BEHAVIOR OF ASTM C 850 CONCRETE BOX CULVERTS WITHOUT SHEAR CONNECTORS

bу

.

Ray W. James

Research Report 294-1

Determination of Earth Pressures on Reinforced Concrete Box Culverts Research Study No. 2-5-81-294

Sponsored by

Texas State Department of Highways and Public Transportation in cooperation with U.S. Department of Transportation Federal Highway Administration

May 1983

Texas Transportation Institute The Texas A&M University System College Station, Texas

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

KEY WORDS

Culverts, Concrete Box, Shear Connectors, Load Tests, Reinforcing Steel Stresses

ACKNOWLEDGMENTS

The work was sponsored by the Texas State Department of Highways and Public Transportation (TSDHPT) in cooperation with the Federal Highway Administration. This study is a portion of the work done under project 2-5-81-294, which also includes a more extensive investigation of a cast-inplace reinforced concrete culvert to be reported separately.

The two box culverts were fabricated by Gifford-Hill & Co., Pipe Division, Ft. Worth, Texas. Materials and support were provided by Gifford-Hill & Co. and Ivy Steel and Wire Co. of Houston.

Numerical predictions of culvert response were provided by Mr. Charles Terry of the TSDHPT. His assistance is gratefully acknowledged. The testing was conducted at the Texas A&M University Research Annex. The author appreciates the assistance of the staff of the Research Annex and the Texas

ii

Transportation Institute, particularly Mr. Richard E. Bartoskewitz, who assisted with the instrumentation and directed the testing.

IMPLEMENTATION STATEMENT

The results of this study suggest that shear connectors are not required in 7 x 5 ASTM C 850 culverts. Included are recommendations to perform field tests and further study to determine whether revisions to all C 850 standard designs may be recommended.

SUMMARY

A series of static loads simulating factored HS20-44 wheel loads was applied to the 7 ft and 5 ft spans of two experimental box culvert sections. The culverts were designed in accordance with ASTM C 850 except that the steel areas in the 5 ft slabs were sized according to the C 850 requirements for 5 x 5 boxes, and the steel areas in the 7 ft slabs were sized according to the C 850 requirements for 7 x 5 boxes, so that testing of 5 ft as well as 7 ft spans could be conducted.

The major objective of the study was to determine whether shear connectors required by ASTM C 850 and AASHTO might be safely omitted. To accomplish this objective, stresses in reinforcing steel were measured while simulated critical wheel loads were applied.

The following conclusions are apparent:

(1) Maximum measured steel stresses are well below design steel stresses for design service wheel loads and for factored ultimate design wheel loads.

(2) Cracking caused by the design ultimate wheel load is relatively insignificant with respect to cracking assumed in a "cracked section" design philosophy.

iv

Part				Page
1	INTRODUCTION			1
	1.1	Bac	ckground	1
	1.2	Pre	esent Design Standards	2
		1.2	2.1 ASTM C 850	2
		1.2	2.2 AASHTO	6
2	THEO	RETI	CAL ANALYSIS	7
	2.1	Pre	edicted Internal Moments and Deflections	7
	2.2	Pre	edicted Steel Stresses	11
3	EXPE	EXPERIMENTAL PROCEDURE		
	3.1	Tes	st Sections	14
	3.2	Ins	strumentation	14
	3.3	Tes	st Procedure	19
4	TEST	RES	SULTS	22
	4.1	Mea	asured Stresses	22
	4.2	Mea	asured Deflections	25
	4.3	Dis	scussion of Results	28
5	HS 20 AXLE LOAD STRESSES			32
6	CONCLUSIONS			33
7	RECOMMENDATIONS			34
RE	FEREN	CES		35
APPE	NDIX	Α.	MEASURED STRAIN GAGE ISOLATION RESISTANCE TO REINFORCING STEEL	36
APPE	NDIX	Β.	STRAIN GAGE DATA	38
APPE	NDIX	с.	VERTICAL DEFLECTION DATA	57
APPE	NDIX	D.	MEASURED CONCRETE COVER AT STRAIN GAGES	64
APPE	NDIX	E.	FIELD SKETCH OF OBSERVED CRACK PATTERNS	66

LIST OF FIGURES

Figure No.

Page

1	ASTM C 850 Concrete Box Section Reinforcing Steel	3
2	ASTM C 850 Design Wheel Load Distribution - No Cover	. 4
3	SLAB 49 Model of 7 ft Top Slab	8
4	Predicted Top Slab Flexural Moments - Centerline of 7 ft Slab	9
5	Predicted Vertical Deflections - Centerline of 7 ft Slab	10
6	Predicted Reinforcing Steel Stresses - Centerline of 7 ft Slab	13
7	Geometry and Reinforcement Schedule for Test Specimens	15
8	Strain Gage Locations and Nomenclature	17
9	Test Configuration Schematic	20
10	Measured Reinforcing Steel Stresses - Centerline of 7 ft Slab	23
11	Measured Reinforcing Steel Stresses - Centerline of 5 ft Slab	24
12	Measured Vertical Deflections - Centerline of 7 ft Slab	26
13	Measured Vertical Deflections - Centerline of 5 ft Slab	27
14	Repeated Load - Deflection Data - Station 1-7-73 - Test Configuration 7M1	31

LIST OF TABLES

<u>Table No</u> .		Page
1	Comparison of Test Specimen Reinforcing Steel Schedule with ASTM C 850 Specification	16
2	Actual Test Schedule	21

1. INTRODUCTION

1.1 Background

Precast box culverts have been extensively used to economically span smaller drainage channels. Presently, design standards exist for two categories of box culverts: ASTM C 850 establishes standard designs for boxes with less than 2 ft of cover subject to highway loadings, while ASTM C 789 establishes standard designs for other precast box sections. The C 850 standard requires shear connectors between top slabs of adjacent box sections, a requirement that is also adopted by AASHTO.

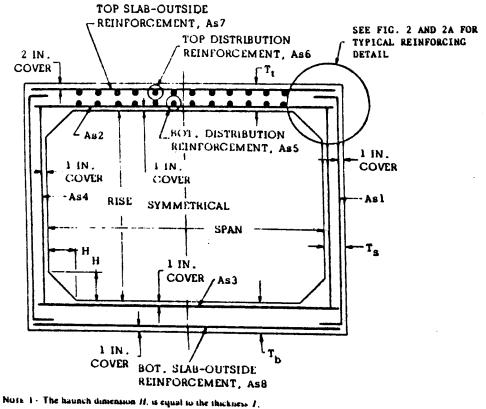
Proposed structural criteria changes to ASTM C 850 or C 789 are first presented to the AASHTO Rigid Culvert Liaison Committee to the AASHTO Bridge Committee. The question of the necessity of shear connectors is being studied by this committee, and this project was initiated to determine the structural integrity of C 850 culverts without shear connectors subject to concentrated wheel loads. A similar research project has also been initiated in Ohio under the direction of Ohio Department of Transportation engineer John D. Herl. Preliminary reports of both these projects were presented to Transportation Research Board Committee A2CO6 on January 17, 1983.

1.2 Present Design Standards

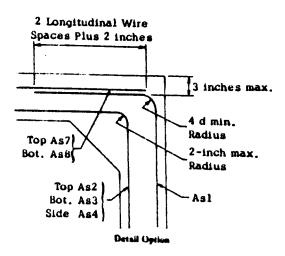
1.2.1 <u>ASTM C 850</u> - The ASTM Standard C 850 [1]* establishes design standards for precast concrete box culverts to be used with less than 2 ft of cover. The standard specifies minimum steel and concrete strengths, areas, and geometries for 42 standard culvert sizes subject to two loadings. The design criteria, computer programs, and standard designs are based on studies and tests sponsored by the American Concrete Pipe Association, the Virginia Department of Highways, and the Wire Reinforcement Institute [2,3]. The required transverse steel areas are based on computer solutions using several simplifying assumptions, including the following assumptions regarding wheel load distribution:

(1) Wheel loads are distributed parallel to span over a length equal to (8 in. + 1.75 H), where H = height of soil cover, in.

(2) The effective width of top slab resisting wheel load is taken to be (48 in. + 0.06 (SPAN-HAUNCH)).


Figure 1 shows the reinforcement detail and cross section geometry for a C 850 box section. Figure 2 shows the assumed simplified wheel loading specified for the so-called "strip" design method.

The design procedure used to develop the standard box sections [2] limits the crack widths at service load to 0.010 in. by limiting the design service steel stress to a value given by


$$f_{s} = \frac{\frac{65}{3\sqrt{t_{b}^{2} s_{\ell}}}}{1} + 5(ksi), \qquad (1)$$

where t_b is the distance from the centroid of the tension steel to the outermost concrete tension fiber (in.), and s_{\ell} is the spacing of the

*Numbers in brackets refer to numbered references.

Typical Bux Socilan

FIGURE I. ASTM C850 CONCRETE BOX SECTION REINFORCING STEEL (I)

FIGURE 2. ASTM C850 DESIGN WHEEL LOAD DISTRIBUTION - NO COVER longitudinal reinforcing steel wires (in.). This equation is based on studies by Lloyd, Rejali and Kessler [4] and subsequent criteria developed by Gergely and Lutz [5], and is a more conservative limitation than the ACI crack control criteria [6] and the AASHTO crack control criteria [7]; but the stress allowed by this limitation may be greater than the AASHTO fatigue stress limitation of 21 ksi [8] or the ACI allowable service load stress of 36 ksi [7]. For example, the two 7 x 5 boxes tested here have $t_b = 1.0$ in. and $s_{\ell} = 3.0$ in., so the maximum steel stress to limit cracking is approximately $f_s = 50.1$ ksi.

Additionally, ASTM C 850 specifies that the joint provide a smooth interior free of appreciable irregularities, and that the joint be designed or modified to transmit a minimum of 3000 lb of vertical shear force per foot of top slab joint. Shear connectors used to satisfy this requirement must be spaced no more than 30 in. on center and with a minimum of two connectors per joint. These requirements are intended to provide continuity of shears and deflections across joints to reduce culvert stresses when loaded near a joint and minimize relative displacements of culvert and cover. 1.2.2 <u>AASHTO Standard Specification for Highway Bridges</u> [7,8] - The AASHTO specifications include minimum requirements for design and methods of analysis for highway bridge structures, including culverts. These requirements are essentially satisfied by the ASTM C 850 standard. At longitudinal edges of reinforced concrete slabs, AASHTO 1.3.2(D) [8] requires an edge beam additional reinforcement in the slab, or an integral reinforced section of slab and curb. Since edge beams and curbs are not acceptable, and to provide continuity of deflections as well as shears, ASTM C 850 8.2 specifies that shear connectors be used to transmit the calculated shear across joints between culvert segments. This requirement is also adopted by AASHTO 1.15.7(D)(4) [7].

2. THEORETICAL ANALYSIS

2.1 Predicted Internal Moments

The FORTRAN code SLAB 49 [9] was used to predict the internal moments in the top slab of the model shown in Figure 3. For simplicity, the slab is assumed to be isotropic, neglecting the difference in distribution and flexural steel areas. SLAB 49 uses discrete elements which simulate linear, small deformation plate behavior. A 2.0 in. x 2.0 in. mesh size was used. The symmetric boundary conditions along the centerline were approximated with zero vertical restraint and essentially infinite rotational restraint along the centerline. Edge support at the side wall was approximated by a simple support and an elastic rotational restraint simulating the rotational stiffness of the side wall. Membrane reactions and forces were neglected, consistent with linear plate theory simplifications.

The predicted internal moments are shown in Figure 4 for two basic plate stiffnesses. The result labeled "uncracked" is the predicted moment distribution assuming the stiffness is equal to that of an uncracked 8 in. thick concrete plate, neglecting the reinforcing steel which would change the stiffness by only 6% approximately. The result labeled "cracked" is the predicted moment distribution neglecting the contribution of concrete in the tensile region. It is noteworthy that while the cracked stiffness is only 23% of the uncracked stiffness, the predicted maximum flexural moments are not significantly different. In addition to predicted moments, vertical deflections are also predicted, and Figure 5 presents the predicted top slab vertical deflection along the culvert centerline.

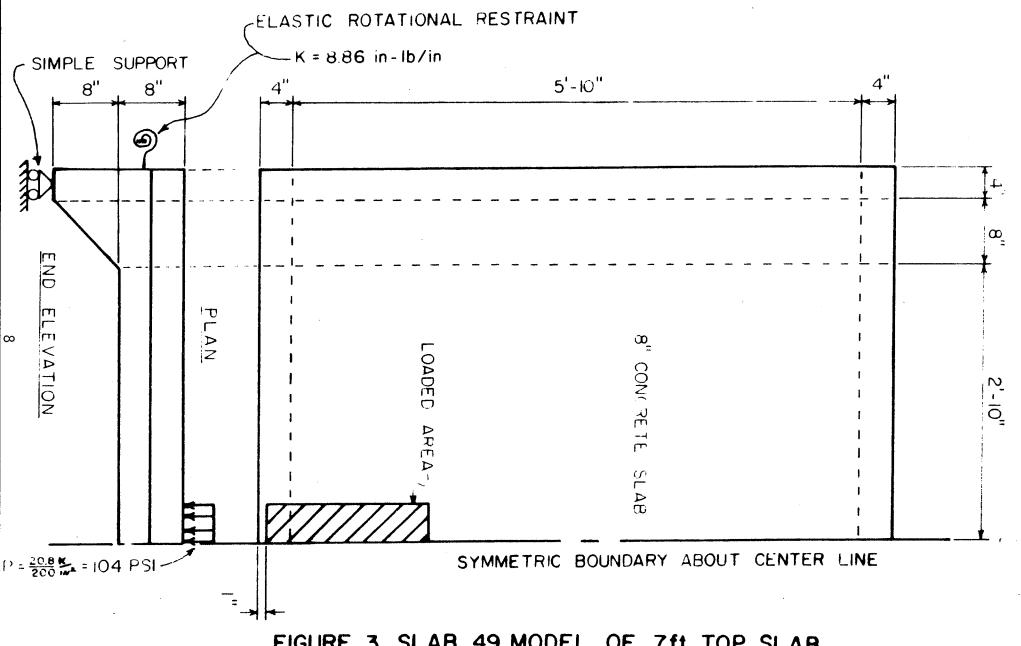
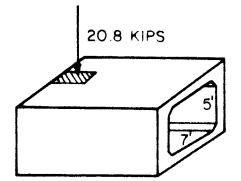



FIGURE 3. SLAB 49 MODEL OF 7ft TOP SLAB

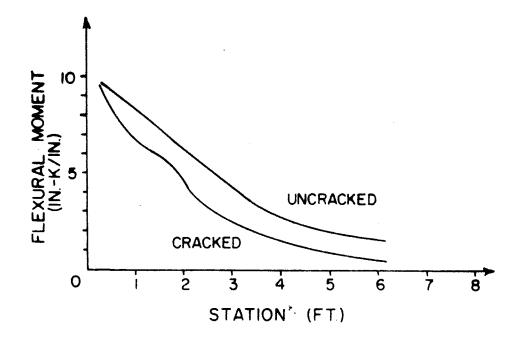
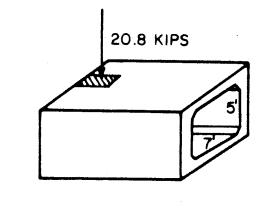



FIGURE 4. PREDICTED TOP SLAB FLEXURAL MOMENTS CENTERLINE OF 7FT SLAB

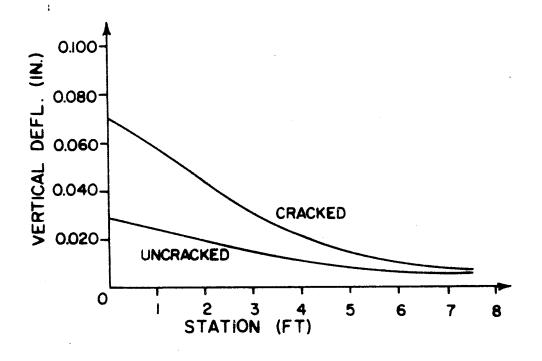


FIGURE 5. PREDICTED VERTICAL DEFLECTIONS CENTERLINE OF 7FT SLAB

2.2 Predicted Steel Stresses

Steel stresses are calculated from predicted slab flexural moments as follows: Assuming isotropic elastic plate behavior, the flexural stress in the reinforcing steel is

$$f_{s} = \frac{nM_{1}y}{I_{1}}, \qquad (2)$$

where $n = E_s/E_c$ is the modular ratio,

M₁ is the flexural moment per unit length,

y is the distance of the tension steel from the neutral surface,

and $I_1 = \frac{bh^3}{12(1-v^2)}$ is the moment of inertia per unit width b for a slab of thickness h and Poisson's ratio v.

Using
$$n = 7.44$$
,
 $h = 8.0$ in.,
 $v = 0.15$,
and $y = 3.0$ in.,

the moment of inertia becomes

 $I_1 = 43.6 \text{ in.}^4/\text{in.},$

and the steel stress is given by

$$f_s = M_1/1.96 \text{ in.}^3/\text{in.}$$
 (3)

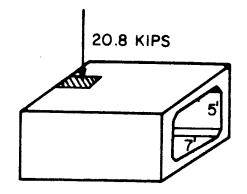
This calculation is based on the assumptions that the stresses are linearly distributed, and that the reinforcing steel areas may be neglected in computation of neutral surface location and moment of inertia.

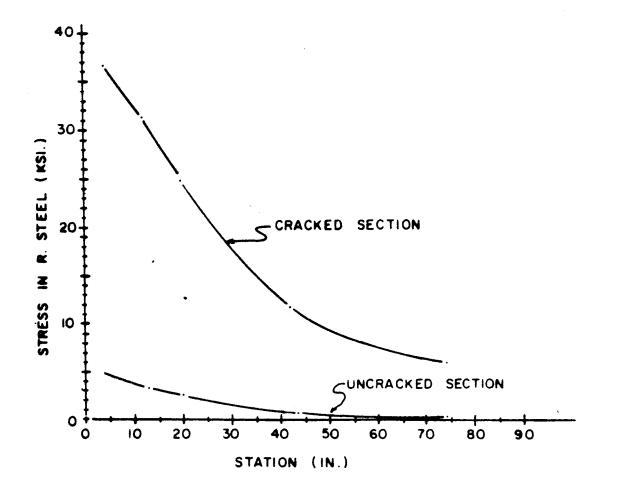
If cracking occurs, the concrete stresses can be assumed to be nonzero in the compression region only, with the tensile force resultant provided entirely by the tension steel. Using this assumption, the calculated

equivalent concrete section has a depth

and the equivalent concrete section moment of inertia is approximately

$$I_1 = 10.22 \text{ in.}^4/\text{in.}$$


The distance from the neutral surface to the tension steel is approximately

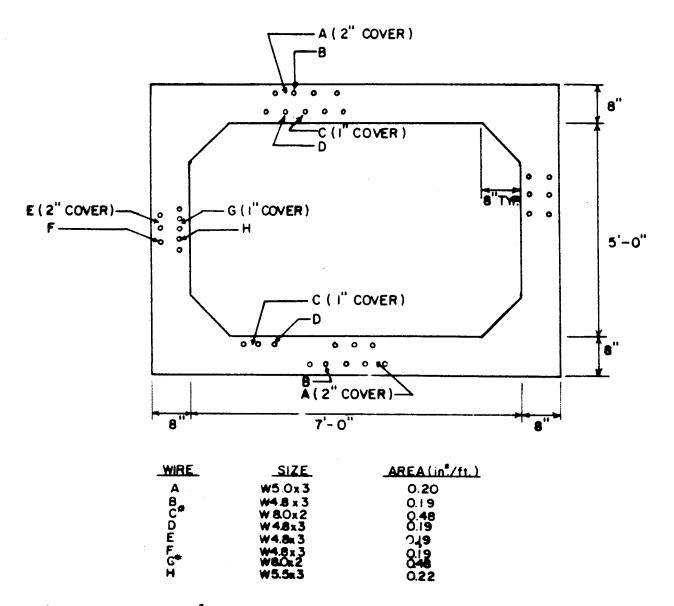

and the resulting relation between flexural stress and moment becomes

$$f_s = M_1/0.262 \text{ in.}^3/\text{in.}$$
 (4)

Steel stresses calculated from predicted top slab moments are shown in Figure 6. While the predicted maximum moments in the uncracked and cracked section models differ by only approximately 2%, the predicted maximum steel stress in the cracked section is approximately 7.5 times the predicted steel stress in the uncracked section.

The maximum predicted steel stress of 37 ksi in the cracked section exceeds the 21 ksi AASHTO fatigue limit stress and the 36 ksi service load limit stress of ACI, but is less than the crack control limit stress for this geometry used in the ASTM C 850 design procedure.

FIGURE 6. PREDICTED REINFORCING STEEL STRESSES - CENTERLINE OF 7FT. SLAB


3. EXPERIMENTAL PROCEDURE

3.1 Test Sections

Two 7 x 5 precast concrete box culverts were fabricated at the Gifford-Hill & Co. plant in Ft. Worth, Texas. The geometry is described in Figure 7. The design and materials met ASTM C 850 minimum requirements with the exception of reinforcement area A_{s1} . Standard 5 x 5 box requirements for A_{s7} were given precedence over 7 x 5 requirements for A_{s1} . The steel areas were in accordance with C 850 except for the 5 ft slabs which were more heavily reinforced in order to approximately simulate behavior of standard 5 x 5 box culverts using the same 7 x 5 specimens rolled 90°. The measured concrete compressive strength was 5725 psi, which exceeds the design compressive strength of 5000 psi. The reinforcing mesh is grade 65 (65 ksi yield strength). According to ASTM C 850, the yield strength is taken to be 60 ksi for purposes of analysis.

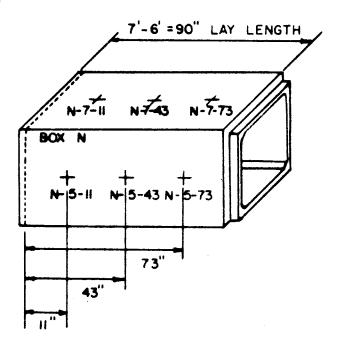
3.2 Instrumentation

The culverts were instrumented with strain gages bonded to the 8 gage main transverse reinforcing steel wires in theoretical maximum tensile stress regions. Strain gage locations are described in Figure 8. Six gages were installed in each culvert, however two gages were damaged during placement of concrete, leaving ten serviceable strain gages. The gages chosen were Tokyo Sokki Kenkyujo Type FLA-6-11. The gages were bonded with Micro-Measurements M-bond 200 adhesive, waterproofed with Micro-Measurements M-Coat A polyurethane and Dow Corning 3145 RTV. Additional mechanical protection was provided by wrapping each installation with several layers of aluminum foil tape. Lead wires were routed downward along longitudinal

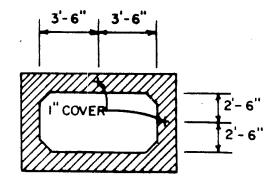
*INSTRUMENTED WIRES.

FIGURE 7. GEOMETRY AND REINFORCEMENT SCHEDULE FOR TEST SPECIMENS.

Table 1. Comparison of Test Specimen Reinforcing Steel Schedule with ASTM C 850 Specification


Reinforcement	C 850 7 x 5 HS 20 (in. ² /ft)	Required Area Interstate (in.²/ft)	As Built Area (in.²/ft)
A _{s1} (E)	0.29	0.30	0.19
$A_{s2}(C)$	0.48	0.48	0.48
$A_{s3}(C)$	0.27	0.34	0.48
$A_{s4}(G)$	0.19 ^a	0.19 ^a	0.48
A _{s7} (A)	0.20	0.20	0.20
A _{s8} (a)	0.19 ^a	0.19 ^a	0.20
$A_{s5}(D)$	0.19a	0.19a	0.19
A _{s6} (B)	0.19 ^a	0.19 ^a	0.19

(a) 7 x 5 Test Configuration (7 ft Span)


(b) <u>5 x 7 Test Configuration (5 ft Span)</u>

Reinforcement	$ \begin{array}{r} C 850 5 \times 7 \\ \underline{HS 20} \\ (in.2/ft) \end{array} $	Required Area Interstate (in.2/ft)	<u>As Built Area</u> (in.2/ft)
A _{sl} (A)	0.16	0.21	0.20
A _{s2} (G)	0.46	0.46	0.48
A _{s3} (G)	0.26	0.34	0.48
$A_{s4}(C)$	0.14 ^a	0.14a	0.48
A _{s7} (E)	0.19 ^a	0.19ª	0.19
A _{s8} (E)	0.17ª	0.17a	0.19
A _{s5} (H)	0.22	0.22	0.22
A _{s6} (F)	0.19 ^a	0.19 ^a	0.19

^aMinimum reinforcement area is specified.

الم المحمد المحمد المحمد الأليان المحالية الكان

NOTES: "N" DENOTES BOX NUMBER I OR 2. GAGES I-5-II AND I-7-II WERE DAMAGED DURING CONCRETE PLACEMENT.

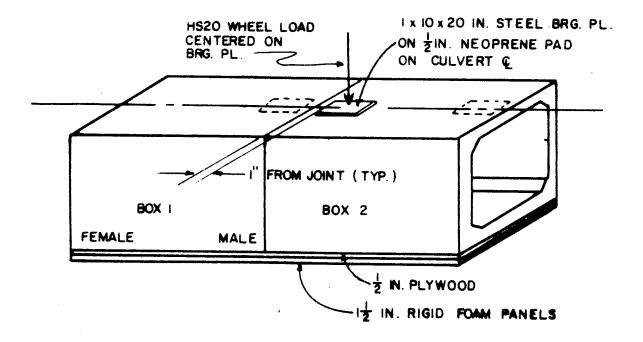
: <

FIGURE 8. STRAIN GAGE LOCATION & NOMENCLATURE

.

steel (perpendicular to traffic), exiting the reinforcing cage and form at the female connection end. The gages were wired into ten single active arm bridges using three wire hookups to eliminate signals due to thermally induced lead wire resistance changes.

Installed gage resistance was checked at the time of installation, but gage isolation resistance was not measured because of tight fabrication schedules. Gage isolation resistance was measured after testing had been completed, and after semi-destructive measurements of concrete cover had been made. Measured gage isolation resistances were approximately 150 M Ω or greater, which indicates acceptable isolation [10,11] at all but three gages as shown in Appendix A. Gages at stations 1-7-42, 2-7-11, and 2-7-43 all indicated unacceptably low gage isolation resistances. Strain gages at critical stations 1-5-73, 1-7-73, 2-5-73, and 2-7-73 all indicated open circuit gage isolation resistance with the analog ohmmeter used, which can detect resistances below 150 M Ω . The strain gage at station 1-5-42 had a marginal isolation resistance.


In addition to the resistance strain gages installed on the reinforcing steel, the culverts were instrumented with deflection dial indicators to measure vertical deflection at three of the top surface strain gage locations. The dial indicators were supported in fixtures mounted to the bottom slab inside surface. Deflections were monitored at the point of load application and at the two adjacent strain gage stations in order to monitor relative deflection across the joint.

3.3 Test Procedure

After curing, the culverts were transported to the test site and assembled in the fixture as shown schematically in Figure 9. Concentrated loads were applied to the top surface of the culvert through a 1 in. x 10 in. x 20 in. steel bearing plate and 1/2 in. neoprene pad located as shown in Figure 9. A hydraulic ram and electric motor driven hydraulic pump were used to apply the loads. A 100,000 lb compression load cell was used to measure the applied load. The lower surfaces of the culverts rested on 1/2 in. plywood sheets over doubled 3/4 in. rigid foam thermal insulating panels which rested on the steel reaction frame bed.

The culvert sections were aligned and fitted together snugly without grout, joint filler material, or shear transfer connectors. The fit of the joint was qualitatively evaluated by inserting a sheet of paper through the joint. The paper could be slipped through the joint at several places, but interference between the two faces prevented drawing the paper along the length of the joint. The visible joint was generally of uniform width, with no significant variations.

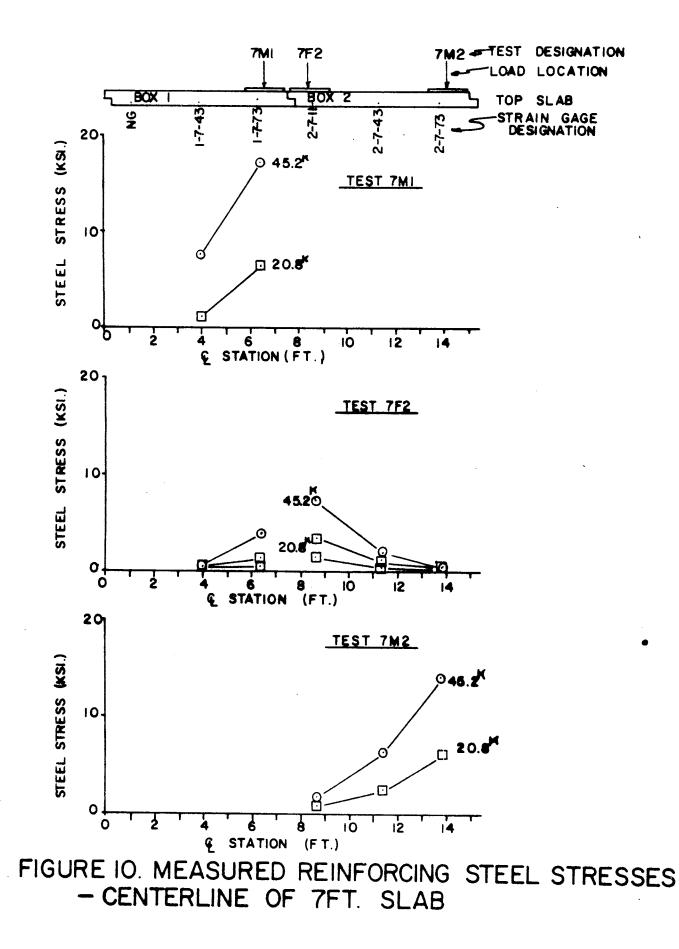
The reported test loads represent HS20-44 16 kip wheel loads multiplied by a 1.3 impact factor specified by AASHTO for a design service load of 20.8 kip and a 16 kip wheel multiplied by factors (1.3)(1.67)(1.3) = 2.82for a design ultimate factored load of 45.2 kip. The 78.0 kip load reached in test No. 9 represents the limiting load on the test fixture compression members, which indicated impending lateral instability.

FIGURE 9. TEST CONFIGURATION SCHEMATIC

Date	Test No.	Test Configuration <u>Code¹</u>	Max. Test Load	Repetitions	Comments
7-29-82	1	7F2	20.8 k	2	
7-29-82	2	7M1	20.8 k	2	
8-17-82	3	5F2	20.8 k	3	
8-17-82	4	5M1	20.8 k	3	
8-17-82	5	5M1	45.2 k	2	Replaced 1/2" Brg. PL with l" PL
8-18-82	5A	5M1	45.1 k	3	
8-18-82	6	5F2	45.2 k	3	
8-19-82	7	7F2	45.7 k	3	
8-19-82	8	7M1	45.5 k	3	
8-19-82	9	7M1	78.0 k	1	
8-20-82	10	7M2	45.5 k	3	

Table 2. Actual Test Schedule

 1 The first digit in the test configuration code denotes the span in feet, the letter M or F refers to the male or female end, and the second digit refers to box No. 1 or 2.


4. TEST RESULTS

4.1 Measured Stresses

Calibration of the strain gages was accomplished by performing uniaxial tension tests on an instrumented steel wire. Measured tangent moduli were 31.1×103 ksi and 29.7×103 ksi in two tests, so measured strains were converted to steel stresses using an elastic modulus of 30×103 ksi. Measured ultimate tensile strength was 74.2 ksi.

Figure 10 presents measured steel stresses for test configurations 7M1, 7F2, and 7M2 for test loads of 20.8 kip and 45.2 kip. Critical loading occurs in test 7M1, and maximum steel stress for the design service loading of 20.8 kip is 6.4 ksi in the top slab steel at gage location 1-7-73. For the design ultimate load of 45.2 kip, the maximum steel stress is 17.2 ksi.

Figure 11 presents measured steel stresses for test configurations 5M1 and 5F2 and for test loads of 20.8 kip and 45.2 kip. Critical steel stresses occur in test configuration 5M1, however stresses are lower than measured stresses in tests of the 7 ft span.

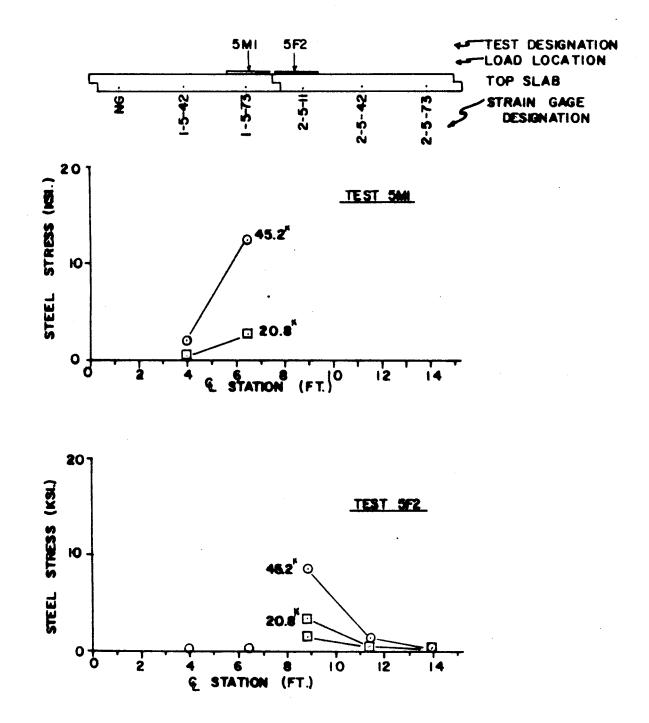
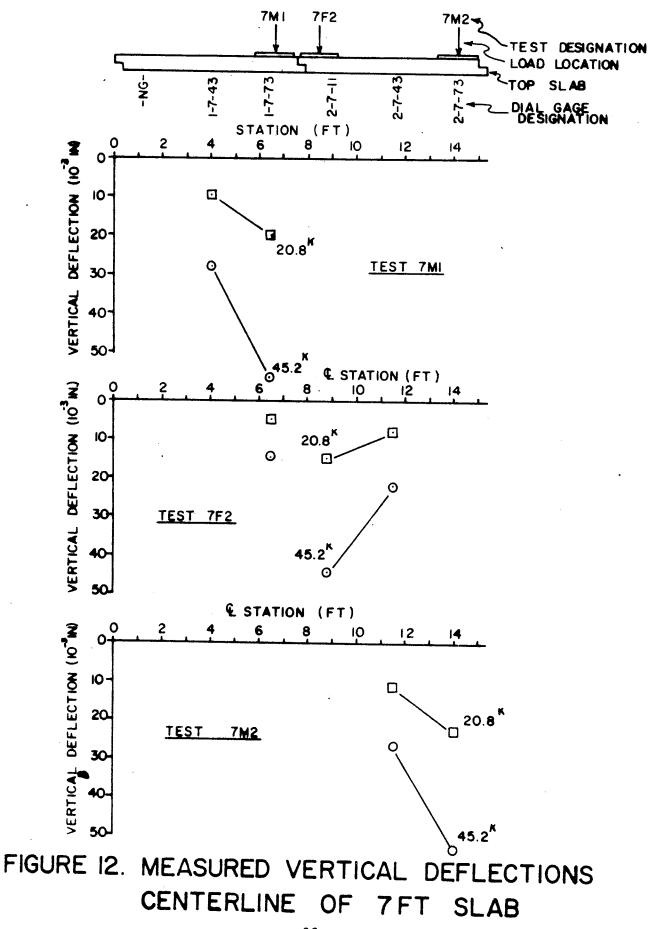



FIGURE II. MEASURED REINFORCING STEEL STRESSES CENTERLINE OF 5FT. SLAB

4.2 Measured Deflections

Measured top slab deflections are presented in Figure 12 for test configurations 7M1, 7F2, and 7M2 and for test loads of 20.8 kip and 45.2 kip. Test configuration 7M1 is critical with respect to maximum absolute deflection and relative deflection across the joint.

Measured top slab deflections are presented in Figure 13 for tests 5M1 and 5F2 for test loads of 20.8 kip and 45.2 kip. Maximum absolute and relative deflections occur in configuration 5F2.

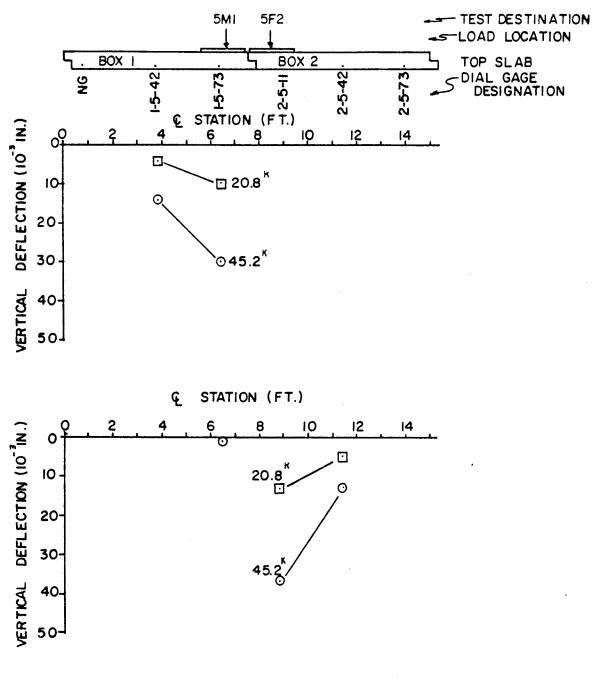


FIGURE 13. MEASURED VERTICAL DEFLECTIONS-CENTERLINE OF 5FT. SLAB 4.3 Discussion of Results

For test loads of 20.8 kip, representing the design service wheel load, all measured steel stresses are well below the C 850 live load fatigue limit stress of 21.0 ksi. The maximum measured stress is 6.4 ksi in configuration 7M1.

For test loads of 45.2 kip, representing the design ultimate wheel load, all measured steel stresses are well below the C 850 ultimate total load yield stress limitation of 60 ksi. The maximum measured steel stress is 17.2 ksi in configuration 7M1. Dead load stresses have not been calculated here.

Significant load transfer across the joint is obvious in the data from test configuration 7F2 only. Stress data for test configuration 5F2, in which load transfer is also possible, does not indicate any significant load transfer although deflection data does indicate some minor load transfer is occurring. As is expected, no load transfer across the joint is observed in test configurations 7Ml or 5Ml. While maximum measured stresses occurred at gage locations 1-7-73 and 1-5-73, maximum deflections occurred at stations 1-7-73 and 2-5-11. The stiffness at stations 2-7-11 and 2-5-11 is expected to be less, neglecting shear interaction across the joint, than the stiffness at stations 1-7-73 and 1-5-73, respectively, because of the joint Both stations are located 11 in. from the joint line, but the geometry. male connection of stations 1-5-73 and 1-7-73 has more concrete outboard of the point of load application than does the female connection at stations 1-5-11 and 1-7-11. The vertical deflection in configuration 7F2 is less than the deflection in configuration 7Ml because of the significant shear transfer that occurs in configuration 7F2. Without significant shear transfer in configuration 5F2, the deflection is slightly greater than that of configuration 5M1.

A comparison of the measured stresses presented in Figure 10 and the predicted stresses in Figure 6 suggests that the top slab is behaving essentially as an uncracked section. Measured maximum service load steel stresses are approximately 6.1 to 6.4 ksi, approximately 75% greater than the predicted steel stress of 3.6 ksi assuming the section is uncracked, and well below the approximately 32 ksi predicted steel stress in the cracked section. Measured vertical deflections presented in Figure 12 more closely agree with predicted uncracked section deflections than predicted cracked section deflections presented in Figure 5.

Cracking was not observed in the top slab at service load. The first observed crack in the 7 ft slab appeared at a test load of 27 kip. Two other flexural cracks opened at test loads of 50 kip and 55 kip, respectively. These three cracks were the only observed cracks having planes which might intersect the instrumented tension steel. The width of the central crack was measured with a graduated reticle at various loads. The observed crack widths were 0.010 in. at 50 kip and 0.013 in. at 60 kip. The field sketch of observed cracks is included in Appendix E.

The effects of the progressive cracking are apparent in Figure 14 which presents steel stresses and vertical deflection histories at gage station 1-7-73 during repeated tests in configuration 7M1. The steel stress per unit load increases with repeated testing, apparently because crack development causes a change in the neutral surface location and a reduction in the effective moment of inertia. The stiffness of the top slab is also reduced for the same reason. The observed effects of the cracking are still significantly less than would be expected if the section is assumed to be fully cracked, according to the design philosophy of the ACI Building Code Requirements for Reinforced Concrete. This is interpreted as an indication

that the observed cracking at the strain gage section is not fully developed in spite of the large overload applied, and that the fully cracked section design philosophically is overly conservative when applied to the reinforced slab with the concentrated load considered here.

The limiting crack width of 0.10 in. was observed at a test load of 50 kip. The measured steel stress at that load was approximately 21.7 ksi, considerably less than the 50.1 ksi limiting stress given by equation (1). The strain gage station is very close to the observed crack plane shown in Appendix E.

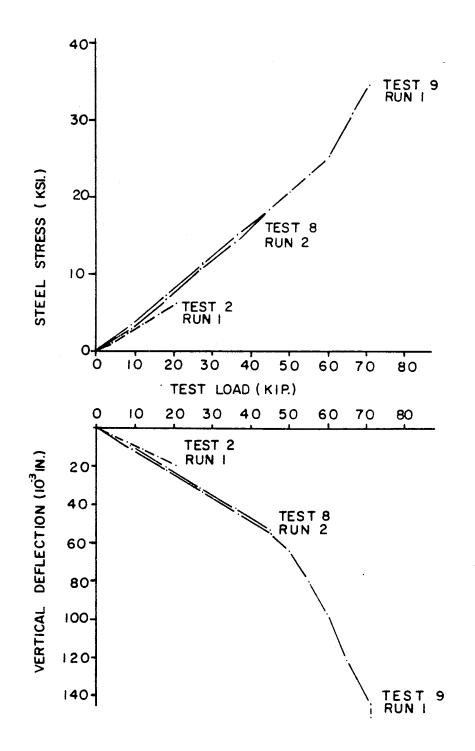


FIGURE 14. REPEATED LOAD-DEFLECTION DATA-STATION 1-7-73 TEST CONFIGURATION 7MI

5. HS 20 AXLE LOAD STRESSES

The live load stresses due to two wheels of an HS 20 axle can be approximated by superposition of measured wheel load stresses. Since the and locations of tests 7F2 and 7M2 are approximately 5'-8" apart, superposition of measured steel stresses in these two tests will allow a conservative approximation of steel stresses caused by two HS 20 wheels spaced 6'-0". By such superposition, the maximum steel stress expected under a design 32.0 kip axle with a 1.3 impact factor is approximately

6.1 ksi + 0.3 ksi = 6.4 ksi.

This maximum stress occurs at gage station 2-7-73, the male joint end of the culvert.

The maximum steel stress due to a design ultimate axle load of 90.4 kip is

14.0 ksi + 0.4 ksi = 14.4 ksi.

6. CONCLUSIONS

The following conclusions are drawn from the results:

- Maximum reinforcing steel stresses in ASTM C 850 7 x 5 box culverts subjected to a design wheel load of 20.8 kip are significantly less than the AASHTO 1.5.26(B) design allowable service steel stress of 24 ksi. The maximum steel stress measured was approximately 6.4 ksi.
- 2. Maximum reinforcing steel stresses in ASTM C 850 7 x 5 box culverts subjected to a design ultimate wheel load of 45.2 kip are significantly less than the design yield strength of 60 ksi. The maximum measured steel stress was approximately 17.2 ksi.
- 3. Cracking caused by application of the design ultimate wheel load is relatively insignificant with respect to cracking in a fully cracked section condition specified by the ACI design criteria.

Live load stresses due to other forces and dead load stresses have not been investigated.

7. RECOMMENDATIONS

The following recommendations are offered:

- ASTM C 850 size 7 x 5 reinforced concrete box sections appear to be conservatively designed due in part to design assumptions and simplifications regarding load distribution. A three-dimensional analysis and experimentally measured stresses support the use of these boxes without shear connectors.
- 2. A field trial of a C 850 box culvert installed without shear connectors is recommended. Sufficient instrumentation should be installed to verify the presented test results for 7 x 5 boxes, or in the case of boxes of other sizes, to extend the test results. Particular attention should be given to absolute and relative deflection measurements and long-term crack pattern observations.
- 3. The results of the present study, and future test results, should be presented for consideration to the AASHTO Rigid Culvert Liaison Committee to the AASHTO Bridge Committee, and to ASTM Committee C-13.

REFERENCES

- [1] "Standard Specification for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers with Less than 2 ft of Cover Subjected to Highway Loadings," (ASTM C 850-82), American Society for Testing and Materials, Philadelphia, April 1982, 12 pp.
- [2] Latona, Raymond W., Heger, Frank J., and Bealy, Mike, "Computerized Design of Precast Reinforced Concrete Box Culverts," Transportation Research Record No. 443, Transportation Research Board, 1973, pp. 40-51.
- [3] Boring, Marvin R., Heger, Frank J., and Bealy, "Test Program for Evaluating Design Method and Standard Designs for Precast Concrete Box Culverts with Wire Fabric Reinforcing," Transportation Research Record No. 518, Transportation Research Board, 1974, pp. 49-63.
- [4] Lloyd, J. P., Rejali, H. M., and Kesler, C. E., "Crack Control in One-Way Slabs Reinforced with Deformed Welded Wire Fabric," ACI Journal, Oct. 1963.
- [5] Gergely, P., and Lutz, L. A., "Maximum Crack Width in Reinforced Concrete," Symposium on Cracking of Concrete, American Concrete Institute, March 1966.
- [6] ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-77)," 6th ed., American Concrete Institute, Detroit, March 1981, 103 pp.
- [7] <u>Interim Specifications Bridge 1981</u>, American Association of State Highway and Transportation Officials, Washington, D.C., 1981.
- [8] <u>Standard Specifications for Highway Bridges</u>, 12th ed., American Association of State Highway and Transportation Officials, Washington, D.C., 1977, 496 pp.
- [9] Panak, John J. and Matlock, Hudson, "A Discrete-Element Method of Analysis for Orthogonal Slab and Grid Bridge Floor Systems," Research Report 56-25, Project 3-5-63-56. Center for Highway Research, The University of Texas at Austin, May 1972, 155 pp.
- [10] <u>Practical Strain Gage Measurements</u>, Application Note 290-1, Hewlett Packard, September 1981, 29 pp.
- [11] Perry, C. C. and Lissner, H. R., <u>The Strain Gage Primer</u>, McGraw-Hill, Inc., New York, 1962.

APPENDIX A

.

MEASURED STRAIN GAGE ISOLATION RESISTANCE TO REINFORCING STEEL

MEASURED STRAIN GAGE ISOLATION RESISTANCE TO REINFORCING STEEL¹

Gage Designation	<u>Gage Isolation Resistance²</u>
1-5-11	N-A
1-5-42	> 100M Ω
1-5-73	ω
1-7-11	N-A
1-7-42	20M Ω
1-7-73	ω
2-5-11	ω
2-5-43	ω
2-5-73	∞
2-7-11	50M Ω
2-7-43	11M Ω
2-7-73	ω

Notes:

¹Measured 3/83, six months after testing.

 $^2\text{Using}$ analog ohmmeter, resolution 100 M Ω .

 $3"{}_\infty"$ reported resistance can be interpreted as "greater than approximately 500 M ${}_\Omega"$.

APPENDIX B

STRAIN GAGE DATA

			TT PRECAST		CT 2294 VERT TES	T DATA				
DATE	7-29-8	2 TI	ME: STAR	T <u>102</u>	5 FIN	ISH <u>11</u>	.09	TEST No.		
	PPITED (N 7	-ft SIDE		MALE		END OF	BOX No	2	
		•						DOX NO	· <u> </u>	······································
STRAIN	INDICA	TOR GAGE	FACTOR	SETTING	2.00	<u> </u>	<u> </u>			
LOAD		<u></u>	CTDA		DEADING		n. X 10 ⁶			
CELL -	1540	1.570	1 1			· · · · · · · · · · · · · · · · · · ·			0740	0770
READING 15		1573			2573		1	1	2743	2773
	1	2	3	4	5	6	7	8	9	10
Run #1								.		
Zero						0	0	0	0	0
4,000						0	0	+10	0	0
8,000						0	+ 2 + 4	+20 +28	+ 7 +10	+ 2
						0	+ + 9	+20	+10	+ 4 + 6
16,000						+3	+14	+52	+16	
16,720					•	+2	+12	+52	+13	+10 + 8
10,640						0	+ 8	+42	+ 8	+ 8
8,120						0	+ 5	+37	+ 7	+ 7
4,100						0	0	+27	+ 5	+ 7
Zero						0	0	+15	0	+ 5
								1	1	1
Run #2		-								
Zero		· ··				0	. 0	0	0	0
4,100						0	0	+13	+ 4	0
8,000						0	. 0	+20	+ 5	+ 4
12,000	·					0	+ 7	+30	+10	+ 8
17,000						+1	+12	+42	+12	+ 4
20,800						+5	+12	+50	+13	+ 8
16,100					<u></u>	+2	+10	+45	+12	+ 7_
12,000						0	+ 8	+37	+10	+ 6
8,100						ļ	+4		+ 8	+ 8
4,000						0	+2	+20	+ 6	+ 6
Zero						<u> </u>	0	+ 6	+ 0	+ 8
			· · · · · · · · · · · · · · · · · · ·		<u> </u>					
						<u> </u>			+	+
					<u> </u>				+	+
					<u> </u>				+	
						}			1	
		1		1	1	1	1	1	1	1 ' '

			PRECAST	I PROJE					<u>-</u>	
DATE	7-29-8	<u>2</u> TJ	ME: STAF	RT <u>1416</u>	FIN	IISH <u>1</u> 2	.99	TEST No.	2	
LOAD AF	PPLIED	ON <u>7</u>	-ft SIDE	E OF	ALE		END OF	BOX No.	1	
STRAIN	INDICA	TOR GAGE	FACTOR	SETTING	2.00					
LOAD CELL -		r	STRA			, in./i	n. X 10 ⁶			· · · · · · · · · · · · · · · · · · ·
	1542	1573	2511	2542	2573	1743	1773	2711	2743	2773
1b	1	2	. 3	4	5	6	7	8	9	10
Run #1					·		•			
Zero						0	0	0	0	0
4,200						+ 5	+.36	0	0	0
8,000						+12	+ 78	0	0	0
12,000						+18	+122	0	0	0
16,000						+25	+168	0	0	0
20,800						+37	+222	. 0	0	0
16,000						+32	+182	0	0	0
12,000						+25	+138	0	0	<u> </u>
8,000						+16	+ 91	0	0	+ 3
4,000 Zero		~~~				+10	+ 45	0	0	0
2610						0	0	0	0	0
			<u> </u>							
				[1	+	 		<u> </u>
Run #2							+			
		[<u> </u>			<u> </u>	+			
Zero	~~~					0	0	<u> </u>		0
<u>4,100</u> 8,000						<u>+ 6</u> +14	+ 37	+20	0	<u> 0</u>
12,000						+14	+ 82	· 0	0	+ 3
16,300						+28	+174	0	0	1
20,800			- <u>-</u>			+39	+231	0	0	0
15,400						+32	+177	0	0	0
12,000						+25	+139	0	0	0
8,000						+16	+ 91	0	0	0
4,000						+ 8	+ 43		0	0
Zero						0	0	0	0	
			1	<u> </u>				1		1 ···· ···
										1
										1
				1						1

			TT	I PROJE	CT 2294	ST DATA		•		
		2 T I				-				
		ON <u>5</u> TOR GAGE					_ END OF	BOX No.	2	
LOAD	<u></u>		STRA	IN GAGE	READING	, in./ir	. X 10 ⁶	<u></u>		
CELL READING	1542	1573	2511	2542	2573	2	1773	2711	2743	2773
ļb	1342	2	3	4	5	6	7	8	9	10
Run #1										
Zero	0	0	0	0	0	0	0	0	0	0
4000	+ 2	+ 1	+ 10	+ 6	+ 3	+ 1	0	0	0	+ 3
8000	+ 2	+ 2	+ 18	+ 8	+ 6	+ 3	0	0	0	0
.2000	+ 2	+ 2	+ 28	+ 11	+ 6	+ 2	+ 2	0	0	0
.6000	+ 4	+ 4	+ 37	+ 14	+ 8	+ 2	+ 2	- 3	0	0
21800	+ 4	+ 4	+ 57	+ 19	+ 10	+ 2	+ 2	- 6	- 2	.0
6020	+ 4	+ 4	+ 50	+ 18	+ 8	+ 4	+ 2	- 2	0	+ 2
L0480	+ 4	+ 4	+ 38	+ 16	+ 7	+ 4	+ 4	0	0	0
8300	+ 4	+ 4	+ 34	+ 15	i 8	+ 4	+ 3	0	0	0
4660	+ 4	+ 4	+ 26	+ 12	+ 7	+ 4	+ 2	<u>o</u>	0	0
Zero	+ 4	+ 4	+ 8	+ 10	+ 6	+ 3	+ 3	+ 3	+ 3	+ 3
Run #2										
Zero	0	0	0	0	0	0	0			
4000	0	0	+ 9	+ 4	+ 1	0	0	- 2	- 2	0
8000	+ 2	0	+ 17 ·	+ 6	+ 2	0	0	- 2	0	0
L2000	+ 2	0	+ 26	+ 8	+ 2	0	0	- 4	- 2	0
L6000	+ 1	0	+ 35	+ 10	+ 4	0	0.	- 4	- 4	0
20800	+ 2	+ 1	+ 47	+ 13	+ 4	0	0	- 8	- 5	- 2
6400	0	0	+ 40	+ 10	+ 4	0	0	- 6	- 4	0
.0140	0	0	+ 26	+ 7	+ 2	0	- 2	- 4	- 2	- 0
6380	0	0	+ 18	+ 5	+ 1	0	0	- 2	- 2	0
3740	0	0	+ 12	+ 2	0.	0	0	0	0	0
Zero	0	0	+ 4	+ 2	0	0	0	0	0	0
					<u> </u>				<u> </u>	<u> </u>
·	·····									
		(the and		÷						
				<u> </u>	L	1	1	<u> </u>	1	<u> </u>

		<u></u>	TT PRECAST	I PROJE		T DATA				
DATE _8	8-17-82	TI	ME: STAF	кт <u>–</u>	FIN	ISH _		TEST No.	3	
LOAD AF	PPLIED (ON 5	-ft SIDE	OF Fe	male		END OF	BOX No.	2	
			FACTOR				-			-
LOAD CELL -		· · ·	SŢRA	IN GAGE	READING	, in./in	. X 10 ⁶			
	1542				2573		1	2711	2743	2773
1b	1	2	3	4	5	6	7.	8	9	10
Run #3										
Zero	0	0	0	0	0	0	0	0	0	0
4480	0	0	+ 8	+ 2	+ 1	0	0	0	0	0
8000	0	0	+ 15	+ 4	+ 2	0	0	÷ 2	- 2	0
12000	0	0	+ 25	+ 6	+ 2	0	- 2	0	- 4	4
16000	0	0	+ 35	+ 9	+ 4	0	- 2	- 6	- 4	- 2
20800 15980	0	0	+ 49 + 40	+ 12 + 9	+ 6	0 0	- 1	- 9	- 6 - 4	- ·2
12240	0	0	+ 40	+ 9 + 6	+ 4 + 4	0	- 1	- 5	- 4	0
8540	0	0	+ 31 + 23	+ 0 + 6	+ 4 + 3	0	0	- 3	- 3	0
4300	0	0	+ 13	+ 2	+ 2	0	0	- 2	- 2	0
Zero	0	0	+ 3	0	0	0	0	0	0	0
										v
		·			1					
					ļ					
					ļ					L
· .							 			
							<u> </u>			
						l				
	·····				<u> </u>				<u> </u>	
			· ·				 		<u> </u>	
									 	
							 			
•										
										:
ſ			i		1	1	1	1	1	1

			TT PRECAST	I PROJE	CT 2294	T DATA				
DATE _8	8-17-82	TI	ME: STAR	T	FIN	ISH		FEST No.	. 4	
LOAD A	PPLIED (ON 5	-ft SIDE	OF Ma	le	÷	END OF	BOX No.	1	
STRAIN	INDICA	TOR GAGE	FACTOR	SETTING	2.00		-	• •	· · · · · · · · · · · · · · · · · · ·	•
LOAD CELL			STRA	IN GAGE	READING	, in./in	. X 10 ⁶			
READING	1542	1573	2511	2542	2573	1743	1773	2711	2743	2773
Ъ	1	[.] 2	3	4	5	6	7 .	8	9	10
Run #1										
Zero	0	0	0	0	0	. 0	0	0	0	0.
4300	+ 4	+ 12	· 0	0	0	. 0	. – 3	0	0	0
.8000	+ 6	+ 24	0	0	0	- 2	·- 8	0	. 0	0
12950	+ 10	+ 37	+ 1	0	0	- 4	- 11	0	0	0
16000	+ 14	+ 54	+ 1	0	0	- 6	- 15	0	0	0
20800	+ 22	+ 99	0	0	0	- 8 - 5	- 18	0	0	0
15800	+ 15 + 12	+ 92	+ 2 + 2	0	0	- ·5 - 4	- 15 - 12	0	0	0
11700 8100	+ 12	+ 77	+ 2	0	0	- 4	- 12	. 0	0	0
3800	+ 5	+ 43	0	0	0	0	- 3	0	0	0
Zero	0	+ 28	0	0	0	0	0	0	0	0
				· · · ·						
			·	-						
Run #2										
Zero	. 0.	0	0.	0	0	0	0	. 0	0	0
4100	+ 4	+ 14	0 -	0	0.	0	- 3	0	0	0
8000	+ 6	+ 29	+ 2	0	0	0	- 6	0	0	+ 1
11900	+ 10	+ 47	+ 2	. 0	0	0	- 10	0	0	+ 3
16000	+ 15	+ 66	+ 3	0	0	- 4	- 6	0	. 0	+ 3
20800	+ 18	+ 90	+ 2	0	0	- 6	- 18	0	0	+ 2
15600	+ 14	+ 76	0	0	0	- 4	- 15	0	0	+ 3
6800	+ 6	+ 39	0	0	0	0	- 6	0	. 0	+ 3
3900	+ 4	+ 26	0	0	0.	0	- 4	0 0	0	+ 3
Zero	.0	+ 10	0	0	0	0	0	<u> </u>	0	+ 3
					[-
]	<u></u>									
										<u> </u>
									ļ	
·						<u> </u>	<u> </u>	1	<u>l</u>	

	- - -			I PROJEC	CT 2294	T DATA				
DATE _	8-17-82	TI	ME: STAR	-	FIN	ISH		TEST No.	4	
			-ft SIDE FACTOR	·			_ END OF	BOX No.	1	-
LOAD CELL		· · · · · · · · · · · · · · · · · · ·	STRA	IN GAGE	READING	, in./in	. X 10 ⁶			
READING	1542 1	1573 2			2573 5			2711 8	2743 9	2773 10
Run #3										-
Zero	0	0	0	0	0	0	0	0	0	0
4500	+ 4	+ 18	0	0	0	0	0	0	0	0
8100	+ 7	+ 32	. 0	0	0	. 0	- 6	0	· 0	0
12000	+ 10	+ 51	0	0	0	- 2	- 10	0	0	0
16000	+ 14	+ 69	+ 2	0	0	- 2	- 13	0	0	0
20800	+ 17	+ 92	0	0	0	- 5	- 17	0	0	Ó
15280	+ 14	+ 78	0	0	0	- 2	- 14	. O	0	0
12200	+ 10	+ 62	0	0	0	. 0	- 11	0	0	0
8300	+ 8	+ 45	0	0	0	. 0	- 8	0	0	0
3700	+ 4	+ 23	0	0	0	0	0	0	0	0
Zero	0	+ 7	0	0	0	0	0	0	0	0
			-					· · · · · · · · · · · · · · · · · · ·		
-	· · ·									
	······									
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·							
•										

•					I PROJE		T DATA				
1										5	
			ON <u> </u>	•	· ·			_ END OF	BOX No.		
LO/ CEI				STRA	IN GAGE	READING	, in./in	. X 10 ⁶			
	DING	1542	1573	2511	2542	2573		1773	2711	2743	2773
	ļb	1	-2	3	4	5	6	7.	8	9	10
Run	1 #1										
Zer	:0	0	0	0	0	0	0	.0	0	0	0
9,	,000	+ 4	+ 37	0	0	0	0	- 10	Ö	0	0
18,	100	+ 15	+ 83	-2	0	0	-10	- 21	0	+2	0
27,	,000	+ 45	+312	-2	0	0	-15	- 30	0	+2	<u>,</u>
37,	,000		+495	-3	-2	0	-25	- 44	-1	+2	0 -
45,	150	+105	+591	-3	-2	0	-30	- 53	-1	+2	0
• 34,	,600	+ 98	+500	+2	0	+ 3	-23	- 49	+1	0	+4
27,	780	+ 89	+427	0	0	+ 3	-18	- 43	0	0	
			+321	0	0	+ 2	-13	- 34	0	0	0
9,	,500	+ 60	+232	0	0	0	- 7	_ 22	0	0	+6
Zer	:o	+ 44	+143	0	0	0	0	4	0 ·	0	+6
					· · · · · · · · · · · · · · · · · · ·			ļ		<u> </u>	
	<u>n</u> #2				-			ļ			
Zer	:0	. 0 .	Ò	0.	0	0	0	0.	0	0	<u> </u>
	,200	<u>+ 11</u>	+ 71	<u> </u>	0	0 **	- 2	- 12	0	0	· ·0
	· ·	+ 26	+166	0 -	0	0		- 25	0	0	0
	,200	+ 40	+266	0	0	0	-15	- 35	0	0	0
	,200		+358	0	. 0	0	-22	- 43	.0	0	0
	,200	+70	+449	0	0	0	-25	- 51	0	0	0
	,400		+365	0	0	<u>0</u> .	-23	- 46	0	0	0
1	,500		+268	0	0	0	-17	- 40	0	0	0
1	,700		+131	0 ·	0	0	-10	- 25	0	<u> </u>	0
9	,200		+ 74	0 ·	0	0	- 5	- 18	0	0	0.
Ze	ro	0	- 10	0	0	0	0	0	0	0	0
		, ,									
		• •		<u> </u>	······	<u> </u>		 			
						[<u> </u>]
L			L		L	L	ļ	<u>.</u>	!	.l	L

Test 5 terminated due to warped 1/2" thick steel bearing plate beneath load cell.

				TT PRECAST	TI PROJE						
	DATE	8-18-82	:			•		·	IFST No.	-5A	
		•				· ·	•				
1			•		•			END OF	DUA NU.	· ·	
	STRAIN	I INDICA	FOR GAGE	FACTOR	SETTING	2.00				· · ·	
	OAD			STRA	TN GAGE	READING	. in./ir	. X 10 ⁶	-		-
	ELL ADING	1542	1573	2511	2542		1743	1	2711	2743	2773
	lp	10.12	2	3	4	5	6	7	8	9	10
- De	.n #1		<u>د</u>								10
	in #1 ero	0	0	0	0	0	0	0-	0	0	0.
	9000	+ 11	+ 56	0	0	0	- 4	- 9	• • 0	.0	0.
-	3000	+ 25	+145	0	0	0	- 10	- 18	· 0	0	0
	9000	+ 40	+242	0	· 0	0	- 15	- 25	Ò	0	0
	5000	+ 55	+334	0	0	· 0	- 20	- 34	0	· 0	0:
4	5200	+ 70	+429	+ 2	0	0	- 25	- 42	0	0	0
36	5000	+ 61	+344	+ 4	+ 2	0	- 20	- 46	0	0	0
27	7600	+ 48	+256	+ 4	0	0	- 16	- 31	0	0	0
	9900	'+ 34	+160	+ 4	0	0	- 11	- 22	. 0	0	0.
<u> </u>	9600	+ 18	+ 75	+ 4	0	0	- 6	- 14	0	0	0
Ze	ero	+ 4	+ 7	+ 4	0	0	0	0	0	· 0	0
				· · · · ·				······			
-				·			·				
1	in #2		0	····							
	<u>ero</u> 9000	0 + 10		<u> </u>	0	<u>0</u> 0	<u> </u>	<u> </u>	0	0	<u>0</u> . 0
			+ 61		0		<u> </u>	- 20	0		
1	<u>8000 -</u> 7200 -	<u>+ 24</u> + 40	<u>+154</u> +250	0	0	<u> 0</u> 0	- 15	- 20	0	0	0
1	6000	+ 54	+338	0	. 0	0	- 20	- 35	0	0	· 0
-	4100	+ 70	+430	0	0	0	- 24	- 41	0	0	0
	5900	+ 57	+343	0	0	0.	- 19	- 36	0	0	0
1:	3800	+ 22	+108	• 0	0	0	- 8	- 18	0	0	- 0
-	9500	+ 15	+ 74	0.	0	0	- 5	- 14	· 0	. 0	• 0
Ze	ero	0	0	0	0	0	0	0.	0	· 0	.0
			•					ļ			
								 			
								 			ļ
							·	ļ		<u> </u>	
<u> </u>								 	ļ	· .	
\vdash								 			
<u> </u>	· · · ·			<u> </u>				 	·····		
-				<u>·</u>			·		 		;
ļ	1			l		· · ·	!	L	1	•	<u> </u>

			•	i i i	۰ <u>۰</u>	· · ·				······································	
	·			TT	I PROJEC	CT 2294					-
		· ·		PRECAST	BOX CUL	VERT TES	T DATA				
	DATE 8	8-18-82	TI	ME: STAR	л – Т	FIN	ISH –		TEST No.	· · 5A	
				·							•
			•	FACTOR	· · · ·		• ••	_ END OF	DUA NU.	. <u>l</u>	
	LOAD			STRA	TN GAGE	READING	in /in	. X 10 ⁶			
	CELL READING	1542	1573	2511	2542	2573	1743	1773	2711	2743	2773
	Ib	1042 1	2	3			6		8	1	1 · I
		<u>I</u>	<u> </u>		4	5	0	7.	0	9.	- 10
н •	Run #3 Zero	0	0	0	0						
	2ero 9200	+ 12	0 + 69	0		0	0	0	0	0	0
	9200 18100	+ 12 + 28	+ 69 +162	0	0	0	- 3	- 10	0	0	0
	27100	+ 28	+162	0	0	0	<u> </u>	<u>- 19</u> - 25	0	<u>0</u>	0
	36100	+ 55	+346	0	0	0	<u> </u>	- 34	0	0	
	45100	+ 71	+436	0	0	0	- 23	<u> </u>	0	0	0
	36000	+ 60	+350	0	0	0	- 19	- 35	0	0	0
	26800	+ 44	+252	0	0	0	- 15	- 30	0	0	0
	18500	+ 34	+164	0	0	0	- 10	- 23	· 0	0	0
	9600	+ 17	+ 17	0	0	0	- 4	- 6	0	0	0
	Zero	0	+ 5	· · 0	0	0	0	0 -	· 0	0	0
										×	
				:							
			•				×				
				· .							· ·
				•.			•				
				-	•						
· ·											
					· ·				· · · · · · · · · · · · · · · · · · ·		·
									ļ	<u> </u>	
									·		· ·
· ·											
. ·				- ¹¹ .			· · · · · · · · · · · · · · · · · · ·		·	ļ	
			· · ·					·			· · ·
										· ·	
			·								
										ļ	
	ł										
ł											<u> </u>
ł		······································	·						 		
ł						<u> </u>				<u> </u>	·
ł							i				
ŀ			· · · ·	i		·	·			1	·[
. · [I		·	L	L	<u>I</u>	L	<u></u>

TTI PROJECT 2294

PRECAST BOX CULVERT TEST DATA

DATE _{	8-18-82	TI	ME: STAF	₹T	- FIN	ISH	<u> </u>	FEST No.	· · 6	
	•		•		Female		END OF			· · · · · · · · · · · · · · · · · · ·
STRAIN	INDICA	FOR GAGE	FACTOR	SETTING	2.00		-	-		•
LOAD CELL -	· · ·		STRA	IN GAGE	READING	, in./in	. X 10 ⁶			•
READING	1542	1573	2511	2542	1	1743	1773	2711	2743	2773
ļb	1	[.] 2	3	4	5	6	7.	8	9	. 10
Run #1	·]			·	[<u> </u>			· .		
Zero	0	0	0	. 0	0	, 0	0	0	0 ·	· C
9300	0	0	+ 20	+ 5	··· 0	0	0	••• 0	0	C
18200	0	. 0	+ 41	+ 10	. 0	. 0	· 0	- 9	- 5	C
27200	0	0	+ 70	+ 17	+ 4	0	0	- 15	- 9	0
36200	0	0	+160	+ 24	·+ 6	0	0	- 21	- 13	- 4
40300	0	0	+284	+ 28	+ 5	0	0	- 24	- 16	- 7
45100	0	. 0	+371	+ 29	+ 6	0	0	- 27	- 19	
36300.	0	0	+353	+ 23	+ 5	0	0	- 24	- 15	- 6
25700	· 0	. 0	+293	+ 16	+ 3	0	0	15	- 11	- 2
16900	0	0	+233	+ 9	0	0	0	- 12	- 8	- :
9700	0	0	+184	+ 4	0	0	0	- 8	<u>- · 4</u>	
Zero	0	0	+120	0	0	. 0	0	0	0	(
		[]	[]	ſ′	ļ,	()		1	[]	
		1			l,	· · ·			1	i
Run #2			1	,,	[1			i	i
Zero	. 0.	. 0	0.	· 0	. 0.	0	0	· 0	0	(
9200	0	0	+ 31 -	+ 4	0	0	0	- 5	0	· · · ·
18200	0	0	+ 92	+ 16	0	0	0	- 10	- 8	
27200	0	0	+154	+ 16	+ 4	0	0	- 15	- 11	
36100	0	0	+215	+ 23	+ 6	0	0	- 20	- 15	-
45100	0	0	+283	+ 30	+ 8	0	0	- 25	- 20	
39800	0	0	+233	+ 24	+ 6	0	0	- 19	- 15	
27000	0	0	+188	+ 17	+ 4	· 0	0	- 14	- 12	-
18600	0	0	+126	+ 17 + 13	+ 4	0	<u>0</u>	<u> </u>	<u>- 12</u> - 6	
8800	0	0	+120 + 56	+13 + 5	+3	0	0	<u> </u>	- 8	
Zero	0	0	+ 5		0	0	0	0	0	
		·	ر آست ا	·''	'-'					
		·t		[!	<u>├</u> !			¦	'	
		·	·	i!	l!	<u> </u>			'	
		·	·	r!	!	1			'	
	}	i	· ·	·!	!	i1			'	
	·	· · · · · · · · · · · · · · · · · · ·	·	ر ا	l!					<u> </u>
	}		·		<u> </u>		· '.		· · · · ·	<u> </u>
1	!	(I	·		f'	<i> </i>		!	'	

		•		I PROJE	CT 2294	T DATA				
DATE	8-18-82	TI	ME: STAR	κτ <u> </u>	FIN	ISH	-	TEST No.	- - 6	
LOAD A		ON 5	-ft SIDE	OF Fer	nale	•.	END OF	BOX No.	2	÷
		•	FACTOR	• · · ·			-		· · · · ·	
LOAD			STRA	IN GAGE	READING	, in./in	. X 10 ⁶			
CELL READING	1542	1573	2511	2542		1743		2711	2743	2773
lb	1	2	3	4	5	6	7.	8	9	10
Run #3										
Zero	0	. 0	0	0	· 0	0	0	0	0	0
9200	0	0	+ 37	+ 6	+ 3	0	0	· 5	- 4	0
18100	0	0	+102	+ 12	+ 6	0	· 0	÷ 10	- 8	- 2
27100	0	· 0	+170	+ 18	+ 8	0	0	- 16	- 12	- 5
36400	0	. 0	+233	+ 27	+ 10	0	0	- 20	- 15	- 6
45200	0	0	+294	+ 32	+ 11	0	. 0	- 25	- 20	- 9
37000	0	0	+260	+ 27	+ 9	<u> </u>	0	- 21	- 15	- 6
45000	0	0	+300	+ 31	+ 11	0	0	- 26	- 20	- 8
35400	0	0	+259	+ 26	+ 10	0	0	- 20	- 16	- 6-
27300	0	0	+198	+ 20	+ 8	0	0	- 17	- 13	- 4
18300	0	0	+128	+ 14	+ 6	0	0	- 10	- 9	- 4
9300	0	0	+ 64	+ 7	+ 5	0	0	- 4	- 4	0
Zero	0	0	+ 6	0	0	0	0	0	0	0
	·•									5
	•	· ·		· · ·		· · · ·				
								· · · · · · · · · · · · · · · · · · ·		
		· · ·		· ·						
					1					
	<u></u>									
		-						·		•••
· ·							÷			. • .
										•
								ļ	ļ	•
					 		ļ	<u> </u>		[
			`````		· · · · · · · · · · · · · · · · · · ·			<b> </b>		
								<u> </u>	<b> </b>	
					·			}		
									.	
			·	L					<u> </u>	
				l	L	!	ł	<u> </u>	1	<u> </u>

				I PROJEC	CT 2294		-			
1		• •	. *			•	-			
LOAD A	PPLIED ( INDICA	ON FOR GAGE	-ft SIDE FACTOR	OF Fe	2.00		END OF	BOX No.	2	•
LOAD CELL			STRA	IN GAGE	READING	, in./in	. X 10 ⁶			
READING 1b	1542	1573	2511	2542	2573		1773	2711	2743	2773
	1	2	3	4	5	6	7.	8	9.	- 10
Run #1			·		· · ·					
Zero	0	0	0	0	0	0	0 + 3	0 +· 30	0+9	0.
9100	0	0	- 4							
18000	0	· 0	- 13	- 4	0	+ 6	+ 26	+ 52 + 8	+ 17 + 26	+ 7 + 13
27100	0	- 8	- 22 - 30	- 8 - 10	0	+ 12 + 19	+ 55 + 90	+ 8 +190	+ 26	+ 13
36100				- 10 - 16	- 6		+125	+ 326		
45300 ··· 35600	<u>- 8</u> - 4	<u> </u>	- 44 - 36	-10 - 12	- 0	+ 25 + 25	+12.5	+ 326	+104	+ 22
27200	- 4	- 9	- 30	<u> </u>	- 4	+ 25	+111 + 83	+304	+105 + 98	+ 23 + 20
18100	0	.0	- 22	- 5	- 4	+ 21	+ 53	.+219	+ 96	+ 20
7900	0	0	- 10	0	0	+ 12	+ 24	+158	+ 72	+ 16
Zero	0	+ 12	0	0	0	+ 13	+ 20	+102	+ 57	+ 10
									· · · ·	
Run #2		• .								
Zero	0.	0	. 0 .	0	· 0	0	0	0	0	0
9000	. 0.	0	- 7.	0.	. 0.	0	+ 10	+ 50	+ 14	. + 5
18100	3	- 6	- 18-	- 6	- 2	+ 7	+ 40	+101	+ 28	+ 8
27200	- 6	- 13	- 30	- 10	- 4	+ 12	+ 74	+152	+ 41	+ 12
36600	- 9	- 2.0	- 41	13	- 4	+ 18	+107	+204	+ 55	+ 15
45400	- 12	- 25	- 50	- 15	- 7	+ 25	+143	+264	+ 78	+ 20
36800	- 11	- 22	- 44	- 14	- 5	+ 22	+124	+232	+ 70	+ 19
27200	- 7	- 14	- 37	- 14	- 4	+ 18	+ 90	+186	+ 58	+-17
18300	- 4	- 7	- 28	- 10	- 2	+ 13	+ 58	+135	+ 45	+ 14
7500	0	0	- 14	- 4	0	+ 8	+ 25	+ 68	+ 27	+ 10
Zero .	. 0	+ 7	+ 5	0	0	+ 6	+ 20	+ 15	+ 10 ·	+ 8
<b>├</b> ──── <b>├</b>			· · · · · · · · · · · · · · · · · · ·		·		[			
<del> </del>							[			
<b> </b>		. ·								
										:
									;	
									[	:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
STRAIN INDICATOR GAGE FACTOR SETTING $2.00^{-1}$ LOAD CELL       STRAIN GAGE READING, in./in. X $10^{6}$ READING 1542 1573 2511 2542 2573 1743 1773 271 1b 1 2 3 4 5 6 7 8         Num #3         Zero       0       0         Zero       0       0         9100       0       - 6         9100       0       - 6         9100       0       - 6         9100       0       - 6         9100       0       - 6         9100       0       - 6         9100       0       - 6         9       - 6       + 40         18200       0       - 6       + 40         18200       0       - 6       + 40       +10       - 4       + 17       + 105       + 20         17       - 6       + 10<	No 7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No. 2
STRAIN GAGE READING, IN./IN. X 10         CELL       1542       1573       2511       2542       2573       1743       1773       271         1b       1       2       3       4       5       6       7       8         Run #3       2       0       0       0       0       0       0       0       0         2ero       0       0       0       0       0       0       0       0       0         9100       0       -3       -10       -6       0       +3       +8       +5         18200       0       -10       -26       -9       0       +6       +40       +10         27300       -4       -17       -35       -10       0       +12       +73       +12         36100       -6       -22       -42       -13       -4       +17       +105       +20         45600       -10       -30       -54       -20       -7       +22       +140       +22         36100       -10       -27       -48       -17       -6       +20       +114       +21         36100       -10       -33 </td <td></td>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Run #3       Image: Run #3	1 2743 2773
Zero       0       0       0       0       0       0       0       0       0         9100       0       -3       -10       -6       0       +3       +8       +2         18200       0       -10       -26       -9       0       +6       +40       +10         27300       -4       -17       -35       -10       0       +12       +73       +13         36100       -6       -22       -42       -13       -4       +17       +105       +20         45600       -10       -30       -54       -20       -7       +22       +140       +25         36100       -10       -27       -48       -17       -6       +20       +114       +22         36100       -10       -27       -48       -17       -6       +20       +114       +21         27000       -7       -20       -40       -12       -4       +15       +82       +17         18400       -4       -13       -33       -11       -4       +10       +50       +12         2ero       0       0       0       0       0       0	9 10
9100       0       - 3       - 10       - 6       0       + 3       + 8       + 5         18200       0       - 10       - 26       - 9       0       + 6       + 40       + 10         27300       - 4       - 17       - 35       - 10       0       + 12       + 73       + 12         36100       - 6       - 22       - 42       - 13       - 4       + 17       + 105       + 20         45600       - 10       - 30       - 54       - 20       - 7       + 22       + 140       + 25         36100       - 10       - 27       - 48       - 17       - 6       + 20       + 114       + 25         36100       - 10       - 27       - 48       - 17       - 6       + 20       + 114       + 25         36100       - 10       - 27       - 48       - 17       - 6       + 20       + 114       + 25         36100       - 7       - 20       - 40       - 12       - 4       + 15       + 82       + 17         18400       - 4       - 13       - 33       - 11       - 4       + 10       + 50       + 12         2ero       0       0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8600         0         - 3         - 20         - 7         0         + 4         + 18         + 6           Zero         0         0         0         0         0         + 11         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td>	
Zero         0         0         0         0         0         + 11	23 + 40 + 10.
	0 0 0
	· · · ·
	·····
· · · · · · · · · · · · · · · · · · ·	

		•		I PROJE	CT 2294	t data			•	
DATE	8-18-82		·			· ·	· · · · · · · · · · · · · · · · · · ·	TEST No.	. 8	
	•		•			•	END OF			
1			-					DUA NO.	·	
STRAIN	N INDICA	TOR GAGE	FACTOR	SETTING	- 2.00				• •	•
LOAD CELL			STRA	IN GAGE	READING	, in./in	. X 10 ⁶		· · · · ·	-
READING	1542	1573	2511		2573	1	1773	2711	2743	2773
lb	1	2	3	4 .	5	6	7.	. 8	9	10
<u>Run #1</u>								· .·		
Zero	0	0.	0	0	0	0	. 0	0	• 0	0.
9000	- 5	- 15	0	+ 5	.+ 9	+ 22	+ 7	+ 6	+ 6	+ 6
18000	- 17	- 32	2	0	0	+ 40	+213	0	- 0	0
27400 35300	- 24 - 36	- 47 - 65	- 5	0	0	+116 +356	+368 +533	0 + 7	$\frac{0}{+3}$	0 + 10
[						· · · · · · · · · · · · · · · · · · ·				i
45500 35400	- 52	- 94	0	0	0	+440	+731	+ 5	0	+ 5
27900	- 50 - 42	- 89 - 82	0	0	0	+409 +372	+592 +483	+ 4 + 2	0	+ 7
17700	· - 39	- 82 - 70	0	0	0	+372	+338	+ 2 + 5	<u>- 5</u> - 4	<u> </u>
8800	- 26	- 54	0	0	.0	+256	+220	0	- 4	+ 9
Zero	- 13	- 30	- 5	0	0	+194	+103	+ 2	- · 9	+ 6
							, 200			
			•••						1	
Run #2			· · · ·			· ·			1	
Zero	0.	0	0.	0	0	0	0.	0	0	0.
9000	5.	- 15	0.	· 0	0	+ 34	+104	.0	0	· · 0 ·
18100	- 15	<del></del> 30	0 -	0	0	+ 92	+235	0	0	0
27000	- 25	- 44	- 2	0	0	+146	+364	0	0	0
36200	- 34	- 58	· – 2	. 0	0	+203	+495	0	0	· 0
45000	- 42	- 68	. 0 .	0	0	+264	+655	0	0	0
<u>34100</u>	- 35	- 61	0	0	0.	+220	+484	0	0	0
27600	- 33	55	0	0	0	+187	+388	0	0	. 0.
17500	- 21	- 42	0	0	· 0	+120	+242	0	. •0	- 0
8200	- 12	26	0	0	0	+ 53	+107	0	· 0	.0
Zero	. 0	0	0	0	0	0	+ 10	0	· 0	0
									<u> </u>	
							<u>[</u>	<b> </b>		
			· · · · · ·				[			· ·
							[			
<b> </b>									1	
·								<u> </u>		
·		·	······				ļ		<u> </u>	
	:					·				
1			<b>_</b>		L		l		.1	

			•		I PROJEC	CT 2294	ST DATA						
	•			ME: STAR		•							
			•	-ft SIDE FACTOR	· · · · ·				BOX No.	_1	* * * * * * * * * * * * * * * * *		
	LOAD STRAIN GAGE READING, in./in. X 10 ⁶												
	READING	1542	1573	2511	2542	2573	1743	1773	2711	2743	2773		
	lb	1	2	3	4	5	6	7.	8	9	10		
	Run #3			1					· .				
·	Zero	0	0	0	0	0	0	0	. 0	0	0.		
	9000	- 8	- 21	- 6	0	- 6	+ 30	+100	·· 0	0	0		
	18300	- 20	- 38	- 7	0	- 7	+ 99	+240	0	0	0		
•	27700 36300	- 29 - 40	- 49 - 61	- 6 - 7	0	- 6 - 8	+160 +215	+378 +499	0	0	0 0		
	45300	- 40	- 71	- 8	0	- 8	+213 +271	+630	0	0	0.		
	35000	- 40	- 65	- 7	0	- 8	+227	+495	0	0	0		
	26200	- 31	- 56	- 5	0	- 8	+178	+362	0	0	0		
	19000	- 26	- 48	- 2	0	- 6	+126	+259	. 0	0	0.		
	8800	- 16	- 30	- 4	0	- 4	+ 50	+107	0	0	0		
	Zero	- 6	- 8	<b>-</b> 7 [*]	0	- 7	- 5	0.	. 0	0	· 0		
							Į						
ĺ													
					-								
					•			· · · · · ·	· · ·		· · · ·		
		• •	•••						·		· · ·		
	· · · ·		·				1						
				• ; *;									
			· · · ·										
							ļ				•		
				· · · · ·			<u> </u>	· .					
			·							<b> </b>			
			·····						[		· .		
								<b> </b>		[			
							1						
						<u> </u>	<u> </u>	<u> </u>	<u> </u>	[	:		

	TTI PROJECT 2294 PRECAST BOX CULVERT TEST DATA												
			PRECASI	BOX CUL	VERT TES	T DATA			. ·				
			•										
LOAD F	<b>\PPLIED</b>	ON7	ft SIDE	: OF	.le	· .	END OF	BOX No.	1	·			
STRAIN	LOAD APPLIED ON 7-ft SIDE OF Male END OF BOX No. 1 STRAIN INDICATOR GAGE FACTOR SETTING 2.00												
LOAD CELL	CELL STRAIN GAGE READING, in./in. X 10												
READING	1542	1573			2573			2711	2743	2773			
lb	1	2	3	4	5	6	7.	8	9.	10			
Run #1		·			l	I'		•					
Zero	0	0	-	-	-	0	0	-	-	<u> </u>			
9300	- 6	- 16	<u> </u>	-	-	+ 47	+119						
18100	- 12	30	-		<u> </u>	+111	÷252	-	-				
27500	- 21	- 38		·	-	+183	+397						
36800	- 28	- 47		-	- 1	+238	+531						
45100	- 36	- 58	-		·	+286	+646						
50200	- 42	- 65		-	-	+324	+727		-	i			
55600	- 52	- 68		-	-	+376	+805	-					
60600	- 60	- 72			-	+429	+892	· _		· _ ·			
66700	- 68	- 76				+494	+1060						
71200	- 70	- 80		-	-	+523	+1220			·			
78000	- 78	- 80			-	+564	+1635			·			
			·	·!	<b> !</b>	i'	·	ļ'	<u> </u>	[]			
		<u> </u>		!	<b>├</b>	/ [']		<u> </u>	<u> </u>	·			
	·	<b>├</b> ────┦			<b>[</b> ]	l'	<u> </u>	<b> </b>	<u> </u>	·			
	<u>·</u>	<u> </u>		!	<u> </u>	I'		· · · · ·	!	<u> </u>			
	i	<u> </u> ]		/·!		i'		,	<u> </u>	<b> </b>			
	·				<b>├</b>	i'	<b>..</b>		<u> </u> !				
					<b>├</b>	í		<u> </u>	<u></u>	·			
	·/	<u>├</u>			<u> </u>	i'		<del> </del>	!				
. <b>]</b> †	·/		¦	·	<b> </b>	í'		<u> </u>	<i>י</i>				
						i'							
	Į	II	·			ſ							
}		<u>├</u>	·			í			}	· · · · · · · · · · · · · · · · · · ·			
		<u>├</u>	·		<u>├</u> †	[							
			·t		l+	·			<b> </b> /	· · ·			
1			i		<b> </b>	· · ·							
1			;}	I	1.1	[ ·	<u> </u>		1				
}j		[]	·		[]	ī			1				
						l	[		· · · · · ·				
[]		[]				l		:					
						·			· · · · · ·				
						l			<u> </u> /	:			
					54			······································					

. د

• •

	-			TI PROJE BOX CUL	CT 2294	ST DATA				
DATE _	8-20-82	TI	ME: STAR	RT	FIN	IISH	·	TEST No.	10	
LOAD A	PPLIED	ON 7	-ft SIDE	EOF M	lale		END OF	BOX No.	2	• . ••
		•	FACTOR	· · .		• ••		•		
LOAD CELL -		·	STRA	IN GAGE	READING	, in./ir	. X 10 ⁶			
READING	1542	1573	2511	2542	2573	1743	1773	2711	2743	2773
ŢЬ	1	·2	3	4	5	6	7.	8	9	10
Run #1										
Zero	-		0	0	0	-		0	0	0.
9000		_	- [•] 5	- 24	- 33		-	0	+ 2	+ 16
18200		-	- 10	- 12	- 20		· _	+ 4	+ 16	+ 83
27300			- 19	- 23	- 33	-	-	+ 21	+ 50	+266
36100		-	- 20	- 26	- 38	-	-	+ 35	+121	+470
45500	-	-	-100	-109	-121	-	-	+ 12	+234	+528
35200	_	-	- 78	- 83	- 92	-	-	+ 5	+238	+450
26000	_	-	- 80	- 81	- 88	-	-	0	+206	+347
18600	-		- 76	- 76	- 81	-	-	0	+180	+270
9700	-	-	- 65	- 62	- 66	-	-	- 10	+135	+163
Zero			- 60	- 54	- 56			- 19	+ 81	+ 55
			· · ·						ļ	
Run #2								 		
Zero		<u> </u>	0.	0	0	-	-	0	0	0.
9400	. – .	· · ·	0 :	0	- 14		-	+ 14	+ 27	. +. 70
18500	-	. <b></b>	0 -	- 5	- 11		-	+ 26	+ 28	+178
26900	-	-	- 3	- 10	- 17	-	-	+ 39	+112	+281
36100		<u> </u>	- 8	17	- 26	-	-	+ 50	+154	+387
45400		-	- 12	- 23	- 36			+ 62	+216	+495
35800 25600	-		- 10 - 6	- 19 - 14	- 25 - 17			+ 55 + 45	+191 +149	+407
18300			- 4	- 14	- 11					+289
9100	_	-	- 4	- 7	- 2			+ 35 + 23	+116 + 66	+204
Zero			0	- 3	- 2			+ 23 + 8	+ 00 + 17	+ 92 + 4
		·		<u> </u>		ļŕ		· · ·	<u>├</u>	
								<u> </u>	·	·
[				· · · · · · · · · · · · · · · · · · ·		·				
		1					[	1	·	
<u></u>					<u>.</u>	<u> </u>	<u> </u>	<u></u>		l

Loose wire on strain gage readout at end of first load cycle (Run #1).

÷.

7

.

.

		TTI PROJECT 2294 PRECAST BOX CULVERT TEST DATA												
				PRECAST	BOX CUL	VERT TES	T DATA			-				
	DATE	8-20-8	<u>12</u> TI	ME: STAR	T	FIN	ISH	-	TEST No.	<u>·</u> . 10				
	LOAD A	PPLIED (	DN <u>7</u>	-ft SIDE	OF Ma	le	•.	END OF	BOX No.	2	· .			
			• .	FACTOR				-	· · ·	•				
	LOAD STRAIN GAGE READING, in./in. X 10 ⁶													
	READING	1542		2511			t		2711	2743	2773			
	ТЬ	1	·2	3	4	5	6	7.	8	9	10			
: [	Run #3													
	Zero	-		0	0	0			0	0	0.			
	8700	-	-	0	0	. – 5	-	_	+ 10	+ 27	+ 66			
	18100	-	·	0	- 6	- 13		-	+ 20	+ 74	+178			
	27600	-	. –	- 6	- 11	- 22		_	+ 33	+123	+292			
· · · •	35800		<b></b>	- 10	- 17	- 30		-	+ 44	+165	+388			
¥	44600	-		- 12	- 23	- 39	-	-	+ 56	+215	+485			
- 1	36000	-	· <b></b>	- 15	- 20	- 33	<u> </u>	<b>-</b> .	+ 49	+192	+405			
	27200		· –	- 7	- 15	- 24		-	+ 43	+160	+309			
	17000	-	. =-	- 5	- 6	- 13	· _	-	+ 27	+104	+183			
	8800	-	_	- 2	- 2	- 5	-	-	+ 14	+ 55	+ 84			
	Zero		-	0	0	0		-	· 0	+ 6	0			
ļ							·							
l	- 11			•										
	Run #4								<u>-</u>	<u>-</u>	•			
	Zero	· – .		• 0 .	0	0	-	-	0	0	0			
·	9000	· – .	<u> </u>	- 2	<u>- · 2·</u>	<u>- 3.</u>	<u> </u>	-	+10	+ 30	+ 73			
f.	18100			- 2-	- 6	- 12			+ 24	+ 80	+182			
	27000	-	-	- 6	- 12	- 19	-	-	+ 39	+129	+290			
. F	36600		<del>.</del>	- 9	- 17	- 30		-	+ 52	+182	+401			
Į.	45200		· •	- 11	- 24	- 38			+ 63	+230	+497			
- 1	36200			- 7	- 17	- 28 [.]			+ 60	+207	+416			
- I.	27100			- 6	- 12	- 19	-		+ 48	+165	+309			
	17700		-	0	- 4	- 10	-		+ 36	+112	+195			
ŀ	9300			0.	- 2	- 4	-	: -	+ 24	+ 61	+ 93			
ŀ	Zero		-	+ 2	0	0	-	-	+ 10	+ 5	+ 4			
ł			·							<b> </b>				
ŀ							<u> </u>			<b> </b>	· ·			
1									· · · · · · · · · · · · · · · · · · ·		<b> </b>			
ŀ											<b> </b>			
ŀ										ļ	<b> </b>			
ł							<b> </b>		<b> </b>		[			
ŀ							ļ	<b> </b>	<b> </b>		<b> </b>			
ļ				•				<u> </u>	<b> </b>					
E							[	I	<u> </u>	1	:			

.

## APPENDIX C

## VERTICAL DEFLECTION DATA

,

				ITI PROJE BOX CULV	CT 2294 VERT TEST	DATA		·····	
DATE 2	 29 July 8	2 <b>T</b>	<u></u>		1		TEST	NO. 2	
	CATION					CATION _7			
TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴	TIME	LOAD	DEFLECT	10N, in.	x 10 ⁴
	kips	2-7-11	2-7-43	1-7-73		kips	1-7-73	1-7-43	2-7-11
0930	0	- 4	1	- 6	1400	0	- 45	- 21	- 2
1025	0	0	0	0		20.0	175	88	1
	4.0	37	17	0		20.0	193	95	0
	8.0	65	32	8	1416	0	0	0	0
	12.0	91	46	20		4.2	35	18	0
1035	16.0	115	60	33		8.0	70	34	1
	20.8	. 148	78	48		12.0	109	44	- 1
	16.7	127	65	37		16.0	150	73	- 1
	10.6	92	45	19	1424	20.8	198	97	- "1
	8.1	77	37	12		16.0	159	78	- 3
	4.1	49	22	3		12.0	121	60	- 4
1048	0	9	3	2		8.0	81	41	- 5
	4.0	46	19	2		4.0	41	21	- 5
1055	8.0	73	33	11	1430	0	- 1	- 3	- 3
	12.0	98	47	23	1435	0	- 2	- 2	- 4
	17.2	128	53	38		4.1	38	21	- 1
	20.8	154	77	48		8.0	77	41	0
	16.1	126	62	35		12.0	116	59	0
1104	12.0	102	49	24		16.3	158	79	. 0
	8.1	79	36	13	1443	20.8	205	101	0
	4.0	51	20	2		15.4	158	80	- 3
1109	0	11	2	1		12.0	125	65	- 3
						8.0	86	45	- 4
	1					4.0	45	25	- 4
					1449	0	3	2	- 1
				<u> </u>		l			
		<u> </u>		<u> </u>					
		ļ	· ·		•		ļ		
		<u> </u>		<u> </u>	·			<u> </u>	<u> </u>
		<u> </u>	ļ		•				
		·		·}				<u> </u>	<u> </u>
		<u> </u>		<u> </u>	.			×	
	<u> </u>	<u> </u>		<u> </u>	11	<u> </u>	<u>L</u>	<u> </u>	

·	TTI PROJECT 2294											
					VERT TEST	DATA						
DATE 1	7 August	82 TI	EST NO.	3	DATE 1	.7 August	82 TEST	NO4				
LOAD LO	CATION	5F2			LOAD LO	CATION	5M1					
TIME	LOAD	DEFLECT	LON, in.	x 10 ⁴	TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴			
	kips	2-5-11	2-5-42	1-5-73		kips	1-5-73	1-5-42	2-5-11			
0900	0	- 14	- 7	- 8		0	0	0	0			
**	0	- 1	- 2	- 3	1110	4.3	16	5	0			
0935	0	0	0	0		8.0	35	14	- 1			
	4.0	20	9	1		12.0	54	23	- 1			
	8.0	40	17	2		16.0	74	32	- 2			
	12.0	61	26	5	1115	20.8	101	45	- 2			
0942	16.0	84	35	6		15.8	79	33	- 4			
	20.8	127	51	8		11.7	61	24	- 3			
	16.0	97	40	7		8.1	44	15	- 2			
	10.5	68	28	7		3.8	22	5	0			
	8.3	56	24	6	1122	0	2	- 5	- 1			
	4.7	38	16	6		4.2	20	2	- 2			
0951	0	13	6	- 5		8.1	39	10	- 2			
· · · · · · · · · · · · · · · · · · ·	4.0	34	15	7		11.9	59	19	- 4			
	8.0	54	23	8	1134	16.0	77	28	- 4			
	12.0	75	31	9		20.8	100	40	- 5			
	16.0	97	41	10		15.6	80	30	- 6			
	20.8	125	53	12		6.7	36	8	- 4			
1005	16.4	105	43	11	•	3.9	21	1	- 4			
	10.1	69	29	9	1141	0	1	- 9	- 4			
	6.4	51	22	9	-	4.5	23	2	- 4			
	3.7	38	16	9	•	8.1	39	6	- 5			
1012	0	17	8	8		12.0	59	14	- 5			
	4.5	42	18	11		16.0	77	23	- 6			
1018	8.0	60	25	12	1148	20.8	99	33	- 7			
<u></u>	12.0	82	35	13	\	15.7	77	21	- 8			
· · · · · · · · · · · · · · · · · · ·	16.0	105	44	14		12.2	61	14	- 8			
	20.8	134	56	16		8.4	42	5	- 6			
•	16.0	112	46	16		3.7	18	- 6	- 5			
1026	12.2	90	38	15	1154	0	- 1	- 14	- 5			
	8.5	71	29	14					1			
	4.3	47	19	12					1			
1030	0	23	9	11		· · · · · · · · · · · · · · · · · · ·						
		·	ļ	<b> </b>	- <b>  </b>			ļ	<b>_</b>			
		<u> </u>	<u> </u>	<u> </u>	<u>   </u>	1	J	<u>I</u>	1			

#### TTI PROJECT 2294

PRECAST BOX CULVERT TEST DATA

DATE 1	7 August	82 TI	EST NO.	5	DATE <u>18</u>	August 8	2 TEST	NO. <u>5A</u>	
LOAD LO	CATION	5M1			LOAD LO	CATION	5M1	·	
TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴	TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴
	kips	1-5-73	1-5-42	2-5-11		kips	1-5-73	1-5-42	2-5-11
1357	0	0	0	0	0835	0	0	0	0
·	9.1	45	21	1		9.0	54	27	2
	18.1	91	44	0		18.0	112	54	0
-	27.1	170	75	- 1		27.0	170	80	0
	37.0	257	112	- 3	0841	36.1	230	107	0
1405	45.1	337	147	- 4		45.1	290	138	- 1
	8.0	Jack Ope Decrease	rator Ac d Load t	cidental. b 8K	^y 0853	36.0	246	115	- 2
	45.0	352	155	- 2		27.6	195	92	- 4
	34.6	297	130	- 6		18.2	136	65	- 4
	27.8	258	113	- 7		9.6	76	38	1
	17.9	195	85	- 4	0858	0	15	8	3
1415	9.7	136	57	1	0905	0	11	8	5
	0	71	25	2		9.0	65	34	4
1423	0	62	18	- 2		18.0	125	61	4
1427	9.0±	Test Abo	rted - C	loud caus h Strain	ed Data	27.2	184	88	3
1428	0	62	18	– 4		36.0	241	115	4
	9.2	114	43	- 5	0911	45.1	297	140	5
······	18.1	173	70	- 7	· · · · · ·	35.9	250	118	1
	27.2	235	97	- 7		13.8	106	53	2
	36.2	291	122	- 8		9.5	80	41	5
1434	45.2	351	149	- 8	0916	0	18	12	8
	36.4	305	129	- 11		9.2	71	37	7
	27.5	252	105	- 14		18.1	131	64	6
	15.7	169	68	- 11		27.1	188	91	6
	9.2	124	48	- 8		36.2	246	117	6
1441	0	62	20	- 6	0922	45.1	302	142	7
	Test Sto	pped Beca	use 1/2"	1		36.0	255	121	4
	Steel Be	aring Pla	te Warpe	đ		26.8	200	96	4
	1		<u> </u>	1		18.5	146	72	2
	1			1	0927	9.6	85	46	8
	-		<u> </u>	1		0	23	15	11
				·					
	<u> </u>								
				1					
		· · · · · · · · · · · · · · · · · · ·	·	•	a	<u> </u>	A	26 Aug 82	<u>.</u>

REB/26 Aug 82

	TTI PROJECT 2294											
			PRECAST	BOX CULV	ERT TEST	DATA						
	8 August	82 10		6	DATE 19	9 August	82 TEST	' NO 7				
		······	ESI NO.	<u> </u>								
LOAD LO	CATION	5F2	·····		LOAD LOO	CATION	7F2					
TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴	TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴			
	kips	2-5-11	2-5-42	1-5-73		kips	2-7-11	2-7-43	1-7-73			
1028	0	0	0	0	0925	0	0	0	0			
-	9.3	57	22	- 1		9.1	84	39	2			
	18.2	109	43	0		18.0	145	72	29			
	27.2	164	64	3		27.1	208	106	58			
	36.2	245	95	7 .		36.1	292	150	91			
	40.3	307	112	9	0935	45.0	390	208	128			
1041	45.1	. 364	130	10	0942	45.4	409	217	137			
	36.3	311	111	7		35.6	353	184	107			
	25.7	238	84	3		27.2	298	152	79			
1051	16.9	174	60	1		18.1	231	118	49			
	9.7	120	40	- 2		7.9	148	73	19			
	0	49	11	- 5	0952	0	66	30	11			
1101	9.2	98	32	- 4	1020	0	72	30	14			
	18.2	164	56	- 1		9.0	158	71	24			
1103	27.2	230	81	1.		18.1	230	109	52			
	36.1	296	106	4		27.2	299	146	84			
	45.1	365	133	6		36.5	371	185	119			
	34.9	307	109	6	1032	45.4	451	227	148			
1110	27.1	252	89	2	1040	45.2	465	229	153			
	18.7	188	66	0		36.8	413	201	127			
	8.8	114	39	- 4		27.3	349	167	93			
1115	0	50	12	- 8		18.5	284	132	63			
	9.2	105	34	- 9		7.5	186	81	31			
	18.0	170	59	- 6	1048	0	106	40	20			
	27.1	238	84	- 3		9.1	193	81	29			
	36.4	309	110	· 0		18.3	265	119	56			
1121	45.2	373	134	. 3		27.2	337	157.	90			
	37.0	325	119	1		36.0	402	191	122			
1126	45.1	377	135	2	1058	45.6	476	230	157			
	35.4	317	112	1	1102	45.7	482	232	156			
	27.4	259	91	- 1		36.2	423	201.	125			
	18.3	190	65	- 4	•	27.0	359	1.67	94			
	9.3	122	40	- 7	•	18.4	295	131	62			
1132	0	53	13	- 10		8.6	214	87	29			
[				1	1108	0	115	37	18			

				TI PROJI					
			PRECAST	BOX CUL	VERT TEST	DATA			
DATE	19 August	: 82 T	EST NO.	8	DATE 1	.9 August	82 TESI	NO. 9	
LOAD LO	CATION	7M1			LOAD LO	CATION	7 <u>M1</u>		
TIME	LOAD	DEFLECT	ION, in.	x 10 ⁴	TIME	LOAD	DEFLECI	ION, in.	x 10 ⁴
	kips	1-7-73	1-7-43	2-7-11		kips	1-7-73	1-7-43	
1313	0	0	0	0	1452	0	0	0	
	9.0	88	44	2	1453	9.3	106	53	
	18.0	177	88	1		18.1	218	108	
1317	27.4	283	142	1		27.5	337	166	
1325	27.4	291	152	- 1		36.8	451	218	
	35.3	417	229	- 6		45.1	550	226	
1337	35.3	429	<u>235</u>	- 8	1459	50.0	641	298	
	45.5	617	317	-12		55.0	792	350	
1349	45.5	628	324	-15		60.0	967	401	
	35.4	532	278	-19	1508	65.0	1212	491	
	27.9	449	240	-19		71.0	1442	546	
	17.7	328	181	-18	1510	71.0	1510	583	
<u> </u>	8.8	219	127	-16	•				
1356	0	101	65	- 9					
	9.0	192	109	- 9	Test No	. 9 stop	red at 78	kins due	to
	18.1	301	163	-10		ve devia	1	1	
	27.0	408	218	-10	<u>eacessi</u>	ve uevia		ACK IFOUL	vertical
1402	36.2	519	269	-11	-				
	45.0	632	321	-13					·····
1410	45.0	644	329	<u>-13</u> -14	-				
	34.1	535	278	-17					
	27.6	462	244	-18	•				
	17.5	340			-	ļ			
	8.2	216	184	-18		<u> </u>	<u> </u>	<u> </u>	
1416	0	110	<u>123</u> 69	<u>-14</u> - 9	-				
1430	0	99	62		-			+	
	9.0	195	110	<u>-10</u> -12	-				<u> </u>
<u> </u>	18.3	311	167	-12	-				[
	27.7	429		1	-				
	36.3	535	<u>225</u> 275	<u>-13</u> -14	·				
1439	45.3	645	324	-15				1	
	35.0	551	1		-			<u> </u>	<u> </u>
	26.2	449	281	-19	-			+	<b> </b>
	19.0	362	234	-20	-			+	
<b></b>	8.8	226	192	-19	-	<b> </b>	}		
1443	0	110	<u>125</u> 68	<u>  -16</u> - 9	.14	!	Į	L	<u>I</u>

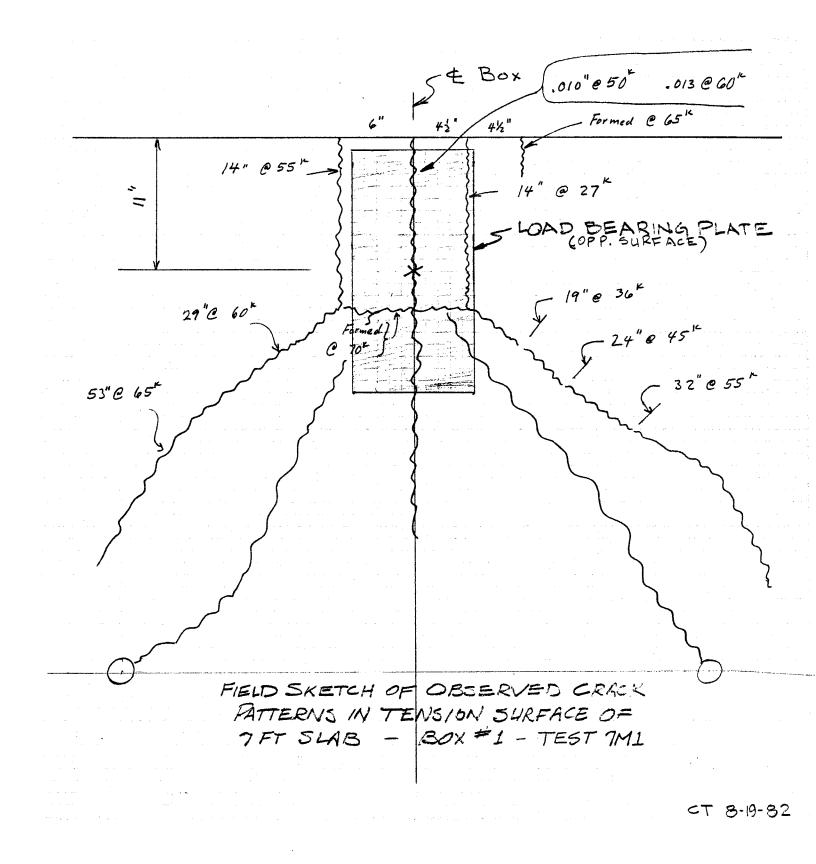
## TTI PROJECT 2294

PRECAST BOX CULVERT TEST DATA

DATE	20 August	: <u>'82</u> T	EST NO.	10	DATE 20	) August	<u>'82</u> TEST	NO. 10	
LOAD LOCATION 7M2					LOAD LOCATION 7M2				
TIME	LOAD	DEFLECTION, in. x 10 ⁴			TIME	LOAD	DEFLECTION, in. x 10 ⁴		
	kips	2-7-73	2-7-43			kips	2-7-73	2-743	
1007	0	0	0			27.2	423	227	
	9.0	78	41			17.1_	301		
	18.2	158	84			9.0	199	115	
	27.3	265	_137		_1103	00		60	
	36.1	397	207			9.0	188		
1020	45.5	573	303			18.1	297	159	
	35.2	481	258	ļ		27.0	404	215	
	26.0	383	210	<u> </u>		36.6	517	271	
	18.7	300	168		1110	45.2	614	320	
	9.9	193	115			36.2	536	282	
1026	0	83	55			27.2	435	233	
1030	0	78	51	ļ		17.7	322	176	
	9.1	164	96			9.4	215	122	-
Loose c	onnection	noticed	on		1116	0	108	65	
strain	in indica	tor.							
1033	0	82	54						
1038	0	82	54						
	9.4	172	98						
	18.5	274	149						
1041	26:9	371	199						
	36.1	480	254	1					
	45.5	585	307						
1043	35.8	506	269	1					
	25.6	393	212						
·····	18.3	309	169						
	9.1	194	111	·					
1048	0	87	55						
1051	0	89	56						
	8.7	172	98						
	18.1	280	152						
	27.5	392	210						
1055	35.8	485	257	1					
	44.6	586	308						
1058	44.6	596	312	1					
	36.0	518	273				ļ		

APPENDIX D MEASURED CONCRETE COVER AT STRAIN GAGES

í


## MEASURED CONCRETE COVER

Strain Gage Designation	Measured Cover	Design Cover
1-5-73	1.387 in.	1.00 in.
1-7-73	0.950 in.	1.00 in.
		\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$
2-5-11	2.240 in.	1.00 in.
2-7-11	1.375 in.	1.00 in.
2-7-73	1.600 in.	1.00 in.

.

.

APPENDIX E FIELD SKETCH OF OBSERVED CRACK PATTERNS

