ONRAMPS

Optical Nethomks Using Rapid Amplified Muntil-wavelengit Photomic switches

Ben Lee, IBM Research

A Diverse Team of Experts

- IBM Research
- Hershel Ainspan
- Chris Baks
- Alan Benner
- Fuad Doany
- Nicolas Dupuis
- Ben Lee
- Pavlos Maniotis
- Mounir Meghelli
- Jon Proesel
- Laurent Schares
- Marc Taubenblatt
- IBM Bromont
- Nicolas Boyer
- Isabel De Sousa
- Elaine Cyr
- Nathalie Normand

Circuit Design and Layout
Electrical Package Design
Network Simulation \& Applications
Optical and Electrical Packaging
IC Design and Test
Principal Investigator
Network Simulation \& Applications
Mixed-Signal Circuit Design
Mixed-Signal Circuit Design
System Integration and Network Simulation
Techno-economics, Applications, \& Outreach

Microelectronics and Photonics Assembly
Techno-economics and Business Development
Microelectronics and Photonics Assembly
Microelectronics and Photonics Assembly

- Research Interns
- Alex Forencich (UCSD), Takako Hirokawa (UCSB), Pascal Stark (ETH), Anny Zheng (MIT)

Technical \& Economic Drivers

- ONRAMPS is developing the technology \& eco-system for a:
- Low-cost
- Manufacturable \rightarrow
- Fully packaged $\quad \rightarrow$
- Fast reconfigurable \rightarrow
- Photonic switch \rightarrow

人 in Trusted On-shore facilities

+ also works at lower speeds
volume-compatible \& automated assembly commercial fabrication and assembly lines ${ }^{\curlywedge}$ optical, electrical, thermal, and mechanical system switching in tens of nanoseconds ${ }^{+}$ scalable bandwidth with low power and latency
- Once developed \& matured, the technology can have an immediate impact in high-performance computing
- May also be used in datacenters, mini-ROADMs for telecom and 5G, avionics, edge networks, RF systems
- Metrics:
- Phase $1 \rightarrow$ SNB 8×8, < 2 W (incl. control), $<-20 \mathrm{~dB}$ aggregate crosstalk, $\sim 7 \mathrm{~dB}$ on-chip loss
- Commercial targets \rightarrow SNB $32 \times 32,50 \mathrm{~Tb} / \mathrm{s},<30 \mathrm{~W}$, loss compensated, few $\Phi / \mathrm{Gb} / \mathrm{s}$

CHANGING WHAT'S POSSIBLE

Publications and IP Portfolio

- Journal Articles

- B. Lee, N. Dupuis, "Silicon Photonic Switch Fabrics: Technology and Architecture," J. Lightw. Technol. [Tutorial], Jan 2019
- N. Dupuis et al., "Nanosecond Photonic Switch Architectures Demonstrated in an All-Digital Monolithic Platform," Opt. Lett. [Editor's Pick], Aug. 2019.
- N. Dupuis et al., "Nanosecond-Scale Shift-and-Dump Mach-Zehnder Switch," Opt. Lett., Sep. 2019.
- B. Lee et al., "Fine Tuning of Mach-Zehnder Phase Using Low-Resolution Digital-to-Analog Converters," Photon. Technol. Lett., Oct 2019.
- N. Dupuis et al., "A 4×4 Electrooptic Silicon Photonic Switch Fabric with Net Neutral Loss," J. Lightw. Technol. [Invited], pre-print available online.
- Conference Papers \& Presentations
- B. Lee, "Photonic Switching Platform for Datacenters Enabling Rapid Network Reconfiguration," Photonics West [Invited], Jan 2018.
- B. Lee, "Photonic Switch Fabrics in Computer Communications Systems," OFC [Tutorial], Mar 2018.
- A. Forencich et al., "System-Level Demonstration of a Dynamically-Reconfigured Burst-Mode Link Using a Nanosecond Si-Photonic Switch," OFC, Mar 2018.
- M. Taubenblatt, "Optical Interconnects for Large Scale Computing Systems: Trends and Challenges," OSA Advanced Photon. Cong. [Invited], Jul 2018.
- L. Schares, "Photonic Switch Fabrics in Computer Communications Systems," Photonics in Switching and Computing [lnvited], Sep 2018.
- B. Lee, "Toward Optical Networks using Rapid Amplified Multiwavelength Photonic Switches," OFC [Invited], Mar 2019.
- N. Dupuis et al., "A Nonblocking 4x4 Mach-Zehnder Switch with Integrated Gain and Nanosecond-Scale Reconfiguration Time," OFC [Top-Scored], Mar 2019.
- M. Taubenblatt, "Optical Interconnects in Data Centers," ECOC [Tutorial], Sep 2019.
- L. Schares, "Enabling New Compute Architectures with Co-packaged Optics and Photonic Switching," ECOC [Invited], Sep 2019.
- B. Lee et al., "Coarse-Fine Control of Dual-Tuner Mach-Zehnder Interferometer Using Identical Low-Resolution DACs," IEEE Photon. Conf., Oct 2019.
- Workshops \& Short Courses
- L. Schares, Panelist, "Integrated or disaggregated data centres? Challenges and opportunities," ECOC, Sep 2018.
- L. Schares, Panelist, "What is the role of optical switching technologies in data centres and computing communication systems?" ECOC, Sep 2018.
- B. Lee, Panelist, "Opportunities and Challenges for Optical Switching in the Data Center," OFC 2019.
- B. Lee, Short Course, "Photonic Switching Systems," OFC, Mar 2019.
- Ongoing IP efforts reported through iEdison related to control circuits, devices, assembly, initialization and optimization, system implementation

CHANGING WHAT'S POSSIBLE

Building for Efficient Next-Gen Computing

- Traditionally, HPC systems optimized for scientific computing
- Next-gen systems target a diverse suite of applications:

Al, Distributed Deep Learning, Graph Analytics, Scientific Computing, and more

- ... with a wide range of CPU, GPU, memory, and data movement requirements
- ... which may evolve at a faster pace than HW upgrade cycles.

- Efficient next-gen systems across these diversity of workloads require:
(1) flexible provisioning of resources to applications on demand, and
(2) tight coupling of provisioned resources with high-bandwidth \& low-latency connectivity.

CHANGING WHAT'S POSSIBLE

ONRAMPS Alleviates Inefficiencies of Future Architectures

ONRAMPS enables：

On－demand allocation，Flexible resource ratios，Memory disaggreg．，Direct links to storage

15 compute servers
15 compute +2 storage servers

5 高高高

Electrical Packet Switching ASICs Hitting Thermal Limits - Need New Approach

Switch efficiencies over past ~ 18 years

- Bandwidth $2 \times$ every 2-3 years
- Since ~ 2012, efficiencies flat at ~ 25-50 pJ/b
- Air-cooling limited now
- Water-cooling limited soon Need a new approach!

- Large optical bandwidth
- Energy used to configure pipes, not process \& transmit bits
- Agnostic to data rates and formats
- Must be low latency \& low cost!

CHANGING WHAT'S POSSIBLE

Modeled System Performance

VENUS Network Simulator

- Discrete-event simulator built on Omnet++
- 140k lines of C/C++ code
- Developed at IBM's Zurich Research Lab (ZRL)
- Used in development of multiple HPC generations
- Fat tree, XGFT, Mesh, Multi-dimensional mesh, Hypercube, Torus, Dragonfly(+), Flattened butterfly, ...
- Ethernet, InfiniBand, Co-packaged optics, Optical switches, ...

Comparative Analysis

Projected HPC

ONRAMPS
6 blades with 2 CPUs +6 GPUs per blade

- Data rate: $100 \mathrm{~Gb} / \mathrm{s}$ per port
- TOR delay: 100 ns
- NIC/Adapter delay: 100 ns
- ONRAMPS scheduling delay: 10 ns
- ONRAMPS system-level switch delay: 20, 40, 80 ns (includes physical switching, control, and link training)

8x8 Photonic Switch Integrated Circuit

CHANGING WHAT'S POSSIBLE

Initial IC Design, Fabrication, and Test

- Goal: validate photonic/electronic blocks and digital interfaces
- DAC drivers for TO phase tuner, DAC drivers for VOA, Binary complementary drivers for EO phase shifter, TIA+ADC for power monitor, high-speed serial-to-parallel (s2p) interface, low-speed control interface (Bidi), registers
- TO phase tuners, EO phase shifters, directional couplers, waveguide crossings, photodetectors

Digitally interfaced, programmable IC containing all the building blocks required to construct a scaled photonic switch fabric.

Initial IC Elementary Switch Performance

- First photonic switch IC with all-digital interfaces
- Record combination of loss, extinction, and speed
$\left[\begin{array}{llll}\square & T_{11}(\|) & \cdots & T_{21}(\|) \\ \hdashline & T_{11}(\perp) & \cdots & T_{21}(\perp) \\ - & T_{12}(\|) & \cdots & T_{22}(\|) \\ & T_{12}(\perp) & \cdots & T_{22}(\perp)\end{array}\right]$

2x1 MZS

Loss: 0.8 dB
Extinction: 28 dB
Transient: 6 ns

2x2 NMZS

Loss: 1.3 dB
Extinction: 38 dB
Transient: 6 ns

Preliminary Modules Assembled from Initial ICs

- Full optical, electrical, thermal package
- Chip joining process developed that preserves sensitive optical interfaces
- Full module assembly process developed and demonstrated
- Automated assembly on Ficontec tool
- Strain relief adhesive added manually (temporary solution)
- Full electrical connectivity
- Loopback loss $<3 \mathrm{~dB} /$ facet over 100 nm spectral bandwidth for all 24 fibers ($\sim 1.5 \mathrm{~dB} /$ facet over 50 nm typical)

CHANGING WHAT'S POSSIBLE

8x8 Photonic Switch Layout

64 MZS, 64 compl. drivers, 180 DACs, 112 ADCs, 72 WG crossings, 24 fiber couplers

12 mm

ONRAMPS' Completed Tasks, Works in Progress, and Needs Continued Resources

PDK support for critical photonic \& electronic libraries
(monolithic) electronic circuits providing digital programming interfaces
automated assembly on high-volume capable tooling
fast switching
fabrication in a commercial CMOS flow
optical, electrical, thermal, and mechanical packaging
8×8 switch module demo design and realization
bring-up and initialization market entry strategy
reconfiguration demo
network interfaces
protocol compatibility scheduling for scale
polarization handling approaches polarization-independent demo

Initial Validation of Low-Cost \& Energy-Efficient Amplification Integrated with Fast OCS

(a)

[N. Dupuis, JLT, preprint online]

arpa•c

CHANGING WHAT'S POSSIBLE

- Needs optimization \& transfer to commercial process
- Potential for major impact beyond optical switching

14

Fast OCS Network Control \& Data Planes

- FPGA generates data, sends to TX
-1010 preamble +1 or 2 kB payload (PRBS15)
- FPGA tells switch to set state
- FPGA wakes up burst-mode RX
- lock time includes threshold detection and phase locking (31 ns at $25 \mathrm{~Gb} / \mathrm{s}$)
- FPGA performs error detection:
(1) Gated error detection
(2) Frame-sync'd pattern checkers

Payload size (B)	2048	1024
Data rate (Gb/s)	20.6	20.6
Cycle time (ns)	858	460
Packet length (ns)	797.5	400.3
RX lock time (ns)	41.5	41.5
Total switch time (ns)	60	60
Meas'd payload BER	10^{-12}	10^{-12}
Duty cycle (\%)	93	87

Additional Work Needed:
 - Improve to < 20ns with:
 - 56G, 7ns burst-mode RXs
 - phase-caching
 - Validate using:
 - amplified links \& WDM
 - scaled port counts
 - Add:
 - network interfaces
 - scheduling \& arbitration

CHANGING WHAT'S POSSIBLE

ONRAMPS Summary

- ONRAMPS technology can provide significant performance improvements to datacenters \& HPC systems, with potential to impact other markets as well
- ONRAMPS funding has enabled the development of a manufacturing platform and ecosystem for a low-cost fully packaged nanosecond photonic switch
$>$ Realized IC with all the critical photonic \& electronic components with record 1×2 and 2×2 loss of 0.8 dB and 1.3 dB , extinction ratios of 28 dB and 38 dB , and switching times of 6 ns .
> Established volume-compatible optical and electrical packaging procedure capable of dualribbon attach to flip-chip module with 1.5 dB (typical) coupling loss per facet.
$>$ Established cost models for photonic switch module with projections of a few $\mathbb{C} / \mathrm{Gb} / \mathrm{s}$.
> Built FPGA-based control plane interfacing with digital switch IC and burst-mode transceiver demonstrating 60 ns end-to-end switching at $25 \mathrm{~Gb} / \mathrm{s}$.
> Established modeling environment and ran simulations showing that a single ONRAMPS switch plane enables > 95% throughput for a wide range of traffic patterns with < 1μ s latency.
- 8×8 fiber-pigtailed SNB switch module using single photonic + electronic IC with digital programming interfaces and nanosecond reconfigurability is in process

