

MRate_hardstart_six_33 Rate of hard starts by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX > 0.33g 

Continuous 0 1.435 

MRate_hardstop_six_24 Rate of hard stops by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX < -0.24g 

Continuous 0 3.247 

MRate_hardstop_six_29 Rate of hard stops by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX < -0.29g 

Continuous 0 2.099 

MRate_hardstop_six_30 Rate of hard stops by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
accelX < -0.30g 

Continuous 0 2.301 

MRate_hardleftTurn_six_29 Rate of hard left turns by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
accelY < -0.29g 

Continuous 0 1.855 

MRate_hardleftTurn_six_30 Rate of hard left turns by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
accelY < -0.30g 

Continuous 0 1.637 

MRate_hardleftTurn_six_33 Rate of hard left turns by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
accelY < -0.33g 

Continuous 0 0.995 

MRate_hardleftTurn_six_38 Rate of hard left turns by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
accelY < -0.38g 

Continuous 0 0.580 

MRate_hardleftTurn_six_42 Rate of hard left turns by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
accelY < -0.42g 

Continuous 0 0.364 
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Variable Name Variable Label Brief Notation Data Type Minimum Maximum 

MRate_hardrightTurn_six_27 Rate of hard right turns by 
mileage for six month study 
period given the threshold 

Six months 
participation; 
accelY > 0.27g 

Continuous 0 2.896 

MRate_hardrightTurn_six_29 Rate of hard right turns by 
mileage for six month study 
period given the threshold 

Six months 
participation; 
accelY > 0.29g 

Continuous 0 2.413 

MRate_hardrightTurn_six_30 Rate of hard right turns by 
mileage for six month study 
period given the threshold 

Six months 
participation; 
accelY > 0.30g 

Continuous 0 2.413 

MRate_hardrightTurn_six_35 Rate of hard right turns by 
mileage for six month study 
period given the threshold 

Six months 
participation; 
accelY > 0.35g 

Continuous 0 0.873 

MRate_hardrightTurn_six_44 Rate of hard right turns by 
mileage for six month study 
period given the threshold 

Six months 
participation; 
accelY > 0.44g 

Continuous 0 0.280 

MRate_hardleftYaw_six_24 Rate of hard ups by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
gyroZ < -
24deg/sec 

Continuous 0 3.233 

MRate_hardleftYaw_six_46 Rate of hard ups by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
gyroZ < -
46deg/sec 

Continuous 0 0.527 

MRate_hardleftYaw_six_41 Rate of hard ups by mileage for 
six month study period given the 
threshold 

Six months 
participation; 
gyroZ < -
41deg/sec 

Continuous 0 0.760 

MRate_hardrightYaw_six_19 Rate of hard downs by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
gyroZ > 
19deg/sec 

Continuous 0 3.861 

MRate_hardrightYaw_six_22 Rate of hard downs by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
gyroZ > 
22deg/sec 

Continuous 0 2.413 

MRate_hardrightYaw_six_37 Rate of hard downs by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
gyroZ > 
37deg/sec 

Continuous 0 0.372 

MRate_hardrightYaw_six_38 Rate of hard downs by mileage 
for six month study period given 
the threshold 

Six months 
participation; 
gyroZ > 
38deg/sec 

Continuous 0 0.351 

*Note. A value of “NA” is used for missing data. 
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