Ted Belytschko | Wing Kam Liu Brian Moran | Khalil I. Elkhodary

Finite Elements for Continua and Structures

Second Edition

Ð

NONLINEAR FINITE ELEMENTS FOR CONTINUA AND STRUCTURES

NONLINEAR FINITE ELEMENTS FOR CONTINUA AND STRUCTURES

Second Edition

Ted Belytschko

Department of Mechanical Engineering Northwestern University, USA

Wing Kam Liu Department of Mechanical Engineering Northwestern University, USA

Brian Moran

Physical Sciences and Engineering Division King Abdullah University of Science and Technology Kingdom of Saudi Arabia

Khalil I. Elkhodary Department of Mechanical Engineering The American University in Cairo, Egypt

WILEY

This edition first published 2014 © 2014 John Wiley & Sons, Ltd

Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Belytschko, Ted, 1943– Nonlinear finite elements for continua and structures / Ted Belytschko, Wing Kam Liu, Brian Moran,
Khalil I. Elkhodary. – Second edition. pages cm
Includes bibliographical references and index.
ISBN 978-1-118-63270-3 (pbk.)
1. Finite element method. 2. Continuum mechanics. 3. Structural analysis (Engineering) I. Liu, W. K. (Wing Kam)
II. Moran, B. (Brian), 1958– III. Elkhodary, Khalil I. IV. Title. TA347.F5B46 2014

620'.001515355-dc23

2013023511

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Publisher Services, Pondicherry, India

1 2014

On the cover: Fracture-process profile of a Ti-modified 4330 steel, shown in the unloaded configuration. An initial microvoid volume fraction of 0.04% is simulated using the multiresolution continuum theory described in chapter 12 with about 270 million 8-node elements and approximately 3 billion degrees of freedom.

To our families

Contents

Fo	Foreword				
Pr	eface		xxiii		
List of Boxes					
1	Intr	ntroduction			
	1.1	Nonlinear Finite Elements in Design	1		
	1.2	Related Books and a Brief History of Nonlinear Finite Elements	4		
	1.3	Notation	7		
		1.3.1 Indicial Notation	7		
		1.3.2 Tensor Notation	8		
		1.3.3 Functions	8		
		1.3.4 Matrix Notation	8		
	1.4	Mesh Descriptions	9		
	1.5	Classification of Partial Differential Equations	13		
	1.6	Exercises	17		
2	Lag	rangian and Eulerian Finite Elements in One Dimension	19		
	2.1 Introduction				
	2.2	Governing Equations for Total Lagrangian Formulation	21		
		2.2.1 Nomenclature	21		
		2.2.2 Motion and Strain Measure	22		
		2.2.3 Stress Measure	22		
		2.2.4 Governing Equations	23		
		2.2.5 Momentum Equation in Terms of Displacements	26		
		2.2.6 Continuity of Functions	27		
		2.2.7 Fundamental Theorem of Calculus	28		

	2.3	Weak	Form for Total Lagrangian Formulation	28			
		2.3.1	Strong Form to Weak Form	28			
		2.3.2	Weak Form to Strong Form	30			
		2.3.3	Physical Names of Virtual Work Terms	32			
		2.3.4	Principle of Virtual Work	33			
	2.4	Finite	Element Discretization in Total Lagrangian Formulation	34			
		2.4.1	Finite Element Approximations	34			
		2.4.2	Nodal Forces	35			
		2.4.3	Semidiscrete Equations	37			
		2.4.4	Initial Conditions	38			
		2.4.5	Least-Square Fit to Initial Conditions	39			
		2.4.6	Diagonal Mass Matrix	39			
	2.5		ent and Global Matrices	40			
	2.6	Gover	ning Equations for Updated Lagrangian Formulation	51			
		2.6.1	Boundary and Interior Continuity Conditions	52			
		2.6.2	Initial Conditions	53			
	2.7	Weak	Form for Updated Lagrangian Formulation	53			
	2.8	Eleme	ent Equations for Updated Lagrangian Formulation	55			
		2.8.1	II III	55			
			Element Coordinates	56			
			Internal and External Nodal Forces	58			
			Mass Matrix	59			
			Equivalence of Updated and Total Lagrangian Formulations	60			
			Assembly, Boundary Conditions and Initial Conditions	61			
			Mesh Distortion	64			
	2.9		ning Equations for Eulerian Formulation	67			
			Forms for Eulerian Mesh Equations	68			
	2.11		Element Equations	69			
			Momentum Equation	71			
			on Methods	72			
		Summ		74			
	2.14	Exerci	ises	75			
3	Continuum Mechanics						
	3.1	Introd	uction	77			
	3.2	Defor	mation and Motion	78			
		3.2.1	Definitions	78			
		3.2.2	Eulerian and Lagrangian Coordinates	79			
		3.2.3	Motion	80			
		3.2.4	Eulerian and Lagrangian Descriptions	80			
		3.2.5	Displacement, Velocity and Acceleration	81			
		3.2.6		83			
		3.2.7	Conditions on Motion	84			
		3.2.8	Rigid Body Rotation and Coordinate Transformations	85			
	3.3		Measures	95			
		3.3.1	Green Strain Tensor	95			
		3.3.2	Rate-of-Deformation	97			

		3.3.3	Rate-of-Deformation in Terms of Rate of Green Strain	98
	3.4	Stress	Measures	104
		3.4.1	Definitions of Stresses	104
			Transformation between Stresses	105
			Corotational Stress and Rate-of-Deformation	107
	3.5		ervation Equations	111
		3.5.1	Conservation Laws	111
		3.5.2	Gauss's Theorem	112
		3.5.3	Material Time Derivative of an Integral and Reynolds'	
			Transport Theorem	113
		3.5.4	Mass Conservation	115
		3.5.5	Conservation of Linear Momentum	116
		3.5.6	Equilibrium Equation	119
		3.5.7	Reynolds' Theorem for a Density-Weighted Integrand	119
		3.5.8	Conservation of Angular Momentum	120
		3.5.9	Conservation of Energy	120
	3.6		ngian Conservation Equations	123
		3.6.1	Introduction and Definitions	123
			Conservation of Linear Momentum	124
			Conservation of Angular Momentum	126
			Conservation of Energy in Lagrangian Description	127
			Power of PK2 Stress	129
	3.7		Decomposition and Frame-Invariance	130
			Polar Decomposition Theorem	130
			Objective Rates in Constitutive Equations	135
			Jaumann Rate	136
			Truesdell Rate and Green–Naghdi Rate	137
			Explanation of Objective Rates	142
	3.8	Exerc	ises	143
4	Lagrangian Meshes			
		Introd		147
			rning Equations	148
	4.3		Form: Principle of Virtual Power	152
			Strong Form to Weak Form	153
			Weak Form to Strong Form	154
		4.3.3	Physical Names of Virtual Power Terms	156
	4.4	-	ted Lagrangian Finite Element Discretization	158
		4.4.1	Finite Element Approximation	158
		4.4.2		160
		4.4.3		161
		4.4.4	1	161
		4.4.5		163
		4.4.6	5	165
		4.4.7	0	166
		4.4.8	1	166
		4.4.9	Simplifications of Mass Matrix	167

	4.5	Implen	nentation	168
		4.5.1	Indicial to Matrix Notation Translation	169
		4.5.2	Voigt Notation	171
		4.5.3	Numerical Quadrature	173
		4.5.4	Selective-Reduced Integration	174
		4.5.5		175
	4.6	Corota	tional Formulations	194
	4.7	Total L	agrangian Formulation	203
		4.7.1	Governing Equations	203
		4.7.2	Total Lagrangian Finite Element Equations by Transformation	205
	4.8	Total L	agrangian Weak Form	206
		4.8.1	Strong Form to Weak Form	206
		4.8.2	Weak Form to Strong Form	208
	4.9		Element Semidiscretization	209
		4.9.1	Discrete Equations	209
		4.9.2	Implementation	211
		4.9.3	Variational Principle for Large Deformation Statics	221
	4.10	Exercis	ses	225
5	Con	stitutive	Models	227
	5.1	Introdu	iction	227
	5.2	The Str	ress–Strain Curve	228
		5.2.1	The Tensile Test	229
	5.3		imensional Elasticity	233
		5.3.1	Small Strains	233
		5.3.2	Large Strains	235
	5.4		ear Elasticity	237
		5.4.1	55	237
		5.4.2	1 2	241
		5.4.3	Kirchhoff Stress	242
		5.4.4	Hypoelasticity	242
		5.4.5	Relations between Tangent Moduli	243
		5.4.6	Cauchy Elastic Material	247
		5.4.7	Hyperelastic Materials	248
		5.4.8	Elasticity Tensors	249
		5.4.9	Isotropic Hyperelastic Materials	251
		5.4.10	Neo-Hookean Material	252
			Modified Mooney–Rivlin Material	253
	5.5		imensional Plasticity	254
		5.5.1	Rate-Independent Plasticity in One Dimension	254
		5.5.2	Extension to Kinematic Hardening	257
		5.5.3	Rate-Dependent Plasticity in One Dimension	260
	5.6		xial Plasticity	262
		5.6.1	Hypoelastic-Plastic Materials	263
		5.6.2	J_2 Flow Theory Plasticity	267
		5.6.3	Extension to Kinematic Hardening	269
		5.6.4	Mohr–Coulomb Constitutive Model	271

6

	5.6.5	Drucker–Prager Constitutive Model	273
	5.6.6	Porous Elastic-Plastic Solids: Gurson Model	274
	5.6.7	Corotational Stress Formulation	277
	5.6.8	Small-Strain Formulation	279
	5.6.9	Large-Strain Viscoplasticity	280
5.7	Hypere	lastic-Plastic Models	281
	5.7.1	Multiplicative Decomposition of Deformation Gradient	282
	5.7.2	Hyperelastic Potential and Stress	283
	5.7.3	Decomposition of Rates of Deformation	283
	5.7.4	Flow Rule	285
	5.7.5	Tangent Moduli	286
	5.7.6	J, Flow Theory	288
	5.7.7	Implications for Numerical Treatment of Large Rotations	291
	5.7.8	Single-Crystal Plasticity	291
5.8	Viscoel	lasticity	292
	5.8.1	Small Strains	292
	5.8.2	Finite Strain Viscoelasticity	293
5.9	Stress 1	Update Algorithms	294
	5.9.1	Return Mapping Algorithms for Rate-Independent Plasticity	295
	5.9.2	Fully Implicit Backward Euler Scheme	296
	5.9.3	Application to J_2 Flow Theory – Radial Return Algorithm	300
	5.9.4	Algorithmic Moduli	302
	5.9.5	Algorithmic Moduli: J_2 Flow and Radial Return	305
	5.9.6	Semi-Implicit Backward Euler Scheme	306
	5.9.7	Algorithmic Moduli – Semi-Implicit Scheme	307
	5.9.8	Return Mapping Algorithms for Rate-Dependent Plasticity	308
	5.9.9	Rate Tangent Modulus Method	310
	5.9.10	Incrementally Objective Integration Schemes for Large Deformations	311
	5.9.11	Semi-Implicit Scheme for Hyperelastic–Plastic Constitutive Models	312
5.10	Contin	uum Mechanics and Constitutive Models	314
	5.10.1	Eulerian, Lagrangian and Two-Point Tensors	314
	5.10.2	Pull-Back, Push-Forward and the Lie Derivative	314
	5.10.3	Material Frame Indifference	319
	5.10.4	Implications for Constitutive Relations	321
	5.10.5	Objective Scalar Functions	322
	5.10.6	Restrictions on Elastic Moduli	323
	5.10.7	Material Symmetry	324
		Frame Invariance in Hyperelastic–Plastic Models	325
		Clausius–Duhem Inequality and Stability Postulates	326
5.11	Exercis	ses	328
Solu		thods and Stability	329
6.1	Introdu		329
6.2	-	t Methods	330
	6.2.1	Central Difference Method	330
	6.2.2	Implementation	332
	6.2.3	Energy Balance	335

	6.2.4	Accuracy	336
	6.2.5	Mass Scaling, Subcycling and Dynamic Relaxation	337
6.3	Equilib	rium Solutions and Implicit Time Integration	337
	6.3.1	Equilibrium and Transient Problems	337
	6.3.2	Equilibrium Solutions and Equilibrium Points	338
	6.3.3	Newmark β -Equations	338
	6.3.4	Newton's Method	339
	6.3.5	Newton's Method for n Unknowns	341
	6.3.6	Conservative Problems	343
	6.3.7	Implementation of Newton's Method	344
	6.3.8	Constraints	346
	6.3.9	Convergence Criteria	353
	6.3.10	Line Search	354
	6.3.11	The α -Method	355
	6.3.12	Accuracy and Stability of Implicit Methods	356
	6.3.13	Convergence and Robustness of Newton Iteration	357
	6.3.14	Selection of Integration Method	358
6.4	Lineari	zation	358
	6.4.1	Linearization of the Internal Nodal Forces	358
	6.4.2	Material Tangent Stiffness	360
	6.4.3	Geometric Stiffness	361
	6.4.4	Alternative Derivations of Tangent Stiffness	362
	6.4.5	External Load Stiffness	364
	6.4.6	Directional Derivatives	372
	6.4.7	Algorithmically Consistent Tangent Stiffness	374
6.5	Stabilit	y and Continuation Methods	375
	6.5.1	Stability	375
	6.5.2	Branches of Equilibrium Solutions	378
	6.5.3	Methods of Continuation and Arc Length Methods	380
	6.5.4	Linear Stability	382
	6.5.5	Symmetric Systems	383
	6.5.6	Conservative Systems	384
	6.5.7	Remarks on Linear Stability Analysis	384
	6.5.8	Estimates of Critical Points	385
	6.5.9	Initial Estimates of Critical Points	386
6.6	Numeri	ical Stability	391
	6.6.1	Definition and Discussion	391
	6.6.2	Stability of a Model Linear System: Heat Conduction	392
	6.6.3	Amplification Matrices	396
	6.6.4	Amplification Matrix for Generalized Trapezoidal Rule	397
	6.6.5	The z-Transform	398
	6.6.6	Stability of Damped Central Difference Method	399
	6.6.7	Linearized Stability Analysis of Newmark <i>β</i> -Method	401
	6.6.8	Eigenvalue Inequality and Time Step Estimates	403
	6.6.9	Element Eigenvalues	404
	6.6.10	Stability in Energy	406

	6.7	Mater	ial Stability	407
		6.7.1	Description and Early Work	407
		6.7.2	Material Stability Analysis	408
		6.7.3	Material Instability and Change of Type of PDEs in 1D	411
		6.7.4	Regularization	412
	6.8	Exerc	ises	415
7	Arb	itrary]	Lagrangian Eulerian Formulations	417
	7.1		luction	417
	7.2		Continuum Mechanics	419
		7.2.1	Material Motion, Mesh Displacement, Mesh Velocity,	
			and Mesh Acceleration	419
			Material Time Derivative and Convective Velocity	421
		7.2.3	Relationship of ALE Description to Eulerian	
			and Lagrangian Descriptions	422
	7.3		ervation Laws in ALE Description	426
			Conservation of Mass (Equation of Continuity)	426
			Conservation of Linear and Angular Momenta	427
			Conservation of Energy	428
	7.4		Governing Equations	428
	7.5		Forms	429
			Continuity Equation – Weak Form	430
			Momentum Equation – Weak Form	430
			Finite Element Approximations	430
			The Finite Element Matrix Equations	432
	7.6		luction to the Petrov–Galerkin Method	433
			Galerkin Discretization of the Advection–Diffusion Equation	434
			Petrov–Galerkin Stabilization	436
			Alternative Derivation of the SUPG	437
			Parameter Determination	438
			SUPG Multiple Dimensions	441
	7.7		v–Galerkin Formulation of Momentum Equation	442
			Alternative Stabilization Formulation	443
			The δv_i^{PG} Test Function	443
	70		Finite Element Equation	444
	7.8		Dependent Materials	445
			Strong Form of Stress Update	446
		7.8.3	Weak Form of Stress Update	446
		7.8.3	Finite Element Discretization	446 447
			Stress Update Procedures	447
		7.8.5	Finite Element Implementation of Stress Update Procedures in 1D	453
		7.8.6	Explicit Time Integration Algorithm	
	7.9		rization of the Discrete Equations	456 457
	1.9	7.9.1	Internal Nodal Forces	437 457
		7.9.1		
		1.9.2	External Nodal Forces	459

	7.10	Mesh U	Jpdate Equations	460
		7.10.1	Introduction	460
		7.10.2	Mesh Motion Prescribed A Priori	461
		7.10.3	Lagrange–Euler Matrix Method	461
		7.10.4	Deformation Gradient Formulations	463
			Automatic Mesh Generation	465
		7.10.6	Mesh Update Using a Modified Elasticity Equation	466
			Mesh Update Example	467
	7.11	Numer	ical Example: An Elastic–Plastic Wave Propagation Problem	468
			LE Formulations	471
		7.12.1	Total ALE Conservation Laws	471
		7.12.2	Reduction to Updated ALE Conservation Laws	473
	7.13	Exercis	ies	475
8	Elen	nent Tec	chnology	477
	8.1	Introdu	ction	477
	8.2	Elemen	nt Performance	479
		8.2.1	Overview	479
		8.2.2	Completeness, Consistency, and Reproducing Conditions	483
		8.2.3	Convergence Results for Linear Problems	484
		8.2.4	Convergence in Nonlinear Problems	486
	8.3	Elemen	nt Properties and Patch Tests	487
		8.3.1	Patch Tests	487
		8.3.2	Standard Patch Test	487
		8.3.3	Patch Test in Nonlinear Programs	489
		8.3.4	Patch Test in Explicit Programs	489
		8.3.5	Patch Tests for Stability	490
		8.3.6	Linear Reproducing Conditions of Isoparametric Elements	490
		8.3.7	Completeness of Subparametric and Superparametric Elements	492
		8.3.8	Element Rank and Rank Deficiency	493
		8.3.9	Rank of Numerically Integrated Elements	494
	8.4	Q4 and	Volumetric Locking	496
		8.4.1	Element Description	496
		8.4.2	Basis Form of Q4 Approximation	497
		8.4.3	Locking in Q4	499
	8.5	Multi-F	Field Weak Forms and Elements	501
		8.5.1	Nomenclature	501
		8.5.2	Hu–Washizu Weak Form	501
		8.5.3	Alternative Multi-Field Weak Forms	503
		8.5.4	Total Lagrangian Form of the Hu–Washizu	504
		8.5.5	Pressure–Velocity (p–v) Implementation	505
		8.5.6	Element Specific Pressure	507
		8.5.7	Finite Element Implementation of Hu–Washizu	508
		8.5.8	Simo–Hughes B-Bar Method	510
		8.5.9	Simo-Rifai Formulation	511
	8.6	Multi-F	Field Quadrilaterals	514

		8.6.1	Assumed Velocity Strain to Avoid Volumetric Locking	514
		8.6.2	Shear Locking and its Elimination	516
		8.6.3	Stiffness Matrices for Assumed Strain Elements	517
		8.6.4	Other Techniques in Quadrilaterals	517
	8.7	One-Po	pint Quadrature Elements	518
		8.7.1	Nodal Forces and B-Matrix	518
		8.7.2	Spurious Singular Modes (Hourglass)	519
		8.7.3	Perturbation Hourglass Stabilization	521
		8.7.4	Stabilization Procedure	522
		8.7.5	Scaling and Remarks	522
		8.7.6	Physical Stabilization	523
		8.7.7	Assumed Strain with Multiple Integration Points	525
		8.7.8	Three-Dimensional Elements	526
	8.8	Examp	les	527
		8.8.1	Static Problems	527
		8.8.2	Dynamic Cantilever Beam	528
		8.8.3	Cylindrical Stress Wave	530
	8.9	Stabilit	ty	531
	8.10	Exercis	ses	533
9	Bear	ns and S	Shells	535
	9.1	Introdu	iction	535
	9.2	Beam 7	Theories	537
		9.2.1	Assumptions of Beam Theories	537
		9.2.2	Timoshenko (Shear Beam) Theory	538
		9.2.3	Euler–Bernoulli Theory	539
		9.2.4	Discrete Kirchhoff and Mindlin–Reissner Theories	540
	9.3	Continu	uum-Based Beam	540
		9.3.1	Definitions and Nomenclature	541
		9.3.2	Assumptions	542
		9.3.3	Motion	543
		9.3.4	Nodal Forces	545
		9.3.5	Constitutive Update	545
		9.3.6	Continuum Nodal Internal Forces	547
		9.3.7	Mass Matrix	549
		9.3.8	Equations of Motion	550
		9.3.9	Tangent Stiffness	550
	9.4	Analys	is of the CB Beam	551
		9.4.1	Motion	551
		9.4.2	Velocity Strains	554
		9.4.3	Resultant Stresses and Internal Power	555
		9.4.4	Resultant External Forces	556
		9.4.5	Boundary Conditions	557
		9.4.6	Weak Form	558
		9.4.7	Strong Form	558
		9.4.8	Finite Element Approximation	559

	9.5	Continuum-Based Shell Implementation		563
		9.5.1	Assumptions in Classical Shell Theories	564
		9.5.2	Coordinates and Definitions	564
		9.5.3	Assumptions	565
		9.5.4	Coordinate Systems	565
		9.5.5	Finite Element Approximation of Motion	566
		9.5.6	Local Coordinates	568
		9.5.7	Constitutive Equation	569
		9.5.8	Thickness	570
		9.5.9	Master Nodal Forces	570
		9.5.10	Mass Matrix	571
		9.5.11	Discrete Momentum Equation	571
		9.5.12	Tangent Stiffness	572
		9.5.13	Five Degree-of-Freedom Formulation	572
		9.5.14	Large Rotations	573
		9.5.15	Euler's Theorem	573
		9.5.16	Exponential Map	575
		9.5.17	First- and Second-Order Updates	576
		9.5.18	Hughes–Winget Update	577
		9.5.19	Quaternions	577
		9.5.20	Implementation	578
	9.6	CB She	ell Theory	578
		9.6.1		578
		9.6.2	Velocity Strains	580
		9.6.3	Resultant Stresses	581
		9.6.4	Boundary Conditions	582
		9.6.5	Inconsistencies and Idiosyncrasies of Structural Theories	583
	9.7	Shear and Membrane Locking		584
		9.7.1	Description and Definitions	584
		9.7.2		585
		9.7.3	Membrane Locking	587
		9.7.4	Elimination of Locking	588
	9.8	Assum	ed Strain Elements	589
		9.8.1		589
		9.8.2	Rank of Element	591
		<i>9.8.3</i>	Nine-Node Quadrilateral	591
	9.9	One-Po	pint Quadrature Elements	592
	9.10	Exercis	ses	595
10		Contact-Impact		
	10.1	Introdu	iction	597
	10.2	Contac	t Interface Equations	598
		10.2.1	Notation and Preliminaries	598
		10.2.2	Impenetrability Condition	600
		10.2.3	Traction Conditions	602
		10.2.4	Unitary Contact Condition	603

		10.2.5	Surface Description	603
			Interpenetration Measure	604
		10.2.7	Path-Independent Interpenetration Rate	605
			Tangential Relative Velocity for Interpenetrated Bodies	606
	10.3	Friction	Models	609
		10.3.1	Classification	609
		10.3.2	Coulomb Friction	609
		10.3.3	Interface Constitutive Equations	610
	10.4	Weak F	forms	614
		10.4.1	Notation and Preliminaries	614
		10.4.2	Lagrange Multiplier Weak Form	615
		10.4.3	Contribution of Virtual Power to Contact Surface	617
		10.4.4	Rate-Dependent Penalty	618
		10.4.5	Interpenetration-Dependent Penalty	620
			Perturbed Lagrangian Weak Form	620
			Augmented Lagrangian	621
			Tangential Tractions by Lagrange Multipliers	622
	10.5		Element Discretization	624
			Overview	624
			Lagrange Multiplier Method	624
			Assembly of Interface Matrix	629
			Lagrange Multipliers for Small-Displacement Elastostatics	629
			Penalty Method for Nonlinear Frictionless Contact	630
			Penalty Method for Small-Displacement Elastostatics	631
			Augmented Lagrangian	631
			Perturbed Lagrangian	633
			Regularization	637
	10.6		licit Methods	638
			Explicit Methods	638
			Contact in One Dimension	639
			Penalty Method	641
		10.6.4	Explicit Algorithm	642
11	EXte	ended Fi	inite Element Method (XFEM)	643
	11.1	Introdu	ction	643
		11.1.1	Strong Discontinuity	643
		11.1.2	Weak Discontinuity	645
			XFEM for Discontinuities	646
			n of Unity and Enrichments	647
	11.3	One-Di	mensional XFEM	648
		11.3.1	Strong Discontinuity	648
		11.3.2	Weak Discontinuity	652
		11.3.3	Mass Matrix	655
	11.4		Dimension XFEM	656
		11.4.1	Crack Modeling	656

		11.4.2	Tip Enrichment	658
			Enrichment in a Local Coordinate System	660
	11.5	Weak a	and Strong Forms	660
	11.6	Discret	te Equations	662
		11.6.1	Strain–Displacement Matrix for Weak Discontinuity	665
	11.7	Level S	Set Method	668
		11.7.1	Level Set in 1D	668
		11.7.2	Level Set in 2D	668
		11.7.3	Dynamic Fracture Growth Using Level Set Updates	669
	11.8	The Ph	antom Node Method	670
		11.8.1	Element Decomposition in 1D	670
		11.8.2	Element Decomposition in Multi-Dimensions	671
	11.9	Integra	tion	673
		11.9.1	Integration for Discontinuous Enrichments	673
		11.9.2	Integration for Singular Enrichments	675
	11.10	An Exa	ample of XFEM Simulation	675
	11.11	Exercis	se	678
12	Intro	luction	to Multiresolution Theory	681
	12.1	Motiva	tion: Materials are Structured Continua	681
	12.2	Bulk D	Deformation of Microstructured Continua	685
	12.3		lizing Mechanics to Bulk Microstructured Continua	686
			The Need for a Generalized Mechanics	686
			Major Ideas for a Generalized Mechanics	687
			Higher-Order Approach	688
			Higher-Grade Approach	689
		12.3.5	Reinterpretation of Micromorphism for Bulk	
			Microstructured Materials	691
	12.4		cale Microstructures and the Multiresolution Continuum Theory	696
	12.5		ning Equations for MCT	699
			Virtual Internal Power	699
			Virtual External Power	699
			Virtual Kinetic Power	700
	10 (Strong Form of MCT Equations	700
			ucting MCT Constitutive Relationships	701
	12.7		Guidelines for RVE Modeling	705
			Determining RVE Cell Size	706
	12.0		RVE Boundary Conditions	707
	12.8		Element Implementation of MCT	710
	12.9		ical Example	712
			Void-Sheet Mechanism in High-Strength Alloy	712
			MCT Multiscale Constitutive Modeling Outline	713
		12.9.3	Finite Element Problem Setup for a Two-Dimensional	714
		1201	Tensile Specimen	714
	12 10		<i>Results</i> Research Directions of MCT Modeling	716 718
		Exercis	e	718
	14.11			/19

13	Single	-Crysta	l Plasticity	721	
	13.1	Introduction		721	
	13.2	Crystal	lographic Description of Cubic and Non-Cubic Crystals	723	
		13.2.1	Specifying Directions	724	
			Specifying Planes	725	
	13.3		c Origins of Plasticity and the Burgers Vector in Single Crystals	s 726 729 735	
	13.4		ng Slip Planes and Directions in General Single Crystals		
	13.5	Kinematics of Single Crystal Plasticity			
			Relating the Intermediate Configuration to Crystalline Mechanics	735	
		13.5.2	Constitutive Definitions of the Plastic Parts of Deformation		
			Rate and Spin	737	
		13.5.3	I J		
			Small Elastic Strain	738	
			Final Remarks	739	
			ation Density Evolution	740	
	13.7		Required for Dislocation Motion	742	
	13.8		Update in Rate-Dependent Single-Crystal Plasticity	743	
			The Resolved Shear Stress	743	
			The Resolved Shear Stress Rate	743	
			Updating Resolved Shear Stress in Rate-Dependent Materials	744	
			Updating the Cauchy Stress	745	
	12.0		Adiabatic Temperature Update	745	
	13.9	-	hm for Rate-Dependent Dislocation-Density Based		
	12 10		Plasticity	745	
			ical Example: Localized Shear and Inhomogeneous Deformation	747	
	13.11	Exercis	es	750	
Арр	Appendix 1 Voigt Notation				
Арр	oendix	2 No	rms	757	
Арр	oendix	3 Ele	ement Shape Functions	761	
Арр	oendix	4 Eu	ler Angles From Pole Figures	767	
Арр	oendix	5 Ex	ample of Dislocation-Density Evolutionary Equations	771	
Glo	ssary			777	
Ref	References				
Ind	ex			781 795	

Foreword

This book provides a comprehensive introduction to the theory of nonlinear finite element analysis and its various implementation strategies. It is intended for beginning graduate students studying the areas of mechanical engineering, civil engineering, applied mathematics, engineering mechanics and materials science.

The authors provide a wide selection of material to suit the needs and preferences of many instructors. This second edition provides a thorough coverage of the key topics for the benefit of students, practitioners and developers of the nonlinear finite element software. Since 2001, I have taught the first edition of this book as a textbook to students at Columbia University, RPI and engineers at the Knolls Nuclear Laboratory. Students absolutely loved it due to the fact that difficult concepts are explained in a way that engineers and graduate students can easily comprehend.

The second edition of the book comes with a solutions manual for the benefit of instructors and students. The solutions are accompanied by MATLAB[®] and FORTRAN codes for select computer problems, to facilitate and accelerate the implementation of the more advanced concepts and algorithms covered in the book.

The second edition also includes three new chapters, which offer a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite elements, namely: the eXtended Finite Element Method (XFEM), Multiresolution Continuum Theory (MCT) for multiscale microstructures, and dislocation-density-based crystalline plasticity. With these timely additions, the book will now reach a broader community at the forefront of research.

In summary, the book has proven over the years to be an excellent reference on nonlinear finite elements for instructors, students, engineers and researchers. It can be easily adopted as a graduate textbook or used by students for self-study. With the addition of a solutions manual, along with the relevant computer codes, the learning curve for some of the most advanced concepts in nonlinear finite analysis could be greatly shortened. Finally, the additional three chapters add the new dimension of cutting edge research.

Preface

The objective of this book is to provide a comprehensive introduction to the methods and theory of nonlinear finite element analysis. We have focused on the formulation and solution of the discrete equations for various classes of problems that are of principal interest in applications of the finite element method to solid mechanics, the mechanics of materials, and structural mechanics. The core topics are presented first, which include: the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; and procedures for the solution of the discrete equations, including considerations of both numerical and physical instabilities. More specialized applications are then presented. These include: the treatment of structural and contact-impact problems; representation of weak and strong discontinuities that evolve in failing solids; and mechanism-based modeling of material nonlinearities, illustrating advanced treatments of their multiscale aspects and microstructural origins. These are the topics which are of relevance to industrial and research applications and which are essential to those in the practice, research, and teaching of nonlinear finite elements.

The book has a mechanics style rather than a mathematical style. Although it includes analyses of the stability of numerical methods and the relevant partial differential equations, the objective is to teach methods of finite element analysis and the properties of the solutions and the methods. Topics such as proofs of convergence and the mathematical properties of solutions are not considered.

In the formulation of the discrete equations, we start with the governing equations based on the mechanics of the system, develop a weak form, and use this to derive the discrete equations. Weak forms and the discrete equations are developed for Lagrangian, arbitrary Lagrangian, and Eulerian meshes, for in the simulation of industrial processes and research, problems with large deformations that cannot be treated by Lagrangian meshes are becoming more common. Both the updated Lagrangian and the total Lagrangian approaches are thoroughly described. Since a fundamental understanding of the equations requires substantial familiarity with continuum mechanics, Chapter 3 summarizes the continuum mechanics which is pertinent to the topics in this book. The chapter begins with a basic description of motion with an emphasis on rotation. Strain and stress measures are described along with transformations between them, which are later generalized as push-forward and pullback operations. The basic conservation laws are described in both so-called Eulerian and Lagrangian descriptions. Objectivity, often known as frame invariance, is introduced.

Chapter 4 describes the formulation of the discrete equations for Lagrangian meshes. We start with the development of the weak forms of momentum balance and use these to develop the discrete equations. Both the total Lagrangian and the updated Lagrangian formulations are thoroughly described, and methods and approaches for transforming between these formulations are discussed. Examples are given of the development of various elements in two and three dimensions.

Chapter 5 treats constitutive equations, with particular emphasis on the aspects of material models that are relevant to the treatment of material nonlinearities and large deformations.

Solution procedures and analyses of stability are described in Chapter 6. Both explicit and implicit integration procedures are described for transient processes and solutions; continuation procedures for equilibrium problems are considered. Newton methods and the linearization procedures required for the construction of the Newton equations are developed. In the solution of nonlinear problems, the stability of the numerical procedures and of the physical processes is crucial. Therefore, the theory of stability is summarized and applied to the determination of the stability of solutions and numerical procedures. Both geometric and material stability are considered.

Chapter 7 deals with arbitrary Lagrangian Eulerian methods. This chapter also provides the tools for Eulerian analysis. Numerical techniques needed for this class of meshes, such as upwinding and the SUPG formulation, are described.

Chapter 8 deals with element technology, the special techniques which are needed for the successful design of elements in constrained media problems. Emphasis is placed on the problem of incompressible materials but the techniques are described in a general context. One-point quadrature elements and hourglass control are also described.

Chapter 9 is devoted to structural elements, particularly shells and beams; plates are not treated separately because they are special cases of shells. We emphasize continuum-based structural formulations because they are more easily learned and more widely used for nonlinear analysis. The various assumptions are carefully studied and continuum-based formulations for beams and shells are developed. Much of this chapter rests heavily on the preceding chapters, since continuum-based elements can be developed from continuum elements with minor modifications. Therefore, topics such as linearization and material models are treated only briefly.

Contact-impact is described in Chapter 10. Contact-impact is viewed as a variational inequality, so that the appropriate contact inequalities are met in the discrete equations. Both displacement-based and velocity-based formulations are described. Attention is focused on the nonsmooth character of contact-impact and its effect on solution procedures and simulations.

Chapter 11 covers the modeling of strong and weak discontinuities. An overview of methods in classical finite elements is provided as a historical introduction. The chapter focuses on using the extended finite element method (XFEM) to model discontinuities with non-conforming meshes. For strong discontinuities the emphasis is on modeling fracture, with extensions to other problems. For weak discontinuities emphasis is on material interfaces, but the developments presented are easily extendable to other weak discontinuities. The discussion begins with the 1D formulation and then builds to multiple dimensions. Discussions are included for both implementation and integration of XFEM as well as a brief overview of the level set method, which is often coupled with XFEM. The chapter concludes with an example.

The role of material microstructure in defining material nonlinearities is introduced in Chapter 12. Emphasis is made on the *multiresolution continuum theory*, a multiscale mechanics theory for the large deformation of heterogeneous materials. Its aim is to link the mechanics of solids to materials science. The theory is developed from variational principles and discretized for finite element implementation. Representative volume elements (RVEs) and their role in developing mechanism-based multiscale constitutive formulations are then discussed and integrated in the multiresolution framework.

RVE modeling of single crystals by finite elements is discussed in Chapter 13, as an example of mechanism-based modeling of non-linear materials. From materials science, the crystallographic description of cubic and non-cubic crystals and the theory of dislocation densities are linked to a non-linear constitutive algorithm that governs inhomogeneous deformation in crystalline materials at the continuum level.

This book is intended for beginning graduate students in programs in mechanical engineering, civil engineering, applied mathematics, and engineering mechanics. The book assumes some familiarity with the finite element method, such as a one-semester course or a four- to five-week section in a larger course. The student should be familiar with shape functions, stiffness, and force assembly; it is also helpful to have some background in variational or energy methods. In addition, students should have had some exposure to strength of materials and continuum mechanics. Familiarity with indicial notation and matrix notation is essential.

Most instructors will choose not to cover this entire book. To do so would require a one-year course. Our aim has been to include a wide selection of material to suit the needs and preferences of many instructors. Moreover, the additional material provides the interested student with a source of background reading before embarking into the literature.

Shorter courses, such as a 10-week quarter or a 16-week semester, require a judicious selection of material which reflects the aims and taste of the instructor. The book presents most material in both the total and the updated Lagrangian format. Thus, an introductory course can focus on the updated Lagrangian viewpoint from Chapter 2 to Chapter 4, with selected topics from Chapters 5 and 6 to familiarize the student with material models and solution procedures. Some instructors may opt to skip the one-dimensional treatment in Chapter 2, leaving it as perhaps required reading. The total Lagrangian formulation can then be introduced by simply showing the transformation in Chapter 4. A similar course can be designed with an emphasis on the total Lagrangian formulation.

We have endeavored to use a unified style and notation throughout this book. This is important because, for students, drastic changes in notation and formalism often impede learning. This, at times, causes divergence from notation customary in the literature of a particular area, but we hope that the consistency of presentation will help the student.

For the second edition of this book a solution manual is available, which includes solutions to all exercises in the book, including MATLAB[®] and/or FORTRAN codes for the prescribed computer problems.

We would like to thank our many friends, colleagues, and former students who read preliminary versions of this book and who provided numerous suggestions, feedback and corrections, especially

Zhanli Liu, Tsinghua University Zhuo Zhuang, Tsinghua University Danial Faghihi, University of Texas at Austin J. S. Chen, University of Iowa John Dolbow, Duke University Thomas J. R. Hughes, Stanford University Shaofan Li, Northwestern University Arif Masud, University of Illinois at Chicago Nicolas Moës, Northwestern University Katerina Papoulia, Cornell University Patrick Smolinski, University of Pittsburgh Natarajan Sukumar, Northwestern University Henry Stolarski, University of Minnesota Ala Tabiel, University of Cincinnati

We would also like to thank our students Sheng Peng, Jifeng Zhao, Miguel Bessa, John Moore, Patrick Lea, Zulfiqar Ali, Debbie Burton, Hao Chen, Yong Guo, Dong Qian, Michael Singer, Pritpal Singh, Gregory Wagner, Shaoping Xiao and Lucy Zhang for help with preparation of figures, typing, and extensive proofreading. Any remaining errors are, of course, the responsibility of the authors.

A special thanks goes to Shaofan Li and Yong Guo for their contributions to several of the exercises and worked examples.

Ted Belytschko, Wing Kam Liu

Northwestern University, USA Brian Moran King Abdullah University of Science and Technology, KSA Khalil I. Elkhodary The American University in Cairo, Egypt

List of Boxes

Box 2.1	Principle of virtual work for one-dimensional total	
	Lagrangian formulation	33
Box 2.2	Discrete equations in total Lagrangian formulation	44
Box 2.3	Discrete equations updated Lagrangian formulation	61
Box 2.4	Governing equations for Eulerian formulation	67
Box 2.5	Flowchart for explicit time integration of Lagrangian mesh	73
Box 3.1	Definition of stress measures	104
Box 3.2	Transformations of stresses	106
Box 3.3	Conservation equations	122
Box 3.4	Stress-deformation (strain) rate pairs conjugate in power	129
Box 3.5	Objective rates	137
Box 4.1	Governing equations for updated Lagrangian formulation	149
Box 4.2	Weak form for updated Lagrangian formulation: principle of	
	virtual power	157
Box 4.3	Discrete equations and internal nodal force algorithm for updated	
	Lagrangian formulation	169
Box 4.4	Governing equations for total Lagrangian formulation	203
Box 4.5	Weak form for total Lagrangian formulation: principle of virtual work	208
Box 4.6	Discrete equations and internal nodal force algorithm for total Lagrangian	
	formulation	211
Box 5.1	Relations between tangent moduli	245
Box 5.2	Principal invariants of a second-order tensor	251
Box 5.3	Constitutive relations for one-dimensional rate-independent plasticity with	
	combined isotropic and kinematic hardening	259
Box 5.4	Constitutive equations for rate-dependent plasticity in one dimension	
	with combined isotropic and (linear) kinematic hardening	261
Box 5.5	Hypoelastic-plastic constitutive model (Cauchy stress formulation)	265
Box 5.6	J_2 flow theory hypoelastic–plastic constitutive model	267

Box 5.7	J_2 flow theory hypoelastic–plastic constitutive model with			
	combine disotropic kinematic hardening	270		
Box 5.8	Rate-independent Gurson model	276		
Box 5.9	Hypoelastic-plastic constitutive model: rotated Kirchhoff			
	stress formulation	277		
Box 5.10	Elasto-plastic constitutive model – small strains	279		
Box 5.11	Large strain rate-dependent plasticity	281		
Box 5.12	Hyperelastic–plastic J ₂ flow theory constitutive model	289		
Box 5.13	Backward Euler return mapping scheme	299		
Box 5.14	Radial return method	303		
Box 5.15	Stress update scheme for hyperelastic-viscoplastic model	313		
Box 5.16	Summary of pull-back and push-forward operations			
	(note that the metric tensor $g=I$)	315		
Box 5.17	Lie derivatives	316		
Box 6.1	Flowchart for explicit time integration	333		
Box 6.2	Newmark β-method	339		
Box 6.3	Flowchart for implicit time integration	345		
Box 6.4	Flowchart for equilibrium solution	345		
Box 6.5	Jacobian of internal nodal forces (tangent stiffness matrix)	364		
Box 6.6	Flowchart for equilibrium solution: Newton method with			
	algorithmic moduli	375		
Box 7.1	ALE governing equations	429		
Box 7.2	Matrices for ALE stress update	447		
Box 7.3	Explicit time integration	457		
Box 7.4	Examples of (7.10.16) in 1D, 2D and 3D	464		
Box 8.1	Internal force calculation in mixed element	510		
Box 8.2	Element nodal force calculation	525		
Box 9.1	Algorithm for CB beam element	548		
Box 10.1	Contact interface conditions	607		
Box 10.2	Weak forms	624		
Box 10.3	Semidiscrete equations for nonlinear contact	632		
Box 11.1	Internal nodal force computation for enriched element	667		
Box 12.1	Constitutive modeling strategy in MCT	701		
Box 13.1	Pre-processing: determining initial slip directions and normals	733		
Box 13.2	Dislocation-density based single-crystal plasticity algorithm	746		