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ABSTRACT 

Modal synthesis is a technique of determining mode 
shapes and frequencies of a large discrete mass dynamic system 
by breaking the system into parts, analyzing the parts, and then 
re-assembling the total system using selected modal information 
from the parts. This paper provides an interpretive review of 
the state-of-art in both research and aerospace applications. 
Comments on each technique are presented. Based on these studies, 
a new approach is proposed. 

The new approach emphasizes ease of interpretation, 
mathematical simplicity, accuracy of results, and computer capa- 
bility. This method can yield a spectrum of system normal fre- 
quencies in the range of interest and their associated mode shapes. 
Actual boundaries are imposed between parts, using either rigid 
body and free-free elastic modes, or only constrained elastic modes 
of the parts. Both compatibility and equilibrium at boundaries are 
satisfied for modal coupling. A simple error control scheme based 
on convergence of eigenvalues of the total system is used to ensure 
adequate selection of modes from the parts. 
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TECHNICAL MEMORANDUM 

I. INTRODUCTION 

Modal information is essential for performing vibra- 
tion analysis of a structural system. Wheq a structural system 
is very big, the following difficulties may be encountered: 

A. The number of degrees-of-freedom (DOF) may exceed 
the available computer capability for eigensolutions. 

B. The structural systems may be too large for modal vi- 
bration testing, especially when free-free boundary 
conditions must be simulated. 

C. A large system, such as a space vehicle, is generally 
built in parts, and each part may be associated with 
different contractors in various distant locations. 
An assemblage of all parts for modal testing is costly, 
time consuming, and difficult to handle. 

Thus, modal synthesis techniques provide the following 
advantages: 

A. Computer capability is extended to large systems by 
reducing the size of matrices through partitioning and 
partial modal coupling. 

B. Modal information may be obtained by analysis or test- 
ing of subsystems. The subsystems are easier to handle 
than the total system, and their analysis or testing 
may be performed by different sources. 

C. Actual boundary conditions may be introduced in the 
synthesis scheme. 

D. A design change in one part need only modify the modal 
data of the changed part. The changed modal data can 
then be coupled with the remaining unchanged parts. 



The concepts of modal synthesis were introduced by 
W. C. Hurty in a series of papers (6-9) , the first appearing in 
1960. However, no known application was made in the aerospace 

industry until the mid 60's. Bamford (2) completed a computer 

program using Hurty's method with modification, while Goldman ( 3 , 4 )  
introduced a fresh approach. Since then, modal synthesis ha6 
become a popular topic in both research and industrial fields. 
The key point of modal synthesis is to impose a successful 
coupling scheme between subsystem modes, such that compatibili- 
ty and equilibrium can be restored at the interfaces. The main 
contributors and their techniques are briefly summarized as 
follows : 

A .  Hurty (6 -9 )  - This technique contains the following 
main steps: 

1. Partition a system to several subsystems (parts). 

2. For each part "i", set constraints at interfaces 
and compute mode shape matrices as follows: 

= fixed constraint elastic normal modes, 
i 

[$,I = constraint modes, 
i 

[$,I = rigid body modes, 
i 

where [$c] are shapes of static displacements 
I 

when each of the constraints is independently 
given a unit displacement, and may contain 

i 
either all normal mode shapes or the shapes of 
only the few lowest modes. 

Then by defining: 

I Q, 1 4  1 -- mode shape matrix, [Q,li= ['r, c t  e ;  

[ m l i  = mass matrix. 

[kli = stiffness matrix, 



[cIi = damping matrix, 

{fli = load matrix, 

the generalized subsystem matrices are computed 
as 

3. Set up system equations: 

where 



and {p)  is an assemblage of generalized coordi- 
nates of all subsystems. 

4. Set up transformation matrix [B] for modal 
coupling by restoring geometric compatibility 
at the interfaces. Thus { P I  can be expressed 
by its independent coordinates, {q), as 

Notice that [B] depends entirely upon the geo- 
metric configuration of the interfaces. 

5. Hence the synthesized total system equations are 
developed using the transformation matrix [B]: 

where 

B. Bamford ( * )  - A computer program based on Hurty ' S  tech- 
niques was developed. In iks subsystem processing, 
"attachment modes" are added for describing the shapes 
of motion caused by concentrated loads at unconstraip- 
ed points. Thus for any subsystem "i", the mode shape 
matrix is defined as 

where [$a] contains all attachment mode shapes. 
i 

C. Bajan, Feng, and Jaszlics - Technique involves 
modal coupling and modal substitution. The former 
couples the subsystem modes to obtain the total system 
modes, while the latter provides an iteration scheme 
for improving accuracy through error analysis. Key 
steps are as follows: 



1. Perform modal analysis on each subsystem i, which 
has known mass matrix [m] and stiffness matrix i 
[kIi, and obtain its mode shapes as 

where [mc] contains all constraint modes and [me] 
contains all elastic modes with fixed interfaces. 

2. Subsystem matrices are assembled as 

3. Define matrix [c] , such that 

where tu I is an assemblage of displacement vectors 
S 

{us} of all subsystems, and tu) is the displace- 
I 

ment vector of the system as a whole. 

4. A matrix can be generated as 



where [Tc] contains all constraint modes, and [Tr] 

contains subsystem elastic modes retained for modal 
coupling, while remainders [Td] are deleted. Thus 

the partial modal coupling is done by solving 

where [MI =  TI^ [m] [TI, 

Solutions give 

where [Q] and {&I  are the participation matrix and 
the vector of generalized coordinates, respective- 
ly. Hence 

where [+] contains approximate mode shapes of the 
system through such partial coupling. 

5. Set a new [TI by retaining certain modes from [Q] 
and certain unused modes of [Td], which are defin- 

ed as objective modes [+0] and replacement modes 

LTrep 1, respectively: 

Then go through modal analysis as shown in step 4, 
and get new [TI. Such a process, which is called 
"modal substitution" will be repeated until satis- 
factory eigenvalues are obtained. 



Replacement modes may also be obtained from de- 
leted modes in [ $ I  of previous cycles when all 
modes in [Td] are used. Selection of replacement 

modes are based on their individual contribution 
of error to the eigensolution, which is automatiz- 
ed through a "modal selection algorithm". 

D. Goldman ( 3 1 4 )  - Use rigid body modes and free-free 
elastic modes of parts for synthesis. Modal couplings 
are performed by eliminating the terms of internal 
forces at connection interfaces from equations of motion 
through the compatibility relations. Key steps are as 
follows : 

1. Modal equations of motion of all subsystems are 
assembled as : 

where 

{pel = Generalized coordinates for elastic motions, 

{pr} = Generalized coordinates for rigid body 
motions, 

2 
= Frequencies of elastic modes in subsystems, 

[meb]= Elastic mode shapes at interfaces of sub- 
systems with unit generalized mass, 

[mrb]= Rigid body mode shapes at interfaces of sub- 
systems, 

{Fc} = All internal forces at connection interfaces. 

2. The geometric compatibility regarding displacements 
at the connection interfaces provides relations as 



3. Multiplying the first equation of motion by [ $  I eb 
and the second one by [ I # J ~ ~ ] ,  the sum of these two 

equations gives 

T -1 T where LEI = [mebI [$,b] + [orb] [Mrl [$rbl * 

4 .  Thus. replacing {Fcl by the above expression, the 

first equation of motion becomes 

T -1 where [Ll = h$ 1 - [mebl [EI [$ebl 

This gives the form of eigensolution for the whole 
system. 

E. Martin Marietta Co., Denver, Colorado ( 5 )  - Empirical 
coupling techniques are developed for computing modal 
dgta of a space vehicle which contains a main structure 
and several branch structures. Key steps are as follows: 

1. Each branch i is treated as a cantilever by fixing 
it at its attaching point to the main structure, 
and then performing a modal analysis for each 
branch through the following equation of motions: 

where [mb], [kb], and {ubj are the mass matrix, 

stiffness matrix, and displacements of branch i. 
The mode shapes so obtained are defined as [$b] , 

I 

and the generalized coordinates are {pb} . 
i 



2. Then perform modal analysis for the main structure 
by treating all branches as rigid appendages: 

where [m,] , [k,] and {urn} are the mass matrix, 

stiffness matrix, and displacements for the main 
structure. The mode shapes so obtained are de- 
fined as [$m], and the generalized coordinates 

are {pm}. 

3. Assume that motion in any branch i is given by {u 1 
i 

plus the rigid body motion [TIi {urn} caused by the 

motion at the attaching point. Thus 

4. Thus the system equation for eigensolution after 
modal coupling is 

 MI{^) + [ K l { p }  = ( 0 1 ,  

where 
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COMMENTS ON EXISTING TECHNIQUES 

A. Hurty and Bamford were concerned with determining 
response after obtaining modal information by synthesis. 
However, solving for modal information alone, the load- 
ing and damping terms introduced by Hurty and the 
attachment modes introduced by Bamford need not be in- 
cluded in the synthesis scheme. The reasons are: 

(1) Only the homogeneous solutions are needed from 
the equations of motion. 

(2) Damping effects to normal frequencies are negligi- 
ble if the system is lightly damped. For heavily 
damped cases, the equations of motion will be 
coupled and solutions will be difficult to obtain. 

However, if m~dal information of parts are obtained by 
testing, and such testing must introduce constraints 
which may not be at the interface between parts, 
Bamford's techniques will provide data for synthesis 
and a check of testing. 

B.  Bajan, Feng, and Jaszlics have laid out a clear scheme 
for obtaining constraint modes, Their ideas for auto- 
matic modal selection by error analysis and substitution 



scheme are impressive. However, formulations are 
complicated and involve a lot of computations. The 
number of objective modes and replacement modes used 
for each cycle remains arbitrary. In addition, the 
matrix [c] is based on relations in cartesian coordi- 
nates between the whole system and subsystems and is 
not the coupling between subsystem modal vectors, as 
is applied. 

C. The most attractive point of Goldman's technique is 
the use of free-free subsystem modes. Thus constraint 
modes as used by other techniques are not needed. In 
addition, the method always leads to an eigensolution 
of a single matrix [L] (see Section I1 E.4.). Thus 
the eigensolution for the synthesized total system 
equations are easy to handle. Since Goldman's system 
equation of elastic motions after coupling has a 
number of DOF equal to the sum of elastic DOF of the 
subsystems, the total DOF of the fully coupled system 
is not the same as the actual DOF of the system. This 
may introduce error. 

Techniques used by Martin Marietta Company are empiri- 
cal in nature and may yield close solutions when the 
branch systems are of far less effect to the main 
system in terms of mass and frequency range. In addi- 
tion, since no relative motions are allowed among DOF's 
at the interface (constraint modes are not used), the 
number of mass points at the connection interface 
should be as few as possible; the best is one. 

IV. THE NEW APPROACH 

Based on previous studies, a new approach emphasizing 
ease of interpretation, mathematical simplicity, accuracy of ' 

results, and potential computer capability is presented. This 
new approach is guided by the following considerations: 

Whenever eigensolution routines are capable of 
handling free-free systems, subsystems should 
be unconstrained, unless constraints physically 
exist at the boundary. Thus, computation for 



constraint modes may be eliminated if free-free 
elastic modes are introduced from the parts. 

The main goal of the approach is to yield modal 
information, and thus there is no need to consider 
forcing functions and damping. Concentrating on 
undamped free vibration will simplify the formula- 
tion and the computation scheme. 

Connection interfaces between parts should be 
simple with as few DOF involved as possible. 

Rigid body modes of subsystems are included 
since they have significant effect on the 
lowest elastic modes obtained through modal 
coupling. However, the effects on the 
higher modes are negligible. 

The computation scheme should include a method 
for selecting proper modes, and in adequate 
number from subsystems for partial modal 
coupling. The method uses a simple error 
analysis technique, the main purpose of which 
is to insure convergence of results. 

A. Subsystem Analysis 

Partition a structural system in parts. Each part is 
considered as free-free unless it is physically constrained. 
Then perform modal analysis of each part (say part i) to obtain 

* 
L its normal frequencies hi-] and mode shapes [mi] . The portion 

of [mi] at interfaces is designated as [mic]. Rigid body modes 

are treated as free-free elastic modes having zero frequencies. 
All mode shapes are normalized to unit generalized mass. For ' 

convenience of explanation, suppose a system is partitioned into 
two parts, A and B, which have nA and ng modes participating in 

the synthesis, respectively. Let nr be the number of degrees-of- 

freedom at the connection interface, 

For part A, we have 
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and 

where 

{p I = Vector of generalized coordinates A 

IuAI = Vector of displacements in physical 
coordinates 

{F I = Internal forces acting on the connection 
A interface between parts. 

Let {uAC} be the portion of IuA} on the connection interface, 

and the remaining portion be {u I, equation (2) can be parti- Ar 
tioned as 

Using the same expressions for part B, we have 

and 

The required conditions for geometric compatibility at 
the connection interface provide nr equations as follows: 



Letting nA > nrI I$Ac] can be partitioned as 

r 
where [L$:~] is a square matrix, and [(AC] contains the remainders. 

ThusI from equation (8), we have 

and 

This gives an expression for (n +n ) generalized coordinates {p) A B 
in terms of (nA+nB-nr) independent coordinates {ql: 

where 

, Cql = I 



C. System Equations by Modal Coupling 

The uncoupled modal information of the parts can be 
assembled as follows: 

By substituting compatibility equation (12) and then restoring 
symmetry, we have 

Since the term on the right hand side of equation (16) is equal 
to zero (see next section), we get (nA+nB-n,) coupled system 

equations as: 

where 

T [m] = Pseudo mass matrix = [TI [TI, 

[ h ]  = Pseudo stiffness matrix = 

Performing a modal analysis of equation (17), we obtain normal 
frequencies of the system and shape vectors [ $ I .  Hence, the 
mode shapes of the total system are 
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D. Equilibrium Check 

Since { F ~ }  and IF,} are equal and opposite internal 

forces acting at the connection interface, and since there are 
no external forces imposed on the system, the system must be in 
equilibrium at the interface if the right hand side of equation 
(17) is truly a zero vector. From the right hand side of 
equation (16), we have 

(NOTE: { F ~ )  + {FBI = {O} at interface) 

Thus both compatibility and equilibrium conditions 
are satisfied at the connection interface. 

As we know, the real advantage sf modal synthesis can 
only be achieved by partial modal coupling, that is using a 
small number of selected subsystem modes. However, the accuracy 
of the results is also decreased when fewer modes are used. Thus, 
a proper selection scheme is essential. 



It has been found that the iow (or high) frequency 
modes of subsystems have only dominant effect on the low (or 
high) frequency modes of the overall system, and the sum of all 
frequency squares (eigenvalues) of a system is an invariant. 
Thus a simple selection scheme can be set up as follows: 

1. First, rearrange mode shapes and frequencies of 
each subsystem into an ascending order of their 
frequencies. Then divide the modes in each sub- 
system into equal number of groups. 

2. Start synthesis by using modes in the first group 
of all subsystems. Then sum up first n eigen- 
values hlk (k=l, 2, * * ,n) obtained from synthesis 

and call it C1: 

3. More modes are used by taking successive group 
of modes from all subsystems. In each cycle, 
compute 

4. Thus the "Index of Convergence" is defined as 

which will eventually go below a predefined 
tolerance level when a sufficient number of modes 
are involved. Since all frequencies in each sub- 
system have been rearranged, the magnitude change 
in each synthesized frequency is in a monotonic 
fashion. Thus such an index will indicate the 
relative rate of improvement in frequencies when 
additional group of modes are used. 



F.  conclusions 

In summary, this new approach offers the following ad- 
vantages and special features: 

1. It is easy to interpret mathematically and physi- 
cally. Such simplicity makes computer programming 
easier. 

2. Both geometric compatibilities and force equili- 
brium are satisfied at interfaces between parts. 

3. Mode shapes and normal frequencies from parts are 
the only input. Constraint modes from parts are 
not needed. 

4. The use of free-free or constrained elastic modes 
from the parts depends on whether physical con- 
straints actually exist at the interface. 

5. A spectrum of system normal frequencies in the 
range of interest and their associated mode shapes 
can be computed. 

6. Rigid body modes are automatically included and 
are treated as if they are the first few free-free 
elastic modes with zero frequencies. They can be 
included or omitted for partial modal synthesis. 

Three numerical examples are given in the Appendix. 
The first example uses total coupling for verifying the theory of 
the new approach. The second example demonstrates the selection 
of subsystem modes for partial coupling, such that modes of the 
total system in the frequency range of interest can be synthesiz- 
ed efficiently. The third example demonstrates the synthesis 
scheme for obtaining higher frequency modes. 

2031-SNH-jet S. N. HOU 
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APPENDIX 

EXAMPLE 1 

This example is intended to demonstrate the simplicity 
of the synthesis technique using the new approach, and also to 
show the accuracy of the results through total coupling. A com- 
parison of synthesized results with direct solution of the total 
system is presented. 

Given an elastic, uniform section, homogeneousr free- 
free beam, where: 

L = total length = 40 in., 

r = radius of cross section = 1 in., 

p = weight density = 2 lbs. per cu. in., 

4 E = elastic modulus = 1 x 10 psi, 

v = Poisson ratio = 0.3, 

A = area of cross section = 3.1416 sq. in., 

I = sectional moment of inertia = : nr4 = 0.7854 in. 4 

To compute the dynamic properties through modal synthesis, parti- 
tion the beam into two identical parts, and each part into ten 
identical segments having a length R = 2 in. The mass of each 
segment is lumped into its two ends, which are considered as nodes. 
Consider each node to have only two degrees of freedom, lateral 
translation and rotation. Thus each part has 22 DOF and 11 nodal 
points as shown in Figure 1. 

Total System 

P a r t  A Part B 

FIGURE 1 



Appendix (contd, ) - 2 -  

Computing frequencies and mode shapes of the parts, we have 

Notice that there are two rigid body modes in each part. The 
interface compatibility conditions set by Equation (7) are that 
the displacement and rotation at node 11 of part A should be 
equal to the displacement and rotation at node 1 of part B. 
Thus the total system after synthesis has 42 DOF. According to 
Equations (8) and (9) , [mAC] contains the last two rows of [$A] 
and [mBc] contains the first two rows of [mB]. The is 

further partitioned into a square sub-matrix [$iC] and the re- 
r mainder [mAC] : 
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The 44 x 42 transformation matrix [TI for tota4 coupling can bs 
computed by Equation (14) as 

Then compute 42 x 42 pseudo mass and stiffness matrices as 

and perform modal analysis for this synthesized pseudo system 
a9 shown in Equations (17) and (18). 

Table 1 gives a comparison of frequencies between 
synthesis results and the results directly obtained from analysis 
of 42 DOF discretized total beam. Table 2 gives a comparison of 
the displacements and slopes in the first elastic mode shape (the 
rd 3--- mode). Mode shapes given by Reference ($2) are also listed 
for comparison. 
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Appendix (contd. ) 

TABLE l 

COMPARISON OF FREQUENCIES (cps) 

Mode 
No. 

Direct 
Solution 

Synthesis 
Results 
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TABLE 2 

COMPARISON OF MODE SHAPES 

(First Elastic Mode) 

(A) TRANSLATIONS 

Location 
of Node 

(B) ROTATIONS 

Direct 
Solution 

2.001 

1.071 

0.190 

-0.549 

-1.045 

-1.220 

-1.046 

-0.550 

0.189 

1.069 

1.999 

Synthesis 
Results 

2.000 

1.072 

0.192 

-0.546 

-1.040 

-1.216 

-1.042 

-0.552 

0.184 

1.058 

1.982 

Reference 
(12) 



This example is intended to show how to select suffi- 
cient modes from parts for partial modal coupling, such that 
total system modes in the range of interest can be efficiently 
computed. 

Given the same free-free beam as in Example 1 except 
for a hinge at midspan, if we partition the beam through Chis 
hinge and discretize the two parts the same way as Example 1, 
each part will also have 11 nodes and 22  DOF. The only differ- 
ence is that there is only one DOF (the translation) instead 
of two at the interface for compatibility requirements. Since 
rotation of two parts at the interface may be different, the 
total system has 43 DOF instead of 42.  

Suppose that we are interested in the lowes* seven 
modes. The first step is to arrange modes of the two parts in- 
dividually in ascending order, according to the magnitude of their 
frequencies. Then break the 22 modes (including 2 rigid body 
modes) of each part into groups: 

Group No. Modes 

Take group 1 modes from both parts for synthesis. Results will 
yield the 7 lowest modes of the total system. Their eigenvalues 
(AlK) are: 

The three zeros yield three rigid body modes as shown in Figure 2. 

FIGURE 2 
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Appendix (contd . ) 

Hence 

Then add group 2 modes to group 1 for both parts, and synthesize 
again. Results yield the lowest 13 modes of the total system. 
However, we only take the same lowest 7 eigenvalues (/I2k) and sum 

them: 

Thus the first "index of convergence" is 

If additional groups of modes in both parts participate in the 
synthesis, we have 

and 

Notice that an increase of the same number of modes from parts 
yield less in accuracy improvement of the synthesis results, and 
at the same time the size of the coupled system gets larger and 
larger. For this particular case, since E is already small 1 
enough, we may stop adding subsystem modes right after computing 

El. This means using the lowest 7 modes (about one third of 22) 

from each part for synthesis. Frequencies (cps) so obtained are 
compared with total coupling results (22 modes from each part) 
as shown in Table 3. 
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Appendix (contd, ) 

Mode 
No. 

EXAMPLE 3 

TABLE 3 

7 Modes From 
Each Part 

Total 
Coupling 

For the same beam as example 2, if all the modes of 
the total system are required, we can perform several shifts i p  
the synthesis. Example 2 shows that 7 modes from each part will 
yield satisfactory results, and since we know that nA modes from 

part A and nB modes from part B with nr = 1 at the interface will 

yield (nA+nB-nr) modes of the total system after synthesis, three 

shifts of synthesis should be sufficient, as shown in Table 4. 

TABLE 4 

Synthesis 
Shift No. 

Modes From 
Part A 

Modes From 
Part B 

No. of Modes 
Synthesized 

14 

14 

15 
- 

T o t a l  =. 4 3  
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Frequencies  (cps)  s o  ob ta ined  a r e  compared with  t o t a l  coupl ing  
r e s u l t s  a s  shown i n  Table 5. 

TABLE 5 

(A)  F i r s t  S h i f t :  

Mode 
No. - 

( B )  Second S h i f t :  

P a r t i a l  
Coupling 

T o t a l  
Coupling 
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(C) Third Shift: 


