4-6 Triangle Congruence: ASA, AAS, and HL

Bellringer:

1. What are sides $A C$ and $B C$ called? Side $A B$?
legs; hypotenuse

2. Which side is in between $\angle A$ and $\angle C$? $\overline{A C}$
3. Given $\triangle D E F$ and $\triangle G H I$, if $\angle D \cong \angle G$ and $\angle E \cong \angle H$, why is $\angle F \cong \angle I$?
Third $\angle \mathrm{s}$ Thm.

4-6 Triangle Congruence: ASA, AAS, and HL

Objectives

Apply ASA, AAS, and HL to construct triangles and to solve problems.

Prove triangles congruent by using ASA, AAS, and HL.

Vocabulary

included side

4-6 Triangle Congruence: ASA, AAS, and HL

Participants in an orienteering race use a map and a compass to find their way to checkpoints along an unfamiliar course.

Directions are given by bearings, which are based on compass headings. For example, to travel along the bearing S $43^{\circ} \mathrm{E}$, you face south and then turn 43° to the east.

4-6 Triangle Congruence: ASA, AAS, and HL

An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.

$\overline{P Q}$ is the included side of $\angle P$ and $\angle Q$.

Postulate 4-5-1 Angle-Side-Angle (ASA) Congruence
POSTULATE HYPOTHESIS CONCLUSION If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

4-6 Triangle Congruence: ASA, AAS, and HL

Example 1: Problem Solving Application

A mailman has to collect mail from mailboxes at A and B and drop it off at the post office at C. Does the table give enough information to determine the location of the mailboxes and the post office?

	Bearing	Distance
\boldsymbol{A} to \boldsymbol{B}	$\mathrm{N} 65^{\circ} \mathrm{E}$	8 mi
\boldsymbol{B} to \boldsymbol{C}	$\mathrm{N} 24^{\circ} \mathrm{W}$	
\boldsymbol{C} to \boldsymbol{A}	$\mathrm{S} 20^{\circ} \mathrm{W}$	

4-6 Triangle Congruence: ASA, AAS, and HL

1 Understand the Problem

The answer is whether the information in the table can be used to find the position of points A, B, and C.

List the important information: The bearing from A to B is $\mathrm{N} 65^{\circ} \mathrm{E}$. From B to C is $\mathrm{N} 24^{\circ} \mathrm{W}$, and from C to A is $\mathrm{S} 20^{\circ} \mathrm{W}$. The distance from A to B is 8 mi .

2 Make a Plan

Draw the mailman's route using vertical lines to show north-south directions. Then use these parallel lines and the alternate interior angles to help find angle measures of $\triangle A B C$.

4-6 Triangle Congruence: ASA, AAS, and HL

3 Solve

$\mathrm{m} \angle \mathrm{CAB}=65^{\circ}-20^{\circ}=45^{\circ}$
$\mathrm{m} \angle \mathrm{CAB}=180^{\circ}-\left(24^{\circ}+65^{\circ}\right)=91^{\circ}$
You know the measures of $\mathrm{m} \angle C A B$ and $\mathrm{m} \angle C B A$ and the length of the included side $A B$. Therefore by ASA, a unique triangle $A B C$ is determined.

4 Look Back

One and only one triangle can be made using the information in the table, so the table does give enough information to determine the location of the mailboxes and the post office.

4-6 Triangle Congruence: ASA, AAS, and HL
Example 2: Applying ASA Congruence Determine if you can use ASA to prove the triangles congruent. Explain

We cannot use ASA bIc we do not know
 that the included sides are \cong. We only know the angles marked and the shared side

4-6 Triangle Congruence: ASA, AAS, and HL

You can use the Third Angles Theorem to prove another congruence relationship based on ASA. This theorem is Angle-Angle-Side (AAS).

Theorem 4-5-2 Angle-Angle-Side (AAS) Congruence

THEOREM	HYPOTHESIS	CONCLUSION
If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and nonincluded side of another triangle, then the triangles are congruent.		

4-6 Triangle Congruence: ASA, AAS, and HL
Example 3: Using AAS to Prove Triangles Congruent Use AAS to prove the triangles congruent.
Given: $\angle X \cong \angle V, \angle Y Z W \cong \angle Y W Z, \overline{X Y} \cong \overline{V Y}$
Prove: $\triangle X Y Z \cong \triangle V Y W$ Statements Reasons
(1.) $\angle X \cong \angle V$, $\angle y z W \cong$ $\angle y w z_{1}$ $\overline{x y}=\sqrt{y y}$
(2.) $\angle x z y=$ $\angle v W y$
(3) $\triangle x y z \cong$ $\Delta V y W$

(2) bile they make a linear pair w/ congruent $4 s$
(3) AAS

4-6 Triangle Congruence: ASA, AAS, and Hi l
Check It Out! Example 3
Use AAS to prove the triangles congruent.
Given: $\overline{J L}$ bisects $\angle K L M, \angle K \cong \angle M$
Prove: $\triangle J K L \cong \triangle J M L$
Statements \mid Reasons
(1) JL bisects (1) given $\angle K L M$, $\angle K \cong \angle M$
(2) $\angle K L J \cong \angle M L J$
(2) def. of bisect
(3) $J L \equiv J L$
(3) reflexive prop
(4.) $\triangle J K L \cong$
(4) AAS $\triangle J M L$

4-6 Triangle Gongruence: ASA, AAS, and Hil

Theorem 4-5-3 Hypotenuse-Leg (HL) Congruence

THEOREM	HYPOTHESIS	CONCLUSION
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.		

4-6 Triangle Congruence: ASA, AAS, and HL
Example 4: Applying HL Congruence
Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.
A.

HL can be used b/c the hypotenuses are marked congruent and there is a side (leg) that is shared
\qquad
HL cannot be used bic the hypotenuses are not marked congruent.
B.

