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Bejan’s Heatlines and Masslines
for Convection Visualization and
Analysis
Heatlines were proposed in 1983 by Kimura and Bejan (1983) as adequate tools for
visualization and analysis of convection heat transfer. The masslines, their equivalent to
apply to convection mass transfer, were proposed in 1987 by Trevisan and Bejan. These
visualization and analysis tools proved to be useful, and their application in the fields of
convective heat and/or mass transfer is still increasing. When the heat function and/or the
mass function are made dimensionless in an adequate way, their values are closely
related with the Nusselt and/or Sherwood numbers. The basics of the method were es-
tablished in the 1980(s), and some novelties were subsequently added in order to increase
the applicability range and facility of use of such visualization tools. Main steps included
their use in unsteady problems, their use in polar cylindrical and spherical coordinate
systems, development of similarity expressions for the heat function in laminar convective
boundary layers, application of the method to turbulent flow problems, unification of the
streamline, heatline, and massline methods (involving isotropic or anisotropic media),
and the extension and unification of the method to apply to reacting flows. The method is
now well established, and the efforts made towards unification resulted in very useful
tools for visualization and analysis, which can be easily included in software packages
for numerical heat transfer and fluid flow. This review describes the origins and evolution
of the heatlines and masslines as visualization and analysis tools, from their first steps to
the present. �DOI: 10.1115/1.2177684�
1 Introduction

When dealing with fluid flow, streamlines are well established
as the most adequate and very useful tools to visualize two-
dimensional incompressible flows from a long time ago �cf. �1��,
and they are present in virtually any study or textbook on fluid
dynamics. In a way similar to the streamlines, the heat flux lines
are well established to visualize two-dimensional conductive heat
transfer in isotropic media �2�. In this case, the heat flux lines are
normal to the isotherms, and each one can be easily obtained from
the other, and both are routinely used when dealing with conduc-
tive heat transfer.

When dealing with convective heat transfer, the isotherms are
not the most adequate tools for visualization and analysis, and the
heat flux lines are not necessarily perpendicular to them. Taken
into consideration the total energy flux �enthalpy advection and
heat diffusion�, the heat flux lines, referred to as the heatlines, can
also apply. The heat function and heatline concepts and formula-
tion were originally introduced by Kimura and Bejan �3� in the
1980�s�, and they appeared for the first time in a book on convec-
tive heat transfer by Bejan in 1984 �4�. Before that, convective
heat transfer processes were analyzed using mainly the isotherms.
But, the adequate visualizing tools in fluid dynamics are the
streamlines and not the isobars, the same occurring in the field of
convective heat transfer, where the adequate visualizing tools are
the heatlines and not the isotherms.

A natural extension of the method was made to the field of
convective mass transfer, through the introduction of the mass
function and massline concepts by Trevisan and Bejan �5� in
1987.

If the heat function and/or the mass function are made dimen-
sionless in an adequate way, their numerical values are closely
related to the overall Nusselt and/or Sherwood numbers. In this
Transmitted by Assoc. Editor E. Dowell.
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way, they are very useful tools not only for visualization purposes
but also for the analysis of the overall heat and/or mass transfer
processes.

Once established the heatlines and masslines have been used as
visualization and analysis tools of many and varied convective
heat and mass transfer problems �3,5–13�. Some studies using the
heatlines include thermomagnetic convection in electroconductive
melts �14,15�. The heatline concept was also used for visualization
and analysis of unsteady convective heat transfer, assuming that,
at a given instant of analysis, the steady state version of the energy
conservation equation is satisfied, as set forth by Aggarwal and
Manhapra �16,17�.

Application of the method to polar cylindrical coordinate sys-
tems was made firstly by Littlefield and Desai �18� to study the
natural convection in a vertical cylindrical annulus, and later ap-
plied to some convection problems in circular annuli �19–21�. In
the referred studies, the visualization using the heatlines is made
in the r-� plane �19,20�, or in the r-z plane �18,21�. The method
was also applied to polar spherical coordinate systems by Chatto-
padhyay and Dash �22�, using the r-� plane for visualization of
the heatlines, where � is the azimuthal angle.

The heatlines were also applied to some forced convection
boundary layers, both in open �23� or fluid-saturated porous media
�24�, by developing the similarity expressions for the heatfunction
corresponding to different heating or cooling wall conditions.
Similarity expressions for the heat function were also obtained for
laminar natural convection boundary layers adjacent to a vertical
wall, considering different heating or cooling wall conditions �25�.

The heatline concept was also applied when dealing with heat
transfer in turbulent flows through the consideration of the turbu-
lent fluxes into the heat function differential equation �26�. If the
heat transfer problem under analysis occurs in the turbulent
boundary layer near a wall, the heatline concept can be applied in
a simpler way, by using an effective diffusion coefficient for heat,
which includes the eddy diffusivity effect of the turbulent trans-
port �27�.
The heatline and massline methods evolved in a natural way,
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and they appeared in a mature form in convection books, both in
open fluid domains �27,28� and in porous domains �29�. In the
recent book on convection heat transfer by Bejan �28�, the method
is used extensively. Once the method was established, some nov-
elties were introduced in order to enlarge its applicability range
and to ease its inclusion into computational fluid dynamics �CFD�
codes and packages. The unification of the streamline, heatline,
and massline methods, which are treated in a common way, was
made by Costa �30�, thus resulting in a general tool that can be
easily included in CFD software codes and packages. This in-
cludes, for the first time, the possibility of variable diffusion co-
efficient for the function used for visualization purposes. Some
controversy was associated with the treatment of such diffusion
coefficients �10�, but the adequate treatment is now well estab-
lished �31�. The unified version of the streamline, heatline, and
massline methods to apply to convective heat and mass transfer in
anisotropic fluid-saturated porous media was also derived by
Costa �32�, which is of crucial importance when dealing with
many natural or manufactured products, and it is a valuable tool
that can be easily included in CFD codes and packages.

The last remarkable improvement of the method was made in
order to apply it to reacting flows. As the method applies to
divergence-free problems, special care should be taken when se-
lecting the conserved variables to consider, without source terms
in the governing differential equations. This was done by Mukho-
padhyay et al. �33,34�, by selecting as variables the normalized
elemental mass fractions and the total enthalpy �formation en-
thalpy plus sensible enthalpy�, with very encouraging results.

In what follows, presentation is made of the author’s vision on
the most important issues related with the development and appli-
cation of the heatline and massline methods, and some illustrative
examples of their application are also presented. A visit is made to
the references involving the heatlines and masslines, both in what
concerns new developments of the method or just its application.
This is a work started before by Costa �35�, but that, fortunately,
needs to always be updated.

2 Origins of the Heat Function and Heatlines

2.1 Stream Function and Streamlines. The stream function
and the streamlines are very useful tools when dealing with 2D
fluid flow visualization and analysis, or even when dealing with
2D fluid flow calculations using a vorticity-stream function
formulation.

For such situations, the mass conservation equation for an in-
compressible fluid reads

�

�x
��u� +

�

�y
��v� = 0 �1�

Noting that �u and �v are the mass fluxes in the x and y direc-
tions, respectively, the stream function ��x ,y� can be introduced
and defined through its first-order derivatives as

��

�y
= Jm,x = �u �2a�

−
��

�x
= Jm,y = �v �2b�

Equation �1� is identically obtained evaluating and invoking the
equality of the second-order crossed derivatives of ��x ,y�.

The differential of the stream function ��x ,y� can be expressed
as

d� =
��

�x
dx +

��

�y
dy = − Jm,ydx + Jm,xdy �3�
or
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d� = Jm · ndA �4�

where n is the outward normal of segment ds crossed by the flux
Jm, and dA=ds�1, as shown in Fig. 1 for a 2D system with a unit
depth. If there is no mass flow crossing segment ds it is d�=0,
and a line of constant �, a contour plot of �, is thus a line that is
not crossed by mass. Mass flows between such � constant lines
and, over such lines, it flows only tangentially to them. The �
constant lines, the streamlines, thus define well bordered corri-
dors, of impermeable walls, where mass flow occurs, which are
very useful tools for flow visualization and analysis. As given by
Eq. �4�, the difference between the values of � corresponding to
two lines of constant � is the mass flow rate that, by unit depth,
flows between such lines.

Assuming that ��x ,y� is continuous to its second-order deriva-
tives, Eq. �2a� can be differentiated with respect to y and Eq. �2b�
can be differentiated with respect to x, and the results added to
give

0 =
�2�

�x2 +
�2�

�y2 + � �

�x
��v� −

�

�y
��u�� �5�

This is the second-order partial differential equation �a Poisson
equation�, from which the stream function field is obtained. Equa-
tion �5� can be solved once the flow field is known, evaluated
using any available technique, a situation for which the source
term of Eq. �5� �the symmetric of one-half of the vorticity� is
already known, and, in this case, the stream function field is used
to obtain the streamlines, the useful tools for 2D flow visualiza-
tion and analysis. This same equation can, however, be solved as
part of a vorticity-stream function formulation �36�, and the
stream function field is a primary field from which the velocity
field can be obtained. In this case, from the stream function field it
can also be directly obtained the streamlines used for flow visu-
alization and analysis.

The streamlines have been used as visualization and analysis
tools for a long time, and they are present in virtually every 2D
flow study.

2.2 Heat Flux Lines for Heat Conduction Visualization.
The analog of the stream function was also developed to apply to
pure conduction heat transfer �2�. The steady energy conservation
equation for a 2D situation without source term, and where only
heat conduction in an isotropic medium of constant thermal con-
ductivity is present, reads

0 =
�

�x
�k

�T

�x
� +

�

�y
�k

�T

�y
� �6�

Identifying the energy fluxes as −k��T /�x� and −k��T /�y�, in the
x and y directions, respectively, the stream function for heat trans-
fer, �Q�x ,y�, can be defined through its first-order derivatives as

��Q = Je,x = − k
�T

�7a�

Fig. 1 Elementary segment ds=	dx2+dy2 crossed by the
mass flux Jm
�y �x
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−
��Q

�x
= Je,y = − k

�T

�y
�7b�

Equation �6� is identically obtained by adding the second-order
mixed derivatives of �Q�x ,y�.

Assuming that �Q�x ,y� is continuous to its second-order deriva-
tives, Eq. �7a� can be differentiated with respect to y and Eq. �7b�
can be differentiated with respect to x, and the obtained results
added to give

0 =
�2�Q

�x2 +
�2�Q

�y2 �8�

From this Laplace equation one obtains the �Q�x ,y� field and,
from it, the heat flux lines for visualization and analysis. Heat
flows in such a way that the constant �Q�x ,y� lines, the contour
plots of �Q�x ,y�, are not crossed by heat.

For an isotropic medium of constant thermal conductivity, tak-
ing Eqs. �7a� and �7b�, it is

grad T · grad �Q = 0 �9�

that is, the heat flux lines are perpendicular to the isotherms, as
illustrated in Fig. 2. Temperature acts like the potential for heat
transfer, and heat flows as the current imposed by that potential.

In this way, the visualization and analysis of conduction heat
transfer can be made using the isotherms, as the heat flux lines can
be easily obtained or visualized as being perpendicular to the iso-
therms. However, when the medium is anisotropic or of variable
thermal conductivity, or convection is present, the heat flux lines
are not perpendicular to the isotherms, and new heat flux lines, the
heatlines, need to be obtained following another way.

2.3 Heat Function and Heatlines. The heatlines were first
proposed by Kimura and Bejan �3� in 1983, as the adequate tools
for visualization and analysis of 2D convection heat transfer,
through an extension of the heat flux line concept to include the
advection terms.

The steady energy conservation equation for a 2D problem,
without source term, reads

�

�x
��ucp�T − T0� − k

�T

�x
� +

�

�y
��vcp�T − T0� − k

�T

�y
� = 0

�10�

where T0 is the reference temperature used for enthalpy referenc-
ing, and the constant pressure specific heat is used for gases or
replaced by the specific heat, c, for incompressible liquids. In Eq.
�10� are identified the energy flux components

Je,x = �ucp�T − T0� − k
�T

�11a�

Fig. 2 Perpendicularity between the isotherms and the heat
flux lines in heat conduction
�x
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Je,y = �vcp�T − T0� − k
�T

�y
�11b�

and the heat function, H�x ,y�, can be defined through its first-
order derivatives as

�H

�y
= Je,x = �ucp�T − T0� − k

�T

�x
�12a�

−
�H

�x
= Je,y = �vcp�T − T0� − k

�T

�y
�12b�

Equation �10� is obtained identically by adding the second-order
crossed derivatives of H�x ,y� obtained from Eqs. �12a� and �12b�,
assuming that it is a continuous function to its second-order
derivatives.

Similarly to what was explained for the streamlines and for the
heat flux lines, a line of constant H, a contour plot of H, is a line
that is not crossed by energy that is being transferred due to the
combined effects of conduction and convection. The region be-
tween two lines of constant H behaves as a well bordered channel
for energy transfer, or as a thermal energy tube. The difference
between the values of H corresponding to two lines of constant H
is the total energy flow rate that, by unit depth, flows between
such lines. In this case, the isotherms and the heatlines are not
perpendicular, and isotherms alone are only a poor tool for heat
transfer visualization and analysis. When dealing with 2D fluid
flow, it is not the isobars but the streamlines that are the best tools
for visualization and analysis, as fluid flows not in the direction
perpendicular to the isobars.

Similarly, when dealing with 2D convection heat transfer, it is
not the isotherms but the heatlines that are the best tools for visu-
alization and analysis, as energy does not flow in the direction
perpendicular to the isotherms. Isotherms are still important as
identifying the temperature levels in the domain, but they are poor
and inadequate for heat transfer visualization and analysis.

From Eqs. �12a� and �12b� one obtains the second-order deriva-
tives of the heat function, which can be added for a medium of
constant thermal conductivity, to give the second-order differen-
tial equation �a Poisson equation� whose solution gives the heat
function field

0 =
�2H

�x2 +
�2H

�y2 + 
 �

�x
��vcp�T − T0�� −

�

�y
��ucp�T − T0���

�13�

The boundary conditions for this equation are obtained from the
integration of the expressions for the H derivatives as given by the
definition equations, Eqs. �12a� and �12b�. For example, for a
rectangular domain, over a vertical boundary the values of H are
specified, using Eq. �12a�, as

H�xB,y� = H�xB,yref� +�
yref

y ��ucp�T − T0� − k
�T

�x
�

xB

dy �14�

yref being a point where the H value is known by any way. It
should be noted that, given the way in which the heat function is
defined, through its first-order derivatives, only the differences in
the H values are important and not the H level itself. If the vertical
boundary under analysis is such that the velocity is zero there, Eq.
�14� simplifies to give

H�xB,y� = H�xB,yref� +�
yref

y �− k
�T

�x
�

xB

dy �15�

The reference temperature, T0, used in the H definition equa-
tions, Eqs. �12a� and �12b�, arises from the fact that the energy
fluxes include two distinct components: Fourier conduction and

enthalpy flow. As the enthalpy property needs to be referenced to
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a given state, this is chosen as the one corresponding to tempera-
ture T0. Selection of T0 is arbitrary, but it has an influence on the
obtained heatlines, given that different values of T0 lead to differ-
ent slopes of the H field, as given by Eqs. �12a� and �12b�. The
value of T0 is irrelevant in what concerns the energy conservation
equation; once invoked the mass conservation equation, the terms
involving T0 vanish in the energy conservation equation. This is
different, however, in the differential equation governing the H
field, Eq. �13�, whose source term depends on T0. In order to solve
this problem, a unified treatment has been proposed by Bejan �27�,
by setting T0 as the minimum temperature level in the domain
under analysis.

The first heatline patterns were published by Kimura and Bejan
�3� for the natural convection problem in a differentially heated
square enclosure presented in Fig. 3, whose top and bottom
boundaries are perfectly insulated. Some of such results, in the
form of heatlines are presented in Fig. 4�a� for RaY =140 and in
Fig. 4�b� for RaY =1.4�105, where RaY =g��TH−TC�Y3 / ���� is
the Y-based Rayleigh number.

In Fig. 4�a�, for a low Rayleigh number, flow intensity is very
low, and heat transfer occurs mainly by conduction. Isotherms are
nearly vertical, and the heatlines are nearly horizontal, as expected
for a conduction dominated problem. It is also observed that heat
leaves the hot wall in an almost uniform way, and reaches the cold
wall also in an almost uniform way. However, for a high Rayleigh
number, as presented in Fig. 4�b�, the flow intensity is observed
and the isotherms are far from the vertical form. It is observed that
heat transfer is more intense at the lower-left and upper-right re-
gions of the enclosure’s vertical walls, and that their upper-left
and lower-right regions only have a poor contribution for heat
transfer. This is typical for this problem, as shown by the local
Nusselt number results presented by Costa �9�. In this case, the
heatlines are the adequate tools for visualization and analysis of
the heat transfer process, giving well defined corridors where en-
ergy transfer occurs from the hot wall towards the cold wall. Near
the vertical walls, where velocity is low and conduction is domi-
nant, the heatlines have a markedly horizontal profile. When deal-
ing with heat transfer visualization and analysis, the heatlines
show thus to be the effective tools to do that, and the picture given
by the isotherms is only of minor relevance for that.

For a problem like the natural convection in a differentially
heated square enclosure, the overall Nusselt number is usually
defined as

Nu =
Q̇convection

Q̇conduction

=

�
0

Y �− k
�T

�x
�

x=0
dy

kY�TH − TC�/Y
�16�

Making the heat function dimensionless as H*=H / �k�TH−TC��,
and taking into account Eq. �15�, Eq. �16� can be expressed as

Nu = H*�xB,Y� − H*�xB,yref� �17�

If yref=0 and it is set that H*�xB ,yref�=0, the overall Nusselt num-
ber becomes equal to the maximum value of the heat function, an

Fig. 3 Physical model and geometry for the work of Kimura
and Bejan †3‡ „reprinted with permission from †3‡…
important result when visualizing and analyzing heat transfer pro-
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cesses using the heat function and heatlines. It should be referred
that for a situation where pure conduction heat transfer is present
and fluid flow subsides, the heat function coincides with the
stream function for heat flow, �Q�x ,y�, as explained in Sec. 2.2.

3 Mass Function and Masslines
The concept of heat function and heatlines was extended to the

field of convective mass transfer by Trevisan and Bejan �5� in
1987, thus coining the terms of mass function and masslines.

The 2D steady mass conservation equation for a given particu-

Fig. 4 Heatlines in the work of Kimura and Bejan †3‡, for Pr
=7 and „a… Ra=140 and „b… Ra=1.4Ã105

„reprinted with permis-
sion from †3‡…
lar chemical species i, without source term, reads
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�

�x
��u�Ci − Ci,0� − �Di

�Ci

�x
� +

�

�y
��v�Ci − Ci,0� − �Di

�Ci

�y
� = 0

�18�

where Ci,0 is the minimum value of the mass concentration of
component i, similarly to what was made for the reference tem-
perature T0 in Eq. �10�. Identifying the mass flux components of
species i as

Jmi,x
= �u�Ci − Ci,0� − �Di

�Ci

�x
�19a�

Jmi,y
= �v�Ci − Ci,0� − �Di

�Ci

�y
�19b�

the mass function for this particular chemical species, Mi�x ,y�,
can be defined through its first-order derivatives as

�Mi

�y
= Jmi,x

= �u�Ci − Ci,0� − �Di
�Ci

�x
�20a�

−
�Mi

�x
= Jmi,y

= �v�Ci − Ci,0� − �Di
�Ci

�y
�20b�

The second-order derivatives of Mi�x ,y� can be obtained from
Eqs. �20a� and �20b�, and the results added, for a medium with
constant �Di, to give the second-order partial differential equation
�a Poisson equation� from which the mass function field is evalu-
ated

0 =
�2Mi

�x2 +
�2Mi

�y2 + 
 �

�x
��v�Ci − Ci,0�� −

�

�y
��u�Ci − Ci,0��� .

�21�

This equation is formally similar to Eq. �13�, obtained for the heat
function. The boundary conditions for the mass function are set in
a way similar to that explained for the heat function.

The first results involving the mass function and the masslines
were presented by Trevisan and Bejan �5� for the double-diffusive
natural convection problem in a square enclosure subjected to
constant wall heat and mass fluxes. Some of these results are
presented in Fig. 5. As referred to in the paper of Trevisan and
Bejan �5�, the particular reference value Ci,0 was taken as the
enclosure-averaged quantity �measured at the center of the enclo-
sure�, in search of centrosymmetric massline patterns. In this case,
as the wall mass flux is constant, the masslines are equally spaced
at the left and right vertical walls of the enclosure. Once again,
and similarly to what happened with the heatlines for heat transfer
visualization, it is observed that the masslines define well bor-
dered corridors where mass flows, and that they are the effective
tools for mass transfer visualization and analysis, and not the iso-
concentration lines.

Also in this case, the mass function can be made dimensionless
in such a way that its maximum value equals the overall Sher-
wood number relative to the particular chemical species under
analysis.

As a limiting situation, consider the case when the fluid is a
single component medium, for which there is no mass diffusion,
the mass conservation equation reduces to the global mass con-
servation equation, Eq. �1�, the mass function is the same as the
stream function, and the masslines are the same as the streamlines.

4 Heat Function and Heatlines in Polar Coordinate
Systems

4.1 Cylindrical Coordinate Systems. The mass conservation
equation in the cylindrical coordinate system, when the phenom-

ena under interest occur in the r-� plane, reads �37�
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1

r

�

�r
��rvr� +

1

r

�

��
��v�� = 0 �22�

and the corresponding energy conservation equation reads

1

r

�

�r
��rvrcp�T − T0�� +

1

r

�

��
��v�cp�T − T0��

=
1

r

�

�r
�kr

�T

�r
� +

1

r

�

��
� k

r

�T

��
� �23�

This last equation can be rewritten as

1

r

�

�r
��rvrcp�T − T0� − kr

�T

�r
� +

1

r

�

��
��v�cp�T − T0� −

k

r

�T

��
� = 0

�24�

From Eq. �24� it can be identified the energy fluxes in the r and �
directions, and the heat function H�r ,�� can be defined through its
first-order derivatives as

�H
= �rvrcp�T − T0� − kr

�T
�25a�

Fig. 5 Masslines for the double-diffusive natural convection
problem in a square enclosure subjected to constant wall heat
and mass fluxes for Ra=3.5Ã105, Le=1, Pr=7 and „a… N=−4
and „b… N=−0.9 „reprinted with permission from †5‡…
�� �r
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−
�H

�r
= �v�cp�T − T0� −

k

r

�T

��
�25b�

Evaluating the second-order crossed derivatives of H�r ,�� from
Eqs. �25a� and �25b�, Eq. �24� is identically obtained.

If, instead, the plane of interest is the r-z plane, the mass con-
servation equation reads �37�

1

r

�

�r
��rvr� +

�

�z
��vz� = 0 �26�

and the corresponding energy conservation equation reads

1

r

�

�r
��rvrcp�T − T0�� +

�

�z
��vzcp�T − T0��

=
1

r

�

�r
�kr

�T

�r
� +

�

�z
�k

�T

�z
� �27�

which can be rewritten as

1

r

�

�r
��rvrcp�T − T0� − kr

�T

�r
� +

�

�z
��vzcp�T − T0� − k

�T

�z
� = 0

�28�

From this last equation it can be identified the energy fluxes in the
r and z directions, and the heat function H�r ,z� can be defined

Fig. 6 Streamlines „right… and heatlines „left…
gravitational convection in concentric and ecc
number „reprinted with permission from †19‡…
through its first-order derivatives as
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�H

�z
= �rvrcp�T − T0� − kr

�T

�r
�29a�

−
1

r

�H

�r
= �vzcp�T − T0� − k

�T

�z
�29b�

Evaluating the second-order crossed derivatives of H�r ,z� from
Eqs. �29a� and �29b�, Eq. �28� is identically obtained.

The second-order differential equation, from which the H�r ,��
or the H�r ,z� field is evaluated, is obtained adding the second-
order derivatives of H obtained from the first-order derivatives
defining it, similarly to what was made for the Cartesian coordi-
nate system.

Results, in the form of streamlines and heatlines in the r-�
plane, were obtained by Ho and Lin �19,20� for air/water layers
enclosed in horizontal annuli, some of which are presented in Fig.
6.

Results, in the form of streamlines and heatlines in the r-z
plane, were obtained by Littlefield and Desai �18� and by Ho and
Lin �21� for a vertical cylindrical annulus.

4.2 Spherical Coordinate Systems. When the system under
analysis is better described using the spherical coordinate system,
in the r-� plane, where � is the azimuthal direction, the mass

otherms are the dashed lines… for the thermo-
tric annuli, for different values of the Rayleigh
„is
en
conservation equation reads �37�
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1

r2

�

�r
��r2vr� +

1

r sin �

�

��
��v� sin �� = 0 �30�

and the energy conservation equation reads

1

r2

�

�r
��r2vrcp�T − T0�� +

1

r sin �

�

��
��v� sin �cp�T − T0��

=
1

r2

�

�r
�r2k

�T

�r
� +

1

r sin �

�

��
� k

r
sin �

�T

��
� �31�

which can be rewritten as

1

r2

�

�r
��r2vrcp�T − T0� − r2k

�T

�r
� +

1

r sin �

�

��
��v� sin �cp�T − T0�

−
k

r
sin �

�T

��
� = 0 �32�

From this last equation it can be identified the energy fluxes in the
r and � directions, and the heat function H�r ,�� in the spherical
coordinate system can be defined through its first-order deriva-
tives as

1

sin �

�H

��
= �r2vrcp�T − T0� − r2k

�T

�r
�33a�

−
1

r

�H

�r
= �v� sin �cp�T − T0� −

k

r
sin �

�T

��
�33b�

Evaluating the second-order crossed derivatives of H�r ,�� from
Eqs. �33a� and �33b�, Eq. �32� is identically obtained.

The second-order differential equation, from which the H�r ,��
field is evaluated, is obtained adding the second-order derivatives
of H obtained from the first-order derivatives defining it, similarly
to what was made before for the Cartesian coordinate system.

Results, in the form of heatlines, were obtained by Chatto-
padhyay and Dash �22� for the study of convective heat transfer
from a sphere. Some of these results are presented in Fig. 7.

The presented results, concerning the use of the heatlines for
visualization and analysis of convective heat transfer occurring in
systems that are naturally adapted to polar coordinate systems,
also emphasize the usefulness of such visualization tools, which
are the adequate tools for energy path identification and global
quantification in convection heat transfer.

5 Heatlines and Masslines in Fluid-Saturated Porous
Media

When dealing with fluid-saturated porous media, the steady

Fig. 7 Heatlines in a solid sphere subjected to cooling „re-
printed with permission from †22‡…
global mass conservation equation is still Eq. �1�, the steady en-
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ergy conservation equation, without source term, is still Eq. �10�,
and the steady mass conservation equation for the particular
chemical species i is still Eq. �18�. In this case, the thermal con-
ductivity results from the combination of the thermal conductivi-
ties of both fluid and porous matrix, and the effective mass diffu-
sivity results from the combination of the diffusivities of both
fluid and porous matrix. The velocity components are volume av-
eraged values, usually referred to as Darcy velocity components
�29�, which are evaluated using any reasonable physical model
�29�, always under the condition that mass must be satisfied.

In this way, the streamlines, heatlines and masslines, as pre-
sented before, also apply for 2D steady heat and mass transfer
convective problems in fluid-saturated porous media.

6 Use of Heatlines in Unsteady Problems
Strictly, heatlines and masslines can be used only for 2D

divergence-free situations, that is, for 2D steady problems without
source terms.

The energy conservation equation for an unsteady problem,
without source term, reads

�

�t
��cpT� +

�

�x
��ucp�T − T0� − k

�T

�x
� +

�

�y
��vcp�T − T0� − k

�T

�y
�

= 0 �34�

which is not a divergence-free equation. However, considering
that, at a given instant, the differential energy conservation equa-
tion without the unsteady term can be taken to describe the heat
transfer problem, the heatline concept can be applied without
problems to such an equation. This has been made successfully by
Aggarwal and Manhapra �16,17� to analyze the unsteady heat
transfer process in cylindrical enclosures subjected to natural con-
vection.

It should be refereed, however, that such a procedure is accept-
able in problems with small unsteady terms when compared with
the diffusive and/or convective terms, for which the steady energy
conservation equation gives a good description at a given instant.
Otherwise, if the unsteady term is not so small, the steady energy
conservation equation is only a poor, or even unrealistic, descrip-
tion of the involved heat transfer process at a given instant. From
the viewpoint of the energy conservation equation, the unsteady
term can be interpreted also as a source �volumetric� term.

The considerations made about the use of the heatlines for un-
steady problems apply equally to the use of masslines for un-
steady problems.

7 Heat Function and Heatlines in Boundary Layer
Problems–Similarity Solutions

7.1 Forced Convection. Once verified some conditions, the
steady flow and energy problems near a flat plate, like that in Fig.
8, for a fluid of constant properties, can be described by the mass

Fig. 8 Boundary layer in forced convection near a flat plate for
a fluid with Pr<1 „top… and for a fluid with Pr>1 „bottom…
conservation equation, Eq. �1�, by the momentum boundary layer
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equation, and by the boundary layer energy conservation equation.
These equations read, respectively, as given by Bejan �27�

�u

�x
+

�v
�y

= 0 �35�

u
�u

�x
+ v

�u

�y
= �

�2u

�y2 �36�

�cP�u
�T

�x
+ v

�T

�y
� = k

�2T

�y2 �37�

A similarity solution can be obtained for the flow problem, and
also for the heat transfer problem. As the flow is forced, and it is
not influenced by the temperature field, the similarity solution for
the flow problem is obtained first. The developments that follow
are essentially due to Al Morega and Bejan �23�.

Making the Cartesian coordinates dimensionless as x*=x /L and
y*= �y /L�ReL

1/2, where ReL=U�L /� as is the L-based Reynolds
number, it can be defined as the dimensionless similarity variable
as

	�x*,y*� = �y/x�Rex
1/2 = y*x*

−1/2 �38�

where Rex=U�x /� is the x-based Reynolds number. The stream
function is made dimensionless as �*=� / �U�L�, and it can be
expressed as

�*�x*,	� = ReL
−1/2 x*

1/2f�	� �39�

where f�	� is the dimensionless similarity function.
The dimensionless velocity components �u* ,v*�= �u ,v� /U� are

obtained from the dimensionless stream function as

u* = ReL
1/2���*/�y*� = f� �40a�

v* = − ��*/�x* = 1
2 ReL

−1/2 x*
−1/2�	f� − f� �40b�

where f�=df /d	 and it should be noted that the reference lengths
used to make the space coordinates dimensionless are related by
ReL

1/2. Thus, once the solution of the similarity function is known,
the stream function is known and the velocity components are also
known.

Substitution of the dimensionless velocity components, as given
by Eqs. �40a� and �40b�, into the momentum boundary layer equa-
tion, Eq. �36�, leads to

2f� + f f� = 0 �41�

an ordinary differential equation subjected to the boundary condi-
tions f�0�= f��0�=0 and f��+��=1. Equation �41� depends only
on the 	 variable, and the main advantage of the similarity trans-
formation is the reduction of the number of independent variables
from two, x ,y, to one, 	. The solution of the boundary layer flow
problem is evaluated from the solution of Eq. �41�.

Once the flow solution is known, the heat transfer problem can
also be solved using the similarity transformation. Substitution of
the velocity components as given by Eqs. �40a� and �40b� into the
boundary layer energy conservation equation, Eq. �37�, making
the temperature dimensionless as ��x ,y�= �T�x ,y�−Tw� / �T�−Tw�,
one obtains

�� + �Pr/2�f�� = 0 �42�

where it can be made T�x ,y�=T�	�, and �=��	� only. The heat
transfer problem is solved once the solution of Eq. �42� is known,
subjected to the boundary conditions ��0�=0 and ��+��=1.

The heat function for this problem is defined using the expres-
sions given by Eqs. �12a� and �12b�, noting that, in this case, the
diffusive term in Eq. �12a� does not exist. The heat function is
made dimensionless using the convective term and not the diffu-

sive term as made before, through the expression
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H* =
H

�cPU�T� − TwL ReL
−1/2 �43�

where T�−Tw=T�−Tw for an isothermal cold wall and T�

−Tw=Tw−T� for an isothermal hot wall.
It should be noted that the global heat transfer between the wall

of length L and the stream can be obtained, in a scale sense, from
an energy balance made to the thermal boundary layer. Such en-

ergy balace gives Q̇� ṁcP�T�−Tw�=�ucP�T�−Tw�
T, where 
T is
the thickness of the thermal boundary layer and u is the velocity at
the leading edge of the thermal boundary layer. For a fluid with

Pr�1 it is 
T�L Pr−1/2 ReL
−1/2 and u�U�, and it is Q̇

��U�cP�T�−Tw�L ReL
−1/2 Pr−1/2. For a fluid with Pr�1 it is 
T

�L Pr−1/3 ReL
−1/2 and u�U��
T /
�, and it is Q̇��U�cP�T�

−Tw�L ReL
−1/2 Pr−2/3. In this way, as Q̇�hL�T�−Tw� and Nu

=hL /k, it is Nu� Q̇ / �k�T�−Tw��. The overall Nusselt number is
proportional to Re1/2 Pr1/2 for a fluid with Pr�1, and the overall
Nusselt number is proportional to Re1/2 Pr1/3 for a fluid with Pr
�1. These proportionalities have been explored in depth by Al
Morega and Bejan �23�.

The dimensionless first-order derivatives that define the heat-
function near an isothermal cold wall become

�H*

�y*
= f�� �44a�

−
�H*

�x*
=

1

2
x*

−1/2�	f� − f�� −
1

Pr

��

�y*
�44b�

and it is assumed that H*�x* ,y*� is given by an expression of the
form

H*�x*,y*� = x*
1/2g�	�x*,y*�� �45�

Function g is found to be

g�	� = f� +
2

Pr
�� �46�

which gives, for the similarity solution for the heat function

H*�x*,	� = x*
1/2� f� +

2

Pr
��� �47�

under the assumption that H*�0,0�=0.
Similarly it can be obtained the similarity solution for the heat

function near an isothermal hot wall as

H*�x*,	� = − x*
1/2� f�� − 1� +

2

Pr
��� �48�

also under the assumption that H*�0,0�=0.
At the wall it is 	=0 and f�0�=0, and �� is a function of the

Prandtl number only, as given by Bejan �27�, and the heat function
increases with x*

1/2 along the cold wall and decreases with −x*
1/2

along the hot wall.
Some of the results obtained by Al Morega and Bejan �23� are

presented in Fig. 9�a� for an isothermal hot wall and in Fig. 9�b�
for an isothermal cold wall.

Heatlines give a very good picture about how heat leaves the
hot wall towards the free stream in Fig. 9�a�, and how heat leaves
the hot stream towards the cold wall in Fig. 9�b�. It is also clear in
these figures that the heat transfer process occurs in a region, the
thermal boundary layer, which is thinner than the velocity bound-
ary layer, as expected and explained by Bejan �27� for a fluid with
Pr�1. For a fluid with Pr=0.02, the thermal boundary layer is
thicker than the velocity boundary layer, as shown in Fig. 10�a�

for a hot isothermal wall and in Fig 10�b� for a cold isothermal
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wall.
The similarity solution for the heat function can also be ob-

tained for the situation of a hot wall with uniform heat flux. In this
case, the temperature in the boundary layer changes as

T�x,y� = T� +
q̇�

k
� �x

U�
�1/2

��	� �49�

and the similarity version of the heat transfer problem is given by
the equation

�� +
Pr

2
�f�� − f��� = 0 �50�

satisfying the boundary conditions ���0�=−1 and ��+��=0.
In this case, the heat function is made dimensionless as

H*�x*,y*� =
H�x,y�

q̇�L
�51�

noting that q̇�L is the global heat transfer exchange between the
wall and the fluid, and the first-order derivatives that define the
heat function are

�H* = Pr x*
1/2f�� �52a�

Fig. 9 Heatlines obtained from the similarity solution of the
heatfunction for the forced convection near a flat plate, for Pr
=7 „a… near a hot isothermal wall and „b… near a cold isothermal
wall „reprinted with permission from †23‡…
�y*
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−
�H*

�x*
= 1

2 Pr�	f� − f�� − �� �52b�

Following a similar procedure as for the isothermal wall, the simi-
larity solution for the heat function becomes

H*�x*,	� = x*�1

2
Pr f� + ��� �53�

also with H*�0,0�=0. In this case, as f�0�=0 and ���0�=−1 it is
H*�x* ,0�=−x* and the heat function value at the wall decreases
linearly with −x* along the wall length, as expected due to the
constant heat flux there.

Similar studies were conducted by Al Morega and Bejan �24�
for the forced convection boundary layer in porous media. This is
the first reported study where heatlines were applied to fluid-
saturated porous media. The development is similar but simpler,
as the v velocity component was taken as zero in the thermal
boundary layer inside the porous medium. In this study, Al
Morega and Bejan �24� considered the situations of isothermal hot
and cold wall, and the situation of uniform heat flux hot wall. The
obtained results are similar in form to those corresponding to the
open fluid domain, and equally rich in what concerns the picture
given by the heatlines about the heat transfer process.

In this same work, Al Morega and Bejan �24� considered the
internal convection in a confined porous medium inside a parallel
plate channel. The fluid is assumed to flow uniformly inside the

Fig. 10 Heatlines obtained from the similarity solution of the
heat function for the forced convection near a flat plate, for
Pr=0.02 „a… near a hot isothermal wall and „b… near a cold iso-
thermal wall „reprinted with permission from †23‡
porous domain, with u=U and v=0. Assuming fully developed
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conditions, closed analytical solutions were obtained for the heat
function, for situations where the channel walls are isothermal and
cold or hot. The obtained results are presented in Fig. 11, where a
clear and rich picture is obtained about the heat transfer process
taking place.

For comparison purposes, closed analytical expressions for the
heat function were also obtained by Al Morega and Bejan �24� for
the pure fluid in slug flow inside the channel, with u=U and v
=0, and constant heat flux at the wall. The obtained results are
presented in Fig. 12.

7.2 Natural Convection. A similar treatment was made by
Costa �25� to the natural convection heat transfer problem adja-
cent to a vertical wall like that presented in Fig. 13. In this case
the flow and heat transfer problems are linked, and the solution of
both problems need to be obtained simultaneously.

The mass conservation equation is still Eq. �35�, and the mo-
mentum and energy conservation boundary layer equations are

u
�v
�x

+ v
�v
�y

= �
�2v
�x2 ± g��T − T�� �54�

�cP�u
�T

�x
+ v

�T

�y
� = k

�2T

�x2 �55�

The plus sign in Eq. �54� applies to the hot wall situation and the
minus sign applies to the cold wall situation. Variables are made
dimensionless in a different way, and the dimensionless governing
parameters are the Prandtl number, Pr, and the Grashof number,
GrY =g��TH−TC�Y3 /�2, retaining that the characteristic length for
natural convection is the wall height, Y.

Fig. 11 Heatlines obtained from the analytic
convection in a fluid-saturated porous mediu
wall and „bottom… near a cold isothermal wall
The similarity variable is defined as
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	 = � x

y
��Gry

4
�1/4

� g1�Pr� �56�

and the stream function is

��x,y� = 4��Gry

4
�1/4

� f�	� � g2�Pr� �57�

where g1= ��4 Pr2� / �4+Pr��1/4 and g2= �	2/2�Pr−1 g1 are func-
tions of the Prandtl number, in an attempt to obtain a better fit
over the overall Prandtl number range. The dimensionless tem-
perature is defined as

��	�x,y,Pr�� =
T�x,y� − T�

Tw − T�
�58�

The similarity flow and heat transfer problems to solve are

f� = �3f f� − 2f�2� � �g2/g1��±�� � g1
−3g2

−1 �59�

subjected to f�0�= f��0�=0 and f��+��=0, and

�� = 3 Pr f�� � �g2/g1� �60�

subjected to ��0�= �±�1 and ��+��=0.
The heat function is defined through its first-order derivatives

as

�H
= �ucp�T − Tc� − k

�T
�61a�

solution of the heat function for the forced
nside a channel. „Top… Near a hot isothermal
printed with permission from †24‡….
al
m i
„re
�y �x

MAY 2006, Vol. 59 / 135



erm
−
�H

�x
= �vcp�T − Tc� �61b�

The space coordinates are made dimensionless as y*=y /Y and
x*= �x /Y��GrY /4�1/4�g1, and the similarity variable can be ex-
pressed as 	�x* ,y*�=x*y*

−1/4. The heat function is made dimen-
sionless as H*=H / �kT0−T��.

When the vertical wall is isothermal and hot, the dimensionless
similarity solution for the heat function is obtained as

H*�y*,	� =
4

3
�GrY

4
�1/4

y*
3/4�3 Pr g2f� − g1��� �62�

When the wall is isothermal and cold the similarity solution for
the heat function is

Fig. 12 Heatlines obtained from the ana
forced convection of a pure fluid in slug flo
„bottom… near a cold wall „reprinted with p

Fig. 13 Boundary layer in natural convection near a vertical

flat plate
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H*�y*,	� =
4

3
�GrY

4
�1/4

y*
3/4�3 Pr g2f�� − �0� − g1��� �63�

The results obtained by Costa �25� for the heatlines are pre-
sented in Figs. 14�a� and 14�b� for the situations of isothermal hot
and cold wall, respectively.

When the hot wall is under constant heat flux, the governing
parameters are the Prandtl number, Pr, and the modified Grashof
number, Gry

*=g�q̇�y4 / �kv2�, retaining once again that the charac-
teristic length for natural convection is the wall height.

The similarity variable is defined as

	 = � x

y
��Gry

*

5
�1/5

� g1�Pr� �64�

and the stream function is

��x,y� = 5��Gry
*

5
�1/5

� f�	� � g2�Pr� �65�

where

g1 = ��5 Pr2�/�7 + Pr��1/5

and g2= �	15�7�0.9/15�Pr−1 g1 are functions of the Prandtl
number, once again in an attempt to obtain a better fit over the
overall Prandtl number range. The dimensionless temperature in
this case is defined as

��	�x,y,Pr�� = �T�x,y� − T��� k

q̇�
��1

y
��Gry

*

5
�1/5

� g1 �66�

The similarity flow and heat transfer problems to solve are

f� = �4f f� − 3f�2� � �g2/g1��±�� � g1
−4g2

−1 �67�

subjected to f�0�= f��0�=0 and f��+��=0, and

cal solution of the heat function for the
nside a channel. „Top… Near a hot wall and
ission from †24‡….
lyti
w i
�� = Pr�4f�� − f��� � �g2/g1� �68�
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subjected to ���0�= ��1 and ��+��=0.
The heat function is defined through its first-order derivatives

by Eqs. �61a� and �61b�, and the space coordinates are now made
dimensionless as y*=y /Y and x*= �x /Y��GrY

* /5�1/5�g1, and the
similarity variable can be expressed as 	�x* ,y*�=x*y*

−1/5. The heat
function is made dimensionless as H*=H / �q̇�Y�.

When the vertical wall is hot and under constant wall heat flux,
the dimensionless similarity solution for the heatfunction was ob-
tained by Costa �25� as

Fig. 14 Heatlines obtained from the similarity solution of the
heat function for the natural convection near a vertical isother-
mal hot flat plate „left… and vertical isothermal cold flat plate
„right… „reprinted with permission from †25‡…
H*�y*,	� = y*�4 Pr�g2/g1�f� − ��� �69�

Applied Mechanics Reviews
The results obtained by Costa �25� for this situation are pre-
sented in Fig. 15. As the vertical wall is under constant heat flux,
the heatlines are equally spaced along the height of the vertical
wall.

In all the figures, it is evident the importance of the heatlines as
visualization tools. The heatlines give a clear and complete picture
of the heat transfer processes occurring in the natural convection
boundary layers adjacent to vertical walls under different heating
or cooling conditions. The existing relationship between the ex-
treme values of the heatfunction and the overall Nusselt number
were explored by Costa �25�.

It should be noted that the cold wall subjected to a constant heat
flux cannot be treated through the similarity solution, as explained
by Costa �25�.

8 Use of Heatlines in Turbulent Flow
It is well known that when flow takes place in the turbulent

regime, additional terms need to be considered into the momen-
tum and energy transport equations. The instantaneous value of
each dependent variable is taken as the sum of an average part �in
a time sense� and a fluctuation, that is �̃=�+��, where � is the
average value and �� its fluctuation. As the fluctuation is random,
its average value is null.

Substituting the instantaneous values of all the dependent vari-
ables in the energy conservation equation, Eq. �10�, and taking the
average over a sufficiently long period yields

�

�x
��ucp�T − T0� − k

�T

�x
+ �cpu��T� − T0�� +

�

�y
��vcp�T − T0�

− k
�T

�y
+ �cpv��T� − T0�� = 0 �70�

where it is assumed that the relevant fluctuations occur in the
dependent variables u, v, and T. When comparing with the origi-
nal differential equation, Eq. �10�, new terms were introduced by
the averaging procedure, which include the crossed relationship

Fig. 15 Heatlines obtained from the similarity solution of the
heat function for the natural convection near a vertical hot flat
plate under constant wall heat flux „reprinted with permission
from †25‡…
between the averaged variables. These additional terms, of the
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form Fi=−�cpui��T�−T0�, are known as the turbulent fluxes, and
they are evaluated using a turbulence model �27�.

Once these additional terms are evaluated using an available
procedure, the heatfunction in turbulent convective heat transfer
can be defined through its first-order derivatives, using Eq. �70�,
as

�H

�y
= �ucp�T − T0� − k

�T

�x
+ �cpu��T� − T0� �71a�

−
�H

�x
= �vcp�T − T0� − k

�T

�y
+ �cpv��T� − T0� �71b�

The differential equation for the heatfunction field is evaluated in
the same way as for the laminar case, but now using Eqs. �71a�
and �71b�, and it results in

0 =
�2H

�x2 +
�2H

�y2 +
�

�x
��vcp�T − T0� + �cpv��T� − T0��

−
�

�y
��ucp�T − T0� + �cpu��T� − T0�� �72�

From this point forward, the turbulent situation is treated in the
same way as the laminar situation.

Dash �26� used that formulation to obtain the heatlines corre-
sponding to the turbulent heat transfer near a heated vertical plate.

If the heat transfer problem under analysis occurs in the turbu-
lent boundary layer near a wall, the heatline concept can be ap-
plied in a simpler way, by using an effective diffusion coefficient
for heat. In this case, the heat function is defined through its
first-order derivatives as usually for the boundary layer adjacent to
a flat plate �27�

�H

�y
= �ucp�T − T0� �73a�

−
�H

�x
= �vcp�T − T0� − �k + �cp�H�

�T

�y
�73b�

where the turbulent flux has been expressed as −�cpv��T�−T0�
=�cp�H��T /�y�. Some results involving the heatlines were ob-
tained by Bejan �27�, using such an approach for turbulent bound-
ary layers near hot and cold isothermal walls.

9 Unification of the Streamline, Heatline, and
Massline Methods

The streamline, heatline, and massline methods were unified by
Costa �30�, in order to be subjected to a common treatment, and in
order to be easily included, through a common procedure, into
CFD packages.

The differential conservation equation for the general variable

Table 1 The physical meaning of �, and

Physical principle � ��

Overall mass conservation 1 0
Energy conservation T k /cP

i species mass conservation Ci �Di
F, whose specific value is �=F /m, can be written as
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�

�x
��u�� − �0� − ��

��

�x
� +

�

�y
��v�� − �0� − ��

��

�y
� = 0

�74�

where �0 is a reference value for �, taken as its lower value in the
entire domain under analysis. In Eq. �74� are identified the flux
components of the total flux J� as

J�,x = �u�� − �0� − ��

��

�x
�75a�

J�,y = �v�� − �0� − ��

��

�y
�75b�

Function ��x ,y�, associated with the variable �, and whose con-
tour plots will be used for visualization and analysis purposes, is
defined through its first order derivatives as

��

�y
= �u�� − �0� − ��

��

�x
�76a�

−
��

�x
= �v�� − �0� − ��

��

�y
�76b�

Equation �74� can be identically obtained by equating the second
order crossed derivatives of � evaluated from Eqs. �76a� and
�76b�, being implicitly assumed that ��x ,y� is a continuous func-
tion to its second order derivatives.

Assuming now that � is a continuous function to its second
order derivatives, one can establish the equality of its second or-
der crossed derivatives through the expressions obtained from the
right-hand sides of Eqs. �76a� and �76b�, leading to

0 =
�

�x
� 1

��

��

�x
� +

�

�y
� 1

��

��

�y
� + 
 �

�x
� �v

��

�� − �0��
−

�

�y
� �u

��

�� − �0��� �77�

This is the second-order partial differential equation �a Poisson
equation� from which it is evaluated in the � field, for any par-
ticular corresponding meaning of �. It is an equation correspond-
ing to a conduction-type problem, with source term if the fluid
flow subsists, and without source term if the fluid flow subsides,
with the diffusion coefficient for � verifying

�� = 1/�� �78�

The diffusion coefficient ��=1/�� is maintained within parenthe-
ses in Eq. �77� because it is, in the general case, a variable and not
a constant. To the author’s knowledge, this was the first formula-
tion considering a variable diffusion coefficient for �.

For �=1, �0=0, and ��=�, a small constant number, one ob-
tains the well-known partial differential equation for the stream
function, Eq. �5�. The particular meaning of � and its respective
�, whose contour plots are used for visualization and analysis
purposes, for some usual situations, are summarized in Table 1.

In what concerns the boundary conditions for Eq. �77�, they can

pling with �, for frequent situations †30‡.

� � contour plots

�, stream function Streamlines
H, heat function Heatlines

i, i species mass function i species masslines
cou

M

be specified as
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��xref,y� = ��xref,yref� +�
yref

y ��u�� − �0� − ��

��

�x
�dy �79�

along a boundary with constant x, or as

��x,yref� = ��xref,yref� −�
xref

x ��v�� − �0� − ��

��

�y
�dx �80�

along a boundary with constant y.
Some of the results obtained by Costa �30�, for the double-

diffusive natural convection in a square enclosure with heat and
mass diffusive walls, with opposed buoyancy effects, are pre-
sented in Fig. 16.

At the fluid-solid walls interface it is observed as a marked
change in the inclination of the heatlines and masslines, which is
due to the different heat and mass diffusion coefficients in the
fluid and in the solid walls. The so unified streamline, heatline,
and massline method can be easily implemented in CFD packages
through a common procedure for all the used variables for visu-
alization and analysis.

The definition of the diffusion coefficient for �, as given by Eq.
�78�, generated debate �10�; the work by Costa �31� proving that
Eq. �78� is, in fact, the correct equation for the diffusion coeffi-
cient of the function � used for visualization purposes.

Due to their physical nature, � and � must be continuous at the
solid-fluid interface. From Fig. 17, at each point of the interface s
it is

�1 = �2 �1 = �2 �81�

The condition that �1=�2 guarantees the conservation of �
through the interface.

At the solid-fluid interface s of Fig. 17, where only the diffusive
transfer is present, it is

J� · n = − ���sin �
��

�x
− cos �

��

�y
� = − ��

��

�n
�82a�

J� · s = − ���cos �
��

�x
+ sin �

��

�y
� = − ��

��

�s
�82b�

The conservation principle of � implies that, at the interface,

− ��,1� ��

�n
�

1
= − ��,2� ��

�n
�

2
�83�

where it is ��� /�n�1� ��� /�n�2 if ��,1���,2.
The counterpart of Eq. �83� for �, at the interface, taken as a

conserved variable, is

− ��,1� ��

�n
�

1
= − ��,2� ��

�n
�

2
�84�

Similarly to Eqs. �82a� and �82b� for �, it can be obtained for �
that

��

�n
= sin �

��

�x
− cos �

��

�y
�85a�

��

�s
= cos �

��

�x
+ sin �

��

�y
�85b�

Substituting �� /�x and �� /�y, as given by Eqs. �76a� and �76b�,
on the right-hand sides of Eqs. �85a� and �85b�, it results in the
most general spatial form of Eqs. �76a� and �76b� for the sole
diffusive situation

−
��

= − ��

��
�86a�
�n �s
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��

�s
= − ��

��

�n
�86b�

From Fig. 17 it can be observed that ��� /�s�1= ��� /�s�2 and
that ��� /�s�1= ��� /�s�2. In the limit situation, when �s→0, it
results then in

� ��

�s
� = � ��

�s
� �87a�

Fig. 16 Streamlines „top…, heatlines „center…, and masslines
„bottom… for the double-diffusive natural convection in a square
enclosure with heat and mass diffusive walls, and opposed
buoyancy effects „reprinted with permission from †30‡…
1 2
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� ��

�s
�

1
= � ��

�s
�

2
�87b�

Joining together Eqs. �87b� and �86a�, it can be stated that

−
1

��,1
� ��

�n
�

1
= −

1

��,2
� ��

�n
�

2
�88�

Comparing this result with Eq. �84� it is evident that, in fact, it is
��=1/��.

The change in direction of the contour plots used for visualiza-
tion and analysis, due to the existence of adjacent media with
different diffusion coefficients, can be referred to as the refraction
of the heatlines and/or masslines. In fact, a similar situation occurs
with the streamlines when analyzing fluid flow in adjacent media
of different permeabilities, what is referred to as the refraction of
the streamlines in the groundwater bibliography �38,39�.

10 Unification of the Streamline, Heatline and
Massline Methods for Anisotropic Media

The streamline, heatline, and massline methods have been uni-
fied by Costa �32� to apply to anisotropic media, which are of
great and increasing practical interest. Recognizing that, in this
case, the flux transport components are

J�,x = �u�� − �0� − ����,�l1
2 + ��,	l2

2�
��

�x

+ ���,�l1m1 + ��,	l2m2�
��

�y
� �89a�

Fig. 17 Lines of constant � and lines of constant �, normal to
each other at any point, near the interface s between media 1
and 2 of different diffusion coefficients „reprinted with permis-
sion from †31‡…

Table 2 Physical principles, diffusion coeffic
meanings of � †32‡

Physical Principle � ��,xx

Overall mass conservation 1 0
i species mass conservation Ci �Di,xx

Energy conservation T kxx /cP

Overall mass conservation
�Darcy flow model� p �Kxx /�
140 / Vol. 59, MAY 2006
J�,y = �v�� − �0� − ����,�l1m1 + ��,	l2m2�
��

�x

+ ���,�m1
2 + ��,	m2

2�
��

�y
� �89b�

where u and v are the area averaged Cartesian velocity compo-
nents �29�, ��,� and ��,	 are the principal diffusion coefficients
for � along the � ,	 principal Cartesian directions, which are re-
lated with the x ,y Cartesian coordinate system through the direc-
tion cosines l1 , l2 and m1 ,m2. With ��,xx=��,�l1

2+��,	l2
2, ��,yy

=��,�m1
2+��,	m2

2, and ��,xy =��,yx=��,�l1m1+��,	l2m2, Eqs.
�89a� and �89b� become

J�,x = �u�� − �0� − ���,xx
��

�x
+ ��,xy

��

�y
� �90a�

J�,y = �v�� − �0� − ���,xy
��

�x
+ ��,yy

��

�y
� �90b�

Inserting these fluxes into the general conservation equation, it is
obtained the general convection-diffusion differential transport
equation for � in two-dimensional anisotropic media

�

�x
��u� − ���,xx

��

�x
+ ��,xy

��

�y
�� +

�

�y
��v� − ���,xy

��

�x

+ ��,yy
��

�y
�� = 0 �91�

When dealing with fluid-saturated anisotropic porous media,
the velocity components are usually related to the pressure gradi-
ent and the body force �in this case only the gravitational accel-
eration, being the x ,y coordinate system placed such that gx=0
and gy =−g� through the Darcy flow model, which is sufficiently
accurate for many practical applications �29�

u = −
1

�
�Kxx

�p

�x
+ Kxy� �p

�y
+ �g�� �92a�

v = −
1

�
�Kxy

�p

�x
+ Kyy� �p

�y
+ �g�� �92b�

However, if there are interfaces between fluid saturated porous
media and pure fluids �the latter governed by the Navier-Stokes
equations�, or the Reynolds number is high enough such that in-
ertial effects must be taken into account, more detailed and com-
plete models �usually the Brinkman and Forchheimer modifica-
tions, respectively� are needed �29�.

Different physical meanings of � and its associated transport
coefficients can be found in Table 2.

The function ��x ,y�, whose contour plots are used for visual-
ization purposes, is defined from Eqs. �90a� and �90b� through its
first order derivatives as

ts, and source terms for different particular

�,yy ��,xy S�

0 0 0
Di,yy �Di,xy

0

yy /cP kxy /cP
0

yy /� �Kxy /�
�

�x
��2gKxy

�
� +

�

�y
��2gKyy

�
�

ien

�

�
k

�K
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��

�y
= J�,x = �u�� − �0� − ���,xx

��

�x
+ ��,xy

��

�y
� �93a�

−
��

�x
= J�,y = �v�� − �0� − ���,xy

��

�x
+ ��,yy

��

�y
� �93b�

Equating the second-order mixed derivatives of �, being implic-
itly assumed that it is a continuous function to its second order
derivatives, Eq. �91� is identically obtained.

From Eqs. �93a� and �93b� it can be obtained that

��

�x
= −

��,yy

�2

��

�y
−

��,xy

�2

��

�x
+

��,yy

�2 �u�� − �0� −
��,xy

�2 �v�� − �0�

�94a�

��

�y
=

��,xx

�2

��

�x
−

��,xy

�2

��

�y
+

��,xx

�2 �v�� − �0� −
��,xy

�2 �u�� − �0�

�94b�

where

�2 = ��,xx��,yy − ��,xy
2 ��0� �95�

Assuming now that � is a continuous function to its second
order derivatives, it can be established that the equality of its
second order crossed derivatives, obtained from Eqs. �94a� and
�94b�, lead to the equation

0 =
�

�x
���,xx

�2

��

�x
� +

�

�y
���,yy

�2

��

�y
� + � �

�x
���,xy

�2

��

�y
�

+
�

�y
���,xy

�2

��

�x
�� +

�

�x
���� − �0�

�2 ���,xxv − ��,xyu��
−

�

�y
���� − �0�

�2 ���,yyu − ��,xyv�� �96�

This is the diffusion equation for � in anisotropic media, with the
source term present in the second and third rows. It is evident
from Eq. �96� that the diffusion coefficients for � in anisotropic
media are

��,xx =
��,xx

�2 ��,yy =
��,yy

�2 ��,xy =
��,xy

�2 �97�

If the x ,y coordinate system is coincident with the principal sys-
tem, it is ��,xx=��,�=1/��,	 and ��,yy =��,	=1/��,�, i.e., the
principal diffusion coefficients for � are the inverse of the diffu-
sion coefficient for � in the perpendicular directions. For isotropic

Table 3 Coupling of � and � and the diffusion

Physical principle � �

Overall mass conservation 1 � stream function

i species mass conservation Ci Mi, i species mass funct

Energy conservation T H, heat function

K2=KxxKyy −Kxy
2 , Di

2=Di,xxDi,yy −Di,xy
2 , and k2=kxxkyy −kxy

2

media, it comes that ��=1/��, as given by Eq. �78�.
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Similarly to what was made to obtain the differential equation
for �, defining the stream function � �overall mass function�
through its first order derivatives as given by Eqs. �2a� and �2b� it
is obtained the diffusion equation for � in anisotropic media,

0 =
�

�x
��Kxx

�K2

��

�x
� +

�

�y
��Kyy

�K2

��

�y
� + � �

�x
��Kxy

�K2

��

�y
�

+
�

�y
��Kxy

�K2

��

�x
�� −

�

�x
��g� �98�

where K2=KxxKyy −Kxy
2 , which is formally similar to Eq. �96�. It is

evident that the diffusion coefficients for � are

��,xx =
�Kxx

�K2 ��,yy =
�Kyy

�K2 ��,xy =
�Kxy

�K2 �99�

The most common meaning of � and its associated � function
used for visualization and analysis purposes is summarized in
Table 3.

In what concerns the boundary conditions for variable �, they
can be stated as

�P,B = �ref,B +�
ref,B

P,B

J� · ndsB �100�

Due to their physical nature, � and � are C0 continua. Thus, at
each point of any interface between contiguous portions 1 and 2
of the domain, even with different properties �as it is the case of
conjugate heat and/or mass transfer problems�, it is

�1 = �2 �101a�

�1 = �2 �101b�

Also due to its physical nature, �1=�2 �or �1=�2� guarantees the
conservation of � through such an interface.

This unified method has been successfully applied to some se-
lected problems by Costa �32�, and some of the obtained results
for the configuration presented in Fig. 18 are presented in Fig. 19.

From this figure the rich picture given by the heatlines about
the heat transfer process is clear. It is also clear that the unified
method can be easily used to obtain, in a common basis, the
streamlines, the heatlines and, eventually, the masslines. The uni-
fied method can be easily incorporated into CFD software pack-
ages, and the case of isotropic media is just a particular case of the

efficients for � for some usual situations †32‡

��,xx ��,yy ��,xy � contour plots

�Kxx

�K2

�Kyy

�K2

�Kxy

�K2 Streamlines

Di,xx

�Di
2

Di,yy

�Di
2

Di,xy

�Di
2 i species masslines

cPkxx

k2

cPkyy

k2

cPkxy

k2 Heatlines
co

ion
general method as developed to apply to anisotropic media.
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11 Extension and Unification of the Heatline and
Massline Concepts to Reacting Flows

The heatline and massline concepts were also extended to be
applied to reacting flows. As such methods apply to situations
without source terms �divergence-free problems�, special care
needs to be taken when selecting the variables used for visualiza-
tion.

In the work of Mukhopadhyay et al. �33�, the selected con-
served scalars used for visualization and analysis are the elemen-
tal mass fractions of the involved chemical species, and the total
enthalpy �enthalpy of reaction plus sensible enthalpy�. Special
�and involved� forms of the conservation equations and of their
transport coefficients need to be taken. In a more recent work
Mukhopadhyay et al. �34� presented a unified heatline and
massline formulation to deal with reacting flows, using the same
scalars for visualization, which is summarized here.

The equations for conservation of species and energy can be
written, respectively, as

�

�r�rp�vrZj − rp���
i

Di−N2
wi,j

�Yi

�r �� +
�

�z�rp�vzZj

− rp���
i

Di−N2
wi,j

�Yi

�z �� = 0 �102�

�

�r�rp�vrh − rp�k
�T

�r
+ ��

i

Di−N2
hi

�Yi

�r ��
+

�

�z�rp�vzh − rp�k
�T

�z
+ ��

i

Di−N2
hi

�Yi

�z �� = 0

�103�

where p=0 in the case of Cartesian coordinates, and p=1 in the
case of cylindrical coordinates.

In the search of a unified method, the differential conservation
equations are written in a common form as

�

�r
�rp�vr� − rp��

��

�r
� +

�

�z
�rp�vz� − rp��

��

�z
�

+ rp� �Sr

�r
+

�Sz

�z
� = 0 �104�

The specific forms of �, ��, Sr, and Sz are presented in Table 4.
Making use of the global mass conservation, Eq. �104� can be

Fig. 18 Physical model and geometry for the analyzed prob-
lems involving anisotropic media. The left and right parts of the
domain are under different conditions, and they have different
properties „reprinted with permission from †32‡….
rewritten as
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�

�r

rp��vr�� − �ref� − ��

��

�r
+ Sr��

+
� 
rp��vz�� − �ref� − ��

��
+ Sz�� = 0 �105�

Fig. 19 Streamlines „top…, isotherms „center…, and heatlines
„bottom…, for natural convection in a rectangular porous enclo-
sure „left-half of the domain… and pure conduction on the right-
half of the domain, for different properties and anisotropic
characteristics of the involved media „reprinted with permis-
sion from †32‡…
�z �z
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From that equation it can be identified the flux components of
the conserved variable �. Its counterpart, �, used for visualization
and analysis purposes can then be defined through its first-order
derivatives as

��

�z
= rp��vr�� − �ref� − ��

��

�r
+ Sr� �106a�

−
��

�r
= rp��vz�� − �ref� − ��

��

�z
+ Sz� �106b�

Equation �105� can be identically obtained by equating the second
order crossed derivatives of �, assuming that it is a function con-
tinuous to its second order derivatives.

Mukhopadhyay et al. �34� obtained results both for nonreacting
and for reacting flows, some of which are presented below. In Fig.
20 are presented the results, in the form of enthalpy lines and
streamlines, corresponding to a planar hot air jet issuing into an
ambient at a lower velocity, under normal or absent gravity con-
ditions. Results for reacting flows, for a nonpremixed methane-air
flame, established in a slot burner, under normal or absent gravity
conditions, are presented in Fig. 21.

The presented results clearly show the high potential of the
heatline and massline methods to also apply to reacting flows. The
unified method, as proposed by Mukhopadhyay et al. �34�, can be

Table 4 Scalar functions for visualization

Function � �

Stream function � 1

Elemental mass function Mj

Zj = Wj�
i

� j,iYi

MWi

Enthalpy function H H=�
i

Yi��hf ,i+�Tref

T cp,idT�

Fig. 20 Enthalpy lines „solid lines… and streamlines „dashed
lines… for a planar hot jet of air issuing into an ambient at lower
velocity, under normal gravity conditions „left… and absent
gravity conditions „right… „reprinted with permission from †34‡…
easily incorporated into CFD packages, with the possibility of

Applied Mechanics Reviews
dealing with both nonreacting or reacting flows. The case of non-
reacting flows is only a simple case of the more general formula-
tion.

12 Conclusions
Heatlines and masslines are, in fact, the most adequate tools for

visualization and analysis of two-dimensional convective heat
and/or mass transfer. They give the paths followed by energy
and/or mass, which is a picture that cannot be directly obtained
from the isotherms and/or isoconcentration lines in convection
problems.

When made properly dimensionless, the numerical values of
the heat function and/or mass function are closely related to the
overall Nusselt and/or Sherwood numbers, which characterize the
overall heat and/or mass transfer processes.

The method was invented two decades ago. It has evolved, and
is now mature and ready to be used as a systematic analysis tool.
The streamline, heatline, and massline methods can be treated
through common procedures, which can be easily implemented in
CFD packages, both for convective heat and/or mass transfer in
isotropic or in anisotropic media. The last is the application of the
method to reacting flows, which considerably enlarges the appli-

mass, energy, and species transport †34‡

�� Sr Sz

0 0 0

1−N2

��
i

i�1

�D1−N2
− Di−N2

�wj,i
�Yi

�r
��

i

i�1

�D1−N2
− Di−N2

�wj,i
�Yi

�z

/cp
�

i

� k

cp
− �Di−N2

� �Yi

�r �
i

� k

cp
− �Di−N2

� �Yi

�z

Fig. 21 Mixture fraction lines for nonpremixed planar
methane-air jet flames superposed on heat release rate con-
tours, under normal gravity „left…, and absent gravity „right….
Solid lines for the H element, and dotted lines for the C ele-
ment. The heat release contours enable the finding of the posi-
tion of the flame „reprinted with permission from †34‡….
of

�D

k

cability range of these useful tools.
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Nomenclature

A � surface area
C � mass fraction
cp � constant pressure specific heat
D � channel width
D � diffusion coefficient

Di−N2 � binary diffusion coefficient of species i in N2
f � similarity function
g � auxiliary function
g � gravitational acceleration

grad � gradient vector
Gr � grashof number

h � mixture enthalpy
hi � enthalpy of species i
H � heat function

i , j � unit Cartesian vectors
Je � energy flux vector
Jm � mass flux vector

Jm,i � mass flux vector of chemical species i
J� � flux vector of �

k � thermal conductivity
K � permeability

l ,m � director cosines
L � length

Le � Lewis number
M � mass function
ṁ � mass flow rate
n � outward normal unit vector
N � buoyancy factor

Nu � Nusselt number
p � pressure

Pe � Péclet number
Pr � Prandtl number
q̇� � heat flux

Q̇ � heat flow
r � radial coordinate �radial and spherical systems�

Ra � Rayleigh number
Re � Reynolds number

s � length segment
S � source term
t � time

T � temperature
U � free stream or mean velocity

u ,v � Cartesian velocity components
wi,j � number of atoms of element element j

in species i
x ,y � Cartesian coordinates

Y � mass fraction
Y � total height
z � longitudinal coordinate
Z � elemental mass fraction

Greek Symbols
� � thermal diffusivity
� � volumetric expansion coefficient
� � diffusion coefficient
� � difference value

 � boundary layer thickness

�H � eddy diffusivity for heat
� ,	 � principal directions

	 � similarity variable
� � tangential coordinate �cylindrical system�
� � azimuthal coordinate �spherical system�
� � dimensionless temperature
� � dynamic viscosity

� ji � number of atoms of element j in 1 molecule

of species i
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� � kinematic viscosity
� � density
� � generic variable
� � generic variable, used for visualization
� � stream function

Subscripts
B � at the boundary
C � cold wall
H � hot wall
i � Chemical species i

L � based on length L
Q � heat conduction
r � radial

ref � reference point or reference value
T � thermal boundary layer
w � at the wall
xx � tensor component in the x direction
xy � crossed tensor component
yy � tensor component in the y direction
Y � based on height Y
z � longitudinal direction
� � tangential or azimuthal direction
� � generic variable
� � generic variable
0 � reference value
� � free stream value
* � dimensionless

Superscripts
p � index for coordinate system shifting
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