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Foreword

This book provides a comprehensive introduction to the theory of nonlinear finite element 
analysis and its various implementation strategies. It is intended for beginning graduate stu-
dents studying the areas of mechanical engineering, civil engineering, applied mathematics, 
engineering mechanics and materials science. 

The authors provide a wide selection of material to suit the needs and preferences of many 
instructors. This second edition provides a thorough coverage of the key topics for the benefit of 
students, practitioners and developers of the nonlinear finite element software. Since 2001, I have 
taught the first edition of this book as a textbook to students at Columbia University, RPI and engi-
neers at the Knolls Nuclear Laboratory. Students absolutely loved it due to the fact that difficult 
concepts are explained in a way that engineers and graduate students can easily comprehend.

The second edition of the book comes with a solutions manual for the benefit of instructors 
and students. The solutions are accompanied by MATLAB® and FORTRAN codes for select 
computer problems, to facilitate and accelerate the implementation of the more advanced 
 concepts and algorithms covered in the book. 

The second edition also includes three new chapters, which offer a concise introduction to some 
of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite ele-
ments, namely: the eXtended Finite Element Method (XFEM), Multiresolution Continuum Theory 
(MCT) for multiscale microstructures, and dislocation-density-based crystalline plasticity. With 
these timely additions, the book will now reach a broader community at the forefront of research.

In summary, the book has proven over the years to be an excellent reference on nonlinear 
finite elements for instructors, students, engineers and researchers. It can be easily adopted as 
a graduate textbook or used by students for self-study.  With the addition of a solutions manual, 
along with the relevant computer codes, the learning curve for some of the most advanced 
 concepts in nonlinear finite analysis could be greatly shortened. Finally, the additional three 
chapters add the new dimension of cutting edge research.

Jacob Fish
Columbia University, USA





Preface

The objective of this book is to provide a comprehensive introduction to the methods and 
theory of nonlinear finite element analysis. We have focused on the formulation and solution 
of the discrete equations for various classes of problems that are of principal interest in 
 applications of the finite element method to solid mechanics, the mechanics of materials, and 
structural mechanics. The core topics are presented first, which include: the discretization by 
finite elements of continua in one dimension and in multi-dimensions; the formulation of 
 constitutive equations for nonlinear materials and large deformations; and procedures for the 
solution of the discrete equations, including considerations of both numerical and physical 
instabilities. More specialized applications are then presented. These include: the treatment of 
structural and contact-impact problems; representation of weak and strong discontinuities that 
evolve in failing solids; and mechanism-based modeling of material nonlinearities, illustrating 
advanced treatments of their multiscale aspects and microstructural origins. These are the 
topics which are of relevance to industrial and research applications and which are essential to 
those in the practice, research, and teaching of nonlinear finite elements.

The book has a mechanics style rather than a mathematical style. Although it includes 
analyses of the stability of numerical methods and the relevant partial differential equations, 
the objective is to teach methods of finite element analysis and the properties of the solutions 
and the methods. Topics such as proofs of convergence and the mathematical properties of 
solutions are not considered.

In the formulation of the discrete equations, we start with the governing equations based on 
the mechanics of the system, develop a weak form, and use this to derive the discrete equations. 
Weak forms and the discrete equations are developed for Lagrangian, arbitrary Lagrangian, 
and Eulerian meshes, for in the simulation of industrial processes and research, problems with 
large deformations that cannot be treated by Lagrangian meshes are becoming more common. 
Both the updated Lagrangian and the total Lagrangian approaches are thoroughly described.
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Since a fundamental understanding of the equations requires substantial familiarity with 
continuum mechanics, Chapter 3 summarizes the continuum mechanics which is pertinent to 
the topics in this book. The chapter begins with a basic description of motion with an emphasis 
on rotation. Strain and stress measures are described along with transformations between 
them, which are later generalized as push-forward and pullback operations. The basic 
conservation laws are described in both so-called Eulerian and Lagrangian descriptions. 
Objectivity, often known as frame invariance, is introduced.

Chapter 4 describes the formulation of the discrete equations for Lagrangian meshes. We 
start with the development of the weak forms of momentum balance and use these to develop 
the discrete equations. Both the total Lagrangian and the updated Lagrangian formulations are 
thoroughly described, and methods and approaches for transforming between these formula-
tions are discussed. Examples are given of the development of various elements in two and 
three dimensions.

Chapter 5 treats constitutive equations, with particular emphasis on the aspects of material 
models that are relevant to the treatment of material nonlinearities and large deformations.

Solution procedures and analyses of stability are described in Chapter 6. Both explicit and 
implicit integration procedures are described for transient processes and solutions; continua-
tion procedures for equilibrium problems are considered. Newton methods and the lineariza-
tion procedures required for the construction of the Newton equations are developed. In the 
solution of nonlinear problems, the stability of the numerical procedures and of the physical 
processes is crucial. Therefore, the theory of stability is summarized and applied to the deter-
mination of the stability of solutions and numerical procedures. Both geometric and material 
stability are considered.

Chapter 7 deals with arbitrary Lagrangian Eulerian methods. This chapter also provides the 
tools for Eulerian analysis. Numerical techniques needed for this class of meshes, such as 
upwinding and the SUPG formulation, are described.

Chapter 8 deals with element technology, the special techniques which are needed for the 
successful design of elements in constrained media problems. Emphasis is placed on the 
problem of incompressible materials but the techniques are described in a general context. 
One-point quadrature elements and hourglass control are also described.

Chapter 9 is devoted to structural elements, particularly shells and beams; plates are not 
treated separately because they are special cases of shells. We emphasize continuum-based 
structural formulations because they are more easily learned and more widely used for nonlinear 
analysis. The various assumptions are carefully studied and continuum-based formulations for 
beams and shells are developed. Much of this chapter rests heavily on the preceding chapters, 
since continuum-based elements can be developed from continuum elements with minor modi-
fications. Therefore, topics such as linearization and material models are treated only briefly.

Contact-impact is described in Chapter 10. Contact-impact is viewed as a variational 
inequality, so that the appropriate contact inequalities are met in the discrete equations. Both 
displacement-based and velocity-based formulations are described. Attention is focused on 
the nonsmooth character of contact-impact and its effect on solution procedures and 
simulations.

Chapter 11 covers the modeling of strong and weak discontinuities. An overview of methods 
in classical finite elements is provided as a historical introduction. The chapter focuses  
on using the extended finite element method (XFEM) to model discontinuities with  
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non- conforming meshes. For strong discontinuities the emphasis is on modeling fracture, with 
extensions to other problems. For weak discontinuities emphasis is on material interfaces, but 
the developments presented are easily extendable to other weak discontinuities. The discussion 
begins with the 1D formulation and then builds to multiple dimensions. Discussions are 
included for both implementation and integration of XFEM as well as a brief overview of the 
level set method, which is often coupled with XFEM. The chapter concludes with an example.

The role of material microstructure in defining material nonlinearities is introduced in 
Chapter 12. Emphasis is made on the multiresolution continuum theory, a multiscale mechanics 
theory for the large deformation of heterogeneous materials. Its aim is to link the mechanics 
of solids to materials science. The theory is developed from variational principles and dis-
cretized for finite element implementation. Representative volume elements (RVEs) and their 
role in developing mechanism-based multiscale constitutive formulations are then discussed 
and integrated in the multiresolution framework.

RVE modeling of single crystals by finite elements is discussed in Chapter 13, as an example 
of mechanism-based modeling of non-linear materials. From materials science, the crystallo-
graphic description of cubic and non-cubic crystals and the theory of dislocation densities are 
linked to a non-linear constitutive algorithm that governs inhomogeneous deformation in 
crystalline materials at the continuum level.

This book is intended for beginning graduate students in programs in mechanical engi-
neering, civil engineering, applied mathematics, and engineering mechanics. The book assumes 
some familiarity with the finite element method, such as a one-semester course or a four- to 
five-week section in a larger course. The student should be familiar with shape functions, stiff-
ness, and force assembly; it is also helpful to have some background in variational or energy 
methods. In addition, students should have had some exposure to strength of materials and 
continuum mechanics. Familiarity with indicial notation and matrix notation is essential.

Most instructors will choose not to cover this entire book. To do so would require a one-year 
course. Our aim has been to include a wide selection of material to suit the needs and prefer-
ences of many instructors. Moreover, the additional material provides the interested student 
with a source of background reading before embarking into the literature.

Shorter courses, such as a 10-week quarter or a 16-week semester, require a judicious selec-
tion of material which reflects the aims and taste of the instructor. The book presents most 
material in both the total and the updated Lagrangian format. Thus, an introductory course can 
focus on the updated Lagrangian viewpoint from Chapter 2 to Chapter 4, with selected topics 
from Chapters 5 and 6 to familiarize the student with material models and solution proce-
dures. Some instructors may opt to skip the one-dimensional treatment in Chapter 2, leaving 
it as perhaps required reading. The total Lagrangian formulation can then be introduced by 
simply showing the transformation in Chapter 4. A similar course can be designed with an 
emphasis on the total Lagrangian formulation.

We have endeavored to use a unified style and notation throughout this book. This is impor-
tant because, for students, drastic changes in notation and formalism often impede learning. 
This, at times, causes divergence from notation customary in the literature of a particular area, 
but we hope that the consistency of presentation will help the student.

For the second edition of this book a solution manual is available, which includes solutions 
to all exercises in the book, including MATLAB® and/or FORTRAN codes for the prescribed 
computer problems.
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