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ABSTRACT 

 

This thesis describes an experimental investigation of the behaviour of filament wound 

glass fibre reinforced epoxy (GRE) composite pipe under hydrostatic and biaxial load 

conditions at temperatures up to 95⁰C. The project was intended to lead to 

improvements in reliability and quality, and ultimately a reduction in the cost of 

qualifying GRE oil and gas pipelines. The experiments were designed to be compatible 

with the procedure currently used by Future Pipe Industries (FPI), employing the 

concept of ultimate elastic wall stress (UEWS) in the qualification and production 

control of GRE pipe. The UEWS test appears to provide an attractive means of rating 

GRE pipes, where weepage resulting from the accumulation of matrix cracks is a 

common failure mechanism.  

A novel test rig capable of performing UEWS tests under various loading conditions 

from hydrostatic to multi-axial loadings was designed and developed. UEWS tests were 

conducted under six different stress ratios ranging from pure axial to pure hoop loading 

at room temperature (RT), 65°C and 95°C. The tests involved the application of groups 

of ten 1-minute hydrostatic pressure cycles at increasing pressure levels. The intention 

is to identify, by examining the stress-strain response, a stress level below which 

damage growth is either negligible or at least sufficiently low to prevent long term 

failure within the design life. In addition, acoustic emission measurements were also 

conducted to investigate the nature of the damage mechanisms involved as well as its 

compatibility to the UEWS results.   

Three distinct failure modes were observed: tensile axial failure under pure axial 

loading, weepage under axial dominated loading from 0.5:1 to 2:1 and localized leakage 

failure under hoop dominated loading of 4:1 and 1:0. Full tensile-tensile UEWS and 

leakage based failure envelopes were developed at a range of temperatures from 20°C 

(RT) to 95°C. Both envelopes showed a strong dependence on stress ratio and test 

temperature. It was also shown that the UEWS based failure envelope at elevated 
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temperatures generally degraded, except for the 2:1 loading where UEWS strength 

increased. 

The Miner‟s law model developed, gives a good account of the effects of cyclic and 

static loading in UEWS tests. Using a crack growth model similar to Paris Law, damage 

development can be directly linked to the progressive nucleation of matrix micro 

cracks. It is also shown that cyclic rather than static loading dominates the UEWS test 

response. The general lifetime damage model developed in the study shows good 

agreement with the experimental data from the multiaxial UEWS tests. This approach 

may therefore be an appropriate procedure for describing the long term performance of 

GRE pipes under any required combination of static, cyclic fatigue, hydrostatic and 

non-hydrostatic loading. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Glass fibre reinforced epoxy (GRE) pipes 

Glass fibre-reinforced plastics (GRPs) have been successfully employed in many 

engineering applications, notably in the aerospace, marine, automotive parts, oil and gas 

industries and consumer goods. This is due to their attractive physical and mechanical 

properties, particularly their strength to weight ratio and resistance to fatigue and 

corrosion [1-4]. Other features such as ease of installation, high durability and low 

maintenance and life cycle costs make them more desirable than conventional materials 

such as steel. In addition, due to their anisotropic nature, GRPs can be tailored to 

specific applications to achieve the highest levels of performance required. This allows 

engineers to design composite structures to match loading systems and gives the ability 

to fabricate shapes which are difficult to form using conventional materials.  

Glass fibre-reinforced epoxy (GRE) composite is one of the most widely used types of 

GRP. It is used extensively in the marine, building and automotive industries. The 

present work concerns applications in the offshore oil and gas industry, particularly in 

composite pipelines for aqueous liquids. GRE pipes are usually designed to withstand 

high pressure. Their lightweight, relatively thin-walled structure provides ease of 

handling and transportation [2, 5], which results in reduced installation costs. Their 

corrosion resistance properties have led to extensive use in the offshore industry to 

transport highly corrosive fluids (including seawater, aerated water and hydrocarbons) 

[2]. Almost all the pipes in these applications are produced by a filament winding 

process, and they are usually subjected to a combination of internal pressure and axial 

loading.  

One of the reasons GRE pipes have proliferated recently in the oil and gas industry and 

for the transportation of corrosive fluids is their excellent mechanical properties. These 

are highly dependent on the types of resin used, orientation and placement, and also the 
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volume fraction of the glass fibre reinforcement. Unlike metals, which are homogenous 

and isotropic materials, the GRE pipe is considered to be orthotropic in nature. The 

mechanical properties of GRE pipes are distinct in three mutually perpendicular planes, 

where the intersection of these planes is known as the principal material axes [6]. This 

special property permits engineers to design pipes so that they will have greater strength 

and stiffness in the anticipated load direction. In cases of GRE pipes for transporting 

fluids, the „ideal‟ winding angle of ±55° is always preferred since here the maximum 

stress is aligned to the direction of the fibres. 

However, GRE pipes have low modulus of elasticity in the hoop direction and 

particularly in the axial direction. Nevertheless, they show promises in their high 

strength to weight ratio and stiffness, in addition to other excellent properties such as 

abrasion, corrosion and chemical resistance. As with stiffness and strength, the thermal 

behaviour of GRE pipes is also dependent on the characteristics and arrangement of 

their constituents. 

As the use of GRE pipe increases, so does the need to define reliable design limit in 

terms of performance. This will provide engineers with basic guidelines to enable GRE 

systems to be designed with confidence to a common standard. One of the major 

challenges concerning the use of filament wound GRE pipe is to predict the onset of 

first ply damage under combinations of internal pressure and axial loading. As has been 

thoroughly investigated and documented, the principal failure of GRE pipe is due to 

weepage, which is a slow leakage of fluid through the pipe wall. This type of failure 

normally occurs at much lower stress levels than that leading to bursting. 

Filament-wound GRE pipe is essentially a layered of unidirectional plies angled 

sequentially at ±θ°, to the axial direction. In this investigation, the pipes were produced 

at the ±55° angle, which is considered to be the optimum angle for GRE pipes when 

subjected to internal pressure alone. However, in practice, pipework is also subject to 

axial tensile or compressive and bending loads. This implies that the hoop to axial stress 

ratio could vary significantly from the 2:1 ratio, i.e. internal pressure loading only. The 

inherently anisotropic mechanical properties of each ply induce complicated stress 
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states within the laminate when subjected to multiaxial loads such as combined internal 

pressure and axial loading. This leads to a rather intricate process of crack initiation 

within the laminates, with cracks running through the resin phase parallel to the fibre 

direction. However, this may not result in weepage failure since the cracks are 

restrained by the neighbouring ply at a different orientation, which may still remain 

intact. This suggests that weepage could have precipitated from combinations of matrix 

cracks with other forms of damage, for example interlaminar cracks or even 

delamination between plies. 

The stress-strain behaviour of GRE pipe is initially linear elastic, and followed by non-

linearity at later stages close to failure, first by weepage and then ultimately bursting. In 

earlier investigations, many have explained this non-linear response as a consequence of 

matrix cracking within plies. As the crack density increases with increasing load, the 

non-linearity becomes more pronounced at higher loads and is found to correspond to 

degradation in the mechanical properties of the pipe. A comprehensive review of the 

behaviour of GRE pipes, particularly under multiaxial and fatigue loading, is given in 

Chapter 2. 

 

Figure 1.1: Glass fibre reinforced epoxy (GRE) pipes for cooling water – courtesy of 

Future Pipe Industries (FPI). 
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1.2. Manufacture of GRE pipes 

As mentioned above, almost all GRE pipes used for offshore applications are produced 

by the filament winding process. This process emerged in the 1950s and has evolved 

since then to become an efficient technique for the mass production of GRE pipes and 

many other high quality composite components such as vessels, shafts, ducts and most 

tube-shaped structures [7]. One reason for its ubiquity is that the process can provide 

high fibre content and hence produces pipes with excellent mechanical properties. A 

broad range of fibre and matrix systems can be used in this process, depending on the 

cost and performance levels required. There are a variety of types of winding machine 

available, such as those using helical, polar, continuous and filament placement [1, 8]. 

However, the current study only concerns helical winding because this is the most 

common winding method used to produce GRE pipes.  

The winding process for producing GRE pipe is relatively simple. Bundles of 

continuous fibre strands are either impregnated or wetted by passing them through a 

resin bath, wound onto a rotating mandrel at the desired angle. The carriage unit 

responsible for feeding the fibres onto the mandrel travels back and forth along the 

length of the mandrel while it rotates at a specified speed [6, 9, 10]. The arrangement of 

the fibres and the winding angle can be easily controlled for specific designs by 

coordinating mandrel rotation and carriage speed in order to obtain the required axial 

and hoop properties. Careful monitoring is required to ensure that the mandrel is fully 

covered by the resin wetted fibre bundles and to produce a product with consistent wall 

thickness. Usually, numbers of fibre tow are used together to produce bigger bandwidth 

and reduce winding time. A diagram of the filament winding process for producing 

GRE parts is shown in Figure 1.2.  

Once the mandrel is completely covered to the desired thickness, it is removed from the 

winder and placed in the oven for curing. The mandrel is then rotated during the curing 

processes to maintain uniformity in resin content around the circumference of the pipe. 

Finally, the cured GRE pipe is stripped from the mandrel which has usually been coated 

with a release agent prior to the winding process for easy removal of the wound 
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structure. However for some products, such as pressure vessels, the mandrel is not 

removed and becomes an integral part of the structure. 

 

Figure 1.2: Schematic diagrams of the filament winding concept for producing angle 

ply GRE pipes. The winding angle is controlled by coordination of feeder movement 

and the rotation of the mandrel [11]. 

 

Contemporary filament winding processes offer high precision, very good repeatability 

and relatively inexpensive compared with other automated methods of manufacturing 

composite parts. The low cost is perhaps due to their evolved automated system, which 

allow for high production rates. This subsequently reduces fabrication costs by 50-80% 

as compared to a manual hand-layup process which relies extensively on human labour 

[12]. All shapes of GRE pipes can be manufactured using the filament wound process 

except for those with difficult surface curvatures. Some of the parts, such as the pipe 

tee, may not appear to be woundable directly, but a combination of two or three plain 

GRE pipes would often be used to produce such complex parts.  

Modern winding machines are numerically controlled with a high degree of precision 

for laying the exact number of layers of reinforcement in order to ensure that the GRE 

pipe produced has good mechanical strength in the circumferential and longitudinal 

directions. However, the mechanical strength of the filament wound parts does not 
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simply depend on the composition of constituent materials but also on process 

parameters like winding angle, fibre tension, resin chemistry and curing cycle [7]. Great 

emphasis has focused on the development of computer operated and user friendly 

filament winding machine control to improve the quality of GRE products, especially in 

the mass production of GRE pipes. The development of lower cost filament winding 

machines encompassing control systems and the software used to produce cylindrical 

GRE components is now being pursued [9, 13]. 

1.3. Constituent materials in GRE pipes 

The main constituents of GRE components are epoxy resin, aromatic amines as 

hardener and glass fibre reinforcement. The primary function of the glass fibres in GRE 

pipes is to increase the mechanical properties of the matrix system and hence provide 

greater stiffness, strength and thermal ability [14]. They are made from an extrusion of a 

molten mixture of quarry products (sand, limestone and boric acid) through micro fine 

bushings before rapid cooling to below the glass transition temperature [15]. Usually, 

the glass fibre reinforcement used in composite engineering would have a diameter in 

the range of 10-20μm [6, 10]. Finally, a surface coating, also known as sizing, is applied 

to the fibres to promote easy fibre wetting and processing, hence creating strong 

bonding between the resin and fibres. The most commonly used glass reinforcement in 

GRE products is E-glass, due to its high strength to weight ratio and good corrosion 

resistance properties.  

The epoxy matrix system, on the other hand, serves to transfer and distribute applied 

loads to the fibre reinforcement and maintain the reinforcement position and orientation. 

Epoxy matrix also protects the fibres from mechanical damage due to handling and 

aggressive environments [6, 16]. The most prevalently used epoxy resin in the 

manufacture of GRE pipes is known as diglycidyl ether of bisphenol A (DGEBA). It is 

created by the reaction of epichlorohydrin with bisphenol A in the presence of sodium 

hydroxide. The chemical structure of DGEBA is shown in Figure 1.3(a) [17]; 
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(a) 

 

(b) 

Figure 1.3: (a) Chemical structure of common epoxy resin (DGEBA) and (b) curing 

agent, 4,4′-methylene-dianiline (MDA).  

 

DGEBA resin is a difunctional molecule with two terminal epoxide groups instead of 

the ester groups in polyester resin. The absence of ester groups in epoxy resin imply that 

it will have better water resistance property and hence, be less susceptible to water 

attack. The epoxy chain molecule also consists of two ring groups at its centre, which 

provide superior responses to both mechanical and thermal stresses than linear groups. 

As a result this gives epoxy resin very good stiffness, toughness and heat resistance 

properties [15].  

Epoxies differ from other resins in that they are cured by a 'hardener' rather than a 

catalyst. The hardener is normally an amine (cycloaliphatic, IPD or aromatic, MDA) 

used as the curing agent and is determined by the number of N-H bonds in a molecule. 

An aromatic amine like 4,4′-methylene-dianiline (MDA) is usually preferred in 

preparing epoxy resin due to its good chemical and thermal resistance. The chemistry of 

this 'addition reaction' causes cross-linking, where two epoxy sites react on each amine 

site producing a C-N bond as shown in Figure 1.4 [18]. This creates a complex three-

dimensional molecular structure. While some epoxies are formulated to crosslink at 

room temperature, many necessitate subsequent post-curing to complete the cross 

linking to achieve optimum properties. 
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Figure 1.4: The curing reaction scheme between epoxy resin and amine [18]. 

 

1.4. Objectives of the project and outline of the thesis 

From an industrial point of view, ISO 14692 is the principal standard currently used to 

predict the maximum service pressure for GRE pipes where a regression curve is 

determined. Weepage failure is common in this procedure, where slow leakage from the 

wall of the tube is observed due to the presence of a network of matrix cracks which 

form over time [19-21].  Although the ISO procedure provides an acceptable and 

reliable method of predicting behaviour under pure internal pressure, GRE piping is 

usually subject to complex loading involving combinations of axial load and internal 

pressure. At present, the understanding of pipe behaviour, particularly under 

combinations of axial tension and internal pressure, is limited by a lack of experimental 

data and understanding of the failure mechanisms involved. ISO 14692 provides an 

approximate method allowing for axial load effects, but may not reflect the true nature 

of the interaction between internal pressure and axial stress.  Furthermore, the ISO 

14962 test to predict lifetime based on a regression curve can be very expensive and 

time consuming. Considering all the limitations of the existing test procedure, there is a 

need to develop an improved and more rapid method for realistic conditions, supported 

by experimental data and accurately reflecting the failure mechanisms that may occur. 
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The aim of this PhD research on lifetime behaviour is that it will lead to improved 

reliability, quality and cost reduction for qualifying epoxy oil and gas pipelines. This is 

a partnership project between the Composite Centre of Newcastle University and its 

industry counterpart, Future Pipe Industries (FPI), to investigate the failure envelope 

characteristics of GRE pipes under biaxial loading based on a short term test. This 

research is experimentally based and involves an investigation of the failure envelopes 

of GRE pipe of realistic diameter over a variety of axial load and internal pressure 

combinations. It also involves an experimental investigation of the behaviour of GRE 

under hydrostatic and biaxial load conditions at temperatures up to 95°C.   

The format of the experiments has been singled out to be compatible with the FPI 

procedure which uses the ultimate elastic wall stress (UEWS) concept in the 

qualification and production control of GRE pipes. The experimental side of the 

research involves the design of 200mm diameter test spools with an internal pressure 

ram capable of modifying loading conditions from hydrostatic to multi-axial loading. 

The design enables an additional pressure chamber to be contained within the envelope 

of a normal GRE test-spool, without the need for any form of exterior loading frame. 

The interpretation and modelling of the results are of equal importance to the 

experimental work carried out. The key difficulty is in correlating the results of UEWS 

tests with long term failure data. A model based on Miner‟s cumulative law is used to 

illustrate the damage accumulation caused by fatigue cyclic and static loading in UEWS 

tests. This model then takes into account the fundamental failure mechanism in GRE, 

namely the propagation of cracks within the resin phase. It is intended that the model be 

used as a framework within which the results of the experimental study can be 

interpreted. The prediction of failure envelopes from the UEWS method currently 

employed by Future Pipe Industries (FPI) is critically investigated and assessed from 

accurate measurements of stress and strain as well as acoustic emissions during testing. 

A general lifetime damage model for GRE pipe similar to the Tsai-Hill interactive 

failure criterion is also employed for this particular purpose. 
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In this thesis, the relevant literature and background are reviewed in Chapter 2. The 

review covers on the failure modes and analysis, fatigue behaviour and factors that 

affect the behaviour of GRE pipes as well as the current qualification process for GRE 

pipe. Chapter 3 describes the experimental procedures involved in the project, which 

include the main UEWS test at various loading ratios, the determination of the 

degradation in properties, the acoustic emission and microscopic analysis procedures. 

Chapter 4 describes all the modelling work carried out in the project. Chapter 5 presents 

the results from the UEWS test for all test conditions and the calculations involved in 

interpreting the data. Results of the acoustic emissions measurement, determination of 

stiffness property and microscopic analysis are also presented in this chapter. This 

includes comprehensive discussions of the results obtained. Finally, conclusions from 

the study and suggestions for future research are drawn in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1.  Biaxial loading of filament wound GRE pipes 

Multiaxial stress and strain states can occur in a system due to (a) applied multiaxial 

loadings, for example in pipes, shafts, pressure vessels; (b) geometric discontinuities in 

notches, reinforcing plates; (c) material discontinuities in bonded structures; and (d) 

material anisotropy in fibre reinforced composites [22]. Due to the orthotropic nature 

and tubular shape of GRE pipe, the biaxial stress-strain states encountered is an 

extremely complex problem. GRE pipe work, which is the subject of the investigation 

here, is not only subjected to internal pressure loading but also axial tensile or 

compressive and bending loads due to various factors such as ground movement, 

improper installation, temperature fluctuation and many more.  

Generally, for a thin-walled filament wound fibreglass pipe, internal pressure alone 

gives a 2:1 hoop to axial stress ratio, which is the case for the ±55 filament wound GRE 

pipe used in this work. By applying additional axial loading to the system together with 

differential internal pressure, various hoop to axial stress states can be obtained. The 

radial component, on the other hand, is relatively low in magnitude compared to the in-

plane components and hence, can be ignored. The stresses in the principal plane can be 

calculated from the following relationship: 
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where H, A, and are the hoop and axial stresses respectively and d and t are the 

diameter and thickness of the pipe respectively.  
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Figure 2.1 shows the conventional experimental setup for attaining a 2:1 hoop to axial 

ratio and pure hoop loading for composite tubes [23]. In diagram (a), the end caps are 

secured and axial and hoop stresses are given by equation (2.1).  In diagram (b), the 

pressure is sealed by the rubber o-rings, where the pipe is free to slide and hence 

eliminate the axial stress to create pure hoop loading. This type of set up is also 

convenient for studying the stress state in laminate, with the benefits of avoiding edge-

effect problems as well as taking advantage of the ease of introducing multiaxial 

loading into the specimen [21].  

Numerous studies of the biaxial testing of filament wound GRP pipes have been 

conducted. Hull et al. [24], for instance, fabricated filament wound glass polyester pipe 

and subjected it to biaxial and uniaxial hoop pressures to observe failure modes. 

Rosenow [25] continued Hull‟s work by further extending the test to include tensile 

loading. Sodden et al. [26] carried out experimental work on bi-directional, ±55 

filament wound GRE pipes under a variety of biaxial stress states by applying 

combinations of internal pressure and axial tensile and compressive loads. Special 

attention was paid to the end gripping and pressure sealing problem by adding material 

reinforcement to the end of the pipe to minimize the stress concentration.  

Mistry et al. [27] designed a test rig to carry out an experimental study on the buckling 

failure of filament wound GRE pipes under combined external pressure and axial 

loading. Ellyin and Wolodko [22] developed a new multiaxial testing machine capable 

of applying axial load differential pressure and torsional force to the composite tube. 

Recently, Hale et al. [28, 29] designed a biaxial test rig suitable for conducting a test on 

filament wound composite pipe at elevated temperatures. In this test rig, the pipe was 

thermally regulated by a cartridge heater installed inside the test spool and loading was 

achieved by the pressurization of the test medium. In the present work, a similar 

concept to that of Hale‟s test rig has been adopted. A ram was installed inside the pipe 

to create two compartments which could be separately pressurized to produce various 

hoop to axial stress ratios. Further details of the design and arrangement of the set up 

and test procedures are given in Chapter 3. 
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Figure 2.1: Schematic diagram for common biaxial testing rig for composite pipes 

with: (a) internal pressure loading creating 2:1 hoop to axial stress condition; and (b) 

pure hoop loading condition [23]. 

Pressure 

Fixed end 
Tube 

   Tube wall 

Pressure 

“O” ring Tube 



                                                                                                               Literature review 

14 

 

2.2. Failure of filament wound GRE pipes 

The failure behaviour of filament wound GRE pipes subjected to biaxial load has been 

the subject of numerous experimental and modelling investigations spanning decades, 

as demonstrated in the literature [5, 14, 20, 24, 26, 29-46].  The majority of such 

investigations have emphasized on the failure envelopes, fatigue strength, leakage and 

the associated deformation of angle ply laminates similar to those used in GRE pipes. 

However, whilst most of these studies concentrated on structural failure in composite 

pipes, the more significant issue of micro structural progressive damage, which leads to 

the final failure is less clear.  

One of the earliest studies of the failure behaviour of fibreglass pipes was conducted by 

Hull et al. [24] in which pipes were internally pressurized to failure using the closed end 

and the restricted end as referred to in the previous section (Figure 2.1). Leakage was 

observed to be the main failure mode for fibreglass reinforced pipes, and leakage modes 

were distinct for different ratios of axial load to internal pressure. Similar tests were 

conducted by Soden [26] to investigate leakage and fracture strength in ±55° filament 

wound GRE pipes. He concluded that fracture strength very much depending on the 

ratio of hoop to axial stress applied, noting that leakage failure occurred at much lower 

stresses than that at final failure. 

Most of the literature has reported that filament wound composite pipes under fatigue 

biaxial load failed due to sequences of damage which involve transverse matrix 

cracking, delamination, weepage and fibre fracture [19]. This is illustrated in Figure 2.2 

[47]. Increases in applied load cause the continuous nucleation and accumulation of 

transverse matrix cracks along the fibre direction. When the matrix crack density 

reaches saturation, delamination, weepage and fibre fracture may occur hence causing a 

rapid progression of damage leading to final catastrophic failure.  

However, when composite pipes are in use, one must not only consider the final failure 

of the pipes but also any situations when they lose the practical capability to carry out 

the requirements of the application. Since weepage and delamination failure occur at 

much lower pressure than that required to fracture the glass fibres, these types of failure 
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can be regarded as functional failure rather than the structural failure when total 

collapse occurs and can no longer bear the load. Hence detecting functional failures in 

GRE pipes is favoured, since these failures can be regarded as benign failure modes, 

providing attractive leak-before-break characteristics. Before trying to correlate the 

damage state, stiffness degradation and fatigue life from the UEWS tests conducted in 

this investigation, it is imperative to look more closely at these sequences of damage 

endured by the pipe before functional failure.  

 

Figure 2.2: Sequence of damage development in composite laminates during fatigue 

loading [47]. 
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2.2.1 Transverse matrix cracking 

The formation and growth of transverse matrix cracking which leads to weepage failure 

has been a well observed and much studied failure mechanism in filament wound GRE 

pipes. Increases in the load applied statically or cyclically will cause a progressive 

nucleation of matrix cracks due to the high stress and strain concentrations in the matrix 

phase between the tightly packed fibres. Matrix microcracks proceed from the initiation 

of cracks near regions of high fibre volume fractions or voids, before propagating 

transversely to the matrix phase around the fibres [19, 48]. However, in some cases, 

microcracks also observed across the resin rich areas. The numbers of cracks then 

increase as the load is increased, which results in a significant decline of the effective 

stiffness and thermal properties of the laminate. This eventually induces stress 

redistribution in individual plies before considerably affecting the deformation of the 

pipe and final leakage failure. Throughout the whole failure process, the fibres remain 

intact [32]. Figure 2.3 shows the transverse matrix cracking commonly observed in 

angle ply laminate pipes. 

 

Figure 2.3: Transverse matrix micro-cracks in a filament wound ±55º angle ply glass 

epoxy tube [49] 
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Several experimental and modelling studies have been carried out on the initiation and 

growth of transverse matrix cracks and the influence of various loading combinations, 

ply fibre orientations and environmental conditions [50-52]. One of the earlier studies, 

by Broutman and Sahu [53], investigated the initial formation of transverse cracks. 

Extensive experimental works have also been carried out in [54, 55] to observe matrix 

cracks. It was found that the cracks formed in the transverse direction of the fibres and 

crack density increased with increasing applied stress until reaching saturation at which 

failure occurred. The researcher then went on to revise the multiple fracture theory in 

studying the effect of ply thickness on predictions of crack spacing in unidirectional 

composite laminates. It was concluded that the threshold strain for transverse cracking 

is highly dependent on the thickness of the plies around which cracking occurs. 

However, Harrison and Barder [56] suggested that, crack density at saturation also 

depends to the extent on the applied strain levels, rather than just laminate geometry, 

especially during fatigue loading. Later, Nairn and Hu and Nairn et al. [57, 58] 

successfully conducted a series of experiments on crack density as a function of applied 

stress. They found that no cracks were observed until the limit stress was reached. 

However, once initiated, the crack density often increased very rapidly. 

Matrix cracking within composite laminates has been recognized as the major factor 

causing the reduction in stiffness of laminates. Various models have been presented to 

characterize such degradation in stiffness due to transverse matrix cracking under in-

plane uniaxial and multiaxial loading. Among these models are the ply-discount 

approximation [59], the continuum damage model [48, 60-62], shear lag model [54, 55, 

63], self consistent scheme [64], and the variational model proposed by Hashin [65, 66]. 

Recently, Katerelos et al. [67] conducted an analysis of the effect of matrix cracking on 

the behaviour of angle ply laminates loaded statically using the equivalent constraint 

model (ECM).  The approach showed a good agreement with the experimental results 

obtained by microscopic strain measurement using the laser Roman spectroscopy 

technique [68].  

A finite element model was proposed by Tao and Sun [69] and Sun and Tao [70], who 

investigated the effects of matrix cracking on the stiffness degradation of laminates. The 
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predicted normalized transverse and shear modulus was later plotted against the 

exponential function of the normalized crack density of a cracked lamina. The 

following curve fitting expression was then derived from the plot: 
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Where; 

E2 and E2
o 
are effective and initial transverse Young‟s modulus of ply respectively.   

G2 and G2
o
 are effective and initial shear modulus of ply respectively.  

αE and αG  are curve fitting constant determined by the finite element analysis. 

λ is the normalized crack density function. 

The authors concluded that normalized crack density rather than crack density is a more 

appropriate parameter to be used in predicting cracking damage. It was also inferred 

that the location of the cracks has very little influence on layer stiffness, but that the 

constraining layers have a considerable impact on the effective modulus of the cracked 

layer. 

In 1979, Jones and Hull [71] examined the morphology of transverse matrix cracks 

present in GRE pipe loaded up to final failure, using a standard microscopic technique. 

According to their observations, white striations parallel to the fibres appeared during 

pressurization which increased progressively as weepage pressure was approached. The 

formation of streaks was also accompanied by acoustic emission indicating matrix 

cracking that took place within the laminates. From micrograph image observations, 

they found that matrix cracks tended to be initiated at a region with higher fibre content. 

They subsequently classified these cracks as either transverse, parallel or interlaminar 

and oblique transverse cracks. Similar observations were made by Bailey and Parvisi 

[50] in their work on the debonding effects in cross ply laminates of glass fibre 

composites. They inferred that the whitening effect seen were, in fact, associated with 
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fibre-matrix debonding. Micrograph images suggested that the transverse cracks then 

formed as a result of the coalescence and growth of this debonding in the laminates. 

Recently, Lokman Gemi et al. [72] looked at the fatigue behaviour of filament wound 

GRE pipes under pure internal pressure. Structural observations with a scanning 

electron microscope (SEM) showed matrix cracking coalescing with voids within the 

matrix phase, hence precipitating the damage progression process.  

Frost et al. [42, 73] studied the influence of loading frequency in predicting the long 

term fatigue behaviour of a GRE pipe. They concluded that the prime failure 

mechanism observed for short and long term fatigue were leakage as a result of matrix 

cracking. As mentioned earlier, although transverse matrix cracking may not cause 

abrupt structural damage in pipeline applications, it is highly detrimental since it leads 

to weepage failure which, if not treated, can trigger the development of other, more 

deleterious forms of damage such as fibre breakage or bursting.  

2.2.2 Delamination 

Another commonly observed failure mode for GRE pipes is delamination, which is also 

referred to as interlaminar cracks between composite layers. This type of failure is 

dominated by the properties of the matrix, and given that matrix strength and toughness 

tend to be relatively low, laminated composites are hence prone to the development of 

delamination. This type of damage rarely occurs as an independent damage mode, and 

is usually associated with or triggered by other damage modes such as commonly, 

transverse matrix cracking. 

Delamination damage or interlaminar cracks can be described as the detachment or 

separation of two adjacent plies. This may result from the interlaminar stresses that 

develop due to edge effects or large differences in ply stiffness as a consequence of 

transverse matrix cracks. Delamination damage may also occur due to impact damage 

and manufacturing inconsistencies such as incomplete curing and poor interplay 

bonding. Similar to transverse matrix cracking, delamination in GRE pipes significantly 

reduces the structural integrity of the pipe and may initiate more extreme damage 
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mechanisms such as weepage or leakage failure and fibre breakage [19, 24, 74]. In 

many types of composite structure, including GRE pipes, delamination and transverse 

matrix cracks are the most frequently observed type of damage and combinations of the 

two constitute the majority of failure mechanisms. 

As mentioned in the previous section, transverse matrix cracks tend to occur along the 

fibre direction within individual layers. As there is relatively little resistance to crack 

growth in the fibre direction, the cracks, once initiated, grow rapidly in this direction. 

However, the cracks are restrained by their respective layers due to plies of different 

orientation lying above and below, which may differ considerably in stiffness 

properties. As a result, a multiaxial stress state develops at the crack tips and, once the 

stress level exceeds the resin failure strength, this may be sufficient to initiate 

interlaminar or delamination failure between the two adjacent layers. Delamination 

increases the possibility of weepage failure by coalescing with transverse cracks, hence 

creating multiple pathways for fluid to pass through the pipe wall.  

Jones and Hull [19] carried out microscopic observations of the delamination failures of 

GRE pipes under biaxial loading. They observed that, for pure hoop loading, the pipe 

buckled and delamination took place on the compressive side of the bent pipes. This 

was later followed by catastrophic failure involving fibre breakage, which appeared to 

start in the regions of delamination. Local weepage or small jets of fluid spraying from 

local sites could be observed if delamination took place along the outermost 

interlaminar plane, since fluid could escape along the crack length. This was observed 

by Meijer [35] when GRE pipes were tested at 4:1, 4.5:1 and 5:1 hoop to axial stress 

states. It was noted that the appearance of the tested pipes changed, becoming opaque 

over the entire surface due to coarse striations. This characteristic suggested 

delamination damage. Ellyin and his co-workers [75] studied the behaviour of 

multidirectional filament wound GRE pipes subjected to biaxial loads of different 

loading rates. Due to the combinations of fibre winding angles in the plies, matrix micro 

cracks cause great differences in stiffness in neighbouring layers, creating high 

interlaminar stress and hence resulting in delamination damage.  
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A number of studies have been conducted on the delamination damage induced by 

matrix cracking, most of which has concentrated on the problems of predicting 

initiation and growth [76-82]. O‟Brien [81] was the first to develop an analytical model 

for predicting matrix crack induced delamination. The model estimates the energy 

release rate as a function of the modulus of the undamaged laminates and the modulus 

of the delaminated region. Wang et al. [83] carried out a 3D finite element analysis to 

determine the rate of energy release as delamination grows. Two types of delamination 

were investigated: one initiating from the intersection of transverse cracks and free 

edges of the laminates and the other from the intersection of transverse cracks only. 

Both case studies showed reasonable agreement with the experimental results.  

Later, Nairn and Hu [57] and Nagendra et al. [84] extended the variational analysis of a 

transverse matrix cracking proposed by Hashin to model the delamination damage 

induced at the crack tip. Takeda and Ogihara [80] used a simple one dimensional shear 

lag analysis to model laminates containing delamination originating from the crack tips 

and hence predicted the associated decline in modulus properties. However, this study 

was only concerned with reductions in the axial stiffness, while the effects of 

delamination on shear modulus and Poisson‟s ratio remained unexamined. The latter 

were investigated by Kashtalyan and Soutis [85], whose results revealed that crack 

induced delamination caused a significant total reduction in shear modulus and 

Poisson‟s ratio which in fact, exceeded that caused by transverse cracking. More 

recently, Noh and Whitcom [86] conducted a very interesting study on the effects of 

various shapes of cracks induced delamination towards property degradation. It was 

claimed that the crack opening is closely related to the decline in stiffness of the 

damaged middle lamina.  

2.2.3 Weepage 

Weepage is a common type of leakage failure in filament wound GRE pipes as a result 

of the progressive damage caused by transverse matrix cracking running parallel to the 

fibre as discussed in previous section. Through-thickness matrix cracks form and 

propagate due to the integrated effects of transverse tensile and shear stresses. This can 
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develop either from the effect of long term static pressure (static fatigue), repeated 

pressure (cyclic fatigue) or a combination of both. This damage mode normally occurs 

at load levels considerably lower than that of structural bursting or collapse failures. 

The cracks start from the debonding process between fibres and the matrix interface. 

Once debonding takes place, there will be less surface area for stress distribution. This 

will initiate the development of stress concentrations within the composite system 

which, in turn, causes further debonding. Ultimately, debonding combined to form a 

crack parallel to the fibres which then grow in a plane parallel to them. Weepage occurs 

once the crack concentration increases to a critical level where a fluid path is possible 

through the pipe wall [24, 36, 74]. Weepage failure is categorized as functional failure 

due to slow leakage through the pipe wall while it still maintains its structural integrity.  

This mechanism can be observed visually from the uniform formation of fluid droplets 

on the outside surface of the pipe. As loading continues after a significant accumulation, 

beads of fluid can be seen running down the exterior of the pipe, which eventually 

progresses into the wetting of the entire surface. Other methods of detecting the onset of 

weepage include the use of electrical resistance measurement on the pipe surface or by 

quantifying the changes in the fluid volume within the pipes, which also enables 

workers to determine the rate at which leakage occurred [75]. Recent work by Mertiny 

and Gold [87] measured weepage using effective permeability, which is based on the 

fluid flux through the wall of GRP pipes. They suggested a good correlation between 

matrix damage and fluid permeation.  

Pabiot et al. [88] studied the effect of the fibre/matrix interface on the weepage of 

filament-wound composite pipes. They demonstrated a relationship which shows that 

weepage failure in GRE pipes subjected to internal pressure loading is very much 

influenced by the interface in terms of crack initiation and propagation through the wall 

thickness. Jones and Hull [19] tested ±55° filament wound GRE pipes at 2:1 hoop to 

axial loading and found them to fail through a weepage mechanism. They went on to 

suggest that the prevention of weepage failure can be improved by finding a way to 

inhibit the initiation and propagation of transverse cracks.  
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Mieras [89] studied the effect of matrix properties on the failure of filament wound 

GRE pipes. He suggested that weepage failure is very much dependent on the failure 

strain of the matrix system. Legg and Hull [90] explored the effects of resin flexibility 

on weepage strength, and found that the weepage strength of ±55° filament wound GRP 

tested at σH=2σA increased with resin flexibility due to changes in failure strains and the 

initiation and propagation of micro cracks. Later, Tanigushi et al. [91] continued these 

investigations and looked into the influence of the mechanical properties of the matrix 

system in the GRE pipes with respect to weepage failure. Weepage pressure was 

observed to be almost proportional to the failure strain of the matrix.  

Soden et al. [26] conducted an experimental investigation of thin walled GRE tubes 

subjected to various biaxial stress conditions from combinations of internal pressure and 

axial loading. They found that the initial failure for all loading conditions was usually 

leakage at a pressure considerably lower than the final failure pressure. A similar study 

by Saied [14] also suggested that GRE tubes tend to fail due to a weepage mechanism, 

which is in agreement with previous findings [19, 24, 26, 34]. A recent study by Meijer 

and Ellyin [35] investigated first failure modes of GRE pipes subjected to fourteen 

stress ratios ranging from pure axial loading (0:1 hoop to axial) to pure axial 

compression (0:-1 hoop to axial). Weepage/leakage was observed for all loading 

conditions from pure axial to 5:1 hoop to axial loading, except for high hoop 

dominating loadings and axially compressive loadings where the specimens 

demonstrated catastrophic failure with sudden bursting.  

2.2.4 Fibre breakage 

Fibre breakage is the final sequence of the damage mode in GRE pipes. When it occurs 

the specimen is considered to have lost its structural integrity before progressing 

quickly to total failure. Combinations of damage modes spread within laminates until 

either tensile stress in the fibres exceeds the limiting strength of the glass or macro 

cracks which have nucleated from combinations of interlaminar and intralaminar cracks 

grow catastrophically. This is often followed by sudden bursting, leaving the fracture 
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area with very little of the structure of the wound pipe. This type of failure is also 

sometimes referred to as total structural failure since load can no longer be borne.  

An assessment by Orifici et al. [92] on the failure of composite laminates implies that 

failure of fibre in tension is caused by the accumulation of the  failures of individual 

fibre in the plies. This eventually becomes critical when not enough intact fibres remain 

to bear the load. Failure of fibre in compression loading, on the other hand, was found 

to occur due to micro buckling.  

Spencer and Hull [93] tested GRE pipes to failure under a 2:1 hoop to axial stress ratio 

at various winding angles. They found no significant fibre rotation prior to weepage 

failure. However, after weepage was observed, the matrix cracks became very extensive 

and the pipes developed a large axial elongation and obvious circumferential 

contractions where the fibres rotated towards an optimum angle of ±55º. Pipes then 

burst abruptly due to successive and continuous fibre breakage. This can normally be 

seen from massive macro cracks parallel to the fibre orientation in which the minimum 

necessary amount of energy has been dissipated for the fibres to pull out and fracture 

[72]. Similar work was conducted by Soden et al. [94] on the study the fracture strength 

of GRE pipes where weepage failure was suppressed by use of a rubber liner.  

Meijer and Ellyin [35] conducted biaxial testing on GRE pipes at high hoop dominating 

and axial compressive loading. They found that all samples demonstrated catastrophic 

failure leaving fibres pulled out, which were no longer constrained by the matrix. 

Similar findings were also observed by Highton et al. [95] and Caroll et al. [40].  

2.3. Stress-strain response for biaxial loading 

Many researchers have shown that the behaviour of filament wound GRE pipes is 

linearly elastic at low strain, followed by non-linearity when approaching failure, first 

by weepage then ultimately rupture. This behaviour is a consequence of transverse 

matrix cracking within each ply, which causes a reduction in the stiffness of the pipe. 

Frost [32, 42] reported that crack density increased with increasing load, which resulted 

in more pronounced non-linearity in the stress-strain response. He suggested that, as 



                                                                                                               Literature review 

25 

 

crack density increased, delamination then took place which allows for ply rotation. 

This rotation hence caused a more noticeable non linearity response in the axial strain. 

Nahas [96] briefly reviewed some of the existing methods for predicting the non-linear 

response of laminated fibre reinforced composites. He then used the secant modulus and 

an iteration technique to predict the non-linearity of laminates under load. Sun and Tao 

[70] later identified this response as primarily resulting from three main sources: 

material non-linearity, progressive failure in the laminates, and geometric non-linearity. 

They then modelled stress-strain behaviour using simplified shear-lag and finite element 

analysis, considering the material‟s non-linearity and progressive matrix cracking. 

 

Figure 2.4: Typical stress strain behaviour of fibre reinforced composite materials [96]. 

 

Caroll et al. [40] experimentally investigated the effects of the rate and stress ratio of 

biaxial loading on the stress-strain behaviour of GRE pipes. They found that elastic 

behaviour of the pipe was present at low stress levels. They went on to formulate a 

relationship between the stress-strain responses to accumulating damage. Later, Ellyin 

et al. [75] analysed the stress-strain response for multidirectional filament wound GRE 

pipes under biaxial loading. Confirming findings of Caroll, they noted that the elastic 

behaviour of the tested pipes was not just present at low stress levels but also showed 

time dependent properties. 
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Roberts et al. [49] examined the effects of micro cracks on the stress-strain relationship 

in GRE pipes. They developed a crack density model for predicting the stress-strain 

response in which relationship between crack density and applied stress was 

established. Good conformity between modelled and experimental results was attained. 

The non-linearity was also observed to become more pronounced at higher temperatures 

approaching the resin glass transition temperature, Tg. Recently, Meijer and Ellyin [35] 

conducted a test on ±60° GRE pipes under 14 different stress ratios. They observed that 

the stress strain response for hoop dominated loading tended to be relatively linear 

compared to the response in the axial direction which is dominated by the polymer 

matrix. This again further suggests that the non-linearity of the stress-strain response is 

a result of changes in transverse stiffness as crack concentration increases leading to 

weepage failure.  

2.4.  Micromechanics of GRE pipes 

Prior to investigating the failure modes of GRE pipes subjected to a range of multiaxial 

load ratios, it is important that the micromechanics of GRE pipes is fully understood. 

Extensive work has been carried out by earlier researchers on the performance 

behaviour of GRE pipes [23, 24, 26, 35, 36, 38, 42] which is still going on. The primary 

concerns are the degradation of the mechanical properties of the pipes and their elastic 

response prior to final failure. The elastic properties of GRE pipe work are often 

modelled using laminate theory. 

2.4.1. Laminate theory 

Laminate theory is a powerful mathematical procedure for determining the global 

elastic response of composite laminates subjected to applied loads or strains. In 

laminate theory, each ply is assumed to be macroscopically homogeneous and linearly 

elastic. It may further be assumed that plies also have perfect bonding with the adjacent 

lamina so that no slippage can occur [23, 74]. Micromechanics theory describes the 

elastic response of the lamina and the elastic stiffness of its constituents. Laminate 

theory then allows the stresses induced in each layer to be estimated from the elastic 

properties of each lamina, which is very significant considering that the failure of GRE 
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pipes involves progressive fracture such as matrix cracking. The details of the 

implementation of laminate theory are given in Chapter 4 during the modelling of the 

elastic properties of the GRE pipe. 

2.4.2. Netting analysis 

Another quick and simple method of predicting the biaxial strength of filament wound 

GRE pipe is to employ „netting analysis‟.  This was described by Hull [23] and is 

widely used especially during the early evolution of filament winding techniques. 

Although the analysis considerably simplifies the nature of the loading taking place, it 

has been found to provide a fairly good approximation of the rupture strength of 

composite pipes at 2:1 hoop to axial stress ratios. Perhaps this simplicity and its 

conservative approach may be the reasons for its continuing use.  

Basically, the analysis simply disregards the presence of the matrix and assumes that all 

the loads applied to the composite system are carried by the reinforcing fibres [16, 23, 

26]. This means that the pipe can only support a combination of forces such that the 

resultant acts in the direction of the fibres, and thus their transverse and shear stress is 

taken to be zero, that is σ2=τ12=0. Using the inverse of the transformation matrix to 

relate the stress in pipe‟s axis and the fibres‟ principal axis gives: 
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By using netting analysis to characterize helically wound GRE pipes under biaxial 

stress conditions where the in-plane principal stresses are in the ratio of 2:1 hoop to 

axial stress, it can be derived that:  
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This presumed „ideal angle‟ is normally preferred for filament wound fibre-reinforced 

pipe applications since it gives a good prediction of the load capacity for a 2:1 hoop to 

axial stress ratio, especially when the stiffness of the matrix is extremely small relative 

to that of the reinforcing fibres. It is important to note that this „ideal angle‟ is only valid 

for pipes with closed ends, where the application of internal pressure alone will give 2:1 

hoop to axial stress ratios. However, for other stress ratios, the predicted strengths 

become doubtful. 

J.T. Evans et al. [97] compared the results obtained from netting analysis with the full 

predictions obtained from laminate theory. The optimum angle predicted by laminate 

theory was found to deviate from that obtained from netting analysis by a total 

depending on the matrix to fibre stiffness ratio. According to Soden et al. [26, 38], since 

most of the filament wound pipes for high pressure applications used this „ideal angle‟, 

netting analysis provides a straightforward tool for designing high pressure pipes. In 

addition, netting analysis can also be used to decide which angle is best suited for 

particular hoop to axial stress ratios. Most high pressure GRE pipes today which operate 

at 2:1 hoop to axial stress ratios are reinforced at θ = ±55°. 

2.5. Failure criteria 

Failure criteria for isotropic and homogenous materials like maximum stress, maximum 

shear and maximum distortional energy theories have been well established [6]. Such 

theory are then further extended and modified to cater for composite materials by taking 

into account the anisotropic nature of their strength and stiffness. This development of 

failure models to characterize the mechanisms that lead to failure has been the matter of 
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rigorous study for over 30 years by research workers around the world. At present, 

countless theories available in the literature describe failure in various ways. This 

includes whether they are founded on strength or fracture mechanic theories, or whether 

they give general failure predictions or are capable of pin-pointing particular failure 

modes [92].  

Predicting failure in composite materials is complicated due to the multiplicity of failure 

modes involving either fibres or the matrix or combinations of both [21]. For example, 

the failure of composite laminates is always preceded by matrix micro cracks within 

individual plies where the laminate continues to carry the load even though first ply 

failure has occurred. This is clearly explained in the failure of GRE pipes discussed in 

previous sections where bursting is often preceded by weepage. 

In 1998, initiative was taken by Soden et al. to conduct an organized study to test and 

compare prominent failure theories developed in the past decades [37, 98-100]. Known 

as the World Wide Failure Exercise (WWFE), the study was conducted by comparing 

the failure criteria of fibre reinforced plastics (FRP) systems subjected to biaxial stress 

ratios against a common set of experimental test data, so that consistent comparison 

could be facilitated. Surprisingly most theories differed significantly from experimental 

observations even for a simple laminate analysis. It was concluded that, while there are 

a number of failure criteria available, these were only successful with limited ranges of 

data. Some failure theories showed a wider range of applications whereas some 

produced predictions of greater accuracy. However, none were able to accurately 

predict the weepage failure of FRP systems [100].  

Throughout the years, many different categories have been introduced to classify failure 

criteria. However, failure theories are usually classified as interactive or non-interactive 

criteria. Non-interactive failure criteria suggest that there is no interaction between 

stress components and that each failure is unique and independent of others, while in 

interactive failure criteria, the stress components interact and can be included in a single 

expression. In the following sections, some widely used failure theories are briefly 

discussed.  
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2.5.1 Interactive failure criteria 

In these criteria, all stress components interact and contribute simultaneously toward the 

failure of the composite systems. Tsai-Hill [101] and Tsai-Wu [102] failure criteria are 

the two most commonly used interactive failure criteria in determining the failure of 

fibre reinforce polymer structures. The Tsai-Hill criterion allows for interaction 

between different stress components, whereas the Tsai-Wu criterion provides the 

capability for interaction between direct and shear stresses and accounts for differences 

between tensile and compressive strength [103]. These criteria assume linear elastic 

material properties and expect degradations in stiffness after the first ply failure. 

However, both criteria state only that the material will fail once the limiting stress is 

reached and do not explicitly identify failure modes. 

Tsai Hill's criterion [101] is based on the Von Mises distortional energy criterion. It was 

later modified by Hill to cover anisotropic materials before been applied to composite 

materials by Tsai. For orthotropic materials similar to GRE pipes, the criterion is 

expressed as: 
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where, the subscripts, 1, 2, and 12 indicate, tensile stresses parallel and transverse to the 

direction of the composite ply and the shear stress respectively. The starred terms refer 

to stresses at failure for unidirectional lamina. According to this criterion, no failure will 

occur provided that Φ is less than unity. One disadvantage of the Tsai-Hill criterion is 

that it does not differentiate between tensile and compressive strength during 

evaluation.  

Another widely used interactive criterion, was first proposed by Tsai-Wu in 1971 [102]. 

The criterion describes the combined stress failure surface in a quadratic polynomial 

relation represented by the following expression: 
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where F1, F2, F11, F22 and F66 are described in terms of the strengths in the principal 

directions. F12 on the other hand, is experimentally determined by biaxial tensile 

loading. The Tsai-Wu criterion can be applied to a laminate and used to find the first 

ply failure. This can be further extended to be related to a progressive damage model to 

produce a final failure envelope and predicts the stress-strain response of composite 

laminates. This criterion is widely used in laminate analysis as it is easy to exercise and 

can be simplified into a single-valued function which enables an extension to cater for 

cases of three-dimensional failure [98]. The Tsai-Wu criterion was one of only a few 

that were highly ranked in the WWFE study [100] for predicting the strength of 

unidirectional laminates under combined loads.  

Both the Tsai-Hill and Tsai-Wu failure criteria have been applied extensively in many 

composite applications. For example, Puck and Schneider [104] modified the Tsai-Hill 

criterion to construct a micro mechanical failure theory to predict failure strength based 

on stresses of the fibre, the matrix system and the fibre-matrix interface. Sim and 

Brogdon [105] formulated probably the first explicit extension of the Tsai Hill static 

failure criterion to describe the fatigue behaviour of composites under various loading 

modes. This was achieved by replacing the static strength parameters with a fitting 

fatigue curve.  

Philippidis and Vassilopoulos [106] further extended the Tsai-Wu criterion to cover 

cyclic loading to predict the fatigue strength of multidirectional laminates, which was 

tested under multiaxial loading conditions. Hashin [107], on the other hand, modified 

the Tsai-Wu criterion to establish three dimensional theories for unidirectional fibre 

composites. He then collaborated with Rotem to develop the Hashin-Rotem failure 

criterion, which was one of the earliest to concentrate on two separate failure criteria: 

one for fibres and the other for resin [108]. This criterion also enjoys wide popularity 

among researchers. However, it appears to be suitable only for defining the onset of 
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damage and is more sound in the cases of unidirectional and angle ply laminates than 

for general composite structures. 

2.5.2 Non-interactive failure criteria 

Non-interactive failure criteria are generally involved in evaluating the failures of the 

stress components separately rather than those of homogenised material and many are 

available in the literature. However, the most widely used are the maximum stress and 

maximum strain criteria and also the more elaborate damage mechanic model. The 

maximum stress and strain criteria are very similar to the Rankine theory for 

homogeneous isotropic materials, but have been extended to cater for the orthotropic 

nature of composite laminates. These theories are based on the assumption that failure 

will take place when at least one of the stress or strain components along the principal 

axes exceeds the corresponding strength or ultimate strain critical values. Thus, 

maximum stress theory is expressed in the following: 
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where 1, 2, 12 are longitudinal, transverse and shear stresses respectively in the 

principal directions and σ1
fail

, σ2
fail

 and τ12
fail

 are the longitudinal, transverse tensile and 

shear failure strengths of unidirectional lamina. If the normal stresses are compressive, 

σ1
fail

 and σ2
fail

 must be replaced by compressive strength. Similarly, for maximum strain 

theory: 

1 2 12

1 2 12

1,  1, 1
fail fail fail

  

  
  

    (2.8)
 

where ε1, ε2, γ12 are longitudinal, transverse and shear strains respectively in the 

principal directions and ε1
fail

, ε2
fail

 and γ12
fail

 are the corresponding allowable strains. 
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Although these theories have been extensively investigated in the past, their main 

drawback is in neglecting the interaction between different stress components, 

especially in biaxial loading conditions. They generally yield different results and can 

be less accurate, although they are often used due to their simplicity. However, the Puck 

theory is a well known non-interactive failure criterion was rated in the WWFE study. 

Developed by Puck and Schǘrmann [109], the theory is based on physical damage and 

failure mechanisms in the constituents. The theory takes into account the non-linear 

stress-strain relationship and makes allowances for a continuous and progressive decline 

in stiffness after the initiation of matrix cracks. This is later used to calculate the elastic 

constant of the lamina.  

2.6. Failure envelope for biaxial loading 

The failure strength of composite laminates under biaxial loading can be illustrated in a 

graphical presentation called the failure envelope. This is generated by conducting a 

pressure test to failure at various hoop-to-axial loading ratios. For a thin walled pipe, 

internal pressure alone gives a 2:1 hoop-to-axial stress ratio, and radial stress is minimal 

and normally neglected. The biaxial failure envelope is then illustrated by plotting the 

failure points in an axial stress versus hoop stress graph where τHA = 0. The shape of the 

failure envelope can vary depending on the loading conditions, mechanical properties of 

the constituents, and winding angles.  

An investigation by Soden et al. in 1978 [38, 95] described the failure envelopes for 

±45°,  ±55° and ±75° wound tubes under a variety of biaxial stresses. It was concluded 

that the strength of the tubes varied greatly according to the ratio of axial to hoop 

stresses. It was also noticed that the shape of the failure envelope was highly dependent 

on the orientation of the fibres. Figure 2.5 illustrates the failure envelopes generated in 

the study showing the initial and final failure stresses for ±55° filament wound GRE 

tubes under biaxial loads. Hinton et al. [103] then further extended the investigation by 

comparing those recorded experimental based failure envelopes with five well known 

failure theories. Carroll et al. [40] conducted an experimental investigation into the 

behaviour of GRE pipes subjected to monotonic biaxial loading of various hoop to axial 
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stress ratios. A somewhat different failure envelope was constructed with failure 

stresses in compression loading considerably higher than those seen in Soden‟s failure 

envelope.  

Sun and Tao [70] constructed failure envelopes for unidirectional composite laminates 

from linear laminate theory. They used a ply by ply discount method with a parallel 

spring stiffness model for modelling the envelopes. They then compared their model 

based failure envelope to the test results used in the WWFE study [110]. Their findings 

showed a good conformity with the final failure strength where failures were largely 

dominated by fibre tensile strength. Conversely, the result yielded poor agreement with 

the experimental failure strains dominated by transverse and shear matrix cracking. An 

interesting biaxial fatigue failure envelope was constructed by Ellyin and Martens [31] 

for multidirectional filament-wound GRE pipes. However, the failure envelope 

presented did not provide a credible insight into the complex behaviour of 

multidirectional laminate pipe.  

Hale et al. [28, 29] investigated experimentally the effects of high temperature and 

wetting conditions on two different matrix based GRE pipes, IPD epoxy and PSX 

phenolic, under biaxial loading. They noted that the plot for the envelope tends to be 

skewed towards the origin of the axes as temperature increased. Meijer and Ellyin [35] 

recently carried out multiaxial stress tests on filament wound GRE pipes under different 

loading conditions where stress and strain failure envelopes were produced. The 

maximum strain failure criterion was then fitted to the experimental strain failure 

envelope. The criterion was found to over-predict strength at stress ratios where failure 

occurred by local leakage and during axial compressive loading. 

Failure envelopes for GRE products are very important, since they provide pipe 

engineers with the information to take full advantage of the high strength of composite 

structures whilst maintaining realistic margins of safety against fracture. They can also 

be used to show potential problems that engineers might face, especially in operating 

filament wound pipes at high stress levels, so that appropriate preventive measures 

could be set in place [26]. 
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Figure 2.5: Failure envelope from Soden et al. for ±55° filament wound E-glass/epoxy tubes subjected to biaxial loads 
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2.7. Effect of winding angle on the strength of GRE pipe 

The advances in today‟s modern computer controlled filament winding machines have 

paved the way for the generation of almost any winding angle in GRE pipes. The most 

common filament wound pipes normally have fibres wound in helices at angles of ±θ° 

to the pipe‟s axial direction. To achieve the optimum design criteria, the winding angle 

of the fibres is orientated in directions that offer the maximum working loads for 

particular applications. From numerous experimental analyses [23, 24, 26, 93, 94] it has 

been shown that the best winding angle for GRE pipes subjected to internal pressure 

alone (2:1 stress ratio) is ±55°. 

The effect of varying the winding angle on the strength performance of helical wound 

pipes under internal pressure was studied by Spencer and Hull [93] and Soden et al. 

[94]. They concluded that the winding angle and stress ratio have a pronounced effect 

on the associated deformation and fracture strength of GRE pipe. Three failure 

envelopes for ±45°, ±55° and ±75° wound pipes produced by Soden show that an 

increase in winding angle increases uniaxial tensile strength in the hoop direction but 

decreases tensile strength in the axial direction. Simple validation through „netting 

analysis‟ indicates that the maximum strengths for GRE pipes with winding angles of  

±45°, ±55° and ±75° are achieved when loaded at stress ratios of 1:1, 2:1 and 14:1 

respectively.  

Furthermore, for all winding angles, leakage failures were seen at stress levels much 

lower than final fracture stresses. For a wound GRE pipe subjected to an internal 

pressure with a winding angle within a range of 35° to 55°, matrix cracking after initial 

plastic lengthening was found to dominate and formed throughout the pipe before 

weepage occurred. After weepage, extensive whitening developed and shortening of the 

pipe was clearly evident, accompanied by rotation of the fibres [93]. In pure hoop 

loading, bursting failure was always associated with fibre fracture in the vicinity where 

fibre bending was pronounced due to bulging and fibre cross-over. For pipes with 

higher winding angles, transverse matrix cracking is less significant since the stress 

generated transverse to the fibres is very relatively small. 
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In 1984, Rosenow [25] used laminate theory to predict the stress strain response of GRE 

pipes with winding angles varying from 15° to 85°, which he later compared with 

experimental results. He found that the optimum winding angle very much depends on 

stress ratio. The results suggest that the pipe should be wound at 54.7⁰ for internal 

pressure loading, 75⁰ for pure hoop loading and at the lowest possible angle for cases of 

pure axial loading. 

Mistry [111] later continued this work by studying the effect of the same varying 

winding angles but under combined external pressure and axial compression loads. He 

showed that failure may result from buckling and material failure, depending on 

winding angles and stress ratios. Similar failure modes were also observed by Moreno 

et al. [112] but their results suggested no strong influence of winding patterns on the 

buckling failure of wound GRE pipe.  

Previous studies have shown that ±θ° helical wound pipe is strong for an intended stress 

ratio but prone to transverse matrix crack damage when loaded outside the stress ratio. 

Recently, Mertiny et al. [113] experimentally studied the effect of multiangle filament 

winding on the strength of filament wound. Their results exhibited good overall 

performance against initial failure when subjected to various loading conditions, which 

could provide an advantage in performance over conventional angle ply laminates. The 

benefits of multiangle wound GRE pipes were also discussed by Lea and Yang [114] 

with regards to their improved tension and bending characteristics compared to the 

commonly used ±55° wound pipe. However, predicting the failure strength and modes 

from available failure criteria is complex and can be very cumbersome.  

2.8. Effect of environment on the strength of GRE pipe  

One of the major problems in polymer matrix composites concerns durability under 

natural environmental exposure such as to moisture and temperature. These conditions 

are generally recognized to cause degradations in strength and mechanical properties. 

The durability of GRE laminates is strongly influenced by its constituents, and notably 



                                                                                                               Literature review 

38 

 

by the matrix properties. This is because it is usually the matrix or the fibre-matrix 

interface that is most affected by moisture absorption and temperature changes.  

A review by Schutte [115] covered the mechanisms that lead to the degradation of 

properties of the glass fibres, polymer matrix and their interface. The most significant 

effect of moisture absorption in polymer composites is the plasticization of the matrix. 

This resulted in a reduction of the glass transition temperature, hence weakening the 

matrix. The strength of the bonding between the fibre and the matrix has also been 

revealed to be degraded in the presence of moisture and higher temperature. It has been 

suggested that the moisture diffuses along the fibres and weakens the bonds at the fibre-

matrix interface. The process is very slow and temperature dependent. Without the 

strong bonds in the fibre-matrix interface, the weakened matrix system then carries all 

the load, hence precipitating damage in forms of matrix cracks and delamination. 

Lundgren and Gudmundson [116] investigated the rate of moisture ingress in cross ply 

GRE laminates containing transverse matrix cracks. They discovered that the moisture 

ingress filled up the cracks early in the process and very little difference in moisture 

absorption was observed between the cracked and uncracked laminates. Kotsikos et al. 

[117] studied the combined effect of an aqueous environment and flexural fatigue on 

cross ply glass polyester laminates. They observed that the exposed samples exhibited 

higher crack concentrations of which the damage progressed to the delamination and 

debonding stages.   

Komai [118] reported the influence of water absorption on the mechanical behaviour 

and fatigue strength of ±45° angle ply carbon reinforced epoxy laminates. They found 

that water absorption caused damage to the interface bonding, resulting in decreases of 

tensile and fatigue strengths. The effects of environmental conditions on filament 

wound GRE pipes were discussed by Perreux and Suri [119]. They stated that the rate 

of moisture absorption for tubular-shape specimens is much lower compared to coupon 

specimens, which resulted in longer times being taken for impregnation. They reported 

that GRE pipes can be very susceptible to damage by stress corrosion cracking due to 

the combined effects of applied stress and corrosive environments. Furthermore, there is 



                                                                                                               Literature review 

39 

 

evidence that cyclic loading causes much more damage than static loading to GRE 

pipes under moist conditions [120, 121]. The impact of the hygrothermal aging on the 

fatigue behaviour of glass/epoxy composites has been looked into by Vauthier et al. 

[122]. They reported that immersion in 60°C water caused most damage and led to a 

drastic decrease in fatigue life.  

Ellyin and Rohrbacher [123, 124] studied the effect of moisture and temperature on 

GRE laminates subjected to monotonic load. They found that the extent of damage 

strongly depended on immersion temperature. They then broadened their investigation 

by testing under cyclic loading three types of laminates: cross ply, multiangle and angle 

ply. They found that fatigue resistance for immersed samples was higher than in those 

in a dry environment. This is likely to be due to the closure of defects such as cracks 

and voids from the swelling of the epoxy resin. High temperatures were also shown to 

have a significant detrimental effect on the behaviour of laminates, yielding reductions 

in fatigue strength by 35%-65%. Ellyin and Maser [125] studied the same effects on the 

mechanical properties of GRE pipes and very similar findings were observed. The 

matrix system in GRE pipe suffered plasticization and a reduction in glass transition 

temperature, resulting in a decline in pipe stiffness. Further observations implied that 

the matrix and fibre exhibited more brittle characteristics at higher temperatures.  

In 2002, Hale [28] investigated the failure behaviour of GRE pipes subjected to 

continuous exposure to hot and wet environments at various biaxial loadings. He 

concluded that the strength of the matrix system was considerably reduced at high 

temperatures, especially those approaching the resin glass-transition temperature, Tg. 

The degradation in strength became more critical when hoop to axial stress ratios were 

further away from 2:1. Chiou and Bradley and Hale et al. [126, 127] tried to simulate 

actual working conditions by studying the effects of sea water on GRE pipes. They 

concluded that the absorption of seawater caused a significant reduction in the bursting 

strength of the pipe. 
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2.9. Effect of filament winding parameters on the strength of GRE pipe 

Other factors that could affect the strength and long term performance of GRE pipes are 

the winding parameters during the manufacture of GRE pipes, such as winding tension, 

winding time and volume fraction. Mertiny et al. [128] investigated the influence of the 

initial parameters, which are those that can be controlled by operators, on the secondary 

processing parameters of layer thickness and resulting bandwidth. Lee and Springer 

[129-131] then developed a model describing the filament wound process which is 

capable of predicting the physical part properties of the pipe. 

Cohen [132] used a design of experiment (DOE) technique to investigate the influence 

of filament winding parameters on the strength of a composite vessel similar to the GRE 

pipe used in this work. He identified applied tow tension as the most significant 

manufacturing parameter. Increasing this parameter resulted in a higher fibre volume 

fraction, and hence increased strength in the composite structure. He went on to study 

the effects of fibre volume fraction by establishing its relationship in the hoop layers 

with the failure strength of filament wound composite vessels. Similar work was also 

conducted by Mertiny and Ellyin [133] on the impact of filament winding tension on the 

physical and mechanical properties of reinforced composite tubes. They found that 

component strength is strongly dependent on the degree of fibre tensioning suggesting 

that increasing in winding tension improve the component strength in fibre dominated 

loading whereas reduce in fibre tensioning is preferred for matrix dominated loading. 

Pre-stressing the fibre has also been found to reduce the thermal residual stress that 

developed as a result of the cooling process from high curing temperature to working 

temperature [134]. 

2.10.   Fatigue behaviour of GRE pipes 

Many studies have been conducted on the fatigue behaviour of GRE pipes, especially 

given the need to understand long term performance based on short term testing. Since 

this investigation involves carrying out a UEWS test which involves of combination of 
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static and cyclic loading, it is important to understand the fatigue mechanisms of GRE 

pipes, particularly in comparison with those of metals. 

Fatigue is defined as the time dependent failure of a material from repetitive alternating 

or cyclic stresses of intensity considerably below the static yield strength. In most cases, 

fatigue mechanisms involve crack initiation followed by progressive propagation of 

cracks with growth increments taking place during each fatigue cycle before sudden 

fracture. Hence, the fatigue life of a material is referred to as the total number of stress 

cycles it can cope with before final fracture. Conventionally, the relationship between 

fatigue strength and lifetime is presented in the form of S-N curves, where fatigue 

strength, S, is plotted against the number of cycles to failure, N, both in logarithmic 

scale. A typical S-N curve is shown in Figure 2.6.  

 

Figure 2.6: Fatigue life (S-N) curve 

 

Both Talreja [135] and Reifsnider [136] conducted comprehensive reviews on the 

fundamental concepts of fatigue and modelling of fatigue strength. One of the earliest 

works on the fatigue mechanism was done by Dharan [137], who elucidated the roles of 

the fibres, the matrix and their interface in causing composite fatigue. He came out with 

a conceptual framework of explaining fatigue damage known as the fatigue life diagram 
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as shown in Figure 2.7. Talreja [138] then continued the work and was the first person 

who interpreted composite fatigue behaviour using the fatigue life diagrams. 

 

Figure 2.7: Fatigue life diagram for unidirectional composites for axial tension–tension 

loading. 

 

The fatigue behaviour of composite tubes was studied by Owen et al. [139], who 

conducted a series of fatigue tests of thin walled glass/polyester tubes under a 

combination of axial loading and internal pressure. Krempl et al. [140, 141] compared 

the effect of uniaxial and biaxial loading on fatigue in composite tubes under 

completely reversed loading. Bredemo [142] studied the uniaxial fatigue of filament 

wound GRE pipes, focusing on the initiation and progression of damage mechanisms. 

He found that damage progressed sequentially from the initiation of matrix cracks to 

local delamination before failure due to fibre fracture. Matrix cracks were observed to 

initiate perpendicular to fibre direction within a single ply. Increases in crack density 

subsequently initiate local delaminations in the fibre-matrix interface where the matrix 

cracks ended in the ply. These then coalesce with matrix cracks in the next ply and 

eventually create a pathway for fluids to pass through the pipe wall thickness. Fibre 

fractures take place once the tensile stress in the fibres exceeds the limiting strength of 

the glass, whereupon the structure fails completely.  
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Frost [42, 73] investigated the short and long term performance of GRE pipes under 

static and cyclic internal pressurization. He concluded that matrix crack propagation in 

these types of loading, controls failure through a combination of transverse matrix 

cracking and ply delamination at the fibre-matrix interface. The ply stresses controlling 

failure were therefore, transverse and shear stress. A second order polynomial criterion 

based on these two stress components was developed by Frost, which can be expressed 

as: 
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where σ2 and τ12 are the transverse and shear ply stresses respectively, and failure will 

only occur when ϕ is equal to unity. Frost later made a calculated assumption of the 

crack density in individual plies and correlated this with the equivalent stiffness for the 

damaged materials by mean of damage mechanics.  

Kujawski et al. [143, 144] studied the effective stress parameters for long term fatigue 

strength, particularly under the cyclic fatigue loading of internal pressure. Carroll [40, 

75] conducted extensive experiments to investigate the effects of load rate and ratio on 

the fracture behaviour of ±55° and multiangle filament wound pipes under biaxial 

loading. It was observed that the failure mode is very much dependent on the stress ratio 

and the rate of loading. Comprehensive work on filament wound glass/epoxy pipes was 

also conducted by Perreux and his colleagues, including studying the effect of winding 

angle [145], biaxial loading [46] and moisture absorption [119] on the fracture 

behaviour of composite tubes. They then went on to study the fatigue behaviour of GRE 

pipes under uniaxial cyclic loading, working on the development of a damage model 

from cumulative damage law and eventually predicting lifetime. They found that fatigue 

life declines with an increase in stress levels. They then analysed experimentally the 

impact of load frequency on damage and fatigue lifetime under biaxial loading [45].  
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Keynak and Mat [146] carried out an investigation to determine the fatigue life of ±55° 

wound GRE pipes tested at stress levels between 60% and 80% of their ultimate 

strength, applying three different frequencies for each stress level. Gemi [39, 72] 

similarly studied the fatigue failure behaviour of ±55° and ±75° filament wound pipe 

under alternating internal pressure, testing at load levels ranging from 30% to 70% of 

ultimate strength. Whitening was observed before leakage and final rupture. Both 

studies concluded that failure is controlled by fibre breakage at high loads while at low 

loads it is controlled by matrix cracking.  

2.11.   Cumulative damage rules 

As mentioned in earlier section, fatigue damage accumulates in composite laminates 

with cyclic loading, leading to catastrophic failure once the damage exceeds a critical 

limit. In order to predict the fatigue life of GRE pipes under this type of loading, a 

cumulative damage rule is needed. Cumulative damage has been the subject of many 

recent experimental and analytical investigations [147-151]. Most of the damage 

models available today are derived from experimental investigations, and may be 

defined by strength degradation, stiffness degradation or the energy released by the 

composites.  

The first credible form of damage rule was that of Miner‟s Law. Miner‟s Law [152] is a 

damage law generally accepted for predicting the development of cyclic fatigue damage 

in metals. For fatigue tests, the law states that failure occurs when the following 

condition is met; 

1

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if

N

N
               (2.10)

 

where Nif is the number of cycles to failure at stress level σi and ΔNi is the number of 

cycles applied at each stress level ζi of the fatigue cycle. The corresponding form under 

creep conditions is given by; 
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with tif is the creep rupture lifetime at a stress level σi and Δti is the time applied at each 

stress level σi. Frost [42] suggested that, for conditions with both cyclic and static 

elements present, Miner‟s law can be extended as follows: 
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              (2.12)

 

There are some criticisms of this method since it treats independently the loads applied. 

However, the method has remained widely used because of its simplicity and ease of 

use. For example, Owen and Howe [153] found that this law provides reasonable results 

for FRP laminates subjected to multiaxial load. 

Another general approach of describing damage is to understand that cracks under 

fatigue loading grow according to a power law form, with rate of growth expressed as 

the stress level to some exponent. This is widely known as Paris's law [154];  

( ) mda
A K

dN
              (2.13)

 

where a is the crack length, N is the number of cycles, A is the proportionality constant 

and m is the experimentally determined constant. The power law approach is used to 

predict the number of load cycles before crack growth becomes unstable. Once it 

reaches a certain critical limit, service life is considered to be completed. This subject 

has been discussed in great detail by Suresh [155]. Recently, Christensen [156] 

formulated a new cumulative damage model which was derived from the basic 

relationship of crack growth rate as a power law function of a stress intensity factor, 

similar to that of Paris's law. Further details of these two approaches are given in 

Chapter 4 as they are used later to model the stress-strain response in the UEWS test 

conducted in this study. 
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Other previous studies modelling the deterioration of properties under cyclic loading 

includes that of Talreja [135]. This model was based on internal variables to predict 

damage accumulation under fatigue loading. Broutman and Sahu [157] first predicted 

the lifetime under variable amplitude loading describing two constant amplitudes of 

loading of glass/epoxy laminates. In their approach, failure was considered to occur 

when the residual strength decreases to the value of the maximum stress amplitude at 

the last cycle before failure. Yao and Himmel [150] later presented an extended version 

of the cumulative damage model for predicting the lifetime of GRP laminates subject to 

variable amplitudes of fatigue loading. They assumed that deterioration in the strength 

of GRP is directly proportional to the cumulative fatigue damage caused by cyclic 

loading.  

 

Fawaz and Ellyin [158] presented a multiaxial model to predict the lifetime of fibre-

reinforced composite. The model was based on the modification of a reference fatigue 

curve to take account of loading ratios and conditions. They claimed that the proposed 

model significantly reduced the number of calibration parameters which needed to be 

determined experimentally. Inoue et al. [159] utilized stiffness degradation to develop a 

model predicting the lifetime of glass fabric composites, in which declining modulus 

ratios in tension and shear were used as damage indicators. An interesting ply-by-ply 

stiffness reduction approach explaining damage growth under multiaxial fatigue loading 

was also presented by Adden and Horst [160]. Recently, a thorough analysis of fatigue 

in composite laminates under multiaxial loading was conducted by Quaresimin and 

colleagues [161]. They found that the leading factor influencing fatigue strength is the 

ratio of the shear stress amplitude to the largest normal stress amplitude, which is also 

referred to as the ply-level biaxiality ratio. 

 

Hashin [162] formulated a cumulative damage theory which can be used with residual 

life theory as well as residual strength theory. Subramanian et al. [148] presented a 

micromechanics model using the effect of the fibre-matrix interface in a cumulative 

damage scheme to predict the tensile fatigue behaviour of composite laminates. 

Reifsneider and Stinchcomb [163] later studied the proposal to use change in stiffness 
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as the fatigue damage parameter. They claimed that the results showed it to be 

quantitatively related to the fatigue life and residual strength of the laminates.  

2.12.   Acoustic emissions (AE) 

During the biaxial loading of GRE pipes, Hull [24] reported that minutes before 

weepage was observed, the formation of white streaks was always accompanied by a 

creaking noise. This creaking sound is an acoustic emission (AE) indicating the 

cracking process involved.  

Composite materials, as do many other materials, emit acoustic signals under load if 

elastic stresses are reduced by plastic deformation or the initiation of cracks. These 

emissions correspond to the strain energy due to micro structural changes. Once these 

emissions reach a threshold level, they can be detected and converted into a voltage 

signal by a piezoelectric transducer. The signals can then be amplified and measured to 

produce data such as frequency, energy release and duration of the signals. Each signal 

emitted is recorded in real time and associated with a specific event over time. The 

acoustic emission and detection process is illustrated in Figure 2.8. A typical AE signal 

or event is shown in Figure 2.9. Each event can be described by several parameters such 

as amplitude, counts, energy counts, duration and rise time.  

 

Figure 2.8: Basic principal of acoustic emission 
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Comprehensive reviews of acoustic emissions as a tool for detecting damage in 

composite materials were conducted by Reynolds [164] and Scott and Scala [165]. Of 

late, there has been increasing interest in the prospect of using AE monitoring to detect 

the fatigue performance of GRE pipes. This is due to the presence of multiple failure 

mechanisms of matrix cracking, delamination and fibre breakage all of which generate 

specific distinguishable frequencies. Hence, the technique is not only of potential use in 

determining the point of failure, but also in determining its nature.  

Barre and Benzeggagh [166] tested glass fibre reinforced polyester and concluded that 

AE amplitudes vary with different failure modes. They found that AE amplitudes in the 

range of 40-55dB correspond to the matrix cracking, 60-65dB to debonding, 65-85dB to 

fibre pull out and 85-100dB to fibre fracture. Barnes and Ramirez [167] conducted a 

study of static and fatigue loading on carbon fibre reinforced pipes and used correlation 

plots of event duration and amplitude to characterize the damage mechanisms. They 

reported that low amplitude events are normally characteristic of matrix cracking, high 

duration low/intermediate amplitude events with debonding and delamination, while 

high amplitude with short duration is typically attributed to fibre breakage. 

Kaiser reported in 1950 [168] that the application of the first load in cyclic loading 

produced more emissions than subsequent loadings, until the previous maximum load 

applied is exceeded. This later became known as Kaiser Effect. However, it is expected 

that in composite materials at higher stress levels, more emissions will be observed at 

loads lower than the previous maximum load which is thought to correspond to the 

onset of a defect. This behaviour is known as the felicity effect and its derivative, the 

felicity ratio can be described as [169]: 

load at which significant AE observed on reloading
Felicity Ratio (FR) = 

previous maximum load  

Given the definition above, Kaiser's effect can be interpreted as FR of 1.0 or greater. 

Monitoring of the FR can be used to describe damage progression in composite pipes 

where decreases in FR values suggest the pipe is approaching final failure. This AE 
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information can then be correlated with the internal pressure that caused the onset of 

damage in the pipe. 

 

Figure 2.9: Common parameters from acoustic signals [170] 

 

Prevorovsky et al. [171] recorded acoustic signals from multiaxial tests on GRE pipes 

combining internal pressure and axial tensile loading. Highest AE activity was recorded 

during tension cycles while pressure testing. They went on to identify matrix micro-

cracking and delamination as the main damage mechanisms in the test. Later work by 

Ramirez et al. [172] investigated the endurance limits to weepage for GRE pipe under 

internal pressure using acoustic emission techniques and static pressure tests.  Their 

results suggest that AE monitoring can be used to predict the long term cyclic loading 

performance of GRE products from a single short term test. If this were proven, it 

would potentially reduce the amount of fatigue testing required to qualify products. In 

addition, AE can also be used for a rapid evaluation of the factors that affect fatigue 

performance, such as changes in raw materials, fabrication processes or fitting design.  
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2.13.   Qualification and testing procedure 

Investigations into the performance of GRE pipes have been carried out for many years 

now, a majority of which emphasise long term design limits, failure modes and 

associated deformations [19, 24, 26, 38]. The situation is complicated, however by the 

fact that GRE pipes are not only anisotropic materials, but on the micro scale are also 

non-homogeneous. As a result, variety failure mechanisms which limit their use can be 

observed such as matrix micro-cracking, fibre-matrix debonding, delamination and fibre 

fracture [21, 75]. Therefore, it is very important initially to determine the design 

parameters of each variant, but also in the context of service life to be able to predict the 

long term performance of GRP/GRE systems with respect to pressure, temperature, 

chemical resistance, fire performance and impact load. 

2.13.1 International standard ISO 14692 

In December 2002, a new ISO 14692 standard was issued, dealing with the 

qualification, system design and installation of GRE piping systems as well as quality 

assurance issues [173]. The scope of this document refers to offshore applications, but 

the standard can also be used as a guide for onshore applications. It specifies how to 

qualify and manufacture GRP/GRE pipes and fittings, how to conduct system design, 

and finally it gives guidelines for fabrication, installation and operation. It comprises of 

four parts; 

Part 1: Vocabulary, symbols, applications and materials. 

Part 2: Qualification and manufacture. 

Part 3: System design. 

Part 4: Fabrication, installation and operation. 

The advantages of ISO 14692 are that it provides standardizing principles, working 

methods and clear guidance for everybody involved in the industry to have the same 

understanding. The main draw for this document is the connection between the 

properties of specific GRP products and safety in installed pipe systems. Qualification 
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necessitates a test programme that involves full-scale hydrostatic performance tests, 

establishing a long-term design basis not only for pipes but also for the entire system 

including joints and fittings. This section however, focuses on part two of the standard 

which details the procedures for the qualification and manufacture of GRE products. 

2.13.2 Biaxial testing according to ASTM D2992 

As mentioned before, part two of ISO 14692 is the standard governing the qualification 

of fibreglass pipe. According to this part, the procedure by which the fibreglass 

products are certified is delineated in the ASTM D2992 document, which describes the 

method used to establish the strength-regression data in obtaining the hydrostatic design 

basis (HDB) or pressure design basis (PDB) for fibreglass pipes [174]. It outlines the 

procedures in detail for both cyclic loading pressure and long term constant pressure 

loading in ASTM D2992a and ASTM D2992b respectively [175]. It is also important to 

mention that the discussion set forth in ISO 14692 relates solely to GRE pipes that fail 

by a weepage mechanism. 

In the qualification process, the specimen is loaded in the „closed end‟ condition where 

the hoop stress developed is twice the axial stress. With fibreglass pipe, it is usually 

found that both cyclic and static behaviour exhibit a linear relationship between the 

logarithm of applied pressure and the logarithm of the lifetime (in cycles or time), as 

shown in Figures 2.10 and 2.11. For both constant pressure and cyclic loading, a 

minimum of 18 data points are required in order to establish acceptable regression, with 

at least one sample providing a point in excess of 10,000 hours and 15,000,000 cycles 

of internal pressure at 25cycles/minutes respectively. In order to allow for some product 

variability and inconsistency in manufacturing, which are often likely to happen, it is 

necessary to compute the lower confidence limit (LCL) of the results. LCL denotes the 

line above which 97.5% of the newly determined regression data are predicted to lie. 
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Figure 2.10: Long term static hydrostatic strength based on ASTM D 2992b showing 

the pressure at design lifetime of 20 years and the pressure at 1000 hours for 

reconfirmation test [174] 

 

Figure 2.11: Long term cyclic hydrostatic strength based on ASTM D2992a 
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The pressure rating for the pipe, known as the hydrostatic design basis (HDB), is then 

determined by extrapolating the LCL line to the design life which is typically 20-50 

years for offshore piping products. The HDB, combined with a number of other factors, 

is used to determine the qualification pressure in the pipe. The manufacturer can carry 

out qualification testing provided it is witnessed and certified by a recognized 

independent authority. Alternatively, testing and certification may also be carried out by 

a third party testing organization.  

The regression data obtained from this procedure gives significant information that 

qualifies the product for manufacturing and defines the pressure rating to be used in the 

pipe‟s system design. It is also important when reconfirmation of the HDB is required, 

performed if there are changes to materials, manufacturing processes, construction or 

fitting design that might affect the overall performance of the pipe. It would be 

expensive and time consuming to subject the pipes to a full qualification programme 

every time small changes were made. According to the procedure, GRE pipe is 

subjected to 1000 hours of hydrostatic pressure based on the 1,000 hour lower 

confidence limit (LCL) of the regression line initially acquired from ASTM D2992. 

Survival of this test strongly implies that the pipe has the same or a better design life 

than the originally qualified pipe.  

Pipe manufacturers have to comply with ISO 14692, to ensure that products delivered 

are safe and will perform well within the requirements of end users and with 

manageable reliability. However, while the present method of determining lifetime 

predictions for GRE pipes is acceptable, many manufacturers feel that the current 

procedure is too time-consuming and expensive. For every product to be qualified, 

manufacturers have to undergo a tedious qualification programme as detailed in ASTM 

D2992, which often exceeds two years. This is rather a long time considering the 

timeframe within which the products normally have to be delivered. This is because at 

least one set of the test data must be obtained at a time in excess of 10,000 hours for 

static fatigue and 15,000,000 cycles for cyclic fatigue. Hence, a single product 

qualification programme will take over a year to complete with no room for error or 

premature failure. Such failure would require the product to be retested and yet more 
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valuable time would be wasted. Difficulties also arise when the tested pipes do not fail 

within the test period. Current practice treats unfailed specimens as failure points, but 

this procedure may not be ideal since it gives a rather conservative estimate of the long 

term behaviour of the pipe. Such uncertainty is not acceptable in such an expensive 

qualification programme. So although many accept that the procedure delineated by 

ASTM D2992 does provide some basic indication of the long term durability of 

fibreglass pipes, it may not be the most appropriate method of achieving this objective. 

 

Figure 2.12: Example of test spool for 1000 hrs HDB reconfirmation testing [176] 

Another issue with regard to constant pressure testing arises when the slope obtained 

from the regression analysis is somewhat shallow. Here, small statistical variations in 

the product could result in large variations in the time to failure, and hence it will be 

very difficult to distinguish under what particular pressures the pipes will fail during the 

testing programme [177]. This is extremely troublesome when establishing long term 

test data. For instance, a shallower regression line would mean that the product could be 

subjected to lower 1000-hour test pressures. This allows manufacturers to reduce the 

overall thickness of the pipes purportedly without compromising on the pipe's rating.  

On the other hand, subjecting the pipes to a lower 1000-hour test pressure can result in 

reliability issues which if not known or handled properly and later installed to the piping 

network can lead to damage of property or even worse, loss of life. 
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A steeper regression line, on the other hand, provides a better precautionary measure 

since the products are subjected to higher pressure at the 1000 hour test, and thus the 

pipe is designed with thicker walls. However, if the regression line is steeper than it 

should have been, this could result in the pipe to being overly safely designed for a 

particular application. The pipes are then produced with unnecessarily thick walls which 

increases the manufacturing costs.   

There are also great concerns that each analysis from the regression-based method 

results in slightly different data even when the test is run on virtually identical products. 

This means that the HDB reconfirmation test, which is directly related to the regression 

gradient, will only be applicable to one regression test. The regression gradient is also 

highly dependent on the resin system used, glass sizing, production technique, process 

control and test temperature, which vary for different manufacturers and are very 

difficult to compare. Furthermore, inconsistent failure mechanisms can also 

significantly influence the gradient of the regression line. 

 

Figure 2.13: Examples of variation in regression line gradients of identical test samples 

from different manufacturers [178]. 
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Variations in the gradients of regression lines presented by manufacturers are also more 

problematic when they try to define their regression line to be as shallow as possible. 

This enables them to conduct reconfirmation tests at lower pressures hence improve 

their market position by reducing materials costs [178]. Due to competitiveness in the 

market and the freedom the manufacturers have to interpret the regression line gradients 

for their products, could lead to manipulations of test data to secure millions of dollars 

worth of contracts by offering products claimed to have a long design lifetime. Given 

all the limitations of the existing test procedure including the (time wise) impossibility 

to execute this test as part of a commercial project for fibreglass piping, there is now an 

impetus to recognise the need for a better, faster and cheaper test procedure in 

qualifying GRE pipes. 

2.13.3 Determination of ultimate elastic wall stress (UEWS) test 

While the current procedure for qualifying GRE pipes based on regression analysis 

provides very good predictions of the long term behaviour of the pipe, manufacturers 

are driven by the need for a faster and simpler qualification process. A number of 

possible short term tests have been examined such as the interlaminar shear stress 

(ILSS), flexural and UEWS tests. The UEWS test is not yet standardized, but appears to 

offer an attractive alternative to existing procedures. Its principles were first 

investigated by Shell Research in 1968 [179]. There are very limited studies that have 

been reported on this procedure. Hull [24] and Frost [42] have both reported on the 

UEWS test and observed that matrix cracking is consistently associated with non-

linearity in stress strain responses. The marked advantages of the UEWS method 

compared to those outlined in ASTM D2992 are that the process involved is relatively 

cheap and it can be repeated as many times as required since one full test can easily be 

completed within one day.  

The intention of the UEWS test is to identify, by examining the stress-strain response, a 

stress level below which damage growth is either negligible or at least sufficiently low 

to prevent long term failure at the design life. GRE pipe fails when debonding occurs 

between the fibres and matrix interface. Once debonding takes place, there will be less 
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surface area for proper stress distribution. This leads to the development of stress 

concentrations within the GRE system which, in turn, causes further debonding. The 

point at which the fibre-matrix interface starts to debond is used as an indication of the 

borderline between permissible and non-permissible deformation. This point is called 

the Ultimate Elastic Wall Stress (UEWS).  

The UEWS test involves the application of groups of 10 one-minute hydrostatic 

pressure cycles at increasing pressure levels. The strain at the end of the first and the 

last cycle of each ten cycle group is measured, and these values are plotted against 

pressure (or hoop stress). If zero or negligible damage occurs at a particular pressure 

level, then a linear relationship is observed between strain and hoop stress, and the 

strain after the tenth cycle in the group is the same as at the first cycle. This can be 

clearly seen in the early cycle groups. As the UEWS is approached, a deviation in strain 

can be seen between the first and the last cycle, and the relationship begins to become 

non-linear. This non-linearity in the stress–strain relationship will then be used to 

indicate the UEWS point which corresponds to first ply failure in the pipe. Further 

details on the UEWS test procedure and the calculations involved are given in Chapter 

3. 

2.13.4 Comparison between ASTM D2992 procedure and UEWS test 

Table 2.1 summarizes the differences between the regression-based ISO 14692 and the 

UEWS procedure. The main advantage claimed for the ASTM procedure based on 

cyclic and static fatigue is that it provides a realistic statistical approach to establishing 

a long-term pressure rating when there is a slow deterioration in properties.  This makes 

it attractive in connection with statistically-based design.  However there are significant 

practical issues involved in running experiments over a long period, and the ageing 

processes operating in the test procedure may differ from those that apply in the field.  

The most significant drawback of the long-term tests is the time needed to achieve the 

full qualification of new products.  The ASTM 2992b procedure requires static fatigue 

data at times in excess of 10,000 hours (~14 months).  For new piping products, where 
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the regression line slope is not identifiable in advance, this requires significant trial and 

error to determine the pressures to be used, which often results in a qualification period 

that exceeds two years. Although it is generally agreed that proof of long term 

durability is desirable, long term static fatigue measurements may not be the best 

method of achieving this. 

Table 2.1: Comparison of regression-based and UEWS test procedures. 

  

Regression-based procedures 

 

 

UEWS tests 

 

Time, expense and 

convenience. 

Expensive procedure requiring 

~2 years to achieve 

qualification. 

Simple procedure, which can 

be carried out in less than one 

day. 

Ability to define a 

long-term pressure 

rating. 

Provides the basis for a 20 year 

design rating. 

Identifies a stress level below 

which the rate of damage 

progression is very low.  This 

stress corresponds 

approximately to that 

determined by long term 

regression. 

Ability to quantify 

changes due to 

process and 

materials. 

HDB reconfirmation procedure 

is adequately sensitive to these 

effects, but takes a minimum of 

1,000 hours to perform and only 

provides a yes/no answer. 

Very sensitive to these 

effects. 

Ability to quantify 

effects of chemical 

environment. 

Limited. Limited. 

Ability to quantify 

aging effect 

Yes No, only when pipes are aged 

e.g. by exposing the pipes for 

a long term to water. 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

 

3.1.  Introduction 

This chapter describes all the experimental work conducted in this research 

investigation, particularly in the multiaxial UEWS tests. Prior to that, the test specimen 

used and the development of the dedicated test rig for conducting UEWS tests are 

described in detail. The test rig was developed so that it is capable of performing the 

UEWS test under various combinations of internal pressure and axial load without 

having to apply an external load. By varying these loading conditions, ratios ranging 

from pure axial to pure hoop loading can be obtained, thus enabling the construction of 

a full tensile-tensile biaxial UEWS based failure envelope. The procedures for the 

determination of the stiffness properties of the test specimen from virgin to failed 

samples and the microscopy analysis of post UEWS test samples are also explained.   

3.2. Pipe specimen 

GRE pipes for the UEWS tests conducted in the experiments were provided by Future 

Pipe Industries (FPI) from their standard range of Wavistrong wound pipes. The pipes 

were manufactured from glass fibre impregnated with aromatic amine (MDA) cured 

epoxy resin [180].  Thermosetting epoxy resin is the most widely used resin employed 

in the construction of GRE pipes due to its superior corrosion resistance and excellent 

mechanical, physical and thermal properties [16, 23, 181]. The pipes were designed so 

as to resist the corrosive effects of mixtures of low concentrations of acids, under both 

internal and external loads at temperatures up to 110°C.  

Table 3.1 shows the physical and mechanical properties of the tubes. The pipes were 

manufactured by a conventional automated winding machine with a winding angle of 

±55° for optimum working conditions under internal pressurization. The wall of the 

pipes is protected on the outer side by the resin topcoat. 
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Table 3.1: Mechanical and physical properties of the GRE pipes provided for this 

investigation by Future Pipe Industries [180]. 

 

Internal diameter    200 mm 

Average wall thickness   6 mm 

Length      2000 mm 

Liner      n/a   

Density     2000 kg/m
3
 

Number of plies    10 

Glass volume fraction    59 % 

Axial tensile modulus    11.5 GPa 

Hoop tensile modulus    19.0 GPa 

Shear modulus     11.0 GPa 

Major Poisson‟s ratio,     0.65 

Coefficient of linear thermal expansion 2x10
-5

 mm/mm°C 

Thermal conductivity    0.29 W/m.K 

Specific heat     921 J/kg.K 

 

Figure 3.1 shows the dimensions of the specimen agreed with FuturePipe Industries 

(FPI) for this investigation for tests at (a) room temperature (RT) and 65°C, and (b) an 

elevated temperature of 95°C. The parallel length of the pipe used in the test, not 

including the fitting region, was about 1,600 mm. The pipes were designed with built-

up, tapered end reinforcement in design (a) and were slight tapered with a straight cut 

built up in design (b).  

The main purpose of having tapered reinforcement at the end of the specimen is to 

reduce the stress concentration effects that might develop when it is subjected to 

additional axial tensile or compressive loading. In the first design illustrated in Figure 

3.1 (a), the reinforced ends were prepared by machining a 2.5° external taper. Steel end 

fittings then bonded onto the pipe‟s tapered ends using a FPI EasyFit two-component 

epoxy adhesive. Bonding length required for the specimen was calculated from the 

following relationship:

 

Shear stress,  =        
4 Bonding length





P ID
  
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where P is the maximum working pressure applied and ID is the internal diameter of the 

pipe. By using an allowable shear strength estimation of 10MPa and maximum working 

pressure of 180bar, the minimum bonding length required was calculated to be about 

90mm. To ensure failure would occur in the pipe rather than bonding failure between 

the pipe and the end cap fittings, a safety factor of 1.5 was applied, and hence the 

bonding length for the fitting was chosen to be 140mm.  

At first, the pipe was designed with the intention of using it with adhesive bonded end 

fittings throughout the investigation. The design was a success for the UEWS tests at 

room temperature and an elevated temperature of 65°C. However, the adhesive bonding 

joint failed at the higher test temperature of 95°C. Hence, the pipe specimens were then 

redesigned to accommodate new mechanical end fitting to be used at 95°C, as 

illustrated in Figure 3.1 (b).  

3.3. End fitting design 

For these UEWS tests, which involved the static and cyclic pressurization of the GRE 

pipe, it was imperative to design an end-fitting suitable for the task. With such a „closed 

end‟ test setup, the axial load caused by the internal pressure is transferred to the pipe 

wall through the end fitting. Hence, a strong joint between the pipe end and the fittings 

is essential. As mentioned in the previous section, two end fittings were designed for the 

test setup. The design of both, adhesive bonded and mechanical end fittings are shown 

in Figures 3.2 and 3.3 respectively. 

Initially, the adhesive bonded end fitting was intended to cater for all the UEWS tests 

required in this study. Simple tapered mild steel was designed to be bonded at each end 

of the pipe specimen with a Wavistrong Easy-Fit epoxy-based adhesive supplied by 

FPI. To increase the strength of the joint, the fittings were also designed to have a 2mm 

separated groove carved on the inside surface of the fittings, hence providing not just 

adhesive joint strength but also the additional „mechanical‟ grip between the joint and 

the fitting. The adhesive joint was then cured at 125°C for two hours using a heater 

band.  
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(a) 

 

 

 

(b) 

Figure 3.1: Dimensions of the specimens: (a) for tests at RT and 65°C and (b) for tests 

at 95°C 
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However, since the adhesive bonded fitting failed during the 95°C tests, a new 

mechanical end fitting was designed to enable tests at that temperature. It consists of a 

steel flange sealed with an o-ring from the inside of the pipe, connected together to a 

steel collar by twelve high tensile steel bolts. Wedge/taper serrated grips were then 

placed in between the flange and the collar, sitting on the pipe reinforcement.  

During the installation, the flange and the collar were tightened, clamping both onto the 

serrated grip wedges. This forces the „wedging action‟ and the wedges grip onto the 

pipe reinforcement in proportion to the loads applied during tightening, locking all the 

parts together to the pipe. During the test, axial load is applied to the end fittings, hence 

on the serrated grip wedges. As the pressure rises, higher axial force is then transferred 

to the wedges causing them to tighten further onto the pipe and subsequently create a 

stronger seal. This set up is proven to be much more convenient, as it is easy to 

assemble and less time consuming as no curing is required. Any problems encountered, 

such as leakage from the end fittings during the test, can be easily rectified by merely 

dismantling the parts for investigation, which is impossible to do with the former 

adhesive joint end fitting.  

3.4. Development of the test rig 

Currently, the standard UEWS tests conducted by FPI involve applying internal 

pressure alone, giving a 2:1 hoop to axial stress ratio which is the optimum design 

condition for the ±55° filament wound GRE pipe used in this work. However, one of 

the main objectives of the present study is to conduct UEWS tests at various ratios of 

hoop to axial stress ranging from pure axial loading to pure hoop loading. Hence, a 

special test rig was developed capable of applying static and cyclic pressure tests to the 

Wavistrong piping system to conduct the UEWS tests. In principle, the biaxial strength 

of composite pipes can be achieved by pressurizing the specimens to failure under a 

combination of tensile axial force and internal pressure. The test rig basically consisted 

of three main parts: the pressure system, the control and instrumentation system, and the 

thermal enclosure. 
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Figure 3.2: Design of the adhesive bonded end fitting used for UEWS tests at RT and 65°C. 
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Figure 3.3: Design of the mechanical end fitting used for UEWS tests at 95°C 
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3.4.1 Pressurization system 

The pressure system was designed so that it could facilitate multiple loading conditions 

in order to produce various hoop-to-axial stress ratios and at the same time withstand a 

maximum working pressure up to 250-300 bars. A schematic drawing for the hydraulic 

test rig with a 200mm diameter and 2-meter length test spool is illustrated in Figure 3.4. 

The test spool was designed with a piston-like configuration installed inside the pipe, 

creating two separate chambers (Figure 3.2). The two chambers were sealed with the 

use of an „o-ring‟ to prevent the leakage of pressure between chambers during 

pressurizing. The end fittings were fixed at each end of the test specimen with an 

adhesive joint for tests at room temperature and at 65°C or with mechanical end fittings 

via serrated grips for tests at 95°C. 

The two chambers were then separately pressurized to create various hoop-to-axial 

loading conditions. This was achieved by using a differential pump driven by an air 

compressor via a ball valve. This pump is manufactured by SC Hydraulic Engineering 

Corp. and operating on the principle of differential working areas can produce up to 350 

bars pressure from 6-7 bars supply of compressed air. The pump flow rate is managed 

by using a pressure regulator installed in the compressed air inlet to the pump. The 

pressure loading was controlled manually by the opening and closing of the unloading 

valve. During pressurizing, the valve was kept closed. Once the pressure required was 

reached and held for the required amount of time, the water in the pipe was released 

back into the tank by opening the unloading valve. It was noted that a drop in pressure 

in the pipe occurred almost immediately when the valve was opened. 

The ratio of the pressures in the two chambers was controlled by a pressure intensifier 

to produce additional axial loads within the pipe. This method was chosen rather than 

using two independent pump sources due to its ease of handling and fabrication. The 

pressure intensifier consisted of cylinders of different bore diameters with a simple 

stepped piston. A diagram of the design construction of the intensifier is shown in 

Figure 3.5. From the basic concept of Pascal‟s law, the pressurized fluid from the main 

chamber acted on the larger piston area, enabling the smaller piston to intensify the
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Figure 3.4: Schematic drawing of test rig for conducting UEWS test at various loading conditions with acoustic setup. 
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pressure in the fluids in its bore. The pressure ratio is proportional to the ratio of the 

area of the stepped piston or to the ratio of the square of piston diameter as given below; 

2
1 1 1 1

2
2 2 2 2

  or   
P A P d

P A P d
     (3.1)

 

 

where: 

P1 and P2 are the low and high pressure in the high and low chambers respectively, 

A1and A2 are the areas of the low and high pressure pistons respectively, and  

d1 and d2 are the diameters of the low and high pressure pistons respectively. 

 

Figure 3.5: Cross-section drawing of the pressure intensifier/reducer used to obtain the 

intermediate loading conditions for 1:1 and 4:1 hoop to axial stress. 

 

For instance, the 1:1 hoop to axial loading condition was achieved by installing a 

stepped piston with a 2:1 ratio of the larger to the smaller piston area. The pressure 

applied to the pipe acted on the intensifier and hence doubled the pressure applied in the 

small chamber. Since the piston inside the pipe was free to move and was sealed with a 

high pressure rubber o-ring, the higher pressure inside the small chamber pushed the 

P1 P2 
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piston inside and at the same time exerted additional tensile axial stress to the pipe wall 

to create the 1:1 hoop to axial stress ratio. Likewise, the 4:1 hoop to axial stress ratio 

was achieved by inverting the direction of the stepped piston from the intensifier, hence 

reducing the stress inside the small chamber by half. The pure axial test could be 

performed by pressurizing only the small chamber, and pure hoop loading was achieved 

by applying pressure only to the main chamber (the main body of the pipe). 

 

In order to estimate the working pressure to be employed in both chambers inside the 

test spool for the UEWS tests ranging from pure hoop to pure axial stress, the 

relationships in equation (2.1) was recalled; 

 

1 2 and 
2 4

Hoop Axial

Pd P d

t t
       (3.1) 

where P1 and P2 correspond to the pressures required in the main and the small chamber 

respectively to achieve various test ratios. Table 3.2 contains data relating to the 

previous results [14] at ambient temperature and the estimated working pressures for the 

two chambers. 

Table 3.2: Ambient temperature (25ºC) failure data for glass/GRE pipe [14] and 

corresponding maximum pressures for the test chambers. 

Pressure ratio 

(hoop:axial) 

Hoop stress 

(MPa) 

Axial stress 

(MPa) 

P1 

(bar) 

P2 

(bar) 

Pure Axial (0:1) 0 75 0 75 

0.5 41 82 20.5 82 

1:1 97 97 48.5 97 

2:1 222 111 111 111 

4:1 292 73 146 73 

Pure hoop (1:0) 390 0 195 0 

 

Assuming the d/t ratio for the pipe to be 40, these results can be converted into 

hydrostatic pressures for the two chambers inside the pipe. For a start, these pressures 

can be regarded as the maximum working pressures for the chambers. The calculated 
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pressures are then used for the design and purchase of suitable pumps and fittings for 

the test rig. Considering the failure envelope at a 25ºC test temperature from [14], the 

upper boundaries of the pressures to be exerted in the two chambers were calculated to 

be 195 bar and 111 bar respectively. 

3.4.2 Control and instrumentation system 

The control and data acquisition system was developed to control the static and cyclic 

pressure applied, and at the same time to display and store pressure and strain data 

gathered during the tests. The voltage signals from the pressure transducer and the strain 

measurements from strain gauges were recorded as a function of time by the 

CompactDAQ data acquisition system. This system was developed by National 

Instruments (NI) and is able to integrate sensor measurements with voltage, current, and 

digital signals to create customized, mixed-measurement systems with a single, easy 

USB cable back to the computer using LabVIEW software.   

LabVIEW is a software programming environment used to build sophisticated 

measurement, test, and control systems using intuitive graphical icons and wires that 

resemble a flowchart. It was chosen as the platform for the visual programming 

language due to its built-in functionality in data acquisition, instrument control and 

measurement analysis. Figure 3.6, shows the front panel and block diagram of the 

interface developed from the LabVIEW environment for the UEWS test.  

The two sensors used to collect data were a pressure transducer and a strain gauge to 

measure the pressure applied and corresponding strains respectively. The pressure 

transducer allows for the electronic monitoring of pressure during the UEWS test via 

the LabVIEW interface. An industrial pressure transducer from Swagelok was chosen 

for this purpose which has the capability to monitor the pressure applied during testing 

up to 400 bars.  
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(a) 

 

(b) 

Figure 3.6: Front panel (a) and block diagram (b) of the LabVIEW interface for strain 

and pressure measurement during UEWS test. 
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Meanwhile, strain gauges were used to measure the hoop and axial strains induced 

during the UEWS tests. Since a strain gauge fulfils its intended functions only when 

attached to specimens, it was imperative to select the most appropriate type of gauge for 

the specimen‟s material type, operating temperature, measurement environment and 

installation dimensions. For measuring the strain in GRE pipes in the UEWS tests, a 

special type of strain gauge was chosen, which is 60mm in length utilizing a transparent 

plastic backing impregnated with a polyester resin. The strain gauge was provided by 

Feteris Components, and it is the same type as used by FPI in their engineering and 

evaluation tests. It is supplied with a 0.11mm
2
 pre-attached 3 meters long PVC lead 

wire and has a 2.12 gauge factor with 120Ω resistance. It is important to ensure that the 

strain output provided by the strain gauges during the latter stages of the test is in check. 

This is because in situations where the pipe undergoes considerable deformation prior to 

rupture, the strain gauge may become detached from the body of the pipe hence causing 

error in strain readings. However, in this case, it was observed that during testing and 

near to failure the strain gauges used remained strongly bonded to the surface of the 

pipe and the strain readings remained smooth and continuous. 

3.4.3 Thermal enclosure 

Since elevated temperature performance is of interest here, a special custom-made 

thermal enclosure was designed and fabricated. It was specifically designed to enable 

the testing of modified spools at temperatures of 65°C and 95°C, maintaining these test 

temperatures with a maximum variation of 3°C. The unit was designed so that the 

heater and the blower were separated from the oven space and placed at the back of the 

oven to achieve much better and more uniform control of test temperature, as well as to 

avoid any possible damage to the side of the wall during testing which would halt the 

operation of the oven. The closure was constructed with three holes. One in the centre 

of the oven flooring, allowed any water leakage from the pipes during testing to drain, 

and two on one of the side walls (at mid-height and 0.5m apart) gave access for pressure 

tubing and instrumentation wiring. A schematic diagram and photograph of the thermal 

enclosure used are given in Figures 3.7 and 3.8 respectively. 
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(a) 

 

 

 

(b) 

Figure 3.7: Front (a) and side (b) view of the thermal enclosure. 
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Figure 3.8: Thermal enclosure used for the UEWS tests. 
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Figure 3.9: The rig consisting of the pressurizing system, control and instrumentation 

system and thermal enclosure. 

 

 

Figure 3.10: Test spool setup inside the thermal enclosure ready for testing 
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3.5.  UEWS test procedure 

3.5.1 UEWS test preparation 

Prior to each test, the specimen was visually inspected to identify any obvious defects 

that may have occurred during manufacturing or transportation to the lab. The pipe was 

then carefully placed on the workbench and the end fittings were installed. For UEWS 

tests other than the 2:1 loading condition (hydrostatic pressure only) that is for 0:1, 

0.5:1, 1:1, 4:1 and 1:0 hoop to axial loadings, the piston-like arrangement was fitted 

inside the test spool before end fitting installation. 

Next, the strain gauges to measure the strain on the pipe during the test were placed in 

the middle of the pipe, diametrically opposite to one another. Before placing the strain 

gauges, the top coating from the pipe surface was removed using sandpaper in order to 

obtain direct contact with the pipe wall. However, this task needed to be conducted with 

care to avoid damage to the reinforced pipe wall. The sanded surface was rendered as 

flat, clean and dust free as possible. Acetone was used to clean the surface and remove 

dust and small particles. 

After the attachment of the strain gauges, the test pipe was then moved into the thermal 

enclosure and filled with water using the inlet of one of the end fittings. It is particularly 

important that the whole system was „bled‟ (at no pressure) for approximately 3-5 

minutes before the test began in order to ensure that no air was trapped within the test 

system. Inside the thermal enclosure, the test pipe was positioned on a simple support at 

one end with another end positioned on a free-to-move roller. This was to prevent any 

influence of the support on the measured strain. It also ensured that the end supports did 

not restrain the specimen in the longitudinal or circumferential directions. For safety 

reasons, all tests were conducted with pipes placed inside the thermal enclosure, 

including those at room temperature, so that the test setup was isolated from the 

operators and the surroundings.  
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Finally, the strain gauges and pressure transducers were connected to the CompaqDAQ 

data acquisition systems for monitoring and data collection. After attaching the test rig 

to the pressurizing source, the UEWS test was ready to commence. 

3.5.2 UEWS test procedure 

In the UEWS test, the pipe filled with water was loaded in a prescribed time versus 

pressure schedule which consisted of a number of cycle groups.  Each group consisted 

of ten one-minute cycles at pressure and ten one-minute cycles at no pressure, as 

illustrated in Figure 3.11. The pressure was increased uniformly until the first cyclic test 

pressure (CTP) was reached. This first CTP was taken to be 10% of the estimated 

pressure at UEWS. For each subsequent cycle group, the CTP was further increased by 

another 10% of the pressure corresponding to the expected UEWS (MPa) pressure.  

During the procedure, either axial or hoop strain was measured, where axial strain was 

preferred for axial dominated loading and hoop strain measurement was a better choice 

for hoop dominated loading. The strain at the end of the first and the last cycle of each 

group of ten cycles was measured. The UEWS point is considered to be exceeded when 

either of the following is reached: 

a) The difference in strain, Δεc between the first and the tenth cycle is more than 

5% 

10 1

10

100
 

   
 

c

 



    (3.2) 

where ε1 and ε10 are the strains at first and tenth cycle respectively, or 

 

b) The difference in strain Δεp between the maximum strain at the end of the tenth 

cycle of a given cycle group and the predicted strain is more than 5% 

 

10, 10,
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where εp is the difference between the measured strain at the tenth cycle and the 

predicted strain from linear behaviour and ε10m and ε10p are the measured strain 

and predicted strain at the 10
th

 cycle respectively. The predicted strain was 

calculated from earlier points by linear regression.

 

 

Figure 3.11: Pressure versus time during UEWS test 

 

Once the UEWS point was reached, the test was continued until one of the following 

criteria was met:  

a) weeping or leakage failure of the pipe was visually observed; or  

b) two further cycle groups were performed after the onset of non-linear behaviour 

in the strain response.  

It is important to note that the above mentioned definition of the UEWS point is derived 

from many years of rigorous study of the stress-strain response of GRE pipes subjected 

to pure hydrostatic loading with a 2:1 hoop to axial loading condition. For non-

hydrostatic loading ratios, where the initial stress strain response may not be linear due 
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to viscoelasticity property of the pipe or the effects of residual stress, a more refined 

definition of UEWS point may be required. This current investigation into various 

loading ratios for UEWS tests hence provides the basis for improving this definition and 

producing a UEWS-based strength limit of the pipe for all loading conditions. 

3.5.3 Post UEWS test 

Once weepage was observed, or the final two cycle groups after the UEWS point was 

reached had been completed, the test specimen was detached from the pressurizing 

source. It is crucial to make sure that the pressure within the systems is released before 

detaching the specimen, for safety reasons. The pipe was then removed from the 

thermal enclosure for closer inspection. Any obvious damage or deformation observed 

was photographed and recorded. 

Then, the specimen was cut in the middle section through the strain gauges for 

measurement of the inner diameter, reinforced wall thickness, and topcoat thickness of 

the specimen. This was conducted in accordance with the ASTM D3567 standard [182]. 

The topcoat resin-rich layer was found to be in the range of 0.3 mm with marginal 

variation arising from the manufacture of the pipe. The hoop stress was calculated from 

the following formula: 

H
Hoop Stress, 

2

 
  

 
 

sg sg

sg

ID TE
P

TE


    (3.4)

 

where;    

P = pressure (MPa), 

IDsg = inner diameter at the location of the strain gauge, 

TEsg = reinforced wall at the location of the strain gauge. 

The raw data of pressure applied and the corresponding strains measured were then 

analysed. The strain values at the end of the first and last cycles of each ten cycle 

groups were measured. These values were plotted against the hoop stress calculated 
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from equation (3.4). The plot produces two lines representing the linear and non-linear 

behaviour of the tested pipes under such loading conditions. The two lines are then 

extended and their interception was drawn and taken as the UEWS point, which 

indicates the onset of damage to the pipe. An example of this plot is illustrated in Figure 

3.12. 

 

Figure 3.12:  General UEWS test results showing strain response 

 

3.6 Acoustic emission set-up 

In hydrostatic (2:1), pure axial (0:1) and pure hoop (1:0) loadings of UEWS tests at RT, 

the acoustic emissions (AEs) were monitored and recorded using an AE instrument 

manufactured by the Physical Acoustics Corporation (PAC) with 150 kHz resonant 

sensors. Two sensors were placed on the outer surface of the pipe with a layer of 

silicone grease and secured using sellotape. The signals picked up by the sensors were 

strengthened to higher voltage using a preamplifier, which was placed close to the 

sensors in order to minimize electromagnetic interference. The AE set up used is shown 

in Figures 3.4 and 3.13.  
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After the sensor was fixed and connected to the acoustic software, simple „lead break‟ 

calibration was carried out to ensure that the signal received was consistent and the 

sensor properly secured to the pipe surface. The process involved breaking a lead pencil 

near the sensor to verify the response from the acoustic sensors. If the latter were 

properly attached, the lead breaks should give a reproducible signal throughout. To 

eliminate background noise and unrelated signals from the data, the acoustic signal 

threshold was set at 40dB, which meant that only events with hits above 40dB were 

recorded. The AE data was continuously recorded throughout the UEWS test and line 

marks were made to differentiate the cycle groups of increasing pressure. AE 

monitoring was continued until weepage failure was observed. 

 

Figure 3.13: Acoustic setup showing the location of the sensor and the pre-amplifier. 

 

3.7. Determination of the stiffness property of GRE pipes tested 

In order to examine the effects of the UEWS test on the degradation of axial and hoop 

modulus of the pipes, several samples of GRE pipes from an undamaged pipe to 

AE sensor 

Pre-amplifier 
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intermediate stages of UEWS and to failure were needed. As a result, four samples in 

different conditions were prepared for this investigation: a virgin pipe, one at 50% of 

UEWS, 100% of UEWS and a pipe at weepage failure. Two types of tests were carried 

out to determine the axial and hoop stiffness as detailed below. 

3.7.1 Determination of axial stiffness 

Simple pull tests were carried out on the pipe specimens to determine the axial modulus 

of the pipe. Figure 3.14 shows a photograph of the test setup. Samples were pinned-

supported at each end and subjected to a pull test using an Instron 4505 testing machine 

with gauge length set at 0.6m. A strain gauge was attached at the middle of the gauge 

length in the same manner as described above to measure the strain response during 

testing. 

The test procedure was started by placing the sample pipe on the testing machine and 

the strain gauge was connected to the CompaqDAQ data acquisition system. The set up 

was left for several minutes to ensure stability before strain measurement. A constant 

load was then applied. After 100 seconds, a strain measurement was taken. The load 

was then increased and again held for another 100 seconds before strain was measured. 

This procedure was repeated several times. The applied load, however, was maintained 

at a low enough level to ensure a proportional relationship between load and 

displacement without causing permanent deformation or damage to the pipe. The whole 

test was then repeated for other specimens in different conditions as specified earlier. 

The axial modulus was then calculated using the linear stress-strain relationship in the 

axial direction. 

3.7.2 Determination of hoop stiffness 

In order to carry out the creep hoop Young‟s modulus tests, a number of ring specimens 

(20mm width) were cut from the conditioned samples tested in previous procedure. A 

specimen was then placed in the Instron tensile machine as shown in Figure 3.15. 

Similar to the test procedure for axial modulus measurement, step loading was again 
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applied with each load held for 100 seconds, whereupon the corresponding vertical 

displacements were recorded. It was very important that the load applied was 

maintained to give a linear relationship to displacement. 

From Castigliano‟s strain energy method, the creep hoop modulus was then calculated 

[183] from the relationship below: 

3

H

0.1484 W R
E =

I δ        (3.5)                                      

where W is the applied load (N); R is the radius of the sample (m); I is the moment of 

inertia. (m
4
)  and   is the vertical displacement (m). 

 

Figure 3.14: Test setup for the pull test to determine the axial Young‟s modulus of the 

pipe. 
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Figure 3.15: Test setup for the ring test to determine the hoop Young‟s modulus of the 

pipe. 

 

3.8. Microscopic study 

For closer inspection of the damage that occurred, an optical microscopy technique was 

used to examine the post test microstructure of the pipe wall. The main investigation 

looked at the distribution of matrix cracks as a result of the UEWS test and 

subsequently to define the crack density at the point of weepage failure. This was 

carried out simply by cutting out a piece from the failed tested pipe and analysing it 

under a light microscope. This section describes in detail the sectioning, polishing and 

microscopic analysis of the GRE pipe samples. 

3.8.1 Sample preparation 

In preparing the samples for microscopic analysis, 15mm x 30mm samples were cut 

from the failed pipe samples provided by FPI, targeting the areas at which weepage was 

observed. This was to increase the probability of observing matrix cracks in the plies. 

As reported earlier, weepage failure usually takes place when a network of cracks 
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parallel to the fibre coalesces, which eventually creates a continuous path for the fluid 

to pass through the pipe wall. In order to observe cracks within plies, the samples were 

cut along the direction of the fibres. A diamond cutting wheel was used to cut the pipe 

in order to minimize further damage to the surface of interest. Afterwards, the surface 

was thoroughly cleaned using acetone to remove dust and debris resulting from the 

cutting process, and the sample was dried so as to be ready for the encapsulating 

process.  

The sectioned samples were then mounted inside a polymer block of mixed epoxy and 

hardener. The mounting process, also known as 'cold mounting', requires a simple 

cylindrical ring mould with a removable bottom flat surface. Next, the specimen was 

placed inside the mould with the surface of interest facing downwards. Epoxy resin and 

hardener were mixed accordingly to the manufacturer‟s instructions then poured into 

the mould and allowed to set. The curing process took about 5-6 hours. Once cured the 

specimen which was now transparent and in a cylindrical block as shown in Figure 3.16 

was removed from the mould and labelled for identification. The sample was later 

ground and polished as described in the next section. 

 

Figure 3.16: Micrograph samples of the pieces from failed tested GRE pipes. 
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3.8.2 Procedures for grinding and polishing GRE pipe sample 

In order to observe micro cracks in the microscopy study, the mounted specimen had 

now to be polished to a micro fine finish. This was achieved using an EcoMet grinder-

polisher machine manufactured by Buehler. There are two main stages in preparing the 

samples; planar grinding and stepped polishing. The programme for the planar grinding 

and polishing process is given in Table 3.3. 

To start with, the specimen was subjected to planar grinding to flatten the surface and to 

eliminate any damage or rough surfaces due to the cutting process. For this purpose, 

samples were attached to a rotating disc and ground with coarse silicon carbide paper of 

240μm grit size. A slight pressure was applied during the grinding process and water 

was occasionally added. The procedure was continued until all the blemishes had been 

removed and the specimen was absolutely flat. The samples were then washed with 

water followed by acetone and dried before moving on to the polishing process. 

The next stage was stepped polishing, which is vital in producing the deformation-free 

surface that is flat, scratch-free and mirror-like in appearance necessary in studying the 

microstructure of the specimen. At this stage the samples were polished with a soft 

cloth impregnated with diamond particles and oil-based diamond suspensions. Starting 

with 6μm grade cloth, the specimens were polished until the scratches from the previous 

grinding process had been removed. Then, the samples were removed from the machine 

and washed with acetone before being left in the ultrasonic bath for 2 minutes to 

remove fine particles from the polishing process. Finally the samples were again 

washed with water and dried. Rapid drying of the ground/polished surface can also be 

achieved by applying a stream of compressed air to the polished surface. The procedure 

was then repeated with a smaller grade cloth of 3μm, and followed by 1μm cloth. The 

final polishing with 1μm-diamond particle grade cloth removed all the fine scratches 

from previous polishing and subsequently produced a very smooth surface finish with 

good contrast between the fibre, resin and cracks.  
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It is crucial that the sample was thoroughly cleaned as described, before moving to a 

smaller size grade cloth (3μm and 1μm) for subsequent polishing. This is because 

unclean samples can cause contamination to the polishing cloth and hence result in an 

unsatisfactory surface finish of the sample.   

3.8.3 Microscopic analysis of the samples 

The degree of damage within the plies through matrix micro cracking and delamination 

from failed UEWS test samples were carefully examined using a light microscope. The 

main objective was to examine the nature of matrix microcracks and if possible to 

measure the crack spacing, before hence calculating the critical crack density at which 

weepage/failure occurred. Matrix cracks were clearly apparent in the sectioned samples 

using the optical light microscope. The microscope also provided wide views for clearer 

and easier examination of the samples. The findings are discussed in detail in Chapter 5. 

Table 3.3: The details of the grinding and polishing programme used in preparing the 

specimens for microscopic study 

Surface Abrasive/Size 
Load 

(N)/Specimen 
Base Speed 

(rpm)/Direction 
Time 

(min:sec) 

Planar grinding 

CarbiMet® 2 240 grit SiC with  18 150-240 Until 

Abrasive Discs water cooled Comp. Plane 

(Waterproof Paper)       
Stepped polishing 

UltraPol™, 6um MetaDi® 18 120-150 4:00 

UltraPad™ Supreme 
Diamond 

Comp. 

Cloth  Suspension*   
TriDent™ Cloth , 
TexMet® Pad 

3um MetaDi 22 120-150 4:00 

or Nylon Cloth Supreme 
Diamond 

Comp. 

  Suspension*   
MIcroCloth® Cloth, 1um 27 120-150 2:00-4:00 

or ChemoMet® MasterMet® Comp. 

Pad Colloidal Silica or   
  MasterPrep®   
  Alumina 

Suspensions  
  

*Plus MetaDi® Fluid extender as desired 
Comp. = Complementary (platen and specimen holder both rotate in the same direction) 
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CHAPTER 4: MODELLING OF UEWS TESTING AND 

DAMAGE DEVELOPMENT  

 

In this chapter a model based on Miner‟s law is developed to demonstrate the damage 

accumulation caused by cyclic and static fatigue loading in UEWS tests, using the input 

from the long term test data provided by FPI. The model is extended to simulate the 

stress-strain behaviour of GRE pipe during UEWS testing, which is directly linked to 

the progressive nucleation of matrix micro cracks using a crack growth model 

analogous to Paris Law. A general lifetime damage model for GRE pipes is then 

developed from a modified interactive failure criterion similar to the Tsai Hill criterion. 

The model is applied to produce failure envelopes for GRE pipes under various 

combinations of hoop to axial stress as well as at different temperatures. However, prior 

to this modelling, laminate theory is used to model the elastic constants of the GRE pipe 

used in this study. 

4.1. Laminate theory 

For the purpose of the modelling, it is assumed that the pipe wall is analogous to an 

angle ply laminate comprising of a number of even unidirectional plies, as shown in 

Figure 4.1. Firstly, the elastic properties of a unidirectional ply are calculated using the 

micromechanics theory of composite structures from the principal axes for those 

constituent laminae [16]. Equal strain treatment and the Halpin-Tsai simplification [23] 

are then used to determine the elastic behaviour of the unidirectional ply in the principle 

axes of the laminates from the following equations. 

From the rule of mixtures: 

1 12             f f m m f f m mE E V E V v v V v V
    (4.1)
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and from the Halpin-Tsai simplification: 

2
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    (4.3)

 

In the above equations, E1 and E2 are the longitudinal and transverse modulus of the ply 

respectively, while G12 and v12 are the shear modulus and the Poisson‟s ratio in the 1-2 

plane, as indicated in Figure 4.1. According to Halpin-Tsai [16], ξ is suggested to be 

equal to 2 for predicting the transverse modulus, and equal to 1 when predicting the 

shear modulus. The volume fractions, modulus of elasticity and shear modulus of the 

fibre (f) and matrix (m) in the laminates are represented by Vf, Vm, Ef, Em, Gf and Gm 

respectively. The in-plane shear moduli for fibre Gf and matrix Gm can be estimated 

from: 

      and      
2(1 ) 2(1 )

f m
f m

f m

E E
G G

v v
 

 

                         (4.4)

 

Since the pipe wall is an angle ply laminate, the lamina can be considered to have 

orthotropic elastic properties, which are highly dependent on the winding angle θ. Thus, 

the stress-strain response of the lamina can be expressed as: 

1 11 12 1

2 12 22 1

12 66 12

0

0

0 0

    
    

    
    
    

Q Q

Q Q

Q

 

 

 
      (4.5) 

where Q11, Q12 and etc. are the stiffness matrices, which can be expressed in 

engineering terms as:  
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;        
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;                                     
1
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 

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E
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      (4.6)

 

E1 and E2 are the modulus of elasticity in the lamina‟s principal axes. However, in the 

case of angle ply laminates, the unidirectional lamina is now loaded at some arbitrary 

angle θ (Figure 4.1) relative to the principal axes. A transformation matrix is used to 

transform the applied stresses and strains in the axial-hoop axes into the directions of 

principal axes 1-2 from the relationship below:  

 

2 2
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2 2

2

2 2

12 / /
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sin cos 2sin cos  =                       (4.7)
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where Q 
  is the transformed stiffness matrix, which relates the engineering strains to 

the stresses developed in the ply when loaded at an arbitrary angle θ. Thus, from 

algebraic manipulation, the relation between the Q 
   and  Q

 
matrices can be 

expressed in the form of:
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where θ is the magnitude of the angle between the lamina‟s principal axes and the axial-

axis. An early assumption that each lamina is homogenously orthotropic and perfectly 

bonded eliminates the coupling between direct stress and shear strain that could have 

developed. Therefore, the constants 16
 
 Q  and 

26
 
 Q can be set to zero [23, 184].  By 

using the transformed stiffness matrix calculated above, the elastic properties of the 

pipe wall in the axial and hoop directions are then evaluated using the following 

equation: 

11 22

12 12
/ 66

22 11

(1 * );        (1 * )

;       ;      =                             
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   

 

   
(4.10) 

The inverse stress-strain relations for orthotropic lamina can also be written as: 
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Since the filament wound GRE pipe is treated as an angle ply laminate with orthotropic 

elastic properties, the strains produced by the general state of stress in equation (4.11) 

can be derived to form the following relations [16]: 

         

hoopaxial
axial hp/ax

axial hoop

hoop axial
hoop ax/hp

hoop axial

ax/hp

ax/hp

ax/hp

ζζ
ε = -ν

E E

ζ ζ
ε = -ν  

E E

η
γ =

G
              (4.12) 

where Eaxial, Ehoop, Gax/hp, and υax/hp are the modulus of elasticity in the longitudinal and 

transverse directions, and the shear modulus and Poisson‟s ratio respectively, which can 

be determined from equation (4.10).
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Figure 4.1: Schematic diagram of GRE filament wound pipe showing its coordinate 

system and the principal axes of the unidirectional lamina [14]. The pipe wall is 

essentially an angle ply laminate built-up from unidirectional plies. In these plies, all the 

fibres are aligned in the 1-direction, where the 2-direction is the transverse direction of 

the fibre.  
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4.2.  Modelling of reduction in elastic properties during UEWS testing. 

As discussed in detail in the literature review, transverse matrix cracking is the most 

common failure mode under uniaxial or biaxial loading in composite pipes. In this 

section, the effects of matrix cracking on the degradation of elastic properties during the 

UEWS tests are modelled. General expressions of longitudinal and hoop moduli against 

crack density are obtained and compared with the values measured during the tests. The 

finite element results from Sun and Tao [70] were used in establishing the relationship 

between the effective transverse and shear moduli, and crack density. 

The biaxial stress induced during the UEWS tests is calculated by recalling equation 

(2.1) and given below: 

2

4









H

A

P d

t

P d

t                (4.13)
 

The corresponding strains produced by the stresses generated in the tubes are then 

worked out from the following relations: 
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These strains were then transformed to the ply coordinate system by multiplying with 

the transformation matrix. Hence,  
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Thus, at a low stress level where the stress-strain behaviour can be considered to be 

linear, the stresses in the unidirectional ply can be calculated from equation (4.5). The 

elastic moduli E1 and E2 are determined from the stiffness matrices given in equation 

(4.6).

 
However, due to the significant differences in thermal expansion in the reinforcement 

materials and matrix, residual stress is often generated prior to actual loading on the 

pipe. So, it is imperative that any such thermal stress generated is taken into account 

when modelling the stress-strain response. In order to calculate the thermal stresses 

generated, the coefficient of thermal expansion of the ply is calculated. First, from the 

literature available, the coefficient of expansion for the fibre, αf, and epoxy matrix, αm, 

are found to be 5x10
-6

/⁰C and 5.5x10
-5

/⁰C respectively. The thermal expansion of the 

ply in the longitudinal and transverse directions is then calculated from the formula 

derived by Schapery [16] as stated below: 
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            (4.16)

 

The ply coefficient estimated above was later used in the laminate theory calculation to 

determine the coefficient of thermal expansion for the GRE pipe provided by FPI. The 

resulting thermal expansion for the ply and laminate are given in Table 4.1.  

Table 4.1: Coefficients of thermal expansion of the ply and angle ply laminate used in 

GRE pipe 

Ply 

α1, (x10
-6

/⁰C) α2, (x10
-6

/⁰C) 

6.66 33.2 

±55°  laminate 

αaxial, (x10
-6

/⁰C) αhoop, (x10
-6

/⁰C) 

24.5 7.3 
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Residual stress occurs because of the thermal mismatch between the fibre and the 

matrix and also the constraints which exist within laminates. This happens as a result of 

temperature changes during the manufacturing of the pipe when it was cooled to 

working temperature after curing. Due to the differences in the thermal coefficient, the 

matrix material shrinks significantly more than does the reinforcement fibre. This 

induces tensile stress in the matrix component and compressive stress in the fibre 

reinforcement. For modelling purposes, 120°C was adopted as the curing temperature 

for Wavistrong pipes before they are cooled to a working temperature of 20°C. Hence, 

thermal stresses were generated due to this 100°C temperature drop, which acted like a 

preload prior to the actual loading. 

The thermal stresses induced in the angle ply layup were then calculated by 

transforming the thermal expansion coefficient to the laminates axes using the 

following relationships: 

2 2
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             (4.17)

 

The corresponding strains due to this 100⁰C temperature drop in the pipe and the ply at 

the laminate axes were calculated and are given in Table 4.2. 

Table 4.2: Computed thermal strains of the ply and angle ply laminate used in GRE 

pipe 

  εaxial
Therm

 εhoop
Therm

 γax/hp
Therm

 

GRE pipe  -0.002450 -0.00073 0 

Ply ±55°   -0.002449 -0.00154 0.0025 

Difference -0.000001 0.0008724 -0.0025 

 

From the calculated values shown in Table 4.2, there were clear differences in the 

resulting thermal strains in the laminate and in the ply of the same axes. However, this 

change in temperature in the pipe does not induce shear strain in the laminate. Only 
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after the ply strains were transformed into the laminate principal axes at ±55° were 

significant shear strains induced. The constraint on the ply within the laminates 

generates the thermal stresses. This is computed by working out the difference in strain 

between the laminate and ply, before multiplying this with the transformed matrix in 

order to determine the ply strains in the original ply axes. The thermal stress induced is 

then calculated by multiplying these strains with the ply stiffness matrix.  

It was found that the stresses generated due to temperature changes from curing to the 

working state in a ±55° laminate were, σ1 = -23.6MPa, σ2 = 15.7MPa and γ12 = 6.9MPa. 

These stresses acted like a pre-loading and must be taken into account when carrying 

out the modelling to determine the reduction in elastic properties. Finally, these values 

were then added to the principal stresses generated from the applied pressure. It is also 

worth pointing out that the calculation conducted here used linear elastic laminate 

theory with constant thermal expansion and stiffness properties throughout the 

temperature change.  

From the finite element model developed by Sun and Tao [70], the deterioration in the 

transverse and shear moduli of composite laminates due to the increasing presence of 

matrix cracks can be estimated in the form of: 

2
Eo

2

*2
Go

2

E
=exp(-α *)

E

G
=exp(-α )

G





2

              (4.18) 

where; 

E2 and E2
o 
are effective and initial transverse Young‟s modulus of ply respectively.   

G2 and G2
o
 are effective and initial shear modulus of ply respectively.  

αE2 and αG  are curve fitting constants determined by the finite element analysis. 

ρ is the normalized crack density function. 
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The relationship between crack density and applied stress was derived by Roberts [49] 

and is given below; 

fail

2 m

fail

m

  
    

                 (4.19)

 where; 

σ2 is the limiting transverse stress in unidirectional ply, 

fail

m is the failure strength of the matrix material, and 

κ =  1 2 12

1 2

(E E )G

E E


 , where κ involves only the ply modulus constants. 

The estimation of the effective transverse and shear modulus of the ply at every 

pressure group increment can then be computed from equation (4.18). This effective 

modulus is later used together with laminate theory to determine the new corresponding 

axial and hoop modulus of the pipe after taking into account the effects of increasing 

crack density.  

4.3. Damage cumulative model of UEWS test 

As mentioned before, the ASTM D2992 document outlines the procedures for carrying 

out hydrostatic pressure tests under cyclic or long term static loading. From the 

regression line shown in Figures 2.10 and 2.11 for static and cyclic procedures, both 

types of failure can be described by the following power law expressions for cyclic and 

static behaviour respectively: 

J

fHN



               (4.20) 

G

fFt



                 (4.21) 

where ti is time in hours and Ni is the number of cycles to failure. These expressions can 

be re-arranged to give the time or number of cycles to failure, so: 
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               (4.22) 

for static fatigue conditions, and   

J

f
H

N

1














               (4.23) 

for cyclic fatigue. In both conditions, constants F, G, H, and J were determined from the 

regression analysis of the long term static rupture and cyclic tests. These tests were 

conducted by FPI in accordance with ASTM D2992 for the design and qualification of 

GRE pressure pipes and fittings.   

In order to model the damage accumulation in the GRE pipe during the UEWS test 

procedure, which is expected to be dominated by cyclic loading, a cumulative damage 

rule was used. A number of damage models have been employed in recent decades to 

describe the development of damage in composite materials [148, 151, 177, 185, 186]. 

For modelling UEWS procedures, a widely used Miner‟s Law [152] has been 

employed. This empirical law provides a simple way of accounting for damage 

accumulation due to different stress levels in cyclic loading, such as that applied in 

UEWS tests. Recalling equation 2.10 given in Chapter 2, the law states that, for cyclic 

fatigue, failure occurs when: 

1


 i

if

N

N
                   (4.24)

 

where Nif is the number of cycles to failure at stress level ζi and ΔNi is the number of 

cycles applied at each stress level ζi of the fatigue cycle. This provides a method of 

summing the damage produced by fatigue cycles of different magnitude, which can be 

extended to model and sum the effects of other types of damage in composite structures. 

In the case of UEWS testing where cycle groups of different stress magnitudes are 

present, the end of life is reached when: 
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31 2

1 2 3

..... ......... 1


     i i

f f f if if

N N NN N

N N N N N
                      (4.25) 

This expression applies where N1 stress cycles occur at stress ζ1; N2 cycles occur at 

stress ζ2 and, in general, Ni cycles occur at stress, ζi. N1f, N2f…Nif  are then the 

corresponding numbers of cycles that would cause failure in a cyclic fatigue test at a 

constant repeated stress of, ζ1, ζ2…ζi.. Using the expression derived, it is now possible 

to model the damage accumulation which occurs during the cyclic loading of increased 

pressure in the UEWS test. The same can now be generalized to include static as well as 

cyclic fatigue loading. The analogous static creep conditions can now be expressed as: 

1


 i

c f

t

t
               (4.26)

 

 

where tcf is the creep failure at stress level ζi and Δti is the time applied at each stress 

level ζi. Hence, for a UEWS test where static loading at different stresses is present:  

31 2

1 2 3

..... ......... 1


     i i

f f f cf cf

t t tt t

t t t t t
                        (4.27)

 

In this case, t1, t2…ti are the times at a specific stress level, while t1f, t2f...tcf are the 

corresponding times to creep failure at constant values of these stresses. However, few 

studies have reported the combined effect of cyclic and static fatigue at the same time. 

One of these by Frost [42], concluded that both static and cyclic fatigue contribute to 

matrix crack growth, with one or the other usually seen to dominate the total damage 

induced. Frost then went on to propose that, for a GRE system subjected to combined 

static and cyclic loading, similar to the UEWS test, failure is predicted to occur when;  

1
 

  i i

cf if

t N

t N
                         (4.28) 
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It would be very interesting to find out if the damage accumulation model derived 

above can be related to the design lifetime of GRE pipes obtained from the regression-

based procedure as described previously. Rearranging equations (4.22) and (4.23) and 

integrating them with equation (4.28) allows the failure state to be predicted for loading 

histories containing both static and fatigue loading. Thus, the total Miner‟s law sum can 

now be rewritten as the following;  

1

11


















 i

J
i

i

G
i N

H
t

F



             (4.29) 

Since the UEWS test involves the application of groups of 10 one minute cycles with 

pressure and one minute cycles without pressure, the simplified approach above can be 

used to predict the design life of GRE pipes. In a UEWS test with a stress increment, 

Δσ, the usual conditions of a cyclic loading period of one minute and groups of 10 

cycles, this is given by: 

       
1 1 1 11 1 1 110

2 3 10 2 3
60

...... ......G G J JG G J JF H     
    

           
     (4.30) 

 

where the first term represents the static loading effect and the second term denotes 

cyclic fatigue. Using the constants values acquired from the regression analysis of the 

FPI fibreglass product, damage accumulation based on the modified Miner‟s law can be 

computed for each stress level during the UEWS test. Figure 4.2 below shows damage 

accumulation from the static and cyclic loadings of the UEWS test.  
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Figure 4.2: Miner‟s Law sum at each hoop stress level showing static and cyclic 

element in UEWS test. 

 

As can be seen in Figure 4.2, damage accumulations due to the cyclic element during 

the UEWS test clearly predominate over the contribution from static loading. This 

suggests that the development of matrix micro cracks in GRE pipe is governed by cyclic 

loading, as more time would be required for the static condition to cause the same 

degree of damage accumulation. It should be borne in mind, however, that the static 

loading applied in the UEWS test was very low. In effect, it is only applied for ten one-

minute periods per cycle group for over ten cycle groups, whilst the regression-based 

procedure requires more than a year of constant pressure loading to be completed. 

On a positive note, this approach does enable the whole test to be completed within one 

day. Still, since the UEWS has been shown to be governed by cyclic loading, in order 

for the procedure to be fully employed for qualification purposes, additional 

information would be needed regarding the relationship or equivalency between the 

damage caused by cyclic loading and that produced statically.  



                                                   Modelling of UEWS testing and damage development 

102 

 

Further significant information can be deduced from Figure 4.2 is that, the stress value 

at which the Miner‟s law sum begins to deviate from zero, at say, approximately 1%, 

shows very good conformity with the UEWS value provided by FPI. For new GRE 

pipes where the CTP value for the first cycle is unknown, the Miner‟s law sum model 

could now be used to predict the onset of damage, which corresponds to the UEWS 

value, hence avoiding trial and error in determining the first CTP value. 

In order to predict the lifetime pressure rating for the GRE pipe, the effect crack density 

must be considered in the constitutive law which defines the stress-strain relationship. 

In addition, a growth damage law is also needed to relate stiffness reduction to loading 

history. The parameter normally used to define the state of damage is crack density, ρ, 

measured in the ply transverse direction. ρ  is dimensionless, being defined as the ratio 

between ply thickness and average distance between micro cracks [49].  This provides a 

means of taking into account the well-known effect of ply thickness on crack growth. It 

is assumed that weepage takes place at a critical value of crack density, ρweepage, and that 

this value is the same irrespective of how the weepage state is reached (whether by 

different combinations of static and cyclic loading or different combinations of internal 

pressure and axial load). 

As mentioned previously, transverse matrix micro cracking would be the first observed 

damage mode in GRE pipes. Although not crucial in causing abrupt structural failure, 

many agree that matrix cracking results in degradation in elastic properties, and 

therefore it can be the initiator of more severe damage such as delamination, fibre 

matrix debonding and fibre fracture [149, 187, 188].  Gudmundson and Zhang [189, 

190] and Roberts et al. [49] examined the effects of matrix cracks on the behaviour of 

angle ply laminates as used in the pipes studied here. They demonstrated an analytical 

model for predicting the thermoelastic properties of angle ply laminates containing 

transverse matrix micro cracks parallel to fibre direction. Their findings suggested that 

the elastic properties and especially the axial and hoop modulus varied significantly 

with crack density. 
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In this section, Gudmundson‟s formulation is used to calculate the elastic constants of 

±55° glass epoxy cracked laminates. These are then used to simulate the stress-strain 

response in the UEWS test. However, to make this applicable to the present work, their 

model‟s results have been normalized by dividing each elastic constant by its original 

value in the undamaged state. This is necessary because the elastic constants of the 

GRE pipe used in the present UEWS tests are different from those adopted by 

Gudmundson in his model. Figure 4.3 shows the dimensionless plot of the elastic 

constants against crack density. It can be observed that axial modulus elasticity shows 

the most sensitive reaction, exhibiting a rapid decline with increase in crack density. 

The hoop modulus, on the other hand, declined rather less with increase in crack. The 

in-plane shear modulus and major Poisson‟s ratio υah, meanwhile were scarcely 

influenced by the presence of matrix cracks, although the minor Poisson‟s ratio υah, was 

highly affected. It is thought that weepage is very likely to occur at a low value of crack 

density of approximately 0.5.  

As mentioned before, GRE pipe failure is always governed by cracks propagating 

through the matrix phase. Once initiated, matrix cracking grows rapidly in the direction 

of the fibres, since there is fairly little resistance to crack growth to slow down crack 

propagation. Therefore, the major factor governing damage development in GRE pipes 

is in fact crack initiation rather than growth. Frost and Cervenka [42] suggested a 

damage growth model for GRE pipe using a relationship analogous to Paris Law as 

used for crack growth in metals. The modified Paris Law describes the rate of change of 

crack density, rather than the increase of a single crack. So, for cases of cyclic fatigue: 

nA
dN

d





                 (4.31)

 

where A is the proportionality constant, N is the number of cycles and n is the 

experimentally determined exponent. The above expression can then be generalized to 

consider the effects of combined static loading and cyclic loading, hence: 

dNBdtAd mn                  (4.32) 

where t is the time to failure for static loading. 
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Figure 4.3: Dimensionless change in elastic constants against crack density for an angle 

ply pipe laminate, calculated from the model of Gudmundson and Zhang. 

 

Interestingly, the form of crack growth law in equation (4.32) is similar and can be 

treated as analogous to the Miner‟s law sum in equation (4.29). This can now be used to 

relate crack growth to the damage accumulation rule previously derived from the 

modified Miner‟s law. Comparing the two power law equations, the m and n exponent 

constants in equation (4.32) are now equivalent to 1/J and 1/G in equation (4.29). It is 

now possible to model the stress-strain response in the UEWS test from the degradation 

of elastic properties caused by progressive matrix cracking.  As mentioned before, it is 

usual in the UEWS test to measure either axial or hoop strain during the application of 

the hydrostatic pressure cycles.  For cases in which axial strain are measured:  

 AH

A

H

H

H
HA

A

H
A

EEE






  5.0

2
             (4.33) 

and when hoop strain is measured; 

 HA

H

H

A

H
AH

H

H
H

EEE






 5.01

2
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             (4.34) 
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Rearranging equations (4.33) and (4.34) gives: 

UEWS A
A H A

AH

E
E

0.5
 


 


              (4.35) 

and  

UEWS H
H H H

HA

E
E

1 0.5
 


 


              (4.36) 

where EA
UEWS

 and EH
UEWS

 are defined as the UEWS effective modulus of elasticity. 

Using the actual data received from FPI for their Wavistrong GRE pipe range, the 

above UEWS quantities in the undamaged state are calculated to be 95.8GPa and 

28.2GPa respectively. 

Again, by using the results from Gudmundson and Zhang, the dimensionless change in 

the „hydrostatic/axial modulus‟ (the hoop stress divided by the axial strain) and the 

„hydrostatic/ hoop modulus‟ (the hoop stress divided by the hoop strain) with increasing 

crack density were calculated and these are plotted in Figure 4.4. According to the plot, 

EA
UEWS

 is shown to be the most responsive to an increase in crack density, declining 

almost linearly at first before becoming non-linear after crack density reaches about 0.5. 

This is probably the main rationale for axial strain measurement being preferable to 

hoop strain measurement during UEWS tests, since axial strain is more sensitive to 

increments in crack density. EH
UEWS

, on the other hand, although affected, declined 

merely in a linear fashion with increases in crack density. From the plot, provided that 

the critical value of crack density is taken to be less than 0.5, both quantities can be 

described by the following linear approximations: 

              (4.37) 

and   

              (4.38) 
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Figure 4.4: Dimensionless change in the „hydrostatic/axial modulus‟ (the hoop stress 

divided by the axial strain) and the „hydrostatic/hoop modulus‟ (the hoop stress divided 

by the hoop strain) with increasing crack density. 
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To relate the crack density growth to the damage accumulation law from Miner‟s law in 

the UEWS test, equation (4.30) can now be expressed in the following form: 

                     (4.39) 

Hence, substituting equation (4.39) into equation (4.37) provides the expression for the 

change in elastic properties which can now be directly related to the Miner‟s Law sum, 

so that: 

                      (4.40) 

By varying the k value to fit the UEWS experimental results, the Miner‟s Law-based 

stress-strain response in the UEWS test can be plotted as shown in Figure 4.5. This is 

then repeated for the 65°C and 95°C tests using the regression constants from FPI‟s 

qualification tests at those temperatures. The plots at elevated temperatures are expected 

to give similar curves as shown below, showing an almost initial linear strain response 

but starting to deviate from linearity at different points. Figure 4.6 gives the flow 

diagram for the UEWS strain response modelling described. 

 

Figure 4.5: Miner‟s Law-based simulation of the strain response in UEWS testing. 
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From regression constant, calculate  tf and Nf of 

increasing pressure levels

Calculate Miner’s Law sum of tf and Nf for 1st 

and 10th cycle for each cycle groups

Calculate the elastic constant of the 

unidirectional ply E11, E22, G12, ν12, ν21 

Initial condition

Ef, Em, νf, νm,

Convert the elastic constant to stiffness 

constant, Q11, Q22, Q12, Q66

Calculate the transformed stiffness constant 
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Eh (exp) = Eh
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Figure 4.6: Flowchart of the Miner‟s law modelling for predicting the strain response in 

UEWS testing 
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4.4. General lifetime damage model for GRE pipe 

During the initial period of cyclic fatigue in the UEWS test, many non-interactive 

cracks occur in the matrix phase of the laminate. Since the ply is restricted by plies of 

different orientations above and beneath it, cracks once initiated would at first start to 

propagate within each ply, before reaching the adjacent plies. This implies that the 

initiation of these cracks governed by the stress state in the ply.  

In order to model the interactive combination of stresses in the ply that cause 

microcracking damage, a polynomial expression similar to the well known Tsai Hill 

criterion is used. Tsai Hill's criterion [191] is based on the Von Mises distortional 

energy criterion which was modified by Hill so as to satisfy anisotropic materials and 

was subsequently applied to composite materials by Tsai. For orthotropic materials 

similar to GRE pipes, the criterion may be expressed as: 

   

2 2 2
1 2 12

1 1 2 2 2 12*2 *2 *2
1 2 12

k k
  

   
  

     
          

     
                  (4.41) 

 
where the subscripts, 1, 2, and 12 indicate, respectively, tensile stresses parallel and 

transverse to the direction of the composite ply, and shear stress. The starred terms refer 

to stresses at failure. k1 and k2 are parameters appointed that describe the importance of 

the interactions between the two tensile stresses and between 2 and 12 respectively. 

According to this criterion, no failure will occur provided that Φ is less than unity. This 

particular failure criterion was chosen due to its ease of use and most importantly take 

into account the effects of interactions between the stress components. 

The effect of the stress developed in each ply can then be expressed in terms of the axial 

and hoop pipe wall stresses. This can be achieved by substituting the general 

transformation matrix from equation (4.7) into equation (4.41): 
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     (4.42) 

As a result, the detrimental effects of all stresses can be expressed in a single quadratic 

relationship. Since the original equation (4.41) included all the stresses acting on the ply 

that could govern the initial damage to the system, a lifetime behaviour model for GRE 

pipes under various combinations of axial to hoop stress can be developed. The 

quadratic relationship is then solved to produce limits in terms of axial and hoop stress 

which can then be presented in the form of a failure envelope. 
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CHAPTER 5: TEST RESULTS AND DISCUSSION 

 

 

Experimental and modelling findings throughout the investigation are reported and 

discussed in this chapter. In Section 5.1, the laminate elastic properties of GRE pipes 

are calculated using laminate theory and are compared with the engineering data 

provided by the manufacturer. The experimentally determined degradation in elastic 

properties of the pipes taken from different stages of the UEWS tests and the model‟s 

predictions are discussed in Section 5.2. The results of UEWS tests under various ratios 

of hoop to axial stress ranging from pure axial loading to intermediate, 2:1 loading, to 

pure hoop loading are described and discussed in Section 5.3. Here, the current 

definition of UEWS employed by FPI is reviewed. In Section 5.4, the failure modes 

observed are categorised and discussed at length. The UEWS and weepage based failure 

envelopes are presented in Section 5.5 and the importance of these envelopes for 

judging the long term performance of GRE pipes are discussed. Section 5.6 presents the 

acoustic data gathered and interpretations of the failure mechanisms involved, whilst 

Section 5.7 analyzes the results of the microscopic study. Finally, the modelled stress-

strain responses of UEWS tests and the general lifetime model are presented and 

compared with the experimental findings in Section 5.8.  

5.1.  Determination of the pipe’s properties 

The properties of the isotropic glass fibre reinforcement and epoxy matrix provided by 

FPI for their Wavistrong product are given below: 

glass matrix

glass matrix

E =73 GPa,              E =3.6 GPa,

V =0.59,                   V =0.41
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Based on these values, the ply properties were calculated using the rules of mixture and 

the Halpin Tsai simplification from equations (4.1) to (4.4). The results are as follows: 

1

2

12

12

E  = 44.55 GPa

E  = 12.20 GPa

 = 0.28

G  = 4.33 GPa


 

The elastic properties of the pipe wall in the axial and hoop directions of the pipes were 

then computed using laminate theory, as detailed in chapter four using equations (4.5) 

to (4.10). Hence:

 

 

12

E  = 11.52 GPa

E  = 19.70 GPa

 = 0.40

 = 0.69

G   = 11.76 GPa

axial

hoop

axial

hoop




 

Similar to findings in previous work in the literature, the radial component is much 

lower than the axial and hoop components, and is therefore ignored. For simplification, 

the resin-rich top coating of the pipes was ignored as a structural element during 

calculation. Although it may carry a load and adds to the structure its role is, however, 

thought to be minimal. Table 5.1 shows the comparison between the mechanical 

properties obtained analytically above, and the experimental values provided by FPI. 

Overall, the results show acceptable agreement. This indicates that the top coating on 

the outer surface of the pipe could have only a very minimal effect on the total stiffness 

of the pipe. Nevertheless, it should be noted that these values are very much dependent 

on the laminates volume fractions and its constituent‟s properties. Thus, these properties 

must be determined experimentally prior to the UEWS tests and after weepage failure 

as described in the next section. 
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Table 5.1: Comparison between the measured mechanical properties of the GRE pipes 

provided for this investigation and the predicted values from laminate theory. 

Property 
Value from 

laminate theory  
Experimental 

value by FPI 
Difference (%) 

Axial modulus, Eax 11.52GPa 11.5GPa 0.2% 
Hoop modulus, Ehp 19.70GPa 19.0GPa 3.7% 
Poisson's ratio, υah 0.40 0.38  5.3% 
Poisson's ratio, υha 0.69 0.65  6.2% 
Shear modulus, Gah 11.76GPa 11.0GPa  6.9% 

 

5.2.  Determination of the elastic property of tested GRE pipes 

The elastic properties of GRE pipes were determined from simple pull and ring tests of 

the UEWS tested samples as described in Sections 3.7.1 and 3.7.2. The axial and hoop 

modulus of virgin samples were determined to be 12.7GPa and 18.2GPa respectively. 

These values showed good agreement with the predicted values computed using 

laminate theory as indicated in Table 5.1. Figure 5.1 shows the reduction in elastic 

properties of the ±55º filament wound GRE pipes taken during different stages of the 

hydrostatic UEWS test at 2:1 hoop to axial loading. It can be seen from the plot that 

both the axial and hoop modulus of pipe samples taken during the test at 50% and 100% 

of UEWS and finally after weepage failure was observed, were significantly lower than 

those in the virgin pipe. The axial modulus appeared to be affected slightly more than 

the hoop modulus, resulting in a total reduction of over 26% from virgin to weepage 

samples. The hoop modulus, on the other hand, declined from 18.2GPa for the virgin 

sample to 14.2GPa at weepage, representing a 22% reduction. As discussed in the 

literature review, these reductions are largely claimed to be the result of the state of 

matrix cracking in the laminates. 

In Figure 5.2, the test results were then plotted against crack density at the same stages 

of the UEWS test in order to illustrate the effect of crack density on the degradation of 

elastic modulus. The crack density was computed from the modelling work described in 

Section 4.2, which was later correlated with the condition of the samples tested. The 

plot shows that the axial modulus deteriorates in an almost linear relationship with 

increments of crack density initially up to the 100% UEWS condition before declines at 
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higher rates up to weepage. The hoop modulus, on the other hand, declines linearly at 

first, before the rate of deterioration slows down to reach close to saturation as crack 

density increases from 100% UEWS condition toward weepage failure. It seems 

appropriate to conclude that the axial modulus is more sensitive than the hoop modulus 

to the effects of crack density. This is because the elastic properties in this direction are 

more strongly influenced by the matrix resin. It was also noted that, with both moduli, 

the crack density is more than twice as much at the 100% UEWS condition compared to 

that of the value at 50% UEWS. Critical crack density at which weepage occurred is 

about 10% higher of the crack density at 100% UEWS. From the model, this was found 

to be about 0.95. This was then compared with crack density measured through 

micrograph analysis in Section 5.7.  

Figure 5.3 shows the modelled changes in elastic modulus against crack density in GRE 

pipes subjected to UEWS tests at three different test temperatures: room temperature 

(RT), 65°C and 95°C. The results were obtained from the crack density modelling based 

on the work of Roberts [49] as detailed in Section 4.2. For comparison, the 

experimental results are also included. According to the modelling computation, the 

axial modulus declined almost linearly for all test temperature conditions, which is in 

reasonably good agreement with the experimental data obtained earlier. However, 

somewhat poorer agreement was observed between the predictions and experimentally 

determined degradations of hoop modulus. From the modelling, the hoop modulus for 

all test temperatures showed linear degradation with increased crack density. But from 

experimental finding, the deterioration is slightly exponential with the rate of reduction 

observed being lower after the UEWS point is reached. The plot also shows that both 

the axial and hoop modulus at all three test temperatures declined at about the same rate 

and ceased to deteriorate further once the crack density reached its critical value, at 

which weepage failure was observed. This implies that, although elevated temperatures 

may have weakened the pipes leading to a lower magnitude of loads needed to initiate 

cracks, the critical crack density for 2:1 loading at which first failure was observed 

remained unchanged.  
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Figure 5.1: Reduction in axial and hoop modulus at different stages of UEWS test. 

 

Figure 5.2: Reduction in axial and hoop modulus against crack density 
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Figure 5.3: Modelling and experimental results showing reduction in elastic modulus 

against crack density at RT, 65°C and 95°C. 

 

Figure 5.4: Modelling of UEWS tests under various loading conditions showing 

respective reduction in elastic modulus against crack density. 
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Figure 5.4 shows the modelled results for the reduction in elastic modulus in UEWS 

tests under various loading conditions ranging from pure axial loading (0:1) to 

intermediate 1:1 and 2:1 loadings, to pure hoop loading (1:0) at RT. It can be seen that 

the moduli decrease at different rates in different test conditions with increases in crack 

density. Since the degradation in properties is due to matrix cracks, this strongly implies 

that loading conditions very much influence the initiation of cracks and subsequently 

rates of deterioration.  

The plot indicates that, in hydrostatic loading of 2:1 stress ratio, the hoop modulus 

degraded linearly with increases in crack density but almost unaffected in the axial 

dominated loadings of 0:1 and 1:1. The axial modulus on the other hand, declined 

almost at a similar rate initially before exhibiting a rapid decline at different rates with 

only small increments of crack density. This is because in these types of loading the 

load is strongly dominated by the resin matrix. Once transverse matrix cracking is 

initiated, it propagates through the pipe wall rapidly, and shortly after series of cracks 

coalesce, weepage failure occurs. Furthermore, it is interesting to note that the weepage 

failure in pure axial loading was observed at much lower levels of crack density than in 

any other test conditions. The reason for this is that in this loading most of the load now 

acts transversely to the direction of the fibres, hence rapidly precipitating the initiation 

and propagation of cracks up to the critical value of crack density. 

Pure hoop loading exhibited the largest decline in the axial and hoop modulus from 

11.52GPa to 7.52GPa and 19.70GPa to 14.10GPa respectively. This corresponds to a 

reduction of 35% in axial modulus and over 28% in hoop modulus. In this loading 

condition, the hoop modulus shows similar trends to the deterioration in axial modulus, 

indicating a sharp decline after small increments in crack density. In fact, this is the 

only loading condition where such decline in hoop modulus is observed compared to 

other loadings, which declined linearly with increases in crack density. This is because 

crack density in other loading conditions is controlled by transverse stress. However, in 

pure hoop loading, relatively low transverse stress was generated to cause fibre-resin 

debonding. In contrast, higher shear stress developed between adjacent plies. This is 
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believed to have caused delamination and hence cracks between the plies due to the 

shear deformation of the matrix material.  

5.3.  UEWS stress-strain response 

In this section, the results of the UEWS tests conducted at various hoop to axial loading 

ratios are presented and discussed. The stress-strain responses of each loading condition 

are plotted in the manner detailed in Section 3.5.3. All tests also showed similar plot 

trends with an initially almost linear response followed by very distinctly non-linear 

responses at higher strains, particularly in the last two or three cycle groups. It was 

observed that stress-strain response is strongly dependent on the stress ratios and test 

temperatures applied. 

However, before continuing with the analysis of the stress-strain data to identify the 

UEWS point, one has to make sure that the original definition provided by FPI is 

applicable to all stress ratio conditions. This is because, as mentioned before, the current 

procedure for identifying the UEWS point seems to apply only in pure hydrostatic 

loading creating 2:1 hoop to the axial stress ratio. It has been shown that, for this 

loading condition, the stress-strain response in the early cycle groups is very linear and 

the onset of damage or the UEWS point is considered to be reached once it starts to 

deviate and become non-linear. A similar response was recorded in the 2:1 loading tests 

conducted in this investigation, and hence the original definition can be applied in these 

circumstances.  

However, general observations of other stress ratio loadings have indicated that stress-

strain responses in the early stages of UEWS testing may not be so linear, and instead 

suggest a slightly curved profile. This could be due to the viscoelastic properties of the 

pipe or the effects of either residual stress or the non-linearity of properties of the 

matrix material [96]. This implies that the original definition of the UEWS point, taken 

from the interception of the linear and non-linear line in the stress-strain curve, may 

now not be suitable. Furthermore, there have been some criticisms of this method since 
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the non-linear line drawn in the original definition is never actually a straight line even 

for the 2:1 loading condition. 

Another issue is raised in the hoop dominated loadings (4:1 and 1:0). In addition to the 

early non-linearity observed, the strain response history illustrated in Figures 5.9(d) and 

5.10(d) also indicates that the pipes had been permanently deformed from the early 

stage of the tests and not only after the UEWS had been reached. The critical question, 

however, remains whether or not this deformation induced the growth of damage 

causing the failure of the pipe. The original definition of the UEWS used for hydrostatic 

loading, may now be inapplicable in this case. It is of great importance that the current 

definition used for identifying the exact UEWS point is adequately redefined for 

application at various stress ratios. After a number of brainstorming sessions with FPI 

engineers, a consensus was reached that the UEWS point in this investigation should 

now be redefined as the point at which the difference in strain between the first and the 

tenth cycle from a cycle group exceeded 3%, as given below: 

10

1

1.03i

i





 
  
 
       (5.1) 

where ε1i and ε10i are the maximum strains at the end of the first and the last cycle of 

cycle group i respectively.  

 

5.3.1.  UEWS test at 2:1 hoop to axial stress ratio 

Figure 5.5 (a-c) shows the 1
st
 and 10

th
 stress-strain responses for the pressure cycle 

groups of the UEWS tests conducted under 2:1 hoop to axial loading at RT, 65°C and 

95°C. All three sets of test results exhibited initial linear relationship between the 

measured axial strain and hoop stress. The strain measurements at the first and tenth 

cycles in each pressure group were virtually the same, which indicates that the 

deformation up to this point was elastic and no creep was involved. However, as the 

UEWS point was approached, deviations in strain can be seen between the first and 
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tenth cycles of the group and hence its relationship with hoop stress became non-linear. 

This non-linearity in the stress–strain relationship indicates the onset of ply damage in 

the pipe believed to result from transverse matrix cracks developing within the ply, thus 

causing a reduction in pipe stiffness. As the load is further increased, the non-linearity 

in the stress-strain relationship becomes more pronounced. This signifies the growth of 

damage which subsequently reaches the threshold level leading to weepage failure. A 

creaking sound of increasing frequency was clearly audible during this stage of testing, 

which corresponds to the cracking process that was taking place. 

Using the new definition, the UEWS points were identified as 200MPa at RT and 210-

215MPa at 65°C and 95°C. Weepage failure, on the other hand, was recorded at 

220MPa for RT and 240MPa for the tests at elevated temperatures. The UEWS strain at 

RT was observed to be approximately 0.16%, whereas for elevated temperatures the 

strain was slightly higher at 0.2%. Maximum axial strain to failure for all three 

temperature conditions was found to be in the range between 0.22-0.26%. The 2:1 hoop 

to axial loading is considered to be the ideal loading condition for ±55° wound pipe, 

since the loads in the principal direction of the laminates are fibre dominated. At higher 

temperatures, it is suspected that the matrix material become more ductile, hence 

resulting in increases in strength and UEWS strain.  

Figure 5.5(d) shows the axial and hoop strain responses throughout the 2:1 loading of 

UEWS test at RT. Both showed positive strain responses, with recorded hoop strains 

being significantly greater in magnitude. Similar responses were also obtained for the 

tests at 65°C and 95°C. From the plot, a non-linear response of axial strain was 

observed from the 8
th

 cycle group onwards, whereas an almost unnoticeable change was 

noted in the hoop strain measurement. A clearer tendency was noted in the 9
th

 cycle 

group, where axial strains showed a pronounced non-linear response between the 1
st
 and 

10
th

 cycle compared to that in the hoop direction. This is due to the orthotropic nature of 

the pipe, which resulted in a varying strength threshold in the different directions in the 

pipe. For this reason, the measurement of axial strain is always preferable to hoop 

strain, especially in axial dominated UEWS tests. 
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(c) 

 

(d) 

Figure 5.5: 1
st
 and 10

th
 cycle stress-strain plots of 2:1 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at RT. 
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5.3.2.  UEWS test at 1:1 hoop to axial stress ratio 

Figure 5.6(a-c) shows the UEWS plots for 1:1 hoop to axial loadings tested at RT, 65⁰C 

and 95⁰C, and Figure 5.6(d) exhibits the axial strain history throughout the 95⁰C test. 

Similar trends to those in the 2:1 tests were observed, with the stress–strain responses 

tending to be almost linear in the early stages of the test followed by very distinct non-

linear behaviour once the UEWS had been reached.  

In this loading condition, the UEWS points were identified at 88MPa, 78MPa and 

74MPa of hoop stress for RT, 65⁰C and 95⁰C respectively. These results were much 

lower than those observed in the 2:1 tests, yielding over 50% reduction at all three test 

temperatures. This is because in this loading condition, the load was highly dominated 

by the matrix with less transformation along the direction of the fibres. This 

subsequently induced much higher strains in the weaker matrix, and hence the lower 

UEWS point can be attributed to the initiation of transverse matrix cracks in the pipe 

wall. Weepage failure for the test at RT was observed close to 100MPa, whereas at 

elevated temperatures failure was recorded at reduced strength between 82-85MPa.  

Contrary to the results obtained for 2:1 loadings, where the strength increased at higher 

temperatures, the pipes at 1:1 loadings exhibited considerable reductions in the UEWS 

and failure strength. Previous work by Hale et al [28] suggested that the strength of the 

epoxy matrix, which was the same as used in GRE pipes tested here, suffered 

significant degradation in high temperature environments. Since this load is matrix 

dominated, the critical limiting strength at which matrix cracks started to initiate was 

reduced at higher temperatures, resulting in the reduced UEWS and failure strength.  

The effects of high temperature also included reductions in the UEWS strain and the 

maximum strain to weepage failure. The UEWS strain was recorded at roughly 0.48% 

for the test at RT, 0.46% at 65⁰C and 0.42% at 95⁰C, representing a total reduction of 

about 12%. Strain to failure in the 10
th

 cycle showed a significant decrease, from 0.62% 

at RT to 0.58% and 0.5% respectively at the elevated temperatures of 65⁰C and 95⁰C 

due to the softened and hence weakened matrix.  
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Figure 5.6 (d) shows the strain history responses taken from the 1:1 loading UEWS test 

at 95°C. Only axial strain was measured for this loading and a positive response was 

recorded throughout. According to the plot, the UEWS clearly occurred in the 10
th

 cycle 

group where non-linearity was clearly observed between the 1
st
 and the 10

th
 cycle. 

Permanent deformation was observed once the UEWS was surpassed, indicating the 

rapid progressive damage that occurred immediately before weepage failure. The strain 

history responses recorded for the UEWS tests at RT and 65°C yielded similar trends.  

5.3.3.  UEWS test at 0.5:1 hoop to axial stress ratio 

Figure 5.7(a-c) shows the stress-strain response of UEWS tests conducted at the 0.5:1 

loading ratio for RT, 65°C and 95°C respectively, and Figure 5.7(d) demonstrate the 

axial strain history plot for the 95°C test. All three test plots registered almost linear 

responses in early cycle groups followed by evident non-linearity after the 8
th

 or 9
th

 

cycle group after which the UEWS was identified. The UEWS points for this loading 

were noted at 38MPa, 32MPa and 28MPa of hoop stress for RT, 65°C and 95°C 

respectively whilst the failure strengths were recorded at 42MPa, 35MPa and 31MPa. 

The results indicate a huge reduction in the UEWS and failure strength with less than 

one-fifth of the strength of the ideal 2:1 loading. Similar to the situation in the 1:1 

UEWS tests, this is because the loading is highly matrix dominated. A higher strain was 

hence generated in the matrix leading to the initiation of transverse matrix cracking in 

the pipe wall which resulted in the reduced UEWS and failure strength. With regards to 

the effects of elevated temperatures up to 95°C, the results show that both the UEWS 

and failure strength decreased by more than 26%. The UEWS strain, on the other hand, 

was found to decrease from 0.53% at RT to 0.5% at 65°C and 0.46% at 95°C.  

Figure 5.7(d) shows the axial strain history for the 95°C tests. Little difference in strain 

responses between the 1
st
 and the 10

th
 cycle was observed during the early cycle groups, 

indicating almost linear behaviour. However, a considerable difference was noted in the 

9
th

 cycle group between the strains in the 1
st
 and the 10

th
 cycle, suggesting the onset of 

non-linearity here, which is in good agreement with the UEWS point identified earlier. 

Plastic deformation was observed from the 10
th

 cycle group onwards after the UEWS 

point had been reached. The strain histories for RT and 65°C exhibited similar trends.  
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(c) 

 

(d) 

Figure 5.6: 1
st
 and 10

th
 cycle stress-strain plots of 1:1 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at 95°C. 
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(c) 

 

(d) 

Figure 5.7: 1
st
 and 10

th
 cycle stress-strain plots of 1:1 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at 95°C. 
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5.3.4.  UEWS test at 0:1 hoop to axial stress ratio (pure axial loading) 

Figure 5.8 (a-c) presents the stress-strain plots for pure axial loading (0:1) of the UEWS 

tests conducted at RT, 65⁰C and 95⁰C. Similar trends to those in the previous test 

results were obtained, with the effects of axial loading becoming more pronounced 

since no hoop stress was applied to the pipe wall. All plots registered fairly linear 

responses in the early cycle groups, followed by tangible non-linear behaviour later. 

The UEWS points for the test at RT, 65⁰C and 95⁰C were identified as 63MPa, 48MPa 

and 43MPa of axial stress respectively, whereas failure strengths were recorded at 

68MPa, 55MPa and 48MPa. As with the results for 1:1 and 0.5:1 loadings, the UEWS 

points and failure strengths exhibited significant reductions with increases in 

temperature. The test at 65⁰C registered a decline in UEWS strength of almost 24%, 

whereas at 95⁰C it was more substantial at 32%. The results were also comparatively 

much lower than those observed in the previous loading conditions, especially in the 2:1 

loading at RT, where UEWS axial strength was now 37% lower. This was very much to 

be expected, since the load in this test was so strongly dominated by the weaker matrix.  

The plots also show that the values of maximum strain to failure in the tests at RT, 65⁰C 

and 95⁰C were 0.87%, 0.82% and 0.76% respectively, yielding a total reduction of 

nearly 13%. However, it is important to note that the failure strains registered in these 

plots refer to strains at final rupture rather than the weepage failure as seen in previous 

loadings. Since there was no pressure applied in the main chamber of the pipe to 

achieve pure axial loading, the pipe was loaded until it ruptured. This explains the 

considerable increase in the failure strain recorded compared to those observed in the 

2:1 and 1:1 loadings. Figure 5.8(d), shows the axial strain history response of the test at 

95°C. Although small differences in strain exist in the earlier cycle groups, more 

significant increases in strain between the 1
st
 cycle and 10

th
 cycle were observed in the 

9
th

 cycle group. The difference in strain then becomes much more pronounced in the 

following two cycle groups, suggesting the rapid progression of damage. Furthermore, 

plastic deformation was also noted in the plot in the final stages of the test, which 

confirms the damage progression process. The strain histories recorded at RT and 65°C 

also yielded similar responses.  
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(c) 

 

(d) 

Figure 5.8: 1
st
 and 10

th
 cycle stress-strain plots of 0:1 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at 95°C. 
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5.3.5.  UEWS test at 4:1 hoop to axial stress ratio 

The stress-strain plots for the UEWS tests under the 4:1 hoop to axial loading ratio 

conducted at RT, 65°C and 95°C are shown in Figure 5.9 (a-c). Although showing 

similar trends as those in the axial dominated loadings, the UEWS points and failure 

strengths were observed at a considerably higher hoop stress levels. From the plots, the 

UEWS points at RT, 65°C and 95°C were identified at 375MPa, 345MPa and 290MPa 

respectively, with failure strengths at 410MPa, 380MPa and 320MPa. This finding 

indicates that a ±55° wound GRE pipe can support much larger internal pressures in 

hoop dominated loadings.  

Analysis of the effects of increased temperature on UEWS and failure strength shows 

massive reductions in both, yielding a decline of approximately 22% from the RT to 

95°C tests. Furthermore, the failure strains for all tests were registered at nearly 2%. 

This indicates that, although the UEWS was reached at a lower stress level in the high 

temperature tests, the strain to failure remained unaffected. This is because, in hoop 

dominated loadings, leakage failure is due to the combined effects of transverse cracks 

and shear deformations in the resin matrix. At higher temperatures however, the resin 

matrix becomes softened, and hence is able to withstand larger shear strains before 

cracking takes place. 

Figure 5.9(d) illustrates the strain history response of the UEWS test at 95°C, showing a 

positive hoop strain response and a negative response for axial strain. Significant 

increases in the strain readings between the 1
st
 and 10

th
 cycles were noted in the 9

th
 

cycle group for both axial and hoop strain, which can be considered to represent the 

onset of permanent damage. Unexpectedly however, the plot also indicates that plastic 

deformation occurred long before the UEWS point. Although there were minimal 

differences in strain between the 1
st
 and 10

th
 cycles in the early cycle groups to indicate 

that permanent damage had occurred, the plot implies that the pipe suffered plastic 

deformation. This was clearly evident in the 5
th

 cycle group onwards, where the 10
th

 

cycle strain recorded became progressively higher compared to the 10
th

 cycle strain of 

the 1
st
 cycle group. It is suspected that this behaviour is due to the non-linearity in the 
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matrix material, particularly in the shear response. Similar responses were observed in 

these tests at RT and 65°C. Further study to elucidate this finding was carried out and is 

discussed in Section 5.3.7.  

5.3.6.  UEWS test at 1:0 hoop to axial stress ratio (pure hoop loading) 

Figure 5.10 (a-c) shows the UEWS plots under pure hoop loading (1:0) conducted at 

RT, 65°C and 95°C respectively. Higher hoop loading was applied compared to the 

axial-dominated loadings, but slightly less than that applied in the 4:1 UEWS tests. In 

this loading, the UEWS points were identified as 265MPa at RT, 220MPa at 65°C and 

190MPa at temperature of 95°C. The failure strengths, on the other hand, were observed 

at 300MPa, 250MPa and 215MPa. These results were considerably lower than those 

obtained for the 4:1 loadings because no axial loading restrained hoop deformation, and 

hence less hoop stress was required to cause damage and subsequently failure. Similar 

to previous results, apart from those for the 2:1 loading condition, the UEWS and the 

failure strength showed evident degradation with increases in test temperature. In this 

case, both declined by nearly 30% from RT to 95°C. The axial strains to failure were 

recorded at approximately 1.7-2.0% for all test temperatures. This again showed a 

similar pattern to the results of the 4:1 loadings. Final failure was dominated by shear 

deformations of the resin matrix, which softened and became more resistance to 

cracking at high test temperatures, hence resulting in almost unaffected strains to 

failure, although strengths were degraded. 

Figure 5.10 (d), shows the axial and hoop strain history responses for the test at 95°C, 

which were similar to those recorded for the 4:1 loadings. Significant differences in the 

first and final strains were noted in the 8
th

 cycle group, indicating the onset of 

permanent damage which corresponds to the UEWS point of 190MPa as indicated in 

Figure 5.10(c). Again, as in the 4:1 loadings, obvious plastic behaviour was observed in 

the plot starting from the 5
th

 cycle group. This indicates that the pipe was permanently 

deformed even though the UEWS point had not yet been reached. Similar responses 

were also observed in the RT and 65°C tests. It is interesting to note that this behaviour 

was only obvious in the hoop dominated loadings. 
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(c) 

 

(d) 

Figure 5.9: 1
st
 and 10

th
 cycle stress-strain plots of 4:1 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at 95°C. 
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(c) 

 

(d) 

Figure 5.10: 1
st
 and 10

th
 cycle stress-strain plots of 1:0 UEWS tests at (a) RT, (b) 65°C, 

(c) 95°C and (d) strain history responses for test at 95°C. 
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Figure 5.11: Pipe condition after UEWS test under pure axial to 2:1 hoop to axial 

loading 

5.3.7.  Comments on the plastic deformation in hoop dominated loading 

One distinct characteristic observed in the strain history plots of the hoop dominated 

(4:1 and 1:0) compared to axial dominated loading was the plastic deformation that 

occurred considerably before the UEWS point had been reached. In both the pure hoop 

and 4:1 UEWS tests, deformations were observed as early as in the 5
th

 cycle group, 

while the UEWS point was only identified later in the 9
th

 cycle group. This was 

suspected to be due to the non-linear behaviour of the matrix material, particularly in its 

shear response. To explain this finding, a simple collaborative study with Future Pipe 

Industries (FPI)  involved a neat resin cast similar to the sort used in the manufacture of 

the pipe was conducted. The cast was subjected to a tensile elastic loading (TEL) test at 

FPI lab, where the specimen was cyclically loaded to increasing load levels until failure 

occurred. The TEL could then be defined as the point at which continuous increasing 

elongation was noted. This test effectively represent a UEWS test under pure axial 

loading (0:1) but conducted on the resin cast strip. Figure 5.12 shows the „dog-bone‟ 

machined resin casting strip used in the test before and post test failure.  

0:1 0.5:1

1 

1:1 2:1 
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Figure 5.12: Machined and polished resin casting strip, before and after failure 

 

 

Figure 5.13: The stress strain plot against cycles of the TEL test conducted by FPI. 
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Figure 5.13 shows the plot of stress-strain against cycle from the TEL test. An increase 

in strain of 0.02% was measured during the step-loading which corresponds to 64MPa, 

where no cracking of the resin was observed. This was then identified as the tensile 

elastic limit. Beyond this stress level, continuous increases in strain were measured. The 

test sample then failed in the 3
rd

 cycle of the 85MPa cycle group, with a maximum 

strain at failure recorded at 4%. This indicates that the plastic deformation of the resin 

cast was already taking place much earlier than this, at about 75% of the tensile axial 

strength. This corresponds well with the plastic phenomenon observed during the hoop 

dominated loading in the UEWS tests. The results obtained in this study suggest that 

although plastic deformation was observed before the UEWS point had been reached, 

there seemed to be no permanent damage induced to the pipe wall which would cause 

the long term failure of the pipe. It is suspected that the plastic deformation observed is 

due to the matrix material‟s non-linearity. In addition, lower levels of this plastic strain 

were observed with axial dominated loading because the pipe had only been subjected 

to low strains as the highest maximum physical strain to failure was noted in pure axial 

loading at 1.5%. In contrast, a much higher strain was subjected to the pipes in the case 

of hoop dominated loadings, with both tests (4:1 and 1:0) recording final failure strains 

of over 3%, which is close to the TEL strain observed for the resin strip.  

5.4.  Post-UEWS failure modes 

This section describes the nature of the failure modes observed in the UEWS tests under 

complex stress states. The pipes tested were visually inspected and carefully examined 

noting details such as changes in the appearance of the surface of the pipe, fracture 

orientation or matrix failure. Three different types of failure mode were observed: 

tensile axial failure, weepage failure, and localized leakage failure.  

5.4.1. Tensile axial failure 

This failure mode was observed under pure axial loading (0:1) in UEWS tests where the 

pipe was subjected to considerable axial strain before a sudden and rapid elongation 

occurred due to the formation of large helical cracks. This took place after the non-
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linear behaviour illustrated in the previous section could be seen in the stress-strain 

plots. No pressure was applied to the main pipe chamber, and hence no weepage failure 

was observed. As shown in Figure 5.14 (a-b), a helical crack is evident along the fibre 

direction, extending along the middle section of the pipe. This is because the loading in 

this condition is highly dominated by the resin matrix. Since the matrix strength is 

significantly lower than that of the fibre, the pipe failed at comparatively low stresses 

due to the formation of matrix cracks normal to the fibres. Further pressurizing caused 

the cracks to propagate parallel to the winding angle, and the pipe then subsequently 

fractured. The test results also show that rupture failure happens once the axial strain 

approaches 1%. 

Observations made of the failed pipe samples show that the fibres parallel to the crack 

stayed intact, but the complementary fibres in the opposite orientation ruptured in a 

severe brush-like manner. Since only axial loading was acting on the pipe, the ruptured 

fibres exhibited marked realignment. The interior surface of the pipe was found to be 

crinkled, which is consistent with the findings of a previous study [35]. Closer 

inspection of the pipe surface away from the crack also revealed fine white striations 

parallel to the fibres. This could be attributed to tensile stress normal to the fibres, 

which cause debonding between the fibre-matrix boundary and matrix cracking 

transverse to the fibres. 

 
(a) 
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(b) 

Figure 5.14: Tensile axial failure of GRE pipe under pure axial loading showing large 

helical macro cracks running parallel to the direction of the fibres. 

 

5.4.2.  Weepage failure 

In this UEWS test investigation the weepage observed in the 0.5:1, 1:1 and 2:1 hoop to 

axial loading conditions was due to transverse matrix cracking. This can be clearly seen 

from the uniform formation of water droplets on the outer surface of the pipe. As the 

internal pressure increased, the numbers of water droplets increased and, after a 

significant build-up, the surface of the pipe became covered with water which could be 

seen to be dripping out of the test set-up. All weepage failures were observed long after 

the UEWS point had been reached. Figure 5.15 illustrates weepage failure in a test 

under the 2:1 loading condition at room temperature.  

After cleaning, the post-test examination of the tested pipes found very little evidence of 

structural damage. The only visible signs were fine white striations over the entire 

surface of the pipe parallel to the direction of the fibres. These lines were seen to grow 

in length and number towards the end of the test as pressure increased. This was later 
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accompanied by an audible cracking sound immediately before the first formations of 

water droplets were observed. These white striations are illustrated in Figure 5.16 for 

2:1 and 1:1 loadings. A close-up image of white striations is shown in Figure 5.17. 

These striations across the surface of the pipe were actually due to transverse matrix 

cracking and the subsequent damage it caused. The same failure mode has also been 

reported by other researchers [14, 19, 28, 35, 94]. It is suspected that relatively high 

transverse tensile stress acting normal to the fibres, which have a higher strain to failure 

than that of the matrix resin, resulted in the fibre-matrix interface starting to debond. 

This results in less surface area for ideal stress distribution, and therefore induces stress 

concentrations within the laminates which cause further debonding. Ultimately, the 

debonds coalesce to form a crack parallel to the fibres which then grow in the plane 

parallel to the fibres. Weepage occurs once the crack density has built up to a critical 

level so that a fluid path is possible through the pipe wall. 

  
Figure 5.15: Weepage failure of GRE pipe 
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Figure 5.16: Post inspection of the pipes after UEWS test under 1:1 and 2:1 loadings. 

Visible white striations clearly observed on the surface of the pipes indicating matrix 

crack damage. 

  
Figure 5.17: Closer look at the white striation observed which is due to transverse 

matrix crack. 

1:1 2:1 
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5.4.3. Localized leakage failure 

This mode of failure was observed for hoop dominating UEWS tests conditions under 

4:1 and 1:0 hoop to axial stress ratios. Leakage behaviour in these cases was 

significantly different from that observed previously with other stress ratios. In all tests, 

a localized leakage occurred approximately 30-50mm from the end fittings close to the 

reinforcement area with obvious peeled-off surface damage showing ragged fibre 

strands (Figure 5.18 (a)). This type of failure is thought to have been caused by the 

bending of the pipe during the test, which induced additional tensile stresses on one side 

of the pipe and compressive stresses on the other. This bending can be clearly seen in 

the image in Figure 5.18(b) which was taken during the test just before leakage 

occurred. The overall exterior surface of the pipe also showed a slight opacity, due to 

coarse striations formed parallel to the direction of the fibre reinforcement. This was 

reported by Jones [19] to be associated with delamination between layers of fibre 

wound in different orientations taking place on the compressive side of the bent pipe.  

Hoop dominated loading results in significant tensile hoop strains. This leads to an 

increase in compressive axial strain due to the movement of the inner piston installed 

inside the pipe. These strains cause large deformations in pipe diameter and decreases in 

the length of the pipe, followed by a significant rotation of fibres with respect to the 

pipe axis which leads to the increase in the winding angle. This formation resulted in 

large interlaminar shear stress in the matrix material, notably near the end fittings on the 

compressive side of the pipe bends. Such shear stress would have caused severe 

cracking in the resin matrix, allowing water to penetrate the pipe wall and subsequently 

causing leakage failure. Once this had occurred, obvious flows of water could be seen 

running down the pipe surface near the damaged area, rather than the slow droplet 

formation as seen in weepage failure.   

As the load further increased, an increasingly aggressive flow of water was observed 

from the fractures, and this was reflected in the rapid drops in the pressure contained by 

the pipe. However, no obvious whitening was observed during the pressurizing of the 

pipe. The observation of this failure mode is consistent with the findings of previous 
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work by Hull [24] and Jones and Hull [19], which found that such local leakage is a 

sign of interlaminar cracking taking place in the laminate due to high shear stress. 

 

                                  (a)                                                              (b) 

Figure 5.18: (a) The end rupture of the pipe causing localized leakage failure and (b) 

Bending of the pipe during high hoop dominating loading UEWS tests. 

 

5.5. Failure envelopes 

Figure 5.19 shows the UEWS and weepage based biaxial failure envelopes for ±55° 

GRE pipes tested at RT. Given that the UEWS point is defined as the point at which 

permanent damage is considered to start, it also can be referred to as the initial failure 

stress. Weepage failure on the other hand, is referred to as the functional failure since 

the design function of the pipe has been compromised and it can no longer contain 

pressurized fluids.  
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Overall, the failure envelopes generated from the UEWS tests show strong dependence 

on stress ratio and test temperatures. The weepage based failure envelope indicated by 

the dotted line in the plot, is approximately 8%-12% higher stress level to the UEWS 

strength. This is because further loading needs to be applied to cause the initial damage 

at the UEWS point to propagate and accumulate before reaching the specific threshold 

level at which leakage or weepage was observed. At high axial dominated loadings of 

0.5:1 and 0:1, the UEWS and weepage failure strengths are very close. This implies 

that, at these loading ratios, damage progressed rapidly from initiation to functional 

failure. 

The envelope also shows that pure hoop UEWS strength (~265MPa) is over four times 

greater than axial UEWS strength (~63MPa). This is mainly because in pure axial 

loading the load is strongly matrix dominated. As the stress ratio increases, the axial and 

hoop UEWS and weepage failure strengths also increased due to the greater loads now 

being taken up by the stronger fibre. It is shown that under what is regarded as the 

optimal pipe design loading condition for ±55° wound GRE pipe, which is at 2:1 hoop 

to axial stress, the UEWS point is at a hoop stress of 200MPa. However, the highest 

UEWS point was recorded in 4:1 hoop to axial loading ratio at 375MPa hoop stress, 

although here, the axial failure strength is slightly lower than that for the 2:1 loading 

ratio, at 93.75MPa.  

The UEWS results at RT also registered almost constant axial failure stresses from 0.5:1 

to 4:1 loading ratios. This range is thought to correspond to the change in failure 

mechanisms from transverse matrix failure dominating at pure axial loading to failure 

controlled by shear deformation of the matrix in pure hoop loading. Weepage failure 

was observed during this range of biaxial loading. In the hoop dominated loading 

region, from the 4:1 stress ratio, the axial strength began to decrease until pure hoop 

loading was reached. UEWS and weepage hoop strength decreased from 375MPa to 

265MPa and 410MPa to 300MPa respectively from 4:1 to pure hoop loading, 

registering reductions of nearly 30% and 26%. This is possibly due to the bending of the 

pipe observed in this loading condition, inducing relatively high shear stresses 

especially near the end fittings of the pipe‟s compressive side.  
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Figure 5.19: UEWS and weepage based failure envelopes at different test temperatures 

of RT. 

 

An ingenious way of looking at the stress component responses and the changes in 

damage mechanisms of GRE pipes is to plot the dimensionless change of principal 

stress components in the ply against the arctangent of hoop stress over axial stress, 

which corresponds to the stress ratio applied in the UEWS tests. Again, by applying 

equation (4.7), the principal stresses acting on the ply were first calculated. These 

values were then divided by their corresponding failure strengths, assuming that σ1
*
 = 

1000MPa, σ2
*
=75MPa and τ12

*
=45MPa to reflect the true responses.  

Figure 5.20 illustrates the variation in the principal stresses of the plies from axial 

dominated to hoop dominated loadings. In pure axial loading, stress in the direction 

transverse to the fibres clearly governed the failure of the pipe. The same can also be 

said for the case of 0.5:1 and 1:1 hoop to axial loading conditions. At the 2:1 loading 
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condition, which is regarded as the optimum working condition for ±55° wound pipe, 

failure was caused by the combined effect of transverse and shear stresses with the 

former still dominating. At 4:1 hoop to axial loading, the shear stress component 

increased rapidly and, although failure governed by both transverse and shear stresses, 

the latter is now the controlling stress component. However, from 4:1 to more hoop 

dominating loading ratios, the transverse stress component decreases and, especially at 

pure hoop loading, shear stress becomes the most dominant stress component which 

thus governs pipe failure. 
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Figure 5.20: Variation in principal stress components relative to the various biaxial 

loading ratios. 

 

Figure 5.21 (a) and (b) show the UEWS and weepage/leakage failure envelopes for 

elevated test temperatures of 65°C and 95°C respectively. These give similar shapes of 

envelope to the RT environment, although clearly indicating significant effects of 
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temperature on UEWS and weepage strength. UEWS strength is generally reduced, 

except in the 2:1 loading condition.  

Highly noticeable reductions were observed for the pure axial and pure hoop loading 

conditions, where the failure mode is matrix dominated. The UEWS results for pure 

axial loading decreased from 63MPa at room temperature to 48MPa at 65°C and only 

43MPa at 95°C, which represents an almost one-third reduction in axial strength. The 

hoop UEWS strength also registered a substantial decline with nearly 30% reduction 

from 265MPa at RT to a low 190MPa at 95°C. This finding is in good agreement with 

work by Hale [28, 192], who suggested that the resin matrix becomes softened at high 

temperatures, which significantly reduces its strength. Since the failures at stress 

conditions other than the 2:1 ratio are matrix dominated, this resulted in the greatly 

reduced UEWS strength especially under pure hoop loading and pure axial loading.  

In only one condition, at 2:1 hoop to axial loading, did the UEWS points show an 

increase in strength at room temperature from 200MPa to 215MPa for both 65°C and 

95°C tests. Similarly, weepage strengths also increased from 220MPa at RT to 240MPa 

at elevated temperatures. This is because the 2:1 loading is considered as the optimum 

loading condition for ±55° wound pipe, where most of the load is carried by the glass 

fibres and little by the resin matrix. At high temperatures, the matrix system becomes 

more ductile due to the softened matrix and hence resulted in the increase of strain to 

failure. This improved failure strain is believed to outweigh the effects of temperature 

on the elastic modulus which results in the 8% and 9% increments of UEWS and 

weepage strength respectively. This characteristic of temperature dependence leads the 

failure envelopes to shrink towards the origin and to become slight narrower to 

accommodate the increase in strength for the 2:1 loading condition.  
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(a) 

 

(b) 

Figure 5.21: UEWS and weepage based failure envelopes at different test temperatures 

of (a) 65°C and (b) 95°C. 
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This particular finding is very interesting because the UEWS procedure employed in 

this investigation is intended to offer an alternative to the current qualification 

procedure described in the ASTM D2992. However, the finding does not support the 

regression lines produced as the 2:1 test shows a degraded LCL value at 65⁰C and 95⁰C 

compared to the RT. The only explanation to this would be that the current regression 

based procedure is long term where the test sample is exposed to water for a long time 

causing ageing to laminate. The water ageing effect can have a big impact on the life 

properties of the pipe. As mentioned in the literature, Ellyin and Rohrbacher [123, 124] 

studied the behaviour of GRE laminates immersed in distilled water, at RT and 90⁰C. 

They found that immersed samples at high temperatures suffer serious degradation in 

the mechanical strength of the matrix by plasticization and reduction of the matrix-fibre 

interface strength resulting in a decreased threshold crack initiation strain. Since the 

UEWS is a short term test, samples were not affected by water ageing, hence the 

difference noted in this study. Further investigation on the effects of water ageing is 

needed in order to complete the comparison. This can be achieved by exposing pipes in 

a water bath for a predetermined time and temperature. 

Figure 5.22 gives the single UEWS and weepage based failure envelopes for ±55° 

wound GRE pipes incorporating the results at all the test temperatures. All the 

envelopes clearly demonstrate the anisotropic nature of the composite pipe, which can 

be seen from the much greater hoop UEWS and failure strength compared to strength in 

the axial direction.  

Comparisons of the failure envelopes produced in this investigation with those of 

previous studies reveal some very interesting contrasts. Most of the envelopes from 

earlier studies consider weepage as the initial failure point, whereas in this 

investigation, it is defined as the final failure point. For example, a failure envelope of a 

similar shape was reported by Soden et al [26], although much higher stress levels for 

pure hoop loading were observed. However, the initial failure envelope in that work 

was taken at the point of weepage failure whilst final failure in the form of bursting or 

pipe rupture was obtained through the use of a rubber liner to prevent weeping of fluid. 
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The present investigation hence suggests a very attractive feature of UEWS based 

failure envelopes, since it provides engineers with more realistic design limits which 

consider the initiation and progression of permanent damage in the laminates rather than 

merely being based on leakage points. 

From the failure envelopes produced, the limit in hoop strength was found to be roughly 

four times greater than the axial tensile strength. Using manual extrapolation, axial 

strength under compression was predicted to be at least twice as much as axial tensile 

strength. In order to validate this estimation, a simple compression test on similar GRE 

pipes, 100mm in diameter was conducted in accordance with British Standard, BS EN 

ISO 604:2003 [193]. The compressive failure strength obtained was then integrated 

with the current weepage/leakage based failure envelopes from the UEWS tests. Figure 

5.23 shows the resulting prediction of failure envelopes ranging from pure axial tensile 

to pure hoop loading to pure axial compression. The results confirm the anisotropic 

response of the pipe under axial tensile/compression loadings. In the UEWS test with 

pure axial tensile loading, failure strengths were determined at 68MPa, 55MPa and 

48MPa for test at RT, 65°C and 95°C respectively, while under pure axial compression 

the failure strengths of the same test temperatures were determined to be 148MPa, 

122MPa and 104MPa, respectively. The compressive failure strength also gives an 

indication that the UEWS results and failure envelopes produced seem to naturally align 

with the compression test results, hence implying a satisfactory correlation between the 

two test sets of results.  
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Figure 5.22: UEWS and weepage based failure envelopes of different test temperatures at RT, 65°C and 95°C. 
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Figure 5.23: Weepage/leakage based failure envelopes at RT, 65C and 95C plotted 

with failure points of axial compression tests (0:-1).  

 

5.6. Acoustic emissions results 
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5.6.1. Pure hydrostatic pressure (2:1 loading) 

Figures 5.24 and 5.25 show the recorded AE counts and cumulative energy against time 

(in seconds) during the UEWS test at the 2:1 loading ratio. The wall stress (MPa) 

applied in each cycle group is indicated at the top of the plots. As illustrated in Figure 

5.24, the AE counts started very early in the low pressure cycle groups. Activity then 

slowly increased as the pipe was loaded in the next cycle group with increased pressure. 

A small gap between the 3
rd

 and 4
th

 cycle groups where no AE was recorded was due to 

the AE system operation being suspended by the operator. Upon resumption, notable 

increases in AE counts were observed in the 4
th

 cycle group with pressure at 48 bars, 

which corresponds to 74MPa indicating the first significant change in AE activity. This 

is believed to be the result of the initiation of matrix cracking. In the next three cycle 

groups, AE counts more or less stabilized, which suggests a constant rate of damage 

progression. Another significant increase in AE counts was noted in the 7
th

 cycle group 

with a wall stress of 130MPa. This sudden change in AE count is likely to correspond to 

substantial transverse matrix cracking and the progression of interface debonding, 

which then possibly led to a change in damage mechanism from matrix cracking to 

delamination.   

 

Figure 5.24: Change in AE counts throughout the UEWS test under hydrostatic loading 

(2:1) at RT 
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Figure 5.25: Cumulative energy counts throughout the UEWS test under hydrostatic 

loading (2:1) at RT. 

 

Figure 5.25 shows the cumulative energy plot against time with the corresponding wall 

stress indicated at the top of the plot. The AE activities recorded suggest that damage 

initiation and progression were taking place in close proximity to transducer 2. Closer 

observation of the plot indicates that there are three sharp rises in cumulative energy, 

firstly in the 4
th

 cycle group at 74MPa wall stress, secondly at 130MPa wall stress, and 

finally at the start of the 12
th

 cycle group with a wall stress of 223MPa. These 

correspond well with the previous AE count plot, confirming the onset and progression 

of damage.  

However, in order to characterize the damage mechanisms involved, the AE signal 

durations from transducer 2 were plotted against the signal amplitude which afterwards 

generated into a 3D plot against time as given in Figure 5.26 and 5.27 respectively. 

From Figure 5.26 most of the AE events were of low duration and low/intermediate 

amplitude ranging from 45dB to 85dB as indicated in zone 1. This was attributed to the 

combination of matrix cracking and matrix-fibre debonding, and a 3D plot of these AE 
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parameters against time suggests that these damage mechanisms were acting throughout 

the test. Small numbers of higher duration AE events were noted with amplitudes from 

55dB to 80dB, as shown in zone 2. These events were suspected to be associated with 

friction between crack surface or resulting from fibre pullout [167]. The 3D plot 

illustrated in Figure 5.27 indicates that, toward the latter stages of the test, events of 

low/intermediate duration were observed at high amplitudes between 90dB and 120dB 

(zone 3), which is likely to be associated with delamination failure. All of these events 

were noted prior to weepage failure. The 3D plot also suggests the possibility that fibre 

breakage might have taken place in zone 3, indicated by the low duration of high 

amplitude AE events (115-120dB) [166], although this would have to be to a limited 

extent otherwise bursting would have happened instead of weepage. These failure 

mechanisms deduced from the AE data correspond well with the failure sequence prior 

to weepage discussed in the literature review earlier.    

 

Figure 5.26: Plot of AE duration against AE amplitude for UEWS test under 

hydrostatic loading (2:1) at RT. 
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Figure 5.27: 3D plot of AE duration versus amplitude versus time for UEWS test under 

hydrostatic loading (2:1) at RT. 

 

Figure 5.28: Plot of AE amplitudes versus time for UEWS test under hydrostatic 

loading (2:1) at RT. 
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Figure 5.28 shows the AE amplitude against time, with the wall stress applied indicated 

at the top of the plot. Low amplitude events were observed from the very early stages of 

the test, and the amplitude gradually increased until debonding failure was suspected to 

have developed at a wall stress of 130MPa. This is illustrated by the surge in AE 

amplitude in the 7
th

 cycle group in the plot. Amplitude then stabilized before a second 

sudden rise up to 120dB was observed at the start of the 10
th

 cycle group (186MPa), 

which could be attributed to the onset of delamination failure within plies. A final surge 

in amplitude was observed in the 12
th

 cycle group just before weepage failure occurred. 

This is suspected to be due to further delamination processes and fibre breakage, which 

would explain the high-amplitude signal. Overall, the AE results in this loading 

condition imply that matrix cracks were initiated and had progressed to delamination 

before the UEWS point was reached at 200MPa. 

5.6.2. Pure axial loading (0:1) 

Figure 5.29 shows the AE counts for the UEWS test under pure axial loading (0:1) 

tested at RT. Similar to the results for hydrostatic loading, AE counts were observed 

from the first cycle group at a wall stress of 9MPa, and these gradually increased with 

increasing pressure up to the 3
rd

 cycle group of 27MPa wall stress. A significant 

increase in AE counts was noted from the 4
th

 cycle group at 36MPa and this stabilized 

until the next cycle group at 45MPa. This change in AE activity is believed to 

correspond to the onset of matrix-fibre debonds and matrix cracking. The AE counts 

then increased considerably between the 6
th

 and 7
th

 cycle groups indicating the 

evolution of damage. Finally, the highest peak of AE counts was observed in the 8
th

 

cycle group as a result of tensile axial failure. 

Figure 5.30 demonstrates the cumulative energy recorded from the two probes. Most 

AE signals were captured by probe 1, suggesting that damage initiation and evolution 

were taking place closer to this probe. The plot indicates two distinct rises in cumulative 

energy, first at a wall stress of 36MPa and second in the final cycle group corresponding 

to final tensile axial failure. The change in cumulative AE energy showed a similar 

trend to the previous AE plot, confirming the onset of damage and its progression in 

pure axial loading. 
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Figure 5.29: Change in AE counts throughout the UEWS test under pure axial loading 

(0:1) at RT 

 

 

Figure 5.30: Cumulative energy counts throughout the UEWS test under pure axial 

loading (0:1) at RT. 
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Plots of AE event durations against amplitude and the 3D plot of these parameters 

against time are given in Figures 5.31 and 5.32 respectively. Since most AE events were 

detected near to transducer 1, these plots were generated from the signals gathered by 

this transducer. As shown in Figure 5.31, most of the AE events were of low duration 

and low amplitude in the range of 45dB–80dB similar to those observed with pure 

hydrostatic loading. These events can be seen in zone 1 and were normally associated 

with matrix cracking and matrix-fibre debonding.  

 

Figure 5.31: Plot of AE duration against AE amplitude for UEWS test under pure axial 

loading (0:1) at RT. 

 

Intermediate/high duration events from 60dB-75dB in zone 2 correspond to further 

debonding process and the rapid progression of matrix cracking which, according to the 

3D plot in Figure 5.32, were taking place between 6000 and 13000 seconds. This means 

that the surge observed in the cumulative energy plot during this period can now be 

attributed to this debonding process. Some of the low amplitude events of higher 

duration recorded here might also result from friction effects at the crack surfaces [170]. 

As indicated before, the final failure observed in this type of loading was tensile axial 

failure in the form of macro helical cracks, where obvious fibre breakage had taken 

Zone 1 

Zone 3 

Zone 2 

Zone 4 



                                                                                                Test results and discussion 

163 

 

place. Hence, high amplitude events between 85dB-110dB of low/intermediate duration 

indicated in zone 3 and 4 can now be attributed to delamination failure and fibre 

breakage respectively. The 3D plot generated was also in conformity, indicating that 

these events occurred right at the end of the test just before final failure. 

Finally, Figure 5.33 demonstrates the AE amplitude from transducer 1 against time. The 

first significant increase in amplitude was observed in the 4
th

 cycle group at 36MPa, 

which occurred at around 6000 seconds and is associated with matrix-fibre debonding 

and matrix cracking. The second noteworthy increase in AE amplitude was noted 

around 13,000 seconds at the start of the 6
th

 cycle group. This is suspected to be 

associated with the rapid progression of matrix cracking and the inception of 

delamination failure. The final rise in AE amplitude was observed immediately before 

tensile axial failure at 72MPa wall stress and is due to fibre breakage. According to the 

experimental findings under this loading condition, the UEWS point was identified at 

63MPa, which suggests that matrix cracking has now initiated and progressed into 

delamination failure. 

 

Figure 5.32: 3D plot of AE duration versus amplitude versus time for UEWS test under 

pure axial loading (0:1) at RT. 
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Figure 5.33: Plot of AE amplitudes versus time for UEWS test under pure axial loading 

(0:1) at RT. 

 

5.6.3. Pure hoop loading (1:0) 

Figure 5.34 illustrates the changes in AE counts against time for pure hoop loading 

(1:0) in the UEWS test at RT. The plot shows that AE activity started very early in the 

test. However, one distinct difference compared to the previous AE plots for hydrostatic 

and pure axial loading is that the number of counts did not gradually increase but 

instead remained fairly stable in distribution with no clear indication of damage 

initiation and progression. This implies that the sequence of damage mechanisms 

involved was somewhat different from those seen with 2:1 and 0:1 loadings. The AE 

counts remained stable until the start of the 7
th

 cycle group at 251MPa wall stress when 

a sudden increase in activity was noted, suggesting that significant events had occurred. 

This is believed to correspond to the buckling of the pipe after serious bending had 

taken place, especially near the reinforcement ends where stress concentrations were at 

their highest. 
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Figure 5.34: Change in AE counts throughout the UEWS test under pure hoop loading 

(1:0) at RT. 

 

 

Figure 5.35: Cumulative energy counts throughout the UEWS test under pure hoop 

loading (1:0) at RT. 
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The cumulative energy plot against time in Figure 5.35 indicates that failure was taking 

place close to probe 1. The plot shows continuous rapid increments in energy released, 

with no clear „knees‟ observed. Higher cumulative energy was also released compared 

to the hydrostatic and pure axial loading conditions, especially in the early cycle groups. 

Once buckling failure took place in the 7
th

 cycle group, fewer counts and lower energy 

releases were observed. This is because, after buckling failure, the continuing relatively 

high shear stress component caused shear deformation of the resin, which then resulted 

in secondary failure mechanisms such as matrix cracking.  

Figures 5.36 and 5.37 show AE duration versus amplitude and a 3D plot of these 

parameters against time respectively. The plots show that most of the AE events were of 

intermediate/high duration with intermediate/high amplitude ranging from 60-100dB. 

These are likely to correspond to the relatively high shear deformation of the resin 

matrix (zone 2). This is in a good agreement with the plot in Figure 5.20, from which it 

was established that the shear stress response was the most dominant stress component 

that governed delamination failure in this loading ratio.  

At about 9000 seconds into the test, massive delamination and debonding were 

generated near the end reinforcement, due to the pipe bending. This was quickly 

followed by buckling failure accompanied by the audible sound of fibre fracture on the 

outer surface of the pipe. This can be seen from the 3D plot in Figure 5.37, indicated by 

the peak of highest duration (due to friction) with a broad range of amplitudes up to 

100dB. The bending of the pipe just before buckling failure induced fibre breakage and 

this is represented by the low duration, high amplitude AE events [166]. The plot also 

shows that, once buckling failure occurred, secondary failure mechanisms followed 

represented by events of low amplitude and low/intermediate duration, which can be 

attributed to matrix cracking (zone 1), and events of high duration, low/intermediate 

amplitude (zone 3) which are normally associated with friction between crack surfaces 

[170].  
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Figure 5.36: Plot of AE duration against AE amplitude for UEWS test under pure hoop 

loading (1:0) at RT. 

 

Figure 5.37: 3D plot of AE duration versus amplitude versus time for UEWS test under 

pure hoop loading (1:0) at RT. 
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5.7. Microscopic analysis  

Samples were cut from the previously marked areas of the tested pipes where weepage 

had been observed in the UEWS test under hydrostatic loading at the 2:1 stress ratio. 

The samples were then ground and polished as detailed in Section 3.8 before a 

micrograph of the sample‟s cross-section was carefully examined. Figure 5.38 shows a 

typical micrograph of a polished sample taken using an optical microscope under 25x 

magnification. Since the sample was cut in the direction of the fibres, a distinct banded 

structure of +55 and -55 plies is clearly visible. The micrograph image shows that the 

laminate was less well consolidated in the outer layers compared to the inner layers. It 

was also apparent that the outer layers have a lower volume fraction of fibres than the 

inner. The black spots are micro-voids, which are imperfections resulting from 

entrapped gasses, which may have occurred during the curing process of the epoxy. The 

black lines are matrix cracks, which appear to have travelled through the ply thickness 

before ceasing at the nearest interface. Figure 5.39 showing a micrograph sample under 

50x magnification, shows the network of transverse matrix cracks spaced almost 

equidistantly.  

Figure 5.40 (a) and (b) shows the matrix cracking under 100x and 200x magnification 

respectively. The micrograph images confirmed that the matrix cracks propagated 

transversely in the resin matrix between fibre reinforcements. Figure 5.40(a) shows a 

matrix crack induced by a void in the middle of the ply which propagated in two 

opposite directions before reaching the next adjacent ply which at a different angle to 

the propagating crack plane. This initiation of cracks resulted from the stress 

concentration developed near the void which acted as a weak point for nucleation. 

Figure 5.40(b) illustrates the matrix cracks in the regions of high fibre content where 

cracking took place near the fibre-matrix interface. According to Jones [19], these 

regions contain many long continuous interface paths. Due to the considerable 

difference in the modulus of fibre and matrix, the strain distribution is hence not 

uniform and stressed laminates in the transverse direction cause large strain 

magnifications in the matrix regions between fibres allowing the initiation of matrix 

cracks. Once initiated, the matrix cracks propagate through the best fibre packing by 

coalesces of matrix-fibre debonding. 
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Figure 5.38: Optical micrograph of a polished weepage failure sample under x25 

magnification, showing a distinct two banded structure at +55° and -55°. Voids and 

matrix cracks are clearly visible. 

 

 

Figure 5.39: Optical micrograph of a polished sample under x50 magnification. 

Networks of cracks can be seen showing an almost equidistance spacing between 

cracks. 



                                                                                                Test results and discussion 

170 

 

 

(a) 

 

(b) 

Figure 5.40: Optical micrograph of a polished sample under (a) x100 and (b) x200 

magnification showing types of matrix cracks observed. In (a) cracking was initiated 

near the micro-void whereas in (b) cracking took place in high density fibre regions 

between fibre matrix interfaces. 
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In all samples examined, the main damage mechanism observed was matrix cracking. 

Thus, the most important parameter used in the modelling of the UEWS tests, and its 

influence in determining the stress which corresponds to damage growth, is crack 

density. Crack density is defined as the ratio of ply thickness and crack spacing. Figure 

5.41 (a-d) shows micrographs of polished samples with visible crack density 

distribution and measurements of crack spacing and ply thickness. As observed 

previously (in Figure 5.39), the cracks are spaced almost equidistantly, implying a 

specific critical value of crack density at which weepage takes place. 

From the measurements acquired, the average crack density at weepage for 2:1 loading 

was calculated to be in the range 0.60-0.65 depending on the volume fraction and 

quality of laminate consolidation. This is in close agreement with the assumed value 

used at the onset of non-linearity response in the Ea
UEWS

 during Miner‟s law modelling. 

This value, however was found to be lower than that predicted which was 

approximately at 0.95. This could be due to the existence of other types of secondary 

damages such as delamination or fibre breakage that may have precipitated the 

progression of matrix cracking, but were never accounted for in the modelling process. 

As discussed before, weepage failure takes place once a pathway for water through the 

pipe wall is established. This can only be achieved when the transverse cracks from the 

inner layer have intersected with the transverse cracks from the next successive layers, 

thus creating a continuous crack path. However, according to Jones and Hull [19], the 

existence of interlaminar cracks near ply interfaces, which link up the normally equally 

distanced transverse cracks, could speed up the onset of weepage failure. These types of 

cracks are formed due to the interlaminar shear strains developed between plies. 

However, from the micrograph samples produced, the detection of interlaminar cracks 

has proven to be very difficult. This is probably because the coalescence of transverse 

cracks with interlaminar cracks can occur anywhere along the plane parallel to the 

fibres. Polishing the micrograph samples to the exact point at which these two types of 

crack meet is almost impossible. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.41: Optical micrograph of a polished sample under x50 magnification 

showing crack density distribution and measurements of crack spacing and ply 

thickness. From the measurements, cracks density at weepage is estimated to be in the 

range of 0.6-0.65. 
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5.8. Results of damage and general lifetime modelling of UEWS 

5.8.1. Miner’s Law modelling of UEWS test 

The Miner‟s law modelling of the UEWS test was derived earlier in detail in Chapter 4. 

Table 5.2 below gives the regression line constants for static and cyclic test methods as 

described in the ASTM D2992 document, which were provided by FPI for their 

Wavistrong product used in this investigation. Figures 5.42 to 5.44 demonstrate the 

modelled stress-strain response of the UEWS tests for the hydrostatic case at RT, 65°C 

and 95°C respectively. The k value that relates the Miner‟s law expression to the growth 

of crack density within the laminates was found to vary between 2.5 - 3.0 if the closest 

fitting to the experimental results, was to be achieved.  

Table 5.2: Static and cyclic fatigue constants for GRE pipe at RT, 65°C and 95°C. 

(Units of F correspond to hoop stress in MPa and time-to-failure in hours and unit H is 

in MPa) 

  Static loading Cyclic loading 

Test temp/Const F G H J 

RT 322 0.0395 392 0.099 

65°C 392 0.0634 273 0.074 

95°C 379 0.0778 305 0.079 

 

All three plots show good agreement with the experimental results, especially in the 

early cycle groups showing a linear stress-strain response up until the UEWS. Slight 

discrepancies between the modelled and experimental results were noted at high strains, 

particularly after the UEWS point had been identified. However, these are suspected to 

be a consequence of subsequent secondary damages that may have taken place such as 

delamination or fibre breakage which was not accounted for in the derivation of the 

model. Furthermore, the linear approximation of the relationship between axial modulus 

and crack density in the model could have also contributed to the discrepancies noted. 

Overall, these results indicate that the proposed model successfully offers the possibility 

of modelling the reductions in strength and elastic properties during the UEWS tests 

with regards to both crack growth and Miner‟s Law. This can be observed to agree well 

with the measured UEWS results for the 2:1 hoop to axial stress ratio reported earlier.  
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Figure 5.42: Miner‟s law modelling of UEWS stress strain response for hydrostatic 

case with 2:1 hoop to axial loading at RT. 

 

 

Figure 5.43: Miner‟s law modelling of UEWS stress strain response for hydrostatic 

case with 2:1 hoop to axial loading at 65°C. 
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Figure 5.44: Miner‟s law modelling of UEWS stress strain response for hydrostatic 

case with 2:1 hoop to axial loading at 95°C. 

 

5.8.2. General lifetime damage model 

As been established from the test results, the failure of GRE pipes was governed by 

either transverse or shear stress, or a combination of both, acting in the ply depending 

on the loading ratio applied. The test results indicate that transverse stress controlled the 

failure of pipes in axial dominated loading, whereas high shear stress tends to dominate 

in hoop dominated loading. In the light of these findings, modelling the failure 

envelopes from the empirical equation (4.41) described in Section 4.4 was conducted in 

two sections, each describing these mechanisms of failure. This allows for better fittings 

of the curves since here the interaction constants between stress components can be 

adjusted separately according to the dominant stress component. The two sections were 

then plotted, and lines are expected to intersect at the 4:1 loading ratio as the failure 

mechanisms changed from being caused by high transverse stress in axial dominated 

loadings to high shear stress in hoop dominated loadings, as illustrated in Figure 5.20.  

Figure 5.45(a-c) shows the failure envelopes generated from this model for the UEWS 

tests at room temperature (20°C) and elevated temperatures of 65°C and 95°C. For each 
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envelope, two sets of constants, k1 and k2 were determined by fitting the model to the 

experimental UEWS based failure envelope. The values of the tensile strength in the 

longitudinal and transverse directions of the ply, the shear strength and the k1 and k2 of 

interaction constants determined are given in Table 5.3. 

Table 5.3: Strength of the ply in longitudinal, σ1* and transverse, σ2*, shear, τ12*, and 

interaction constant k1 and k2. 

Loading conditions 
Test 

temp. 
σ1*, 
MPa 

σ2*, 
MPa 

τ12*, 
MPa 

k1 k2 

Axial dominated loading 
RT 

1000 74 43.75 0.000070 0.000310 

Hoop dominated loading 1000 73 44 0.000180 0.000525 

Axial dominated loading 
65°C 

1000 74 43.75 0.000045 0.00048 

Hoop dominated loading 1000 73 44 0.000215 0.00043 

Axial dominated loading 
95°C 

1000 73 44 0.000015 0.001 

Hoop dominated loading 1000 73 44 0.000250 0.00033 

 

These values tabulated in Table 5.3 were found to give the closest overall fit to the 

experimental failure envelope based on the UEWS tests. The strength properties were 

found to be about the same for all test temperatures in order to achieve a satisfactory fit. 

However, the interaction constants, k1 and k2 varied significantly for all three test 

temperatures and loading conditions. The value of k1 which is the interactive constant 

between σ1 and σ2 was found to decrease with increases in test temperature for axial 

loading conditions, but increased for hoop dominated loading. The k2 value on the other 

hand, which describes the interaction between σ2 and τ12, increased markedly from RT 

to 95°C in the axial dominated loading region, but decreased in hoop dominated 

loading.  

Figure 5.46 shows comparisons between the modelled and the experimental UEWS 

based failure envelopes. Overall, reasonably good agreement was achieved although 

slight discrepancies were noted at high axial dominated loadings of 65°C and 95°C, 

particularly at pure axial loading, 0:1. This is probably because at elevated temperatures 

the strength of the matrix material degraded, hence resulting in lower UEWS failure 

points. However, this effect was not accounted for in determining the interaction 

constants of k1 and k2, thus yielding the discrepancies. 
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Failure envelope at 95°C
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Figure 5.45: Predicted failure envelopes at (a) RT, (b) 65°C and (c) 95°C generated 

from two sections representing the dominant failure mechanisms caused by high 

transverse stress (blue line) and high shear stress (brown line). 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

6.1. Conclusions 

This investigation looks at the UEWS test as a possible alternative for the requalification 

of GRE pipes instead of those described in the ASTM D2992 document. GRE pipe of 2 

metres long and 200mm in diameter were subjected to multiaxial UEWS tests at 

different temperatures, yielding numbers of interesting findings. In this study, the ply 

properties of GRE pipes were carefully calculated using the modified Halpin-Tsai and 

laminate theory was then applied to predict the mechanical properties of the pipes. The 

results were then compared with engineering values provided by the pipe manufacturer 

and were found to be in close agreement.  

A novel UEWS testing rig capable of independently applying static and cyclic pressure 

tests under various combinations of hoop to axial stress ratio at temperatures up to 95⁰C 

was developed. The UEWS tests were then conducted under combinations of internal 

pressure and axial load to produce six different stress ratios, ranging from pure axial 

loading to pure hoop loading at room temperature. The tests were later repeated at 

elevated temperatures of 65⁰C and 95⁰C to investigate the effects of high temperature on 

the performance of GRE pipe.  

The degradations in the axial and hoop moduli of the pipes during the hydrostatic 

UEWS tests was investigated using simple pull and ring tests on a range of  UEWS 

samples from an undamaged (virgin) pipe to intermediate stages of damage (50% and 

100% UEWS) to weepage sample. The results indicate that the axial modulus was 

reduced by a total of over 26% from virgin to weepage sample, whereas the hoop 

modulus declined by 22%. It was therefore concluded that the axial modulus is more 

sensitive than the hoop modulus to the effects of crack density. 
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From the UEWS results plotted, all test results demonstrated a linear elastic range at low 

stress levels. The UEWS was then identified when the deviation in strain between the 

first and the last cycle became more severe, at which point the stress-strain relationship 

became non-linear. As the load further increased, the non-linearity became more 

pronounced. This suggests the growth of damage which subsequently reaches a critical 

level leading to weepage/leakage failure. It was also observed that the UEWS stress-

strain response is strongly dependent on the stress ratio and test temperature applied. 

The early non-linearity noted in hoop dominated loading was established as the result of 

the nonlinear behaviour of matrix material at high strain. 

Three distinct failure modes were observed: tensile axial failure in pure axial loading, 

weepage failure in 0.5:1, 1:1 and 2:1 loadings, and localized leakage in high hoop 

dominated loadings (4:1 and 1:0). Transverse matrix cracks govern the failure observed 

at pure axial, 0.5:1, 1:1 and 2:1 loading, while the shear deformation of the matrix 

control failure at high hoop dominated loading. The failure modes observed are in good 

agreement with those reported in earlier studies.  

Full tensile-tensile UEWS and leakage based failure envelopes were developed at a 

range of temperatures from 20°C (RT) to 95°C. Both show a strong dependence on 

stress ratio and test temperature. The UEWS hoop strength was over four times greater 

than that of pure axial strength. The UEWS failure strength at elevated temperatures was 

generally reduced except for the optimum loading condition of 2:1 where strength 

increased. Considerable reductions were noted in pure axial and pure hoop loading 

where failure is matrix dominated. This is due to the resin matrix becoming softened at 

high temperatures, which considerably reduces its strength. In 2:1 loading on the other 

hand, where load is fibre dominated, the UEWS and weepage strength were enhanced by 

7% and 8% respectively due to the improved ductility and hence the strain to failure of 

the matrix material.  
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The weepage failure envelopes were noticeably higher by about 8-12% than the UEWS 

failure strength. The UEWS based failure envelope suggests a very attractive feature, 

since it provides pipe engineers with more realistic design limits which consider the 

initiation and progression of permanent damage in the laminates rather than merely 

being based on leakage points as presented in previous studies. 

Acoustic emission measurements were conducted during the UEWS tests under 

hydrostatic, pure axial and pure hoop loadings at room temperature (RT). The results for 

both hydrostatic and pure axial loadings indicate that matrix cracks were initiated and 

possibly had progressed to delamination immediately before the UEWS point was 

reached at 200MPa of hoop stress and 63MPa of axial stress respectively. However, no 

clear damage initiation and progression was observed for pure hoop loading. Almost 

stable AE measurements were recorded, which is thought to be due to relatively high 

shear stress. Significant AE events were only noted when the bending of the pipe just 

before buckling induced massive delamination and debonding failure followed by fibre 

fracture on the outer surface of the pipe.  

As specified earlier, the objectives of the AE measurements were to characterise damage 

mechanisms involved at different stages of UEWS tests and to search for correlations 

between AE activity and the UEWS results. Through the analysis, the AE results do give 

good accounts on the states of damage mechanisms and progressions involved based on 

the distinct AE signatures throughout the test. The results hence suggest that AE can be 

used as the monitoring tool to provide an early-warning system for GRP pipe failure. 

Nevertheless, the question remains whether the method can actually be used to 

determine exactly at what state of damage mechanism, the UEWS point is considered to 

be reached. 

The corresponding weepage crack density was determined through microscopic study by 

examining the post-test microstructure of the pipe wall. Transverse matrix cracks were 

observed to propagate through the ply thickness, stopping at the adjacent ply. The matrix 
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cracks were found spaced equidistantly, and the crack density at weepage was calculated 

to be in the range of 0.7-0.8, which is slightly lower than the predicted value of 0.8-1.0. 

Miner‟s law modelling of the stress-strain response of the UEWS tests shows a good 

agreement with the experimental results, particularly in the early cycle groups at lower 

levels of strain. Slight discrepancies were noted at higher strain after the UEWS point 

had been reached, possibly due to other damage modes such as delamination and fibre 

breakage occurring that were not accounted for in the model.  It has also been shown 

that cyclic rather than static loading dominates the UEWS test response. Finally, a 

general lifetime damage model was developed, and reasonably good agreement with the 

experimental envelopes was achieved. 

As this study has demonstrated, the UEWS approach offers an attractive alternative to 

the existing procedures in ASTM D2292 for re-qualifying GRE pipes. It is envisaged 

that, with further study, the UEWS procedure may possibly form the basis of a full 

qualification programme. However, this will only be possible if the procedure can be 

interpreted in terms of damage progression and related to the hydrostatic design basis 

(HDB) currently acquired from the ASTM D2992 regression procedure. 

6.2. Suggestions for future work 

Improvements of the test rig developed for the UEWS test are possible. Currently, the 

operator has to conduct the test for over six hours, since the operation of loading and 

unloading of pressures was handled manually. In order to improve the operation, the 

two-ball valves used in the test rig could be replaced with solenoid valves. A digital 

input module is required in the control system developed to enable the feeding of the 

input pressure needed during the UEWS tests, so that the opening and closing of the 

solenoid valves could be controlled automatically. This would allow the entire procedure 

of testing and data collection to be conducted automatically. 
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The results of the UEWS tests indicate that UEWS strength at high temperatures 

generally degraded except for pure hydrostatic loading where it is increased. However, 

this appears to contradict with the findings of the regression based procedure described 

in ASTM D2992, which shows a reduced LCL value at 65°C and 95°C compared to RT. 

Considering the procedure is a long term rupture test, ageing of laminates could affect 

the lifetime of the pipe which has not been accounted for in the UEWS test. Hence 

further investigation of UEWS tests should be performed on aged pipes, which can be 

achieved by exposing pipe samples in a water bath for a certain time and temperature. 

As discussed in detail for the hoop dominating UEWS results, the pipes failed due to 

high stress concentrations near the end fittings which resulted in the bending of the pipes 

followed by buckling failure. In order to investigate the true nature of the UEWS and 

final failure at high hoop loading, the end fittings and the pipe‟s reinforcement end 

would probably have to be redesigned to minimise the effects of stress concentrations. 

Smaller and shorter test samples could minimise these stress concentrations and avoid 

buckling failure, but it would have to be ensured that this would reflect the true nature of 

failure in real commercially available pipe products.  

Further investigations into the effect of winding angles on the UEWS could provide 

interesting findings. GRE pipes at higher winding angles such as ±63° and ±75° might 

be expected to yield lower UEWS points in axial dominated loading but could provide 

better performance in high hoop loadings. In contrast, pipes with lower winding angles 

would be expected to have higher UEWS strength in axial dominated loading. Such 

results would provide engineers with more accurate design limits to improve the 

performance of specific wound pipes to suit particular loading conditions.  

The Miner‟s law model developed here has proved to provide good prospects for 

modelling the UEWS stress-strain response with respect to increasing crack density. 

However, the modelling is dependent on the regression constants used, which means that 

it is only applicable to the hydrostatic loading condition since no regression data are 
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available for non-hydrostatic loading. GRE pipe manufacturers must qualify their 

products based on the procedures elucidated in ASTM D2992, which involve conducting 

only static and cyclic tests under hydrostatic loading from RT up to 95⁰C. A second, 

more general model needs to be developed to overcome this problem. 
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APPENDICES 
Appendix A: Engineering drawing for adhesive bonded end fitting 
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Appendix B: Engineering drawing for mechanical end fitting 
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Appendix C: Engineering drawing for pressure intensifier/reducer 
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