
 Procedia Computer Science 20 (2013) 270 – 276

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Missouri University of Science and Technology
doi: 10.1016/j.procs.2013.09.272

ScienceDirect
Available online at www.sciencedirect.com

Complex Adaptive Systems, Publication 3
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2013- Baltimore, MD

Behavioral Modeling of Software Intensive System Architectures
 Monica Farah-Stapletona*, Mikhail Augustonb

a Interagency Program Office, OSD, 1700 N. Moore St , Rosslyn VA, USA
bDepartment of Computer Science, Naval Postgraduate School, Monterey, CA, USA

Abstract

Architectural modeling and analysis are mechanisms that allow the capture of design decisions early in the process, so that they
can be assessed and modified without incurring the costs of incorrect implementations. This paper addresses Monterey Phoenix
(MP), a behavioral model for system and software architecture specification based on event traces, which supports architecture
composition operations and views. MP captures behaviors and interactions between parts of the system and the environment with

thods and the small scope hypothesis,
MP supports automatic generation of behavior examples (Use Cases) for early system architecture analysis, testing, verification,
and validation. This paper also introduces a methodology utilizing MP that will inform quantifiable cost estimates (e.g. Function
Point analysis) and ultimately project, program, and enterprise level resourcing decisions. Enhancing and extending DoDAF,
UML, and SysML, MP is focused on behaviors, interactions, and automated tools for early verification.

Keywords: architecture, behaviors, function point analysis, event traces

1. Introduction

Within the Department of Defense (DoD), there have been significant but often disconnected efforts to develop
architectural descriptions of systems and the environments in which they operate. Complex architectural design
decisions are often captured on a system by system basis, using a spectrum of representations from natural language
to formal notations. These inconsistent representations are then analyzed through manually intensive methods such
as inspections and reviews. The result is system and software architecture and development efforts that are
unrelated or duplicative, with a technically and programmatically unsustainable result.

The implication is that modeled architectures are a waste of time and money, which is unfortunate because

architectures matter. If developed and utilized properly, these models enable capturing behavior of not only the
system, but also of the environment with which it interacts. They can reflect design decisions, provide a framework

* Corresponding author. E-mail address: monica.farah-stapleton@tma.osd.mil.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Missouri University of Science and Technology

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Missouri University of Science and Technology

271 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

to reason about those decisions, and then facilitate verifying assertions early enough in the design process to prevent
incurring the costs of incorrect implementations. They also matter because accurate and complete architectural
descriptions establish a common mental model among stakeholders, helping them to answer groups of questions on
topics such as:
 System development strategies and technology insertion.
 Disposition strategies for legacy systems.
 Meaningful engineering metrics that inform forecasting (e.g., estimates of new services or new system

.
 Interoperability and integration strategies that inform Total Cost of Ownership (TCO) and Return on Investment

(ROI).

Although not all stakeholders understand the details of modeling, they do understand cost savings, cost

avoidance, and efficiencies. They also understand the need for data that will inform their decisions to invest in
specific implementations, and allow them to quickly and accurately assess whether the investment is warranted.

Monterey Phoenix (MP) [1][2][3], is a behavioral modeling framework for system and software architecture

specification, that supports architecture composition operations and views. An example, derived from the
International Function Point User Group IFPUG [4], illustrates that once the behaviors and interactions associated
with a system and its environment are understood, familiar estimation practices such as Function Point counting can
be used. The proposed methodology employing MP extracts analysis enablers from the model, including Views,
Use Cases, and programmatic metrics of schedule, effort, and size estimates.

2. Views, Use Cases, and Function Points

 it can be defined as a whole that cannot be divided into
independent parts without losing its essential characteristics as a whole [5]. Systems are comprised of hardware
and software, data, procedures, and people interacting with the system [6]. Such complexity requires methods and
automated tools to assist stakeholders in extracting meaningful information from the architectures describing the
system and environment.

 Architectural views and the viewpoints describing them help to portray aspects or elements of the architecture

that are relevant to the concerns that the view intends to address, and to the stakeholder interested in those concerns.
[7]. Each view is an answer to a question (or a group of questions), and provides the rationale for the development
of tools, patterns, templates, and conventions needed to create the level of abstraction that reduces complexity while
retaining meaningful content.

Use Case and Function Point (FP) descriptions can be considered ways to view a system, its sub-components and

the environment, in order to address the concerns of specific stakeholders. Current techniques utilizing Unified
Modeling Language, Systems Modeling Language (SysML), DoD Architecture Framework (DoDAF) [8] views, and
FP analysis can be enhanced and related to remove ambiguity and link the descriptions. One approach to relating
these techniques is to use the following proposed methodology:
 Describe the behavior of the system and environment in natural language.
 Refine the natural language until the boundary of the system and the environment can be clearly identified.
 Represent the system and the environment in a high-level visualization, e.g. box-and-arrow traditional

architecture diagram view.
 Identify the Function Points based descriptions of system components and sub-components, user-system, and

system-environment interactions.
 Describe the behavior of the system in MP, refining the model as required to understand the behaviors of the

system and environment at the detail necessary to answer stakeholder concerns.

272 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

Extract Use Cases from the MP model and visualize them through event traces and traditional architecture
diagrams.
Continue to refine the MP model and confirm the interactions are represented consistently in the Function Point
analysis methodology.

There are mature processes associated with each step of this proposed methodology which are effective for each
individual step. By combing these steps, identifying the appropriate level of abstraction, and then extracting the
answers to questions or groups of questions from the result, this proposed methodology intends to inform resourcing
decisions based on analytical underpinnings and then render familiar views to decision makers.

Use Cases are a means to capture what a system is supposed to do as described by actors and the system under
consideration [9]. Sequence diagrams in UML and SysML represent a view of a Use Case, providing a common
visualization that assists software engineers, developers, and stakeholders to communicate with each other, and
develop a rudimentary understanding of the behavior of the system and the environment.

Function Points are a normalized metric used to evaluate software deliverables and to measure its size based on
well-defined functional characteristics of the software system. They must be defined around components that can be
identified in a well-written specification [10].

As illustrated in Figure 1, Function Point terminology can be used to describe the interactions of a user, system
and its environment:

External Inputs (EI): Input data that is entering a system.
External Outputs (EO) and External Inquires (EQ): Data that is leaving the system.
Internal Logical Files (ILF): Data that is processed and stored within the system.
External Interface Files (EIF): Data that is maintained outside the system but is necessary to satisfy a particular
process requirement.

Fig. 1. Functionality As Viewed [4].

MP, as a behavioral model for system and software architecture specification based on event traces, supports
different architecture composition operations and views. This software and system modeling framework leverages
lightweight formal methods to unambiguously describe the behaviors and interactions of a system and its
operational environment, capturing design decisions about precedence, inclusion, concurrency, and ordering
(dependency relation between activities). As an executable architecture model, it can then be used to automatically
generate examples of the behaviors (e.g. Use Cases) from these specifications of behaviors and interactions for early
system architecture analysis and testing. MP does not replace system and software engineering enablers such as
UML, SySML, and DoDAF 2.0, but complements them, and emphasizes the necessity of automated tools for early
verification.

Use Cases, Function Point Analysis, and behavioral modeling frameworks such as MP can help stakeholders
understand the technical and programmatic characteristics of the system and environment, by effectively creating

273 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

views that contain the information they need. The methodology employing MP extracts analysis enablers from the
model such as Views, and Use Cases, and informs programmatic metrics of schedule, effort, and size estimates.

3. Monterey Phoenix

Simplistically, the behavior of a system can be described in terms of an algorithm, i.e. a step-by-step set of
activities for solving a problem or accomplishing some end [11]. MP represents an event as an abstraction of an
activity. The behavior of a system can then be modeled as a set of events with two binary relations defined for them:
precedence (PRECEDES) and inclusion (IN) the event trace. Since the event trace is a set of events, additional
constraints can be specified using set-theoretical operations and predicate logic. A more detailed discussion of MP
grammar rules and examples can be found in [1] and [3].

Consider the following MP schema MP_Function_Points which describes the behaviors of user, system, and

environment interaction, as illustrated in Figure 1. The behavior of the user, system, and environment is illustrated
as a traditional architecture view in Figure 2. A Use Case (event trace) extracted from the MP model is illustrated
in Figure 3, and represents the following behaviors:

Lines 01-03: The User inputs data or submits a query and receives processed data or an error message.
Lines 04-09: The Application_Being_Considered (hereafter referred to as Application) receives account data,
checks for data consistency, stores account data, sends processed data.
Lines 10-11: Other_Applications check for consistency of data.
Lines 12-23: Composition operations specify the interactions among the systems.

Schema MP_Function_Points

01 ROOT User:
02 (* (input_account_data | submit_query)
03 (receive_processed_data | error_message) *);

04 ROOT Application:
05 (* (receive_account_data | receive_query) *) ;
06 receive_account_data : check_data_consistency
07 (store_account_data send_processed_data | error_message);
08 receive_query: ([request_EIF receive_EIF] process_query)
09 (send_processed_data | error_message);

10 ROOT Other_Applications:
11 (* (send_EIF | check_data_consistency) *) ;

12 Application, User SHARE ALL error_message;
13 Application, Other_Applications SHARE ALL check_data_consistency;
14 COORDINATE (* $x:input _account _data *) FROM User,
15 (*$y:receive_account_data*) FROM Application ADD $x PRECEDES $y ;
16 COORDINATE (*$x:send_processed_data *) FROM Application,
17 (*$y:receive_processed_data*) FROM User ADD $x PRECEDES $y ;
18 COORDINATE (*$x:submit_query*) FROM User,
19 (*$y:receive_query*) FROM Application ADD $x PRECEDES $y;
20 COORDINATE (*$x: request_EIF *) FROM Application,
21 (*$y: send_EIF *) FROM Other_Applications ADD $x PRECEDES $y ;
22 COORDINATE (*$x: send_EIF *) FROM Other_Applications,

274 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

23 (*$y: receive_EIF *) FROM Application ADD $x PRECEDES $y ;

Function Point analysis is a measurement practice for sizing software. One of the earliest steps in the FP
counting process is identifying the counting scope and application boundaries. The methodology employing MP
assists in unambiguously identifying the boundaries and interactions of the system, user, and environment. Function
Points can be thought of as markers of the boundaries. Once the boundaries and interactions have been
described, the Function Point analysis practice can be used to size the software including: Counting the Data and
Transactional Function Types; Determining the Unadjusted FP count and the Value Adjustment Factor; and then
calculating the final Adjusted FP Count.

For this example, the MP model highlights that there are five Function Points identified, three between
the User and Application, and two between the Application and Other Applications. The model also highlights
dependencies between Function Points , and that the Error Message Event invokes effort and therefore
cost. Table 1 provides an example of the relationship of Function Point terminology to MP terminology, each
describing the interactions between the user, system, and the environment.

Table 1. FP to MP Terms Example.

Component/MP ROOT FP Description High Level MP Description

User External Input

External Output

External Inquiry

input_account_data

receive_processed_data | error_message

submit_query

Application Being Considered External Input
External Output

receive_query
receive_account_data

Other Applications Ext Interface Files
External Inquiry

send_EIF
check_data_consistency

A traditional architecture view of the user, system, environment behavior described in the MP_Function_Points
schema is illustrated in Figure 2, emphasizing the interaction between the parts components. Solid green lines
represent the behavior composition operation COORDINATE. The pink lines represent the behavior composition
operation SHARE ALL. Such views can be extracted from the MP model using automated tools.

Fig. 2. Architecture View of MP_Function_Points schema.

275 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

Figure 3 illustrates a view of an event trace, i.e. one Use Case, that has been extracted from the
MP_Function_Points schema. There are two levels of IN from the Application root event: receive_account_data as
a composite event under the IN relation with the Application root event, and with the other events IN
receive_account_data. Other_ Applications is another root event.

environment can be visualized as in Figures 1, 2, and 3, MP models can be integrated into standard frameworks, like
UML, SysML, and DoDAF, providing the level of abstraction convenient for architecture models. Employing MP
to capture behaviors and interactions, and then expressing them in a format that is more familiar to the user,
transforms a purely academic investigation into a practical exercise to capture high level design decisions, enable
pattern identification and reuse, and quantify cost avoidance, savings and ROI.

 Fig. 3. Event Trace (Use Case) extracted from MP_Function_Points schema.

4. Summary and follow-on work

Architectural modeling and analysis allow reasoning about the behavior of systems and environments. Monterey
Phoenix, as a behavioral model for system and software architecture specification based on event traces (Use Cases),
leverages lightweight formal methods to unambiguously describe those behaviors. MP has powerful interaction
abstraction. Separation of the behavior of the component from the interaction between components is an important
feature for model reuse. Additionally, the MP assertion language is very expressive, so it is more feasible to
perform various computations on specific instances of event traces. MP is focused on "lightweight" verification, i.e.
exhaustive trace generation, based on the Small Scope Hypothesis (executable architecture models) [3]. Use Case
and Function Point descriptions can be considered ways to view a system and the boundaries of its sub-components
and the environment, in order to address the concerns of specific stakeholders. The proposed methodology
employing MP can be applied to classes of tasks associated with hierarchical interactions between a system and its
environment. Refining and evolving this methodology will include: Identifying behavioral patterns for system-
environment interactions; Determining what behaviors to abstract and what questions or groups of questions can be
addressed; and Considering how visual representations, automated tools, and automated estimation methodologies
can inform technical and programmatic decisions.

References

1. M. Auguston, 2009, Software Architecture Built from Behavior Models, ACM SIGSOFT Software Engineering Notes, 34:5.
2. M. Auguston, C. Whitcomb, 2010, System Architecture Specification Based on Behavior Models, in Proceedings of the 15th ICCRTS

Conference (International Command and Control Research and Technology Symposium), Santa Monica, CA, June 22-24, 2010.
3. M. Auguston, C. Whitcomb, 2012, Proceedings of the 24th ICSSEA Conference (International Conference on Software and Systems

Engineering and their Applications), Paris, France, October 23-25 2012.

276 Monica Farah-Stapleton and Mikhail Auguston / Procedia Computer Science 20 (2013) 270 – 276

4. Point Users Group (IFPUG), p.6, ©
Copyright 1999, International Function Point User Group 1999.

5. INCOSE Systems Engineering Handbook version 3, 2006, p2.2.
6. N. Rozanski, Software Systems Architecture, Addison Wesley, 2012.
7. R. Taylor, N. Medvidovic, E. Dashofy, Software Architectures, Foundations, Theory, and Practice, John Wiley & Sons, 2010
8. DEPARTMENT OF DEFENSE, 2009, DoD Architecture Framework, Version 2.0, Washington, DC: ASD(NII)/DoD CIO, 2009.
9. Object Management Group Unified Modeling Language (OMG UML), Superstructure, May 2012, ISO/IEC 19505-2:2012 (E), April 2012.
10. Object Management Group, Automated Function Points Specification, FTF Beta 1, Feb 2013.
11. Merriam-Webster, http://www.merriam-webster.com/dictionary/algorithm.

