
BENCHMARKING OF BIG
DATA TECHNOLOGIES
FOR INGESTING AND
QUERYING GEOSPATIAL
DATASETS

REPORT BY DATA REPLY

DATA REPLY

32

ABSTRACT

Features inherent in geospatial data
cause large scale processing to be
problematic. For example, searching
for matching records (such as checking
if a point lies within a polygon) is often
computationally expensive.

We benchmark 61 of the more prominent
Big Data technologies with Geospatial
features / add-ons / libraries to assist the
interested reader in selecting the right
technology for the right workload, along
with tips on tuning for performance.

1 The original scope included a seventh technology
(GeoWave). Following some investigation this
technology was de-scoped, because - at the time of
writing - it does not comply with the GeoJSON data
format, and hence could not satisfy the technical
requirements set by Dstl for this study.

3

CONTENT

Introduction 6

Approach 7

Data Generation 9

General Steps 11

GeoSpark 12

 Implementation 13

 Configuration 15

 Results 16

Hive 18

 Implementation 19

 Configuration 21

 Results 22

MongoDB 23

 Implementation 24

 Configuration 26

 Results 27

GeoMesa 28

 Implementation 29

 Configuration 30

 Results 31

Elasticsearch 33

 Implementation 34

 Configuration 35

54

CONTENT
 Results 36

Postgres-XL 38

 Implementation 39

 Configuration 41

 Results 42

Technology Comparison 45

 Simple Queries 46

 String Queries 51

 Complex Queries 53

 Join Queries 56

Recommendations 57

Appendices 58

Appendix 1: Cluster Specification 59

Appendix 2: Hadoop Configuration 60

Appendix 3: HDFS Ingestion 61

Appendix 4: Type handling issue 63

Appendix 5: Queries 64

Appendix 6: Additional Datasets 65

Appendix 7: GeoSpark Vs Magellan 67

Appendix 8: GeoWave Exclusion 67

Appendix 9: GNU Free Documentation License 69

5

Produced by Data Reply

Commissioned by the Defence Science and Technology Laboratory

Copyright (c) 2017 Reply Ltd.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

Free Documentation License, Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license is included in the section entitled "GNU Free Documentation License".

76

INTRODUCTION

Processing geospatial data involves nuances

and complications that often don‘t arise in other

domains: geospatial objects are irregular and

hence it can be difficult to succinctly describe

the corresponding data structures (e.g. points

in 2d space representing an island); query

operations, such as identifying whether two

geospatial objects overlap, are often expensive.

As a result, there are many software packages

and libraries for the niche data modelling and

processing needs of this domain - including in

a Big Data context.

We form an objective, evidence-based

evaluation of each technology which serves to

help guide the reader towards making a more

informed decision for their own geospatial

technology stack.

How does one effectively select which Big

Data technology is most appropriate for the

workload in question?

This report tackles this question by

benchmarking six different technologies

that can be used to work with big geospatial

datasets. We have benchmarked under

broadly equivalent hardware topology and

configuration constraints, with latency being

the primary objective metric under study.

INTRODUCTION

1. GEOSPARK

2. HIVE

3. MONGODB

4. GEOMESA

5. ELASTICSEARCH

6. POSTGRES-XL

7

APPROACH

HIGH LEVEL DATA DESCRIPTION

3 Datasets2 are in scope:

■ Dataset 1: A collection of single lat/long points and 7 non-geospatial fields (10 bn records).

■ Dataset 2: A collection of single lat/long points and 1 text field (10 m records).

■ Dataset 3: Ellipses and timestamps (10 bn records).

BENCHMARK RULES

A number of rules for this benchmarking study

were agreed with DSTL in order to achieve

useful results within the project timescales.

DATASETS

In early testing, it became apparent

that some technologies in scope

would significantly exceed practical

time limits for ingestion / indexation /

query execution. As a result, we agreed

to limit the datasets in scope to two:

Dataset 1 and Dataset 3. The rationale

for choosing these two datasets is that

they respectively represent the simplest

and most complex data structures3:

Dataset 1 is points only; Dataset 3 is

16-point ellipses. In addition, Dataset 2

(required for the Join queries) was also

retained in scope.

TIME-OUT PERIOD

Execution times over the following

thresholds were agreed to be classed

as ‘TIMED-OUT’. In those cases in

which we could extrapolate based on

partial completion time, or based on

a previous run with a smaller dataset,

we also able to class the execution as

TIMED-OUT. This would mean that if a

6 bn run fails, we will not attempt the

corresponding 10 bn run. Similarly, if a

Dataset 1 query fails, we will not attempt

the corresponding Dataset 3 query

(because the higher complexity implies

it too will fail).

■ Query execution: 12 Hours

■ Index creation: 24 Hours

It is an important principle of the

benchmarking study that we do not

rely on a single execution time, as this

might be unrepresentative. We agreed

that two runs of each query would be

executed initially. If the execution time

for the 2nd run is not within +/- 33%

of run 1, then a third run will also be

executed.

2 The initial scope included 5 datasets. 2 datasets were
subsequently removed from scope for the reasons mentioned
in the BENCHMARK RULES section. Hence from 5 we reduced
it to 3: Dataset 1 & Dataset 3 each 10 bn points; and Dataset 2
with 10 m points.
3 Complexity is based on the number of points defining each
structure type.

98

GENERATION
In order to facilitate the public distribution of

the report DSTL specified pseudo-randomly

generated geospatial datasets on which to

run the benchmarks. Given the specification

outlined by DSTL, we developed bespoke

software which would efficiently generate the

necessary data in the WGS-84 / GeoJSON

format. Items such as lines, polygons, ellipses,

points were all generated concurrently across a

number of workers with each worker operating

its own independent thread pool. We used 20

n1-standard-16 GCE nodes4 to generate the

data in parallel. Given the size of the datasets,

each instance of the generation software

was set to generate 1 bn elements, with two

instances running per VM to ensure full

utilization of system resources. Each dataset

in the raw data was spread across 5 disks in

total except for Dataset 2 which easily fits on to

a single disk. Spreading the data across disks

allows the ingestion process for components

that do not use HDFS to read in parallel without

the disk becoming a bottleneck.

TESTING
The code was broken down into

FeatureGeneration and EntityGeneration.

Features represent fields within a GeoJSON

object and an entity represents the full JSON

object (i.e. a single row in the file). Two

test suites were created to test the feature

generation functions in isolation with Property

Based Testing as well as the entity generation

functions. In addition to this, we performed

extensive integration testing on reduced

datasets prior to executing each benchmark on

the full dataset.

INGESTION / QUERYING
In order to measure the performance of

queries5 with respect to dataset size, we ran

them in two batches. For a single dataset at

a time, 6 bn elements were ingested and the

queries were benchmarked with up to three

runs per query. A further 4 bn elements were

then ingested and the same queries were exe-

cuted up to three times per query on the total

dataset size. This process was repeated for da-

tasets: 1 & 3.

HDFS INGESTION & BALANCING
Three of the technologies in scope are Hadoop-

based, running off data stored in HDFS. Before

executing any of the benchmarks on these

technologies, we ingested all of the raw data

into HDFS. To speed up this process, we

ingested across 5 nodes in parallel using the

HDFS PUT client. Once HDFS had ingested

and replicated all of the data, we ran the

HDFS balancer with the default settings. This

original run took too long to complete, so we

amended the settings as listed below. All of

the configurations and timings are listed in

Appendix 3 under the HDFS Ingest and HDFS

Balancer section.

YARN CONFIGURATION
Please see the ‘YARN Configuration’ section

in Appendix 2 for a full detailed overview of

all YARN configuration changes. In short, all

configuration options were tailored according to

the recommended settings from HortonWorks.

INGESTION FOR NON-HDFS TECH
For NON-HDFS technologies namely

MongoDB, Elasticsearch & Postgres-XL, we

attached the persistent disks containing the

data on 6 data nodes. We ingested data across

these nodes in parallel to speed up the process

and optimally utilize the cluster resources.

4 See Appendix 1 for cluster specification.
5 When referring to a specific query for a dataset we use integers 1 to 11. Table 1 in Appendix 5 lists all queries and corresponding
IDs. Different runs of the same query are indicated by appending a letter to the query ID (e.g. 3 different runs of query 7 on Dataset
1a are denoted by 7a, 7b, and 7c)

9

DATA GENERATION

FIELD COMMENT
Location Random Point, valid Lat Long e.g. "54.22313 12.234234"

Short_text_field Single Random Word + optional numbers e.g. "Dog456", "3Cat", "Cow"

Long_text_field_1 Multiple, varying random words (10-200 words) and punctuation e.g. "Dog Cat Fish Cow
Horse, Pig...#"

Long_text_field_2 Multiple, varying random words (10-200 words) and punctuation in a random character set
e.g. "狗; 猫"

Security_Tag Randomly picked from "high", "medium" & "low"

Numerical_field_1 Random Integer, e.g. "45"

Numerical_field_2 Random Float, e.g. "4.45646"

Timestamp Random in last 10 years, e.g. "2007-04-05T12:00:01"

Dataset 1

Five datasets were generated to test a variety

of types of geospatial data. All five datasets

contain fields populated with homogeneous

geospatial object types (either points, polygons,

or lines), which consist of a set of geospatial

points described by numeric longitude and

latitude values. In cases where these points

are sampled randomly (fields "Latitude" and

"Longitude" in datasets 1 and 2, ellipse centre

points in dataset 3, polygon location in dataset

4, and starting points of lines in dataset 5),

the sampling procedure is adjusted so that

resulting points are uniformly distributed on

the WGS 84 globe.

In addition to that, the geospatial objects

are generated to be consistent with the

requirements of the GeoJSON RFC 7946

format (link: https://tools.ietf.org/html/rfc7946,

reference: Gillies, Sean, et al. "The GeoJSON

Format"). Note that this format requires

geospatial objects crossing the anti-meridian

to be split into two parts, which individually are

on either side of the anti-meridian. Therefore, in

order to achieve computational efficiency when

generating the data, none of the generated

geospatial objects cross the anti-meridian as

well as the 0° meridian. This does not affect

query performance in any of the technologies.

All geospatial objects are generated on an

earth-size spheroid as described by the WGS

84 system. Vincenty's formulae were used for

placing geospatial points in order to satisfy the

requirements of WGS84 format.

Dataset 1 & 2

 Datasets 1 & 2 consisted of simple points (long,

lat) pairs with associated metadata and thus did

not require any special treatment to conform to

WGS 84.

1110

FIELD COMMENT
Location Random Point, valid Lat Long e.g. "54.22313 12.234234"

Short_text_field Single Random Word + optional numbers e.g. "Dog456", "3Cat", "Cow"

Dataset 2

DATASET 3

Since none of the technologies have native support for ellipses, we agreed with DSTL to approximate

them with polygons consisting of 16 vertices allocated along the ellipse line, which has an accuracy

of ~97.4% (with respect to area). The choice of 16 points was made based on the tradeoff between

best fit to ellipse and query efficiency.

The 16 points are placed at specific angles (in degrees) relative to the major axis to ensure that, for a
16-point polygon, the difference between ellipse area and polygon area is minimised.

Based on the requirements specified by DSTL, the random ellipses were generated to have a

random centre point, a random major axis of 0.1-10km, a random minor axis of 0.1-2km, and a

random orientation.

FIELD COMMENT

Location A randomly generated ellipse with a random major axis of 0.1-10 km, a random minor axis of
0.1-2 km and a random orientation.

Timestamp Random in last 10 years, e.g. "2007-04-05T12:00:01"

DATASET 3

11

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 16.33 60.88 282.50 55.69 0.77 0.77

■ 10 bn 27.85 89.63 338.00 78.83 1.07 -

-- 6 bn Avg 69.49 69.49 69.49 69.49 69.49 69.49

-- 10 bn Avg 107.08 107.08 107.08 107.08 107.08 107.08

GENERAL STEPS

The general approach to testing each

technology broadly followed the steps

below. In subsequent sections we describe

the technology-specific implementation and

results in more detail.

1. Select and refine cluster topology e.g.

deciding on the number of shards and

replicas for MongoDB & Elasticsearch, or

the number of GTMs, Coordinators and

data nodes to be used for Postgres-XL.

2. Setup the infrastructure (installing the

technology and configuring it with optimal

settings).

3. Ingest Dataset 1 (6-billion-points) with

optimal number of threads and batch size.

4. Create indexes for the above ingested

points

5. Execute queries corresponding to the

ingested dataset.

6. Drop indexes created previously and

start ingesting the next 4 billion points for

Dataset 1. Once the ingestion completes,

Dataset 1 should have 10 billion points in

total.

7. Create indexes for 10 billion points.

8. Query execution for the above ingested

points.

9. Drop database1 to clear disk space.

10. Steps 3 to 9 are repeated for Dataset 3.

11. Log results and produce cross-technology

comparison chart (see below for an

example).

0

50

100

150

200

250

300

350

400

Dataset 1 – QUERY 1

T
im

e
 (

m
in

u
te

s)

1312

GeoSpark is an open-source geospatial data processing library implemented in JAVA and taking

advantage of Apache Spark and JTS Topology Suite. All our work is based on version 0.3.2 of GeoSpark,

which at time of writing is freely available at https://github.com/DataSystemsLab/GeoSpark/tree/0.3.2.

Due to the fact that version 0.3.2 of GeoSpark does not give the user control of the storage level (which

defaults to memory only), a custom build (as agreed with DSTL) is used with storage level changed to

memory and disk (serialised). The source code, which was used for benchmarking, is freely available

at https://github.com/DataReplyUK/GeoSpark. Note that the changes made to the original GeoSpark

source code are minimal (only hard-coded storage level values were changed), do not affect geospatial

implementation behind the queries, and only improve query performance. It is also worth pointing out that

without these changes, ingestion in GeoSpark would not be comparable to ingestion in other technologies,

due to the fact that generated datasets are too large to fit in memory (except for Dataset 2); the original

storage level would result in ingested data being dropped as soon as memory fills up and those data

points (including indices build on top of them) would have to be recomputed when a query needs them.

BIG DATA TECHNOLOGIES

GEOSPARK

13

IMPLEMENTATION

This section explains the implementation

of GeoSpark benchmark. All parts were

implemented using Scala due to its compatibility

with Apache Spark.

INGESTION

■ Reported ingestion times consist of the time

that it takes to read the GeoJSON files from

HDFS, map them into spatial RDDs as used in

GeoSpark, and build indices on top of them,

while persisting all data structures in memory

and disk in a serialised format.

■ A custom GeoJSON parser was written

because GeoSpark natively supports only a

single GeoJSON format that is different from

what we are using.

■ The default R-tree index type was used as it

supports the within queries.

■ By default, GeoSpark repartitions the data.

However, this causes a significant portion of

the data to be sent to the driver (in the case

of 10 bn data points of Dataset 1 this would

be >60GB), therefore, we opted out of this

repartitioning.

■ Since GeoSpark v0.3.2 does not support

LineString objects, custom functionality was

implemented using Spark RDDs and JAVA

Topology Suite (the approach followed

by GeoSpark). However, no indices were

used in this case because otherwise our

implementation would likely not be directly

comparable with the native GeoSpark JAVA

implementation.

QUERIES

■ For geospatial bounding box queries, native

GeoSpark functionality was used.

■ In the case of queries involving non-

geospatial fields (e.g. query 4), the geospatial

part of the query was executed first (using

GeoSpark functionality or, if not available,

custom implementations), and after that

filtering and sorting of results was done by

accessing underlying Spark RDDs and using

their functionality.

■ Where needed, point-to-point and point-

to-polygon distances were calculated using

GeographicLib (http://geographiclib.sf.net).

■ The following queries involved implementing

custom geospatial functionality, which is not

available in GeoSpark 0.3.2:

- Queries of type: "within distance from a point"

(for example Query 9 & 10 from Dataset 1) are

not supported by GeoSpark 0.3.2, therefore,

an efficient two-stage approach was taken to

execute the geospatial part of these queries:

Stage 1: Execute a bounding box query using

a box which bounds a circle of 10 km radius

around point1. This stage returns slightly more

1514

returns all data points that are within the desired

distance and is efficient because the number

of results returned from Stage 1 is negligible

compared to the whole dataset. Results of this

stage are then ordered as desired to produce

the final output of these queries.

In the figure above points in the light shaded area
are within 10km of point 1 (points coloured blue). All
points outside this area, but within the bounding
box (i.e. in the dark grey area) are more than 10km
from point 1 (points coloured white).

Note that even though writing custom code was

required to implement the queries mentioned

above, this was done taking into account how

missing functionality is likely to be implemented

in future releases of this technology.

- Join Queries: GeoSpark 0.3.2 does not

support this type of query, which requires

making a join between two datasets based on

distance. A custom implementation was used.

All these queries involve Dataset 2, which is

quite small compared to others, therefore, this

query is implemented as a mapping operation.

First of all, the whole Dataset 2 is collected to

the driver process, an R-tree index is built on

top of it (using the JTS Topology Suite), and

then it is broadcast to the worker nodes (this

computation and broadcasting is included

when measuring query time). Then for each

data point from datasets 1 and 3 we search for

a point in the broadcast Dataset 2 until the first

point satisfying the distance condition is found.

All data points in Dataset 1 and 3 for which the

distance condition is never satisfied are filtered

out and returned.

15

CONFIGURATION

All jobs were run in client mode, i.e. the driver

process was running on one of the master

nodes. This choice was made due to resource

availability on the master nodes, efficient use

of resources on the worker nodes, and fair

comparison with other technologies, such as

Hive. The table below gives detailed Spark

configurations used throughout the benchmark

for all queries except the joins.

The table below shows Spark configurations used for the join queries.

PARAMETER VALUE COMMENT
spark.executor.instances 12 See spark.executor.cores.

spark.executor.memory 54000m
Set to a value which fully utilizes available memory on the worker
nodes.

spark.yarn.executor.memoryOverhead 2000m Set by doing test runs and tracking executor JVM metrics.

spark.executor.cores 3

In combination with spark.executor.instances this value results in a
single executor on every worker node and 3 tasks running in parallel
within each executor. We chose to have a single executor per worker
node because when broadcasting Dataset 2 it has to be sent to every
executor; such configuration results in efficient memory use. A low
value of 3 executor cores was chosen because the join queries are
memory-intensive and the amount of memory available on the worker
nodes is not sufficient to have more tasks running in parallel.

spark.driver.memory 30g Set to a high value based on resource availability on the master node.

spark.yarn.driver.memoryOverhead 10000m Set to a high value based on resource availability on the master node.

spark.driver.cores 5 Set to a high value based on resource availability on the master node.

PARAMETER VALUE COMMENT
spark.executor.instances 36 See spark.executor.cores.

spark.executor.memory 17666m
Set to a value which fully utilizes available memory on the worker
nodes.

spark.yarn.executor.memoryOverhead 2000m Set by doing test runs and tracking executor JVM metrics.

spark.executor.cores 4

In combination with spark.executor.instances this value results in 3
executor instances on every worker node and 4 tasks running in
parallel within each executor. This value was chosen to maximize IO
operations and achieve efficiency of memory usage, and was arrived
at by doing a set of tests runs and monitoring their performance.

spark.driver.memory 30g Set to a high value based on resource availability on the master node.

spark.yarn.driver.memoryOverhead 10000m Set to a high value based on resource availability on the master node.

spark.driver.cores 5 Set to a high value based on resource availability on the master node.

1716

RESULTS

DATASET BATCH SIZE DURATION
1 6 bn 3 h 45 min 47 sec

1 10 bn 4 h 59 min 24 sec

2 10 m 52 sec

3 6 bn 3 h 36 min 33 sec

3 10 bn 5 h 9 min 41 sec

INGESTION

■ Ingestion of Dataset 1 and dataset 3 took

about the same time in both 6 bn and 10 bn

runs, which would imply that complexity of

geospatial procedures is the same in both

point and polygon (with 16 vertices) cases. Ho-

wever, one should not forget that even though

Dataset 1 contains points, it also contains a

much larger amount of data (more number of

fields) compared to dataset 3. Hence, we con-

clude that ingest time is about the same due

to an unequal amount of data, however inge-

stion of points is actually more efficient than

ingestion of polygons (with 16 vertices) if the

other fields are not ignored.

■ Ingestion time increases sublinearly with

respect to the number of data points in both

datasets 1 and 3.

■ The bottleneck of the ingestion stage is

write speed. More than twice as much data

has to be written compared to the amount of

data read because of caching behaviour (two

RDDs are persisted as mentioned in the inge-

stion implementation section).

QUERIES

■ Multiple runs of the same query show very

similar performance.

■ Queries that do not involve GeoSpark com-

putations (queries 3, 6, 7, and 8 on Dataset

1) are the most efficient (in terms of running

time), and have similar run times within 6 bn

and 10 bn runs. However, differences between

GeoSpark and Spark-only queries are not so

significant because in both cases all data has

to be read from disk. The performance of

Spark-only queries is also close to being line-

ar with respect to the number of data points

due to the fact that non-geospatial data was

not indexed.

■ Bounding box queries run substantially fas-

ter in the case of Dataset 1 compared to data-

set 3, which is the result of the much higher

number of points in the polygons. In the case

of both datasets these queries scale better

than linearly due to indexing. The size of the

bounding box does not affect the query time.

■ Similar trends are observed in the "within"

queries: they run faster for Dataset 1 due to

lower complexity, and they scale better than

linearly due to indexing. Also note that sorting

does not have a big impact on the run time:

in all cases the number of data points, which

have to be sorted, is negligible compared to

the size of the whole dataset because it is

performed after having filtered.

■ The join query was tested only on 6 bn data

points of Dataset 1 because it exceeded the 12

h limit (side note: GeoSpark managed to finish

the query in 15.4 h).

17

NOTES

■ GeoSpark required a large amount of

storage because for each dataset two RDDs

are persisted (in memory and disk). The total

amount of disk space required is more than 3

times greater than the size of raw data. The

first RDD contains original data after parsing it

and transforming into geospatial format, while

the second one stores the original data and

an index structure built on top of it.

■ The project is still very young and lacks

functionality, however custom functionality

can be easily implemented using the same

programming model (Spark’s RDDs + JTS

Topology Suite).

■ Query performance is substantially reduced

if no geospatial repartitioning is done. Version

0.3.2 is not suited to repartitioning of large

geospatial datasets because too much data

(1% of the whole dataset) is sent to the driver

process.

■ Query performance of GeoSpark is limited

by the fact that it does not provide a way to

efficiently access individual partitions of a

dataset based on index, i.e. the whole dataset

has to be pulled out from disk into memory

even if it is indexed. This limitation is inherent

in Apache Spark, the underlying processing

engine, and is unavoidable in technologies –

such as GeoSpark – that are based on it.

■ A disadvantage of GeoSpark is that it does

not provide a way to index any other data

types, except for geospatial data. Hence the

queries involving other data types can take

longer execution times.

■ Analysts working with GeoSpark would

have to be proficient in Scala or JAVA because

the technology does not provide a simplified

query language or graphical interface.

■ A limitation of GeoSpark is that data has

to be ingested and indices rebuilt every time

before running queries, and these are lost

after the GeoSpark job finishes (unless all

data structures are written to disk after initial

ingestion and index building, however, this is

not yet supported by GeoSpark).

■ Performance is highly sensitive to Apache

Spark configuration especially the parameters

given in the table in the above section on

Configuration.

1918

Apache Hive is an open-source data warehouse software project built on top of Apache Hadoop

for providing data summarization, query, and analysis. Hive gives a SQL-like interface to query

data stored in various databases and file systems that integrate with Hadoop.

For all Hive related ingestion and queries, we used the default version (Hive 1.2.1) which ships

with Hortonworks HDP 2.5.0. We re-configured the Hive execution engine to use Tez as opposed

to MapReduce to improve performance through in-memory processing. ORC file compression

was also used to minimize execution time.

BIG DATA TECHNOLOGIES

HIVE

19

All queries and ingestion steps were performed

using the out-of-the-box tools provided by Hive;

namely through the Hive shell. A few additional

jar files had to be used to support geospatial

processing with Hive: Esri-geometry-api,

Spatial-sdk-hadoop & JSON-udf-1.3.8-jar-with-

dependencies. This is unlike many of the other

technologies such as GeoSpark, Elasticsearch

and MongoDB where custom code and/or

builds were required to ingest/query the data

correctly.

Once these jars were added to the classpath,

ingestion and queries could be performed with

all the standard ‘ST functions’ provided by ESRI.

INGESTION

■ Reported ingestion times consist of the time

that it takes to read the GeoJSON files from

HDFS into a temp table (with all fields in a

single column) and then select this into a final

table with each field correctly separated with

ORC compression. This was done to parse the

JSON fields.

■ No indexing was performed as it does not

function correctly with ORC compression and

Hive. The reason for this is ORC. ORC has

built in Indexes which allow the format to skip

blocks of data during read.

■ Data was balanced on HDFS prior to

ingestion.

■ All fields used in the Hive ingestion were

typed except for the location field which was

initially ingested as a string and transformed

to a GeoJSON binary type at query time. This

is due to an incompatibility between ORC file

formats and ESRI library which was uncovered

during integration testing.

QUERIES

■ For the most part the queries could be

performed using the native ESRI ST functions.

■ Native support was lacking for queries that

need to return geometries ‘within x km of a

point’. To resolve this, we generated a circle

centered at the desired point of radius 10km

and used the ESRI functions ST_WITHIN &

ST_INTERSECTS. In cases where the result

set needed to be ordered by distance, we

generated a line from the origin to point1 and

calculated the distance in kilometers with

ST_GeodesicLengthWGS84. Also, the chines

character was not directly supported so we

had to use its Unicode character to run query

as on the next page.

IMPLEMENTATION

2120

1. Select * from db1 where long_text_field_2 rlike "\u8FCE";
2.
3. set point1poly = ST_GeomFromGeoJSON(‚{"type":"Polygon","-

coordinates":[[[- 0.14613299999999266,51.58658341116211],[-
0.09090106796740506,51.57973407661179],[-0.04416955758275508,
51.560180075159934],[-0.012996560674274378, 51.53098946442925],
[-0.0021356893840764517,51.4965806115976],[-
0.013196820449947563, 51.46219744386785],[-0.044452769165083575,
51.43306884291964],[-0.09110178009907081,51.41357722154654],[-
0.14613299999999266,51.406753664628894],[-0.2011642199009145,
51.41357722154654],[-0.24781323083490173,51.43306884291964],[-
0.27906917955003774,51.46219744386785],[-0.2901303106159088,
51.4965806115976],[-0.2792694393257109,51.53098946442925],[
0.24809644241723022,51.560180075159934],[-0.20136493203268202,
51.57973407661179],[-0.14613299999999266,51.58658341116211]]]}‘);

4.
5. Select * from db1
6. where ST_Within(ST_SetSRID(ST_GeomFromGeoJSON(location),4326),${hivecon-

f:point1poly})
7. Order BY ST_GeodesicLengthWGS84(ST_SetSRID(ST_LineString(array(ST_Geom-

FromGeoJSON(location), ${hiveconf:point1})), 4326))/1000 ASC;
8.
9. Select * from db3 where ST_Intersects(ST_SetSRID(ST_GeomFromGeoJSON(loca-

tion),4326), ${hiveconf:point1poly}) OR ST_Within(${hiveconf:point1poly},
ST_SetSRID(ST_GeomFromGeoJSON(location),4326)) OR ST_Within(ST_SetSRID(ST_
GeomFromGeoJSON(location),4326),${hiveconf:point1poly})

10.ORDER BY ts ASC;

Queries that spanned multiple datasets were implemented using a full Cartesian join since no

other option is provided in Hive SQL – all of these cases exceeded the agreed timeout period of

12 hours for Hive.

21

NAME
OLD
VALUE

NEW
VALUE

COMMENT

Execution engine Map Reduce Tez
Switched to Tez execution engine to
leverage the large memory available on
the cluster.

File Format Raw / textual ORC format
Changed to use ORC file format for the
reasons outlined at: http://bit.ly/2h2GLax

Reduce vectorization TRUE FALSE
Disabled as it is incompatible with ORC
file formats: http://bit.ly/2hQHyYS

Tez container size 8gb 19968mb
Increased due to recommendation from
Hortonworks documentation

hive.auto.convert.join.noconditionaltask.size 2290649224 5583457484
Increased due to recommendation from
Hortonworks documentation

HIVE CONFIGURATION

CONFIGURATION

http://bit.ly/2h2GLax
http://bit.ly/2hQHyYS

DATA REPLY

2322

RESULTS

INGESTION

The table below details the times taken to

ingest the data into Hive. Note that this does

not include the time taken to ingest into HDFS

or to rebalance HDFS data.

QUERIES

■ The results for the basic geo-spatial queries

(queries 1-5 of Dataset 1 and 1-4 of datasets

3) show a wide array of results depending on

two key factors: dataset size and type of data

(point, polygon, ellipse etc.).

■ In summary, we see query times for Dataset

1 being the lowest on average and in the best/

worst case. This is likely attributed to the

simplicity of the underlying types (points).

■ The simplest queries (1 & 2) are both the

fastest to execute with an average time of

16.3 and 16.2 minutes respectively. This is only

marginally different to queries 4 & 5.

■ String queries include any ‘string contains’

query and are only relevant for Dataset 1. As

one might expect, the contains query on the

‘short_text_field’ performed the best with the

remaining two queries (‘long_text_field_1’ &

‘long_text_field_2’) taking far longer due to

the length of the field being searched. We

can also see the re-occurring effect of dataset

size on the query runtimes with the average

increase being 64.2% across each of the three

queries.

■ What is clear is the complexity of the object

(Point vs. Polygon vs. LineString) and the

amount of data present has a direct impact

on the query times. This was found to be the

case for both simple geo queries as well as

complex ones.

■ Queries involving joins timed out (exceeding

the agreed period of 12 hours). If the magnitude

of the data were smaller this might help, but it

is ultimately a complexity problem that arises

from the fact that Hive only allows for a full

Cartesian join (unless you create a new table

with both datasets pre-joined).

NOTES

■ Other than the lack of native support for

certain queries (e.g. within 10 km of a given

point), we found Hive to be relatively easy to

setup and use. Other than adding the required

jars, no additional steps were required.

■ It is a mature project with lots of community

support. So, in case of any issues, the errors

would be quickly resolved.

DATASET BATCH SIZE DURATION
1 6 bn 1 h 41 min 56 sec

1 4 bn 1 h 9 min 45 sec

2 10 m 15 sec

3 6 bn 2 h 38 min 37 sec

3 4 bn 1 h 44 min 16 sec

23

MongoDB is a free and open-source cross-platform document-oriented database program.

Classified as a NoSQL database program, MongoDB uses JSON-like documents with schemas.

All work was carried out using version 3.2.11. Queries were for the most part written using the

standard DSL for MongoDB – except for special cases such as any queries that required a

join. Since queries were written in Javascript and executed via the shell, we were able to add

additional logic to avoid a full Cartesian join (unlike Hive) – though we were still unable to get a

result within the allotted 12-hour time limit.

BIG DATA TECHNOLOGIES

MONGODB

DATA REPLY

2524

IMPLEMENTATION

The structure of the MongoDB cluster was

setup to include:

■ 3 Config Servers (each on a different node).

■ 6 Routers/Shards (on 6 of the worker nodes).

■ 6 Replica Sets.

Note that shards and replica sets are provided

with a full dedicated node rather than being

shared. The MongoDB documentation states

that shards/replica sets should not be co-

located on a single node due to resource

contention. We did attempt to do so in order

to maximize resource utilization on the cluster,

however the shard/replica sets ended up

consuming all the memory on each shared

node which killed the mongod daemon. Three

nodes were also designated as config servers

that do not process any data but merely store

metadata about the cluster setup. Three config

servers were selected to make it comparable

with HDFS where we had 3 master nodes.

INGESTION

TYPE HANDLING ISSUE
Refer to ‘Type handling issue’ in Appendix 4.

The tool was developed in Scala and used

Rapture JSON to parse the GeoJSON file along

with casbah 3.1.1 to interface with MongoDB.

Ingestion performance was maximized by:

1. Using multiple threads.

2. Using multiple clients.

3. Using Scala futures for asynchronous

processing.

4. Processing data in batches rather than

using a single request per document.

5. Delaying any indexing until after data has

been ingested.

Ingestion was performed by mounting each

disk to a given node, and executing the

instance with a batch size of 1000 and 12

concurrent threads.

SPLIT CHUNK ISSUE

Once the initial issue with types was solved,

MongoDB proved very slow when the size

of the datasets exceeded 6 bn elements. We

established that once the number of points

being ingested reached a sufficiently large

number (in our case approximately 4 bn+

elements) performance began to degrade

significantly. Upon closer inspection, we found

that MongoDB was spending much of the time

trying to perform splitChunk() and splitVector()

operations which are blocking operations. We

mitigated this issue by overriding the default

values for chunk size and the initial number

of chunks. After further research we also

decided to pre-split the data and disable the

MongoDB balancer for an added performance

boost.

25

DATASET BATCH SIZE INDEX FIELD DURATION

1 6 bn Location & Time
(Compound Index) 4 h 20 min 6 sec

1 6 bn Time 2 h 27 min 39 sec

1 4 m Location & Time
(Compound Index) 5 h 48 min 2 sec

2 10 m Location 14 sec

3 6 bn Location & Time
(Compound Index)

Stopped after 30 h (during which
time it had built just 13% of the index).

INDEXING

Once the data was ingested, it was indexed

using both compound and individual indices

where appropriate. Location fields were

indexed using the 2dsphere index. Once the

first batch of 6 bn elements was ingested and

indexed, and the queries had completed, we

had to remove the existing indices before

ingesting the remaining 4 bn elements for

performance reasons6. Once all 10 bn elements

were ingested, we then re-ran indexing for the

whole set.

The table below details the times taken to

index the data in MongoDB:

The index build had to be stopped for

Dataset 3; if left to run it would have taken

approximately 10 days to complete, well

outside our acceptable threshold of 24 Hours.

QUERIES

■ Unlike ingestion, the MongoDB queries

did not require custom workarounds except

for join queries where we needed to write

javascript code to join documents from 2

collections.

■ Queries were written in .js files and piped to

the Mongo Shell for execution.

■ We were able to complete the queries using

the MongoDB functions: geoNear, geoWithin,

nearSphere, geoIntersects, maxDistance &

regex.

6 If the data to be inserted is large it is recommended that you drop the existing index, insert the data and then rebuild indexes.
This is done to reduce the overhead of updating indexes on inserting each record which has significant impact on insertion speed.

DATA REPLY

2726

CONFIGURATION

We made a number of changes to the default MongoDB configurations to adhere to best practices

for the size and scope of the cluster. The table below details all the changes that were made to

the default configurations.

NAME OLD VALUE NEW VALUE COMMENT

Chunk Size 64mb 1024mb
Required to mitigate blocking calls to
splitChunk() / splitVector()

Initial Chunks (per shard) 2 8192
Required to mitigate blocking calls to
splitChunk() / splitVector()

Balancer Enabled Disabled

Pre-splitting data improved ingestion
performance (which was naturally the case
for us since it was generated in equally
sized partitions)

We also made changes to our default Linux configuration based on recommendations listed in

the MongoDB documentation:

NAME OLD VALUE NEW VALUE COMMENT

nproc (processes/threads) 1024 64000
Increases max number of processes in
Linux

nofile (open files) 1024 64000
Increases max number of open files in
Linux

as (virtual memory size) - Unlimited
Increases virtual memory size (MongoDB
uses memory mapped files behind the
scenes) http://bit.ly/2t1MUFd

27

INGESTION
■ Ingestion time for Dataset 3 is lower than

Dataset 1 as Dataset 3 (2 fields) contains

comparatively less fields than Dataset 1 (8

fields).

■ As the MongoDB router has to route the

incoming documents to the required data node

based on the hash of a unique document_id,

the total ingestion time is high compared to

other technologies.

The table below details the times taken to

ingest the data into MongoDB. Note it doesn’t

include the indexing time:

QUERIES
■ Query execution time was mostly dependent

on the result set (documents returned) & the

geo-spatial complexity in the dataset (point,

polygon, line).

■ For queries using regular expressions the

timings were quite high as MongoDB did a

COLSCAN instead of IXSCAN (index scan) i.e

scanned all the documents for the matching

expression.

■ Query 3 for Dataset 1 ran for more than 12

hours and hence was classed as ‘TIMED OUT’.

■ Geo-spatial queries with comparatively

few results returned (Queries 2, 5, 9 & 10)

completed in milliseconds as 2d-sphere

indexes were built on the collection. Queries

returning significantly more results took more

time as MongoDB needs to iterate over each

batch of results sequentially as the default

batch size is 20.

■ The Join query (query 11 for Dataset 1) was

stopped after 5 hours 20 minutes as in that

time it had only scanned 2 million records of a

total of 6 bn * 10 m records.

NOTES
■ Indexing takes a long time but it has a huge

impact for geo-spatial queries. Indexing geo-

spatial points took around 5 hours for 10 billion

points but for more complex geometries like

polygons, the indexes are much slower & can

easily take a week depending upon the size

of data.

■ When wishing to add data to an existing

collection it would be preferable to drop the

indexes first and then insert the new data and

re-build indexes if the volume of data to be

inserted is comparable to the volume of data

already present, the reason for this is that

MongoDB has to create the index while you

insert each document which increases the

ingest time significantly.

■ MongoDB is very memory hungry. It often

consumes all available memory and can crash

the Mongod daemon while running some of the

queries as it tries to cache. Also, architectural

care needs to be taken with respect to setting

up all shards & replicas.

■ The query syntax is rigid, limiting the geo-

spatial operations that are possible.

NAME OLD VALUE NEW VALUE COMMENT

Chunk Size 64mb 1024mb
Required to mitigate blocking calls to
splitChunk() / splitVector()

Initial Chunks (per shard) 2 8192
Required to mitigate blocking calls to
splitChunk() / splitVector()

Balancer Enabled Disabled

Pre-splitting data improved ingestion
performance (which was naturally the case
for us since it was generated in equally
sized partitions)

NAME OLD VALUE NEW VALUE COMMENT

nproc (processes/threads) 1024 64000
Increases max number of processes in
Linux

nofile (open files) 1024 64000
Increases max number of open files in
Linux

as (virtual memory size) - Unlimited
Increases virtual memory size (MongoDB
uses memory mapped files behind the
scenes) http://bit.ly/2t1MUFd

DATASET BATCH SIZE DURATION
1 6 bn 1 d 21 h 32 min

1 4 bn 2 d 13 h 42 min

2 10 m 9 min

3 6 bn 1 d 16 h 54 min

RESULTS

2928

GeoMesa is an open-source, distributed, spatio-temporal index built on top of Bigtable-style

databases using an implementation of the Geohash algorithm. We use Accumulo as data store

as per DSTL’s requirement. Leveraging a highly-parallelized indexing strategy, GeoMesa aims to

provide as much of the spatial querying and data manipulation to Accumulo as PostGIS does to

Postgres.

GeoMesa execution was carried out using version 1.3.1 on top of Accumulo 1.7.0. Queries were for

the most part written using the standard CQL. Ingestion was performed using the built-in tools

that ship with GeoMesa.

BIG DATA TECHNOLOGIES

GEOMESA

29

The structure of the Accumulo cluster was

setup to include:

■ 12 TServers ("Tablet" servers).

■ 3 Master nodes.

INGESTION

■ Ingestion was carried out using the

ingest tool (‘geomesa ingest’) that ships

with GeoMesa. There were 2 options: local

ingestion or MapReduce ingestion. We opted

for MapReduce ingestion as recommended

by the GeoMesa committer community. The

MapReduce ingestion has significant ingestion

speed as compared to local ingest as the data

is loaded from HDFS.

■ Custom converters and schemas were

written to parse the GeoJSON file as

appropriate. These were added to a single

application.conf file.

■ The ‘GeoMesa Accumulo Distributed

Runtime’ JAR file that contains server-side

code for Accumulo was made available on

each of the Accumulo tablet servers in the

cluster. These JARs contain GeoMesa code

and the Accumulo iterators required for

querying GeoMesa data.

■ GeoMesa creates 3 separate tables for

ingestion of each dataset.

1. The main records table indexed by the

feature id.

2. The spatial-only index table. This index

will be created if the feature type has

the geometry type Point. This is used to

efficiently answer queries of features with

point geometry with a spatial component

but no temporal component.

3. The spatio-temporal index table. This

index will be created if the feature type has

the geometry type Point and has a time

attribute. This is used to efficiently answer

queries on data with point geometry with

both spatial and temporal components.

QUERIES

■ Queries were executed using the out-of-

the-box export tools that ship with GeoMesa

for all the queries, except those that required

sorting which were written in standard CQL

format as the documentation suggests.

■ Shell scripts were written for executing

queries and the results of the query were

piped out to a csv file.

■ Spark-SQL was used for the queries that

required sorting, the join queries & one of the

regular expression queries that returned 90%

of the data (query 7, 9, 10 & 11 for Dataset 1

& query 5, 6 for Dataset 3). This is because

there is no built-in functionality in GeoMesa

to carry out sorting. Use of Spark-SQL was

recommended by the GeoMesa committer

community and also DSTL to carry out sorting

and improve performance.

■ The ‘geomesa-accumulo-spark-runtime’

jar file was passed to spark-submit while

executing these queries.

IMPLEMENTATION

DATA REPLY

3130

CONFIGURATION

GEOMESA/ACCUMULO CONFIGURATION

The table below details the Geomesa/Accumulo configuration used throughout the benchmark.

PARAMETER VALUE COMMENT

tserver.scan.files.open.max 500
Maximum total files that all tablets in a tablet server can open for scans. Set to a
high value based on the available resources.

tserver.readahead.
concurrent.max 32

The maximum number of concurrent read aheads that will execute. Set to a value
which fully utilizes available resources on the worker nodes.

tserver.metadata.
readahead.concurrent.max 32

The maximum number of concurrent metadata read ahead that will execute. Set
to a value, which fully utilizes available resources on the worker nodes.

table.split.threshold 5G Set this to a higher value so that splits do not occur frequently during ingest

table.scan.max.memory 2G
Set to a higher value to increase amount of memory to be used to cache query
results.

SPARK CONFIGURATION

All jobs were run in client mode, i.e. the driver process was running on one of the master nodes.

This choice was made due to resource availability on the master nodes, efficient use of resources

on the worker nodes, and fair comparison with other technologies, such as Hive.

PARAMETER VALUE COMMENT

spark.executor.instances 36 See spark.executor.cores.

spark.executor.memory 17666m
Set to a value which fully utilizes available memory on the worker
nodes.

spark.yarn.executor.
memoryOverhead 2000m Set by doing test runs and tracking executor JVM metrics.

spark.executor.cores 4

In combination with spark.executor.instances this value results in 3
executor instances on every worker node and 4 tasks running in
parallel within each executor. This value was chosen to maximize IO
operations, achieve efficiency of memory usage, and was arrived at by
doing a set of tests runs and monitoring their performance.

spark.driver.memory 30g Set to a high value based on resource availability on the master node.

spark.yarn.driver.
memoryOverhead 10000m Set to a high value based on resource availability on the master node.

spark.driver.cores 5 Set to a high value based on resource availability on the master node.

31

INGESTION

■ More datapoints were ingested than

anticipated because MapReduce retries

ingestion of datapoints that fail. A few of the

mappers failed but as GeoMesa / Accumulo

don’t have ACID properties, points are

ingested prior to failing. The mapper then

tries to reingest, causing some records to

be duplicated, and hence more points were

ingested than intended.

■ Ingestion time for GeoMesa is higher than

technologies like GeoSpark, even though it

ingests data from HDFS, because it needs to

create 3 separate tables. Hence write speed

is the bottleneck of the ingestion stage.

■ Ingestion of Dataset 1 and Dataset 3 took

about the same time in both 6 bn and 10 bn

runs, which would imply that complexity of

geospatial procedures is the same in both

point and polygon (with 16 vertices) cases.

However, one should not forget that even

though Dataset 1 contains points, it also

contains a much larger amount of data (more

number of fields) compared to Dataset 3.

Hence, we conclude that ingest time is about

the same due to an unequal amount of data,

however ingestion of points is actually more

efficient than ingestion of polygons (with 16

vertices) if the other fields are not ignored.

QUERIES

■ Multiple runs of the same query show very

similar performance.

■ The query run time was directly proportional

to the result set being written to file; hence

the bottleneck is writing speed.

■ The performance was linear when moving

from a 6 bn run to a 10 bn run of the same

dataset.

■ Query 7 was first executed using GeoMesa’s

export tool which timed out as the result set

was approximately 90% of the data (something

we knew from the results of the other

technologies). The query was then executed

using Spark-SQL which performed better

compared to the other regular expression

queries (query 5 & 6) that were executed using

GeoMesa export tool and had comparatively

less results. This was because of the in-

memory computations done by Spark.

DATASET BATCH SIZE DURATION
1 6 bn 27 h 19 min 6 sec

1 10 bn 21 h 50 min 42 sec

2 10 m 8 min 44 sec

3 6 bn 21 h 2 min 58 sec

3 10 bn 23 h 26 min 37 sec

RESULTS

3332

■ Bounding box queries ran substantially

faster in the case of Dataset 1 compared to

Dataset 3, which is the result of the much

higher number of points in the polygons.

■ The join query was tested only on 6 bn

data points of Dataset 1 as it could not even

complete 1% of MapReduce task in 45 minutes

and was termed TIMED OUT as it would not

have been able to complete more than 15% in

the 12 hours limit.

■ Interestingly, "within" queries took slightly

longer for 6 bn rows than 10 bn rows for

Dataset 3. Considering the fact that the result

set is quite small and the time difference

between them is negligible we conclude

that the dataset size didn’t really affect the

performance as it used indexes.

NOTES

■ GeoMesa / Accumulo requires a large

amount of storage in order to create 3 separate

tables. However, as the tables serve as indexes

and you can control which table you require

before you ingest, this is comparable to other

technologies which require index creation.

■ Also, Accumulo runs bulk insert by writing

into small files and then merging these files

into bigger files (process called ‘Compaction’).

Due to Compaction, a huge amount of free

HDFS space is needed temporarily during

merge. The space is released once the

compaction process completes.

■ If Spark SQL is used with GeoMesa libraries,

it is directly comparable with Hive ESRI. We

would recommend using Spark SQL with

GeoMesa based on the results of the queries

we ran.

■ The project is under active development

and the committers provide good support on

gitter’s GeoMesa channel. There is a learning

curve (e.g. understanding how to write

converters & schema for ingestion) but once

understood the documentation is clear and

helpful.

■ Accumulo’s Monitor UI contains a wealth

of information about the state of an instance.

The Monitor shows graphs and tables which

contain information about read/write rates,

cache hit/miss rates, and Accumulo table

information such as scan rate and active/

queued compactions. The Monitor should

always be the first point of entry when

attempting to debug an Accumulo problem

as it will show high-level problems in addition

to aggregated errors from all nodes in the

cluster.

33

Elasticsearch (ES) is a search engine based on the open source Lucene project. It provides a

distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-

free JSON documents. ES is developed in Java and is released as open source under the terms

of the Apache License.

Our ES work was carried out using version 5.1.2. Queries were for the most part written using the

standard DSL for ES via REST.

BIG DATA TECHNOLOGIES

ELASTICSEARCH

DATA REPLY

3534

IMPLEMENTATION

The structure of the Elasticsearch cluster was

setup to include:

■ 24 shards per index.

■ 1 replica per shard.

■ 3 master nodes.

Note that shards and replica sets were not

assigned dedicated nodes as they were with

MongoDB. This is because Elasticsearch does

not appear to suffer from the same resource

contention issues in our experience. The

benefit of this is that we are able to achieve

full use of the 12 compute nodes.

INGESTION

■ Elasticsearch ingestion was similar to that of

MongoDB and suffered from the same issues,

namely Type Handling Issue and the need to

write a custom bulk ingestion tool.

■ Before bulk ingestion was started, the

replicas were set to 0 so that it does not

interfere i.e. consume resources while the

ingestion is running & ‘merge throttle’ was set

to none to improve performance as per the

documentation.

■ Once the bulk ingestion was completed, the

replica was set to 1.

TYPE HANDLING ISSUE
Refer to ‘Appendix 4: Type Handling issue’.

Ingestion performance was maximized by:

1. Using multiple threads.

2. Using multiple clients.

3. Using Scala futures for asynchronous

processing.

4. Processing data in batches rather than

using a single request per document.

Actual ingestion was performed by mounting

each disk to a given node, and executing

the instance with a batch size of 2000 and 4

concurrent threads.

QUERIES

■ Unlike ingestion, the ES queries did not

require custom workarounds. The queries

were written using Query DSL based on JSON

and then a GET request was sent to the ES

server.

■ A Bash script was written that uses ES’s

Scroll Api in combination with a while loop to

get all the results and save them to a file.

■ Queries that required sorting by distance

in kms were executed without sort as there

is no current functionality in ES for this. There

is an open issue for this missing feature:

http://bit.ly/2sbcH1J.

■ The geo_shape data type was used for

ingestion & query of geo-spatial fields. In-built

functions like ‘within’ were used for queries.

■ Elasticsearch has no functionality to execute

cross joins across different indices.

http://bit.ly/2sbcH1J

35

NAME OLD VALUE NEW VALUE COMMENT

indices.store.throttle.type merge none

While we are doing a bulk import, and don’t
care about search, we can disable merge
throttling entirely. This allows indexing to
run as fast as the disks will allow. Setting the
throttle type to none disables merge throttling.
When we are done importing, we can then
set it back to merge to re-enable throttling.
http://bit.ly/2rdhUkp

index.refresh_interval 1s -1

While doing a large import, we can disable
refreshes by setting this value to -1 for the
duration of the import. Don’t forget to re-enable
it when you are finished! Done to optimize bulk
ingestion. http://bit.ly/2saTs8c

index.number_of_
replicas 2 0

By indexing with zero replicas and then
enabling replicas when ingestion is finished, the
recovery process is essentially a byte-for-byte
network transfer. This is much more efficient
than duplicating the indexing process. Once the
ingestion is completed this value is set to 1 to
have a replica. http://bit.ly/2alQeXb

scroll size 100 2million
Set after trying different values. This parameter
allows you to configure the maximum number
of hits to be returned with each batch of results.

We also made changes to our default Linux configuration based on recommendations listed in

the ES documentation:

NAME OLD VALUE NEW VALUE COMMENT
nproc (processes/
threads) 1024 65536 Increases max number of processes in Linux

nofile (open files) 1024 65536 Increases max number of processes in Linux

vm.max_map_count
(virtual memory) - 262144

Elasticsearch uses a hybrid mmapfs / niofs
directory by default to store its indices. The
default operating system limits on mmap counts
is likely to be too low, which may result in out of
memory exceptions. http://bit.ly/2r2OVRh

CONFIGURATION

3736

INGESTION

■ Ingestion of data in temporary tables took

more time for dataset 3 as compared to

Dataset 1 as there are 16 points in ellipses as

compared to just a single point in Dataset 1.

Although Dataset 1 has more data fields, the

full JSON is inserted as it is, in a single column

without parsing.

■ Similar trend is observed in final table where

again dataset 3 takes more time than Dataset

1. This might be because of how postgres

parses JSON and stories ellipse containing

16-points.

QUERIES

■ Multiple runs of the same query show very

similar performance.

■ The query run time was directly proportional

to the result set being written to file. Hence

the bottleneck is writing speed.

■ The execution of all the queries involving

just index-scan on the location field completed

in less than a second.

■ Execution of all the other queries (e.g.

queries involving just timestamps or regular

expressions) took a much longer time to

complete.

■ The join query was executed for the 6 bn

run of Dataset 1 but exceeded the TIME-OUT

period of 12 hours and hence no further join

queries were run for other datasets.

■ The query execution time for Dataset 1 &

Dataset 3 were very similar because they

have similarly sized result sets & GIST indexes

are leveraged in both cases.

DATASET BATCH DURATION
1 6 bn Temp 3 h 50 min 57 sec

1 6 bn Final 10 h 30 min 38 sec

1 10 bn Temp 3 h 57 min 22 sec

1 10 bn Final 2 h 42 min 58 sec

2 10 m Temp 46 sec

2 10 m Final 96 sec

3 6 bn Temp 5 h 3 min 9 sec

3 6 bn Final 15 h 33 min 30 sec

RESULTS

37

NOTES

■ The project is still under development and

is relatively inactive. Support is almost non-

existent. And as there are not many users

you might not find many recommendations or

tutorials online.

■ As the project has no up-to date binary

packages, it required lots of painstaking

work to install from source. This involved

installing all the dependencies, which was not

straightforward as some dependency versions

were not directly compatible with the current

version of Postgres-XL. For example, we had

to manually exclude armadillo package from

EPEL release to install the correct version

of GDAL. There was a similar issue with the

latest stable version of Postgis (2.3.2) being

incompatible with the Postrges-XL version (we

installed Postgis 2.3.1 to resolve this).

■ There are lots of issues that may make it

difficult to use Postgres-XL in production.

One such issue is that while changing a table

from ‘UNLOGGED’ to ‘LOGGED’ the Postgres-

XL daemon keeps on waiting as it is trying to

acquire a lock on the table (which it isn’t able

to). A similar issue was encountered when we

tried to use ‘DROP TABLE’ & ‘DROP INDEX’.

■ There is no information on the progress

of INDEX creation or the INSERT or COPY

process, which makes it difficult to anticipate

the completion time of the process.

■ The next version of the project (9.6) should

bring better query execution performance as

it will take advantage of multi-core processing.

3938

Postgres-XL is an all-purpose fully ACID open source scale-out SQL database solution. It aims

to provide feature parity with PostgreSQL while distributing the workload over a cluster. The

Postgis extension was used to add support for geographic objects allowing location queries to

be run in SQL.

Execution was carried out using Postgres-XL 9.5r1.5 (based on PostgreSQL 9.5.6) with Postgis 2.3.1

extension. The Postgres-XL project currently does not provide any up-to date binary packages

(rpm, deb, etc.) so it had to be installed from source.

BIG DATA TECHNOLOGIES

POSTGRES-XL

39

1. CREATE TABLE IF NOT EXISTS dataset3_temp_w2 (raw_JSON JSONb) TO NODE
(dn1);

2.
3. ls /mnt/hadoop-w-1/data/D3S4/*.JSON | time xargs -n1 -P10 sh -c "psql -p

30001 -d dstl -c \"\\COPY dataset3 _temp_w2 FROM '\$0' \""
4.
5. CREATE TABLE IF NOT EXISTS dataset3 (
6. geom geometry,
7. timestmp timestamp
8.) DISTRIBUTE BY HASH(timestmp);
9.
10. INSERT into dataset3 (
11. SELECT
12. ST_SetSRID(ST_GeomFromGeoJSON(raw_JSON->>'location'), 4326) AS geom,
13. to_timestamp(raw_JSON->'prop'->>'timestamp', 'YYYY-MM-DDTHH:MI:SSZ')

AS timestmp
14. FROM dataset3 _temp_w2
15.);

The Postgres-XL cluster was setup as follows:

■ 3 GTM Servers (each on a different node).

■ 6 GTM Proxy, Coordinator & Data Nodes (on

6 of the worker nodes).

■ 6 Data Node Slaves.

Three nodes were used as GTM servers to

provide consistent transaction management

and tuple visibility control. The Coordinator is

an interface to the database for applications

and is functionally similar to a router in

MongoDB. The Coordinator is where the

queries are run by the user. The GTM proxy

provides proxy features from Postgres-XL

Coordinator and Datanode to GTM. GTM proxy

groups connections and interactions between

GTM and other Postgres-XL components to

reduce both the number of interactions and

the size of messages.

The Postgres-XL Cluster Control utility,

pgxc_ctl, was used to setup the environment

and manage the cluster i.e configuration,

initialization, starting, stopping, monitoring

and failover of Postgres-XL components.

INGESTION

■ The ingestion was carried out in 2 stages

(similar to Hive). In the first stage, we uploaded

the GeoJSON files into a temporary table

(staging area) using the inbuilt COPY function.

IMPLEMENTATION

4140

■ Each of the 6 nodes were used for ingestion.

The data was divided into 6 folders and

each node ingested one folder. 6 temporary

tables were created for each dataset for the

first stage. The temporary tables were not

distributed and each table was stored locally

on that node.

■ Once the data is ingested in the temporary

tables, the final stage consists of copying the

records from the temporary table, parsing

the JSON format and extracting the fields

into separate columns on the final distributed

table.

INDEXING

■ Postgis GIST indexes were created on the

location field for all the datasets.

■ To avoid breaching the index time

threshold, once the 6 bn run was complete

(elements ingested and indexed, and queries

completed) we removed the existing indices

before ingesting the remaining 4bn elements.

Once all 10 bn elements were ingested, we

then re-ran indexing for the whole set.

■ The index build had to be stopped for the 10

bn run of Dataset 1 as it exceeded the agreed

24-hour TIME-OUT period. Similarly, as the 6

bn run of Dataset 3 took more than 22 hours,

the corresponding 10 bn index job was not

attempted.

QUERIES

■ For the most part, queries could be performed

using the native Postgis ST functions.

■ In some cases, native support was lacking

(e.g. ‘within x km of a point’). To resolve this,

we generated a circle centered at the desired

point of radius 10 km and used the postgis

functions ST_WITHIN & ST_INTERSECTS.

41

NAME OLD VALUE NEW VALUE COMMENT

maintenance_work_
mem 16MB 15GB Increased to speed up Indexing & VACUUM

processes.

shared_buffers 32MB 10GB

Determines how much memory is dedicated
to PostgreSQL to use for caching data. Tuning
this configuration parameter can have a great
impact on query times; the default setting is far
too low given the amount of memory available
on modern servers.

effective_cache_size 4GB 15GB
Increased so that indexes can be saved in
memory and for queries an index scan can
occur instead of sequential scan.

Tez container size 8GB 19968MB Increased due to recommendation from
Hortonworks documentation

POSTGRES-XL CONFIGURATION

CONFIGURATION

4342

RESULTS

INGESTION

■ Ingestion of data in temporary tables took

more time for Dataset 3 as compared to

Dataset 1 as there are 16 points in ellipses as

compared to just a single point in Dataset 1.

Although Dataset 1 has more data fields, the

full JSON is inserted as it is, in a single column

without parsing.

■ Similar trend is observed in final table where

again Dataset 3 takes more time than Dataset

1. This might be because of how postgres

parses JSON and stories ellipse containing

16-points.

QUERIES

■ Multiple runs of the same query show very

similar performance.

■ The query run time was directly proportional

to the result set being written to file. Hence

the bottleneck is writing speed.

■ The execution of all the queries involving

just index-scan on the location field completed

in less than a second.

■ Execution of all the other queries (e.g.

queries involving just timestamps or regular

expressions) took a much longer time to

complete.

■ The join query was executed for the 6 bn

run of Dataset 1 but exceeded the TIME-OUT

period of 12 hours and hence no further join

queries were run for other datasets.

■ The query execution time for Dataset 1 &

Dataset 3 were very similar because they

have similarly sized result sets & GIST indexes

are leveraged in both cases.

DATASET BATCH SIZE DURATION
1 6 bn Temp 3 h 50 min 57 sec

1 6 bn Final 10 h 30 min 38 sec

1 10 bn Temp 3 h 57 min 22 sec

1 10 bn Final 2 h 42 min 58 sec

2 10 m Temp 46 sec

2 10 m Final 96 sec

3 6 bn Temp 5 h 3 min 9 sec

3 6 bn Final 15 h 33 min 30 sec

43

NOTES

■ The project is still under development and

is relatively inactive. Support is almost non-

existent. And as there are not many users

you might not find many recommendations or

tutorials online.

■ As the project has no up-to date binary

packages, it required lots of painstaking

work to install from source. This involved

installing all the dependencies, which was not

straightforward as some dependency versions

were not directly compatible with the current

version of Postgres-XL. For example, we had

to manually exclude armadillo package from

EPEL release to install the correct version

of GDAL. There was a similar issue with the

latest stable version of Postgis (2.3.2) being

incompatible with the Postrges-XL version (we

installed Postgis 2.3.1 to resolve this).

■ There are lots of issues that may make it

difficult to use Postgres-XL in production.

One such issue is that while changing a table

from ‘UNLOGGED’ to ‘LOGGED’ the Postgres-

XL daemon keeps on waiting as it is trying to

acquire a lock on the table (which it isn’t able

to). A similar issue was encountered when we

tried to use ‘DROP TABLE’ & ‘DROP INDEX’.

■ There is no information on the progress

of INDEX creation or the INSERT or COPY

process, which makes it difficult to anticipate

the completion time of the process.

■ The next version of the project (9.6) should

bring better query execution performance as

it will take advantage of multi-core processing.

4544

BIG DATA TECHNOLOGIES

TECHNOLOGY
COMPARISON

45

This section compares the performance of

all technologies under benchmark for the

simple queries. Simple queries include those

which perform bbox, intersects & time range

operations. For Dataset 1 this includes queries

1-5 and 1-4 for dataset 3.

Note on data tables beneath each chart:

The query execution times are rounded to 2

decimal places for all the graphs below. Note

therefore that queries taking less than 0.005

seconds for execution are rounded to 0.00.

Note also that queries that were not run or

failed, appear as null ("-").

Datase 1 query 1 involves returning all the

points that are within bounding-box1 which

is the size of UK. GeoMesa & Postgres-XL

were the fastest to complete the execution of

this query. This was due to the fact that they

were using GeoSpatial indexes and returning

full results in a batch. Hive on the other hand

had to scan all the results but as it uses ORC

format and Tez engine it performs better

without indexes. MongoDB & Elasticsearch

also used indexes but as they output results

& write them to a file using scroll apis it takes

longer (depending on the results they return

per batch) compared to GeoMesa or Postgres-

XL. GeoSpark also performs well as it does

not have to scroll through the results and uses

R-tree indexes.

Select * from dataset1 where dataset1.geo is within bbox1

SIMPLE QUERIES

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 16.33 60.88 282.50 55.69 0.77 0.77

■ 10 bn 27.85 89.63 338.00 78.83 1.07 -

-- 6 bn Avg 69.49 69.49 69.49 69.49 69.49 69.49

-- 10 bn Avg 107.08 107.08 107.08 107.08 107.08 107.08

0

50

100

150

200

250

300

350

400

Dataset 1 – QUERY 1

T
im

e
 (

m
in

u
te

s)

4746

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 16.19 60.24 0.00 1.35 0.11 0.00

■ 10 bn 27.50 86.74 0.00 3.29 0.12 -

-- 6 bn Avg 12.98 12.98 12.98 12.98 12.98 12.98

-- 10 bn Avg 23.53 23.53 23.53 23.53 23.53 23.53

0

10

20

30

40

50

60

80

70

Dataset 1 – QUERY 2

Select * from dataset1 where dataset1.geo is within bbox2

T
im

e
 (

m
in

u
te

s)

90

100

Dataset 1 query 2 involves returning all the

points that are within bounding-box2 which is

the size of Hyde Park. Despite this reduced

size, Hive still needs to scan the full table,

whereas the other technologies use indexes

and hence, given far fewer points to lookup,

take far less time to return a result. GeoSpark

is an exception because for each query the

data needed to be ingested and indexed.

HIVE GEOSPARK ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 26.30 43.90 41.83 213.67 255.75

■ 10 bn 44.09 62.27 47.80 344.67 -

-- 6 bn Avg 116.29 116.29 116.29 116.29 116.29

-- 10 bn Avg 124.71 124.71 124.71 124.71 124.71

0

50

100

150

200

300

250

Dataset 1 – QUERY 3

Select * from Dataset 1 where Dataset 1.timestamp < time1 and Dataset 1.timestamp > time2

T
im

e
 (

m
in

u
te

s)

350

400

--

47

Dataset 1 query 3 involves returing all the

points that are within a given time period.

MongoDB timed out for this query so it is

not included in the graph. Similarly as the

execution for Dataset 1 10 bn was not carried

out for Postgres-XL, it is also not included

in the graph. These queries don’t involve

geo-spatial computation, and there were

no indexes created on timestamps (except

for Elasticsearch). GeoMesa & Postgres-XL

were slow; their execution time exceeded

the average across all technologies. This

is because these technologies needed to

do a full scan of the table. Hive & GeoSpark

leverage in-memory computation so they are

relatively fast when a full scan is necessary.

Elasticsearch builds indexes for timestamps,

hence it performed better than other

Dataset 1 query 4 is a geo-temporal query

that involves returning records that are within

bounding-box1 and within a given time period.

GeoMesa builds geo-temporal indexes, hence

the execution time is very low. This query uses

the same bounding box as Query 1, which

filters the records. The relative performance of

the other technologies is in line with Dataset

1 Query 1. This is not true for GeoSpark as it

checks for both conditions (within Bounding

Box1 and timestamp) and does not filter out

results with bounding box1 first and then

check for timestamp condition on the filtered

results like the other technologies.

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 16.80 72.91 36.38 32.38 1.26 0.75

■ 10 bn 28.11 116.69 71.68 44.61 0.69 -

-- 6 bn Avg 26.75 26.75 26.75 26.75 26.75 26.75

-- 10 bn Avg 52.36 52.36 52.36 52.36 52.36 52.36

0

20

40

60

80

100

120

140

Dataset 1 – QUERY 4

Select * from Dataset 1 where Dataset 1.geo is within bbox1 and Dataset

1.timestamp < time1 and Dataset 1.timestamp > time2

T
im

e
 (

m
in

u
te

s)

4948

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 16.95 70.03 0.00 0.12 0.20 0.19

■ 10 bn 28.00 105.59 0.00 1.21 0.45 -

--- 6 bn Avg 14.58 14.58 14.58 14.58 14.58 14.58

--- 10 bn Avg 27.05 27.05 27.05 27.05 27.05 27.05

0

20

40

60

80

100

120

Dataset 1 – QUERY 5

Select * from Dataset 1 where Dataset 1.geo is within bbox2 and Dataset

1.timestamp < time1 and Dataset 1.timestamp > time2

T
im

e
 (

m
in

u
te

s)

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 60.73 104.37 1.27 44.35

■ 10 bn 99.84 159.35 2.17 -

-- 6 bn Avg 52.68 52.68 52.68 52.68

-- 10 bn Avg 87.12 87.12 87.12 87.12

0

20

40

60

80

100

120

140

DATASET 3 – QUERY 1

Select * from dataset3 where dataset3.geo intersects bbox1

T
im

e
 (

m
in

u
te

s)

160

180

Dataset 1 query 5 performs similarly to Dataset 1 Query 2 given that it has similar bounding box

conditions.

Dataset 3 Query 1 performs similarly to

Dataset 1 Query 1 as they have similar geo-

spatial complexity. This Query was not run

for MongoDB because the indexes timed out

nor & Elasticsearch because the ingestion

timed out (see respective technology sections

above).

49

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 60.53 109.52 0.14 0.00

■ 10 bn 97.80 110.54 0.13 -

-- 6 bn Avg 42.55 42.55 42.55 42.55

-- 10 bn Avg 69.49 69.49 69.49 69.49

0

20

40

60

80

100

120

DATASET 3 – QUERY 2

T
im

e
 (

m
in

u
te

s)

Select * from dataset3 where dataset3.geo intersects bbox2

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 62.01 62.10 4.03 0.36

■ 10 bn 101.46 98.23 3.28 -

-- 6 bn Avg 32.13 32.13 32.13 32.13

-- 10 bn Avg 67.66 67.66 67.66 67.66

0

20

40

60

80

100

120

DATASET 3 – QUERY 3

Select * from dataset3 where dataset3.geo intersects bbox1 and

dataset3.timestamp < time1 and dataset3.timestamp > time2

T
im

e
 (

m
in

u
te

s)

Dataset 3 Query 2 performs similarly to

Dataset 1 Query 2 as they have similar geo-

spatial complexity. This Query was not run

for MongoDB because the indexes timed out

nor & Elasticsearch because the ingestion

timed out (see respective technology sections

above).

Dataset 3 Query 3 performs similarly to

Dataset 1 Query 4 as they have similar geo-

spatial complexity. This Query was not run

for MongoDB because the indexes timed out

nor & Elasticsearch because the ingestion

timed out (see respective technology sections

above).

5150

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 61.41 58.80 0.82 0.00

■ 10 bn 100.35 114.85 1.04 -

-- 6 bn Avg 30.26 30.26 30.26 30.26

-- 10 bn Avg 72.08 72.08 72.08 72.08

0

20

40

60

80

100

120

DATASET 3 – QUERY 4

Select * from dataset3 where dataset3.geo intersects bbox2 and

dataset3.timestamp < time1 and dataset3.timestamp > time2

T
im

e
 (

m
in

u
te

s)

Dataset 3 Query 4 performs similarly to

Dataset 1 Query 5 as they have similar geo-

spatial complexity. This Query was not run

for MongoDB because the indexes timed out

nor & Elasticsearch because the ingestion

timed out (see respective technology sections

above).

51

STRING QUERIES

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 21.61 43.41 93.54 44.24 157.31 261.87

■ 10 bn 35.84 84.20 148.05 49.23 254.23 -

-- 6 bn Avg 103.66 103.66 103.66 103.66 103.66 103.66

-- 10 bn Avg 114.31 114.31 114.31 114.31 114.31 114.31

0

50

100

150

200

250

300

Dataset 1 – QUERY 6

Select * from dataset1 where Short_text_field contains "dog"

T
im

e
 (

m
in

u
te

s)

--

Dataset 1 Query 6 is a regular expression

query. Elasticsearch performs better than most

of the technologies, which is unsurprising

given it is a Lucene-based search engine.

The performance for MongoDB, GeoMesa

& Postgres-XL was directly proportional to

the size of the result set; accordingly, these

technologies take longer to execute queries

as the result of this query is almost 1/6th of

the total dataset size. As this query involves a

full table scan for all technologies, we see that

Hive outperforms the rest.

This section compares the performance of all technologies for string queries, i.e. Queries 6, 7

and 8 for Dataset 1.

5352

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6bn 72.65 46.85 128.06 45.25 69.52 584.41

■ 10bn 119.40 98.63 255.26 49.51 111.07 -

--- 6bn Avg 157.79 157.79 157.79 157.79 157.79 157.79

--- 10bn Avg 126.78 126.78 126.78 126.78 126.78 126.78

0

200

300

400

500

600

Dataset 1 – QUERY 7

Select * from dataset1 where Long_text_field_1 contains "dog"

T
im

e
 (

m
in

u
te

s)

--

700

100

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 71.43 40.90 156.40 42.76 65.03 527.95

■ 10 bn 116.13 91.48 211.28 49.54 103.50 -

-- 6 bn Avg 150.75 150.75 150.75 150.75 150.75 150.75

-- 10 bn Avg 114.39 114.39 114.39 114.39 114.39 114.39

0

100

200

300

400

500

600

Dataset 1 – QUERY 8

Select * from dataset1 where Long_text_field_2 contains "迎"

T
im

e
 (

m
in

u
te

s)

--

Dataset 1 Query 7 is another regular

expression query that performs similarly to

Dataset 1 Query 6. The exception is GeoMesa

for which we used Spark-SQL (with GeoMesa

libraries) to perform this query instead of the

inbuilt GeoMesa export tool. Hence, execution

performance is better than for Query 6 (it

was not used for Query 6 because where

possible we were using in-built tools). As the

field this query looks up contains much more

text, Elasticsearch performs better in this case

relative to Hive (compare Dataset 1 Query 6).

The performance for Dataset 1 query 8 is similar to that of Dataset 1 query 7.

53

COMPLEX QUERIES

This section compares the performance of all technologies for complex queries. These include

queries 9-11 for Dataset 1 and 5-7 for dataset 3.

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 14.96 59.67 0.00 0.29 0.87 0.00

■ 10 bn 28.22 85.06 0.54 0.39 1.04 -

-- 6 bn Avg 12.63 12.63 12.63 12.63 12.63 12.63

-- 10 bn Avg 23.05 23.05 23.05 23.05 23.05 23.05

Dataset 1 – QUERY 9

Select * from dataset1 where dataset1.geo is within 10km of point1, order by distance to point1

Dataset 1 query 9 involves returning all the

points that are within 10 km of point1. Again due

to the geo-spatial indexes and the fact that the

execution time is directly proportional to the

size of result set for MongoDB, Elasticsearch

& Postgres-XL, these technologies complete

the execution of the query within seconds.

0

10

20

30

40

50

60

80

70

T
im

e
 (

m
in

u
te

s)

90

100

5554

HIVE GEOSPARK MONGODB ELASTICSEARCH GEOMESA POSTGRES-XL

■ 6 bn 17.22 59.98 0.00 0.31 0.84 0.00

■ 10 bn 27.98 83.79 0.00 0.53 0.88 -

-- 6 bn Avg 13.06 13.06 13.06 13.06 13.06 13.06

-- 10 bn Avg 22.64 22.64 22.64 22.64 22.64 22.64

0

10

20

30

40

50

60

80

70

Dataset 1 – QUERY 10

Select * from dataset 1 where dataset1.geo is within 10km of point1, order by timestamp

T
im

e
 (

m
in

u
te

s)

90

100

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 63.47 84.96 1.19 0.00

■ 10 bn 104.72 93.22 0.88 -

-- 6 bn Avg 37.41 37.41 37.41 37.41

-- 10 bn Avg 66.27 66.27 66.27 66.27

0

20

40

60

80

100

120

DATASET 3 – QUERY 5

T
im

e
 (

m
in

u
te

s)

Select * from dataset3 where dataset3.geo is within 10km of point1, order by

closest distance to point1

Dataset 3 query 5 performs similar to Dataset 1 query 9 as they have similar geo-spatial complexity

for all the technologies execpt MongoDB & Elasticsearch for which Dataset 3 query execution

was not carried out.

Dataset 1 query 10 performs similar to Dataset 1 query 9 as fundamentally the query are same,

except the sort field.

55

Dataset 3 query 6 performs similar to Dataset 1 query 10 as they have similar geo-spatial

complexity for all the technologies execpt MongoDB & Elasticsearch for which Dataset 3 query

execution was not carried out.

HIVE GEOSPARK GEOMESA POSTGRES-XL

■ 6 bn 63.01 60.93 1.00 0.00

■ 10 bn 103.94 101.11 0.82 -

-- 6 bn Avg 31.23 31.23 31.23 31.23

-- 10 bn Avg 68.62 68.62 68.62 68.62

0

20

40

60

80

100

120

DATASET 3 – QUERY 6

T
im

e
 (

m
in

u
te

s)

Select * from dataset3 where dataset3.geo is within 10km of point1, order by timestamp

5756

JOIN QUERIES

This section shows whether the technology was able to execute joins within the TIME-OUT

period or not.

TECHNOLOGY DATASET 1 DATASET 3

Hive FAILED FAILED

GeoSpark FAILED (Completed in 15 hrs) FAILED

MongoDB FAILED FAILED

Elasticsearch FAILED FAILED

GeoMesa FAILED FAILED

Postgres-XL FAILED FAILED

JOIN QUERIES

57

TECHNOLOGY DATASET 1 DATASET 3

Hive FAILED FAILED

GeoSpark FAILED (Completed in 15 hrs) FAILED

MongoDB FAILED FAILED

Elasticsearch FAILED FAILED

GeoMesa FAILED FAILED

Postgres-XL FAILED FAILED

RECOMMENDATIONS

■ If the dataset is updated after a long-time

period (e.g. weeks or months) and is frequently

queried, technologies like Elasticsearch that

use indexing may offer better performance

in terms of query execution time. As these

technologies require re-indexing when

ingesting new/changed data, frequent data

updates (insert or update) would become a

bottleneck and indexing would be very slow.

For such use cases, Hive & GeoMesa are

likely to outperform others. GeoMesa also

uses indexes but they are created on-the-fly

as separate tables during ingestion.

■ When selecting between Hive & GeoMesa,

bear in mind that GeoMesa would require

double or triple the disk space (depending on

the indexes you want) as compared to Hive.

■ The complexity of setting up and configuring

infrastructure may be a consideration for

some organisations. Elasticsearch & Hive

worked out of the box and were easy to setup

and required the least configuration changes.

MongoDB & Postgres-XL were difficult to setup

and required lots of configuration decisions

and tuning. The others were somewhere in

between.

■ GeoMesa had the best community support;

the committers were available (on gitter) to

help most of the time. Postgres-XL had the

least to no community support.

■ Elasticsearch (used with Kibana & x-pack)

and Hive (Tez & Ambari UI) offer very user-

friendly monitoring tooling, so tasks such

as monitoring the cluster, exporting logs

and monitoring query execution are greatly

simplified. Tez UI even shows the percentage

execution for running queries.

■ Almost all of the technologies have auto

failover except for Postgres-XL where a

manual command is needed.

■ For technologies involving Spark

performance is, as one would expect, highly

sensitive to Spark configuration - especially

the parameters given in the table in Spark

Configuration (in GeoSpark section).

To aid the reader we provide below a summary

table comparing the relative strengths of each

technology against 4 selection criteria. They

are each rated from "High" (most positive) to

"Low" (least positive).

TECHNOLOGY EASE OF
SETUP

DEVELOPER
COMMUNITY

EASE OF
IMPLEMENTING

GEOSPATIAL QUERIES

MONITORING
TOOLS

Hive High Medium High High

GeoSpark Medium Medium Medium Medium

MongoDB Low Medium Medium Low

Elasticsearch High Medium High High

GeoMesa Medium High High Medium

Postgres-XL Low Low High Low

5958

ENCHMARKING OF BIG DATA TECHNOLOGIES FOR INGESTING
AND QUERYING GEOSPATIAL DATASETS

APPENDICES

59

APPENDIX 1:
CLUSTER SPECIFICATION

■ Data Generation and storage: 20 persistent disks with 1500 GB disk space.

■ HDFS:

 - 15 n1-standard-16 (16 vCPUs, 60 GB memory) VMs with 20 GB Boot disk.

 - 12 Data nodes are attached with 5750 GB persistent disk each.

 - 3 Master nodes are attached with 1000 GB persistent disk each.

■ Non-HDFS:

 - 15 n1-standard-16 (16 vCPUs, 60 GB memory) VMs with 20 GB Boot disk.

 - 12 Data nodes are attached with 5750 GB persistent disk each.

 - 3 Master nodes are attached with 1000 GB persistent disk each.

■ OS: CentOS 6

6160

APPENDIX 2:
HADOOP CONFIGURATION

HDFS CONFIGURATION

PARAMETER VALUE

Hadoop max heap size 8GB

Block replication 2

NameNode New Gen min/max 384/384

NameNode PermGen min/max 128/256

DataNode Heap 3GB

NameNode Heap 1GB

YARN CONFIGURATION

PARAMETER VALUE

Total memory for all containers 59904mb

Min/Max container memory 19968mb/59904mb

Min/Max container cores 1/12

RM, NM & YARN max heap 1GB

Scheduler

org.apache.
hadoop.yarn.server.
resourcemanager.
scheduler.capacity.
CapacityScheduler

MAPREDUCE CONFIGURATION

PARAMETER VALUE

Map/Reduce virtual memory 19968mb/19968mb

Sort allocation memory 7987mb

AppMaster virtual memory 19968mb

Map max heap size 15974mb

Reduce max heap size 15974mb

AppMaster max heap size 15974mb

HIVE & TEZ ADDITIONAL
CONFIGURATION

PARAMETER VALUE

ORC stripe size 64MB

Compression zlib

HiveServer2 heap size 22.114GB

Metastore heap size 7548MB

Client heap size 1024MB

Map join memory per map 2184.5MB

Data per reducer memory 64MB

Enable cost based optimizer True

Resource memory 8GB

Task resource 8GB

61

APPENDIX 3:
HDFS INGESTION

HDFS PUTS

DATASET/BATCH TIME TYPE MINUTES SECONDS TIME
1 (4 bn) real 1265m33.229s Real 1,265 33 1,265.6

 user 77m48.591s User 77 49 77.8

 sys 65m19.105s Sys 65 19 65.3

 1 (6 bn) real 1520m16.092s Real 1,520 16 1,520.3

 user 109m22.649s User 109 23 109.4

 sys 93m56.159s Sys 93 56 93.9

2 (10 m) real 0m42.708s Real 0 43 0.7

 user 0m9.459s User 0 9 0.2

 sys 0m2.179s Sys 0 2 0.0

3 (4 bn) real 1321m21.373s Real 1,321 21 1,321.4

 user 71m58.891s User 71 59 72.0

 sys 54m35.304s Sys 54 35 54.6

3 (6 bn) real 1779m27.241s Real 1,779 27 1,779.5

 user 104m57.757s User 104 58 105.0

 sys 82m21.506s Sys 82 22 82.4

4 (4 bn) real 705m31.785s Real 705 32 705.5

 user 38m6.213s User 38 6 38.1

 sys 27m15.464s Sys 27 15 27.3

4 (6 bn) real 970m45.640s Real 970 46 970.8

 user 56m7.277s User 56 7 56.1

 sys 41m7.965s Sys 41 8 41.1

5 (4 bn) real 1015m18.092s Real 1,015 18 1,015.3

 user 57m6.566s User 57 7 57.1

 sys 43m38.762s Sys 43 39 43.6

5 (6 bn) real 1401m50.858s Real 1,401 51 1,401.8

 user 83m34.186s User 83 34 83.6

 sys 65m20.837s Sys 65 21 65.3

6362

HDFS BALANCER

RUN RUNTIME PARAMETERS

1 real 278m1.033s Default

2 real 888m26.524s / Balancing took 14.807050277777778 hours See the table below

PARAMETER VALUE

moverThreads (data node) 10

Bandwith (data node) 100000000

Ddfs.balancer.movedWinWidth (client) 5400000

Ddfs.balancer.moverThreads (client) 1000

Ddfs.balancer.dispatcherThreads (client) 200

Ddfs.datanode.balance.bandwidthPerSec (client) 100000000

Ddfs.balancer.max-size-to-move (client) 10737418240

Threshold (client) 8

63

APPENDIX 4:
TYPE HANDLING ISSUE

MongoDB & Elasticsearch include a tool to

ingest data (including JSON data) out of the

box. Unfortunately, it is not always able to

correctly determine the type of each field

which, for example, can lead to dates being

represented as strings.

There are two solutions to this problem:

1. Re-cast the data once ingested (too

computationally intensive given the

dataset size).

2. Add type annotations to the file (requires

changes to the source files).

Since the goal of this exercise is to compare

each technology fairly from the same source

file (GeoJSON format), we decided to opt

for a different solution and develop our own

multi-threaded, multi-client ingestion tool

which would handle all types and parse the

GeoJSON file as expected. This removed

the requirement to re-cast any data (i.e. only

one pass is required) and also meant that no

special annotations needed to be made to the

source files (that would otherwise have made

MongoDB & Elasticsearch a ‘special case’).

6564

APPENDIX 5:
QUERIES

TABLE 1: LIST OF QUERIES IN SCOPE

DATASET ID QUERY ID QUERY

1 1 Select * from dataset1 where dataset1.geo is within bbox1

1 2 Select * from dataset1 where dataset1.geo is within bbox2

1 3 Select * from dataset1 where dataset1.timestamp < time1 and
dataset1.timestamp > time2

1 4 Select * from dataset1 where dataset1.geo is within bbox1 and
dataset1. timestamp < time1 and dataset1.timestamp > time2

1 5
Select * from dataset1 where dataset1.geo is within bbox2 and
dataset1.timestamp < time1 and dataset1.timestamp > time2

1 6 Select * from dataset1 where Short_text_field contains "dog"

1 7 Select * from dataset1 where Long_text_field_1 contains "dog"

1 8 Select * from dataset1 where Long_text_field_2 contains "迎"

1 9 Select * from dataset1 where dataset1.geo is within 10km of point1, order by
distance to point1

1 10 Select * from dataset1 where dataset1.geo is within 10km of point1, order by
timestamp

1 11 Select * from dataset1 where dataset1.geo is within 10km of any point in
dataset2.geo

3 1 Select * from dataset3 where dataset3.geo intersects bbox1

3 2 Select * from dataset3 where dataset3.geo intersects bbox2

3 3 Select * from dataset3 where dataset3.geo intersects bbox1 and
dataset3.timestamp < time1 and dataset3.timestamp > time2

3 4 Select * from dataset3 where dataset3.geo intersects bbox2 and
dataset3.timestamp < time1 and dataset3.timestamp > time2

3 5 Select * from dataset3 where dataset3.geo is within 10km of point1, order by
closest distance to point1

3 6 Select * from dataset3 where dataset3.geo is within 10km of point1, order by
timestamp

3 7 Select * from dataset3 where dataset3.geo is within 10km of any point in
dataset2.geo

65

APPENDIX 6:
ADDITIONAL DATASETS

DATASET4: DATA GENERATION
10 bn random (with respect to shape, size,

and location) polygons were generated with

no holes and no intersecting edges. Based

on the requirements, the polygons have

between 3 and 8 vertices, and a random

(uniformly distributed) area between 10800m²

(a maximum size of a football field) and 4km²

(size of a small town).

DATASET5: DATA GENERATION
10 bn random lines were generated with

between 2 and 50 vertices with a random total

length between 0.1 and 200km. The number of

vertices was skewed towards lines with fewer

vertices in order to reduce query complexity

(as agreed with DSTL). Any two subsequent

points on the random lines are within -180

and 180 degrees from each other, which

ensures that the lines do not self-intersect.

Line segment length was selected randomly

given the random number of points in a given

line and its random total length. Orientation

angles of the lines were sampled uniformly.

TABLE 2: LIST OF QUERIES IN ADDITIONAL DATASETS

DATASET ID QUERY ID QUERY
4 1 Select * from dataset4 where dataset4.geo intersects bbox1

4 2 Select * from dataset4 where dataset4.geo intersects bbox2

4 3 Select * from dataset4 where dataset4.geo intersects bbox1 and
dataset4.timestamp < time1 and dataset4.timestamp > time2

4 4 Select * from dataset4 where dataset4.geo intersects bbox2 and
dataset4.timestamp < time1 and dataset4.timestamp > time2

4 5 Select * from dataset4 where dataset4.geo is within 10km of point1, order by
closest distance to point1

4 6 Select * from dataset4 where dataset4.geo is within 10km of point1, order by
timestamp

4 7 Select * from dataset4 where dataset4.geo is within 10km of any point in
dataset2.geo

5 1 Select * from dataset5 where dataset5.geo intersects bbox1

5 2 Select * from dataset5 where dataset5.geo intersects bbox2

5 3 Select * from dataset5 where dataset5.geo intersects bbox1 and
dataset5.timestamp < time1 and dataset5.timestamp > time2

5 4 Select * from dataset5 where dataset5.geo intersects bbox2 and
dataset5.timestamp < time1 and dataset5.timestamp > time2

5 5 Select * from dataset5 where dataset5.geo is within 10km of point1, order by
closest distance to point1

5 6 Select * from dataset5 where dataset5.geo is within 10km of point1, order by
timestamp

5 7 Select * from dataset5 where dataset5.geo is within 10km of any point in
dataset2.geo

6766

APPENDIX 7:
GEOSPARK VS MAGELLAN

We made the decision to focus our

benchmarking on GeoSpark over Magellan

due to the following reasons:

■ GeoSpark uses R-tree indexing which

improves performance when compared to

Magellan which doesn’t support them.

■ As compared to Magellan, GeoSpark was

under active development and had better

community support.

■ GeoSpark had better documentation with

non-trivial examples as compared to Magellan.

■ At the beginning of the project Magellan

did not support Spark 2.0 and used Spark 1.4

which was quite outdated and hence impacted

performance.

67

APPENDIX 8:
GEOWAVE EXCLUSION

The original scope included benchmarking

GeoWave.

Following some investigation it was

determined that at the time of writing this

technology:

■ does not support the GeoJSON format (a

Dstl requirement) out of the box, and

■ does not have JSON configurable ingest

tooling to enable a user to write an ingest tool

to parse GeoJSON.

As a result GeoWave was de-scoped.

In addition (but separate from the scoping

decision) for those considering this technology

it should be noted that at the time of writing the

documentation is relatively difficult to follow

and the API is written in Java. Depending on

the technical capabilities of the user, this may

lead to difficulties in setting up and/or using

GeoWave.

6968

APPENDIX 9:
GNU FREE DOC LICENSE

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008

Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute

verbatim copies of this license document, but

changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a

manual, textbook, or other functional and

useful document "free" in the sense of

freedom: to assure everyone the effective

freedom to copy and redistribute it, with or

without modifying it, either commercially or

noncommercially. Secondarily, this License

preserves for the author and publisher a way

to get credit for their work, while not being

considered responsible for modifications

made by others.

This License is a kind of "copyleft", which

means that derivative works of the document

must themselves be free in the same sense.

It complements the GNU General Public

License, which is a copyleft license designed

for free software.

We have designed this License in order to use

it for manuals for free software, because free

software needs free documentation: a free

program should come with manuals providing

the same freedoms that the software does.

But this License is not limited to software

manuals; it can be used for any textual work,

regardless of subject matter or whether it is

published as a printed book. We recommend

this License principally for works whose

purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other

work, in any medium, that contains a notice

placed by the copyright holder saying it can

be distributed under the terms of this License.

Such a notice grants a world-wide, royalty-

free license, unlimited in duration, to use that

work under the conditions stated herein. The

"Document", below, refers to any such manual

or work. Any member of the public is a licensee,

and is addressed as "you". You accept the

license if you copy, modify or distribute the

work in a way requiring permission under

copyright law.

A "Modified Version" of the Document means

any work containing the Document or a

portion of it, either copied verbatim, or with

modifications and/or translated into another

language.

A "Secondary Section" is a named appendix

or a front-matter section of the Document

that deals exclusively with the relationship

of the publishers or authors of the Document

to the Document's overall subject (or to

related matters) and contains nothing that

could fall directly within that overall subject.

(Thus, if the Document is in part a textbook

of mathematics, a Secondary Section may not

explain any mathematics.) The relationship

69

could be a matter of historical connection with

the subject or with related matters, or of legal,

commercial, philosophical, ethical or political

position regarding them.

The "Invariant Sections" are certain Secondary

Sections whose titles are designated, as being

those of Invariant Sections, in the notice that

says that the Document is released under this

License. If a section does not fit the above

definition of Secondary then it is not allowed

to be designated as Invariant. The Document

may contain zero Invariant Sections. If the

Document does not identify any Invariant

Sections then there are none.

The "Cover Texts" are certain short passages

of text that are listed, as Front-Cover Texts or

Back-Cover Texts, in the notice that says that

the Document is released under this License.

A Front-Cover Text may be at most 5 words,

and a Back-Cover Text may be at most 25

words.

A "Transparent" copy of the Document means

a machine-readable copy, represented in a

format whose specification is available to the

general public, that is suitable for revising the

document straightforwardly with generic text

editors or (for images composed of pixels)

generic paint programs or (for drawings) some

widely available drawing editor, and that

is suitable for input to text formatters or for

automatic translation to a variety of formats

suitable for input to text formatters. A copy

made in an otherwise Transparent file format

whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent

modification by readers is not Transparent.

An image format is not Transparent if used for

any substantial amount of text. A copy that is

not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent

copies include plain ASCII without markup,

Texinfo input format, LaTeX input format,

SGML or XML using a publicly available DTD,

and standard-conforming simple HTML,

PostScript or PDF designed for human

modification. Examples of transparent image

formats include PNG, XCF and JPG. Opaque

formats include proprietary formats that can

be read and edited only by proprietary word

processors, SGML or XML for which the DTD

and/or processing tools are not generally

available, and the machine-generated HTML,

PostScript or PDF produced by some word

processors for output purposes only.

The "Title Page" means, for a printed book, the

title page itself, plus such following pages as

are needed to hold, legibly, the material this

License requires to appear in the title page.

For works in formats which do not have any

title page as such, "Title Page" means the text

near the most prominent appearance of the

work's title, preceding the beginning of the

body of the text.

The "publisher" means any person or entity

that distributes copies of the Document to the

public.

A section "Entitled XYZ" means a named

subunit of the Document whose title

either is precisely XYZ or contains XYZ in

parentheses following text that translates

XYZ in another language. (Here XYZ stands

for a specific section name mentioned below,

such as "Acknowledgements", "Dedications",

"Endorsements", or "History".) To "Preserve

the Title" of such a section when you modify

the Document means that it remains a section

"Entitled XYZ" according to this definition.

The Document may include Warranty

Disclaimers next to the notice which states

that this License applies to the Document.

7170

These Warranty Disclaimers are considered

to be included by reference in this License,

but only as regards disclaiming warranties:

any other implication that these Warranty

Disclaimers may have is void and has no effect

on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document

in any medium, either commercially or

noncommercially, provided that this License,

the copyright notices, and the license notice

saying this License applies to the Document

are reproduced in all copies, and that you add

no other conditions whatsoever to those of this

License. You may not use technical measures

to obstruct or control the reading or further

copying of the copies you make or distribute.

However, you may accept compensation in

exchange for copies. If you distribute a large

enough number of copies you must also follow

the conditions in section 3. You may also lend

copies, under the same conditions stated

above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in

media that commonly have printed covers) of

the Document, numbering more than 100, and

the Document's license notice requires Cover

Texts, you must enclose the copies in covers

that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover,

and Back-Cover Texts on the back cover. Both

covers must also clearly and legibly identify

you as the publisher of these copies. The front

cover must present the full title with all words

of the title equally prominent and visible.

You may add other material on the covers in

addition. Copying with changes limited to the

covers, as long as they preserve the title of

the Document and satisfy these conditions,

can be treated as verbatim copying in other

respects.

If the required texts for either cover are too

voluminous to fit legibly, you should put the

first ones listed (as many as fit reasonably) on

the actual cover, and continue the rest onto

adjacent pages.

If you publish or distribute Opaque copies

of the Document numbering more than 100,

you must either include a machine-readable

Transparent copy along with each Opaque

copy, or state in or with each Opaque copy

a computer-network location from which the

general network-using public has access to

download using public-standard network

protocols a complete Transparent copy of the

Document, free of added material. If you use

the latter option, you must take reasonably

prudent steps, when you begin distribution of

Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible

at the stated location until at least one year

after the last time you distribute an Opaque

copy (directly or through your agents or

retailers) of that edition to the public.

It is requested, but not required, that you

contact the authors of the Document well

before redistributing any large number of

copies, to give them a chance to provide you

with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified

Version of the Document under the conditions

of sections 2 and 3 above, provided that you

release the Modified Version under precisely

this License, with the Modified Version filling

the role of the Document, thus licensing

distribution and modification of the Modified

Version to whoever possesses a copy of it.

In addition, you must do these things in the

Modified Version:

71

• A. Use in the Title Page (and on the

covers, if any) a title distinct from that of

the Document, and from those of previous

versions (which should, if there were any,

be listed in the History section of the

Document). You may use the same title as

a previous version if the original publisher

of that version gives permission.

• B. List on the Title Page, as authors, one

or more persons or entities responsible

for authorship of the modifications in the

Modified Version, together with at least five

of the principal authors of the Document

(all of its principal authors, if it has fewer

than five), unless they release you from

this requirement.

• C. State on the Title page the name of the

publisher of the Modified Version, as the

publisher.

• D. Preserve all the copyright notices of the

Document.

• E. Add an appropriate copyright notice for

your modifications adjacent to the other

copyright notices.

• F. Include, immediately after the copyright

notices, a license notice giving the public

permission to use the Modified Version

under the terms of this License, in the form

shown in the Addendum below.

• G. Preserve in that license notice the full

lists of Invariant Sections and required

Cover Texts given in the Document's

license notice.

• H. Include an unaltered copy of this

License.

• I. Preserve the section Entitled "History",

Preserve its Title, and add to it an item

stating at least the title, year, new authors,

and publisher of the Modified Version

as given on the Title Page. If there is no

section Entitled "History" in the Document,

create one stating the title, year, authors,

and publisher of the Document as given on

its Title Page, then add an item describing

the Modified Version as stated in the

previous sentence.

• J. Preserve the network location, if any,

given in the Document for public access

to a Transparent copy of the Document,

and likewise the network locations given

in the Document for previous versions it

was based on. These may be placed in the

"History" section. You may omit a network

location for a work that was published at

least four years before the Document itself,

or if the original publisher of the version it

refers to gives permission.

• K. For any section Entitled

"Acknowledgements" or "Dedications",

Preserve the Title of the section, and

preserve in the section all the substance

and tone of each of the contributor

acknowledgements and/or dedications

given therein.

• L. Preserve all the Invariant Sections of

the Document, unaltered in their text

and in their titles. Section numbers or the

equivalent are not considered part of the

section titles.

• M. Delete any section Entitled

"Endorsements". Such a section may not

be included in the Modified Version.

• N. Do not retitle any existing section to be

Entitled "Endorsements" or to conflict in

title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-

matter sections or appendices that qualify as

Secondary Sections and contain no material

copied from the Document, you may at your

option designate some or all of these sections

as invariant. To do this, add their titles to

the list of Invariant Sections in the Modified

Version's license notice. These titles must be

distinct from any other section titles.

7372

You may add a section Entitled "Endorsements",

provided it contains nothing but endorsements

of your Modified Version by various parties—

for example, statements of peer review or that

the text has been approved by an organization

as the authoritative definition of a standard.

You may add a passage of up to five words as

a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the

list of Cover Texts in the Modified Version. Only

one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through

arrangements made by) any one entity. If the

Document already includes a cover text for

the same cover, previously added by you or by

arrangement made by the same entity you are

acting on behalf of, you may not add another;

but you may replace the old one, on explicit

permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Document

do not by this License give permission to use

their names for publicity for or to assert or

imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other

documents released under this License,

under the terms defined in section 4 above for

modified versions, provided that you include

in the combination all of the Invariant Sections

of all of the original documents, unmodified,

and list them all as Invariant Sections of your

combined work in its license notice, and that

you preserve all their Warranty Disclaimers.

The combined work need only contain one copy

of this License, and multiple identical Invariant

Sections may be replaced with a single copy.

If there are multiple Invariant Sections with the

same name but different contents, make the

title of each such section unique by adding

at the end of it, in parentheses, the name of

the original author or publisher of that section

if known, or else a unique number. Make the

same adjustment to the section titles in the list

of Invariant Sections in the license notice of

the combined work.

In the combination, you must combine any

sections Entitled "History" in the various

original documents, forming one section

Entitled "History"; likewise combine any

sections Entitled "Acknowledgements", and

any sections Entitled "Dedications". You must

delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the

Document and other documents released

under this License, and replace the individual

copies of this License in the various documents

with a single copy that is included in the

collection, provided that you follow the rules

of this License for verbatim copying of each of

the documents in all other respects.

You may extract a single document from

such a collection, and distribute it individually

under this License, provided you insert a copy

of this License into the extracted document,

and follow this License in all other respects

regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives

with other separate and independent

documents or works, in or on a volume of a

storage or distribution medium, is called an

"aggregate" if the copyright resulting from the

compilation is not used to limit the legal rights

of the compilation's users beyond what the

individual works permit. When the Document

is included in an aggregate, this License does

not apply to the other works in the aggregate

73

which are not themselves derivative works of

the Document.

If the Cover Text requirement of section 3 is

applicable to these copies of the Document,

then if the Document is less than one half

of the entire aggregate, the Document's

Cover Texts may be placed on covers that

bracket the Document within the aggregate,

or the electronic equivalent of covers if the

Document is in electronic form. Otherwise

they must appear on printed covers that

bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification,

so you may distribute translations of the

Document under the terms of section 4.

Replacing Invariant Sections with translations

requires special permission from their copyright

holders, but you may include translations of

some or all Invariant Sections in addition to the

original versions of these Invariant Sections.

You may include a translation of this License,

and all the license notices in the Document,

and any Warranty Disclaimers, provided that

you also include the original English version

of this License and the original versions of

those notices and disclaimers. In case of a

disagreement between the translation and

the original version of this License or a notice

or disclaimer, the original version will prevail.

If a section in the Document is Entitled

"Acknowledgements", "Dedications", or

"History", the requirement (section 4) to

Preserve its Title (section 1) will typically

require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or

distribute the Document except as expressly

provided under this License. Any attempt

otherwise to copy, modify, sublicense, or

distribute it is void, and will automatically

terminate your rights under this License.

However, if you cease all violation of this

License, then your license from a particular

copyright holder is reinstated (a) provisionally,

unless and until the copyright holder explicitly

and finally terminates your license, and (b)

permanently, if the copyright holder fails to

notify you of the violation by some reasonable

means prior to 60 days after the cessation.

Moreover, your license from a particular

copyright holder is reinstated permanently if

the copyright holder notifies you of the violation

by some reasonable means, this is the first

time you have received notice of violation of

this License (for any work) from that copyright

holder, and you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section

does not terminate the licenses of parties

who have received copies or rights from you

under this License. If your rights have been

terminated and not permanently reinstated,

receipt of a copy of some or all of the same

material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish

new, revised versions of the GNU Free

Documentation License from time to time.

Such new versions will be similar in spirit to

the present version, but may differ in detail

to address new problems or concerns. See

http://www.gnu.org/copyleft/

Each version of the License is given a

distinguishing version number. If the Document

specifies that a particular numbered version

of this License "or any later version" applies to

it, you have the option of following the terms

and conditions either of that specified version

7574

or of any later version that has been published

(not as a draft) by the Free Software Foundation.

If the Document does not specify a version

number of this License, you may choose any

version ever published (not as a draft) by the

Free Software Foundation. If the Document

specifies that a proxy can decide which future

versions of this License can be used, that

proxy's public statement of acceptance of a

version permanently authorizes you to choose

that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or

"MMC Site") means any World Wide Web

server that publishes copyrightable works

and also provides prominent facilities for

anybody to edit those works. A public wiki

that anybody can edit is an example of such a

server. A "Massive Multiauthor Collaboration"

(or "MMC") contained in the site means any

set of copyrightable works thus published on

the MMC site.

"CC-BY-SA" means the Creative Commons

Attribution-Share Alike 3.0 license published

by Creative Commons Corporation, a not-

for-profit corporation with a principal place

of business in San Francisco, California, as

well as future copyleft versions of that license

published by that same organization.

"Incorporate" means to publish or republish

a Document, in whole or in part, as part of

another Document.

An MMC is "eligible for relicensing" if it is

licensed under this License, and if all works

that were first published under this License

somewhere other than this MMC, and

subsequently incorporated in whole or in part

into the MMC, (1) had no cover texts or invariant

sections, and (2) were thus incorporated prior

to November 1, 2008.

The operator of an MMC Site may republish

an MMC contained in the site under CC-BY-SA

on the same site at any time before August

1, 2009, provided the MMC is eligible for

relicensing.

ADDENDUM: HOW TO USE THIS LICENSE

FOR YOUR DOCUMENTS

To use this License in a document you have

written, include a copy of the License in the

document and put the following copyright and

license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission

is granted to copy, distribute and/or modify this

document under the terms of the GNU Free

Documentation License, Version 1.3 or any

later version published by the Free Software

Foundation; with no Invariant Sections, no

Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section

entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover

Texts and Back-Cover Texts, replace the "with

… Texts." line with this:

with the Invariant Sections being LIST THEIR

TITLES, with the Front-Cover Texts being

LIST, and with the Back-Cover Texts being

LIST.

If you have Invariant Sections without Cover

Texts, or some other combination of the

three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples

of program code, we recommend releasing

these examples in parallel under your choice

of free software license, such as the GNU

General Public License, to permit their use in

free software.

75

DATA REPLY is the Reply Group company specialising in data management using Big Data
& Advanced Analytics methodologies. Data Reply supports customers in the design and
implementation of data platforms that aim to enhance and capitalize on corporate information
assets.

www.datareply.co.uk

