$D A V^{\prime} S$

BRNDNGBOOK

REVISION II

Created By: David L Hensley Local Union \# 903 IBEW

Acknowledgment:

This little book was created from many different books, but mainly from the one that has helped me to bend conduit for many years. Thank you to the man that wrote "Professor Brown's Guide to Conduit Bending"

To Determine Offset Loss (amount that conduit is shortened by bending an offset)

- Find the length between bends

$$
\sin \Theta=\frac{\text { opp }}{\text { hyp }} \quad \text { hyp }=\text { opp } x \frac{1}{\sin \Theta} \quad \text { hyp }=\text { opp } x \csc \Theta
$$

2" (height of offset)
$\times 2\left(\csc 30^{\circ}\right)$
$4 "$ (hyp - length between bends)

- There is more than one way to find the (adj):
use the $\cos \theta$

$$
\begin{aligned}
& \cos \Theta=\frac{\operatorname{adj}}{\text { hyp }} \\
& \operatorname{adj}=\cos \Theta \times \text { hyp } \\
& \operatorname{adj}=\frac{.866}{3.46} \text { or } 37 / 16^{\prime \prime}
\end{aligned}
$$

use Pythagorean theorem

$$
\begin{aligned}
& \text { hyp }^{2}=\text { adj }^{2}+\text { opp }^{2} \\
& \text { adj }=\sqrt{\text { hyp }^{2}-\text { opp }^{2}} \\
& \text { adj }=\sqrt{16-4}=3.46 \text { or } 37 / 16 "
\end{aligned}
$$

- Subtract the side (adj) from the distance between bends (hyp) this gives you the shrink in conduit. Use this when you have to cut and thread before bending or when you want the center of your bend to fall out at a specific location.

$$
4 "-37 / 16 "=9 / 16 "
$$

Parallel Offsets Progression of Bends

When bending two or more offsets it is necessary to advance the centers of the bends for the progressive conduits in order to maintain an equal center to center spacing.

Multiply the (C-C) measurement of the conduits by the tangent of $1 / 2$ the bend angle. Add this figure to the center of bend measurement of 1st conduit. This will be center of bend measurement of the 2 nd conduit. Advance the center of bend measurement of each succeeding conduit by this figure.

Example:

$$
\begin{aligned}
& \tan \Theta=\frac{\mathrm{opp}}{\text { adj }} \\
& \text { opp }=\tan 15^{\circ} \times \operatorname{adj}(\mathrm{C}-\mathrm{C}) \\
& \mathrm{opp}=.2679 \times 2^{\prime \prime} \\
& \text { opp }=.5358^{\prime} \text { or } 9 / 16^{\prime \prime}
\end{aligned}
$$

To Bend Kicks to Any Given Angle

After determining angle to use, bend this angle in a piece of scrap conduit. Measure from the front of the shoe to the center of the bend. This is the shoe factor (SF). Multiply the cosecant of the bend angle by the amount of kick. Add 1/2 O.D. of the conduit. This is the center of the bend measured from the back of the 90°. Deduct the (SF) figure and place the front of bending shoe on this mark. Pull through proper amount of travel for desired angle.

Example:
30° Kick

$\frac{-\mathrm{SF}}{\text { Front of Shoe }}$

Kicks with Conduits Running Parallel to Cabinet

To find centers of KO's in cabinet and maintain centers (2 ") of conduits, multiply center to center ($\mathrm{C}-\mathrm{C}$) measurement by the cosecant of the bend angle.

Kicks with Conduits running Perpendicular to Cabinet

To find centers of KO's in the cabinet and maintain centers ($21 / 2$ ") of conduits, divide the $(\mathrm{C}-\mathrm{C})$ measurement by the cosine bend angle.

Measure from corner (A) to center of conduit (B). Multiply this figure by 2. This is (C-D) measurement. Add the O.D. of the conduit and the depth of supports on each side and multiply this figure by 1.414. Subtract this figure from the $(\mathrm{C}-\mathrm{D})$ measurement. This figure is the ($\mathrm{E}-\mathrm{F}$) measureor center to center measurement.

Example:
(1) $3 "(\mathrm{~A}-\mathrm{B})$
(2) 1.0" O.D.
.25 support $+\frac{.25}{1.50}$, support
$\frac{\mathrm{x} 2}{6 "}(\mathrm{C}-\mathrm{D})$
(3) 1.414
$\frac{\mathrm{x} 1.5^{\prime \prime}}{2.121^{\prime \prime}}$
(4) $6.00 "(\mathrm{C}-\mathrm{D})$
$\frac{-2.12 "}{3.88^{\prime \prime}}$ (E-F) (center to center)

To Find Centers of 45* bends with Square Obstruction

Note:- If the conduit is on supports add the depth of the supports on each side and multiply by 1.414. Subtract this figure from ($C-C$) measurement.

- To obtain more clearance increase the (C) measurement 2" for each 1" of clearance.
center measurement (C-C) deduct 1/2 O.D. of the conduit.
(1)

$$
\begin{array}{r}
2 "(\mathrm{~A}) \\
+\quad 1 "(\mathrm{~B}) \\
\hline 3 "
\end{array}
$$

(2) 1.414
$\frac{\mathrm{x} 3 "}{4.242^{\prime \prime}}$
4 1/4" (C)

$$
\begin{aligned}
& \text { (3) } 41 / 4 " \text { (C) } \\
& \\
& \frac{-1 / 2 " ~}{33 / 4 "}(1 / 2 \text { O.D. })
\end{aligned}
$$

Add (A) and (B) measurements and multiply by 1.414 This is the back of the conduit (C). For the center to

Note: - If the conduit is on supports add the depth of the supports on each side and multiply by 1.414. Subtract this figure from (C-C) measurement.

- To obtain more clearance increase the (C) measurement 2" for each 1" of clearance.

To Find Centers of 45° bends with a Round Obstruction

Note: - If the conduit is on supports add the depth of the supports on each side and multiply by 1.414. Subtract this figure from ($C-C$) measurement.

- To obtain more clearance increase the (B) measurement 2" for each 1" of clearance.

To Find Centers of 45° bends with a Square Obstruction

To Find a Radius Required to Clear an Obstruction

Bending a 90 ${ }^{\circ}$ Bend Using 3-30 ${ }^{\circ}$ Bends

Bending a 90 ${ }^{\circ}$ Bend Using 3-30 ${ }^{\circ}$ Bends

To Figure Amount of Offset Needed for A Rolling Offset

Gain for 90° Bends

$$
\begin{array}{r}
73 / 4 " \\
+\quad 311 / 2 " \\
\hline 391 / 4 " \\
-36 " \\
\hline 31 / 4 "
\end{array} \text { (C actual amoun }
$$

Gain is the difference between the sum of right angle measurements of both legs of the 90° bend and the actual amount of conduit required to make the 90° bend. For standard shoes on Chicago benders the gain is 3 times the outside diameter of the conduit (+ or - a fraction of an inch).

To determine the gain of your bender take a scrap piece of conduit of the size needed. Use $3 / 4$ " for the example, and the length is $36^{\prime \prime}$. Put the end of the conduit flush with the front of the shoe and bend a 90°. Measure both legs of the bend very carefully. Say that the two sides measured ($73 / 4$ ") and ($311 / 2$ ") , add the two sides $\left(73 / 4 "+311 / 2^{"}=391 / 4 "\right)$ Subtract the original length of the conduit form this figure ($391 / 4 "-36 "=33 / 4 "$). This is the gain for a $3 / 4 " 90^{\circ}$.

This is used to cut and thread conduit before bending. Another use is to obtain a figure for back to back 90° bending. If you have back to back 90° s that are 5 foot, 6 foot, or longer, it is more practical to reverse the conduit in the bender and bend up the short end of the conduit. By putting the original conduit even with the front of the shoe, you now have the stub-up length of the bender ($73 / 4$ "). To obtain back to back figure subtract the gain from the stub up. $((73 / 4 "-33 / 4 ")=4 ")$ Add this figure to the length of the back to back bends.

Bending Conduit Using the Travel Method

To bend conduit using the travel method, place conduit in bender and mark at the back of the rear conduit support. Bend a 90° bend and mark the conduit at the back of the rear conduit support again. Be sure the 90° bend is perfect by checking with a square or a protractor. Measure between the 2 marks. This is the amount of travel for a 90° angle. Divide this figure by 90 . This figure is you coefficient number or amount of travel for 1 degree. To find the amount of travel for a specific degree, multiply the coefficient number by the desired degree.

Example:

Travel for $3 / 4^{\prime \prime} 90^{\circ}=71 / 4 "$

$$
9 0 \longdiv { 7 . 2 5 " \prime } (\text { coefficient \#) }
$$

$15^{\circ} \times .080^{\prime \prime}=1.208^{\prime \prime}=13 / 16^{\prime \prime}\left(\right.$ travel for $\left.15^{\circ}\right)$
$20^{\circ} \times .080^{\prime \prime}=1.6^{\prime \prime}=15 / 8^{\prime \prime} \quad\left(\right.$ travel for $\left.20^{\circ}\right)$
$30^{\circ} \times .080^{\prime \prime}=2.4^{\prime \prime}=23 / 8^{\prime \prime} \quad\left(\right.$ travel for $\left.30^{\circ}\right)$
Bend a trial offset in a piece of scrap pipe using the angle you want to bend. You can then adjust you travel figure by pulling a little more or less travel.

Problem:

To bend a $33 / 4$ " offset with 20° bends in $3 / 4$ " conduit:

First multiply the amount of offset by the cosecant of the bend angle for the distance between bends ($3.75 \times 2.92=10.95$ or $1015 / 16$ "). Place 2 marks $1015 / 16$ " apart on the conduit. Put the 1 st mark at the front of the bending shoe and engage the bender. With the weight of the handle on the conduit measure back and mark the conduit $15 / 8$ " behind the rear conduit support. Pull the conduit through until this mark is at the back of the conduit support. Release and rotate the conduit 180° and place the 2nd mark of your between bends measurement at the front of the bending shoe. Tighten bender to conduit and mark $15 / 8^{\prime \prime}$ behind the conduit support. Pull the conduit to this point, and this will give you a $33 / 4^{\prime \prime}$ offset bent at 20°.

To match existing offsets:
Measure the amount of offset and the distance between bends. Divide the distance by the amount of offset. This will give you cosecant of the bend angle. Find this cosecant on the chart and the corresponding angle will be the bend angle. You can also use the inverse cosecant on your calculator.

Example:
Match an existing offset of $33 / 4$ " with distance between bends of $71 / 2$ ".
$3.75 \frac{2}{7.50}\left(\csc \left(30^{\circ}\right)\right)=$ bend angle

Circumference of a circle $\left(360^{\circ}\right)=\mathrm{D} \pi=2 \mathrm{R} \pi$
$\pi=3.1416$

Circumference of $1 / 4$ of a circle $\left(90^{\circ}\right)=$ Developed length
Dev. Length $=\frac{\mathrm{R} 2 \pi}{4}$
Dev. Length $=\frac{\mathrm{R} 2(3.1416)}{4}=\mathrm{R} \times 1.57$

Multiply the radius by 1.57 for the Dev. Length of a 90° bend. This is the amount of straight conduit required to make the bend.

Example:

To make a 90° bend with a 4 " center line radius: Multiply the radius (4") by 1.57 for the Dev. Length (6.28). Divide by one less than the amount of bends, for example $9-1=8$ spaces. Bend 10° at each line.

To bend a 90° of any given radius: Determine radius. Code states a minimum of six times the inside diameter of conduit of the inside radius of a 90° bend. Add $1 / 2$ outside diameter of conduit for centerline radius. To determine how many spaces to use and how many degrees to bend use this rule: Length of spaces should not exceed 3" to keep the elbow smooth.

For DL up to $18^{\prime \prime}$ - use 8 spaces and bend 10°.
For DL of $19^{\prime \prime}$ to $36^{\prime \prime}$ - use 17 spaces and bend 5° or 14 spaces and 6°.
For DL over $36^{\prime \prime}$ - use 29 spaces and 3°.
You can use any number of spaces. Divide number of spaces +1 into 90° to determine number of degrees to bend.
After you determine how many spaces you will use divide the DL by this number. This will be the length of each space. Mark the conduit and bend the proper number of degrees ant each line.

Concentric Bends

Example:

Bend four concentric 90° bends in $2 "$ conduit with 2 " spacing between conduits. Use a 20 " centerline radius for the smallest radius. The next radius will be 20 " + the cen. - cen. measurement of the 2 conduits, which is $43 / 8^{\prime \prime}$. The O.D. of the 2 " conduit is $23 / 8$ " so $1 / 2$ O.D. (13/16") + space (2") + 1/2 O.D. $\left(13 / 16^{\prime \prime}\right)=43 / 8$ " center to center.
The 2nd radius will be $243 / 8$ "
The 3rd radius will be 28 3/4"
The 4th radius will be $331 / 8^{\prime \prime}$

Multiply each radius by 1.57 for Developed length
120 " X $1.57=31.40=313 / 8$ "
2 24.375 X $1.57=38.269=381 / 4 "$
3 28.75 X $1.57=45.138=451 / 8$ "
433.125 X $1.57=52.006=52$ "

Divide each D.L. by 17 (\# of spaces)
$131.40 / 17=1.847=113 / 16$ "
$238.269 / 17=2.251=21 / 4 "$
$345.138 / 17=2.655=25 / 8^{\prime \prime}$
$452.00 / 17=3.058=31 / 16 "$
Mark each conduit from the same starting point 17 spaces 18 marks. Bend 5° at each mark.

To Find Radius of a Tank or Arc

XY - Chord of arc
O - Center of Cord of arc
A - Height of arc
C — Cord of $1 / 2$ the arc
R - radius

The chord is found by laying out 2 points on the circle. These points must be less than the diameter. Make these points (X and Y) an even measurement such as $6^{\prime}, 8^{\prime}, 10^{\prime}$ ect. From the center point of $\mathrm{XY}(\mathrm{O})$ measure at a right angle to the circle. This figure (A) is the height of the arc. To find the cord of $1 / 2$ the arc use the Pythagorean theorem. To find the radius of the circle use the formula $\mathrm{R}=\mathrm{C}^{2} / 2(\mathrm{~A})$.
$\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{C}^{2}$
$\mathrm{C}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$

$$
\mathrm{R}=\mathrm{C}^{2} / 2(\mathrm{~A})
$$

$$
\mathrm{R}=6240.25 / 2(32.5)
$$

$C=\sqrt{32.5^{2^{\prime \prime}}+72^{2}}$,
$\mathrm{R}=96.0^{\prime \prime}$
$C=\sqrt{6240.25 "}$
$\mathrm{C}=78.9^{\prime \prime}$

To Determine a Radius of Conduit around a Tank

Measure from center of tank to center of conduit. Multiply this figure by 1.57 and convert to inches. This is the developed length for 90° or $1 / 4$ of the circumference of the conduit if it ran completely around the tank. Developed length $\left(188.4^{\prime \prime}\right) /$ spaces $(89)=2.12$ " or $21 / 8^{\prime \prime}$. Bend 1° at each line. These figures will be the same no matter how far the conduit runs around the tank.
If it is easier to measure around the tank ($678.85^{\prime \prime}$) divide this figure by 3.1416 ($678.58 / 3.1416=216$ ")
For the diameter of the tank. $1 / 2$ of this figure $\left(108^{\prime \prime}\right)$ is the radius of the tank. Add the distance from the tank to the center of the conduit (12 ") for the centerline radius of the conduit (120 ")

Example:
(1) $3.1416 \sqrt{678.85^{\prime \prime}} \quad$ (tank diamet
(tank circum
(2) $\frac{216^{\prime \prime}}{2}=108^{\prime \prime} \quad$ (9' tank radius)
(3) $108^{\prime \prime}+12^{\prime \prime}=120^{\prime \prime} \quad\left(10^{\prime}\right.$ centerline radius $)$
(4) $120^{\prime \prime}$ (centerline radius)
$\frac{\mathrm{x} 1.57}{188.4^{\prime \prime}}$ (Developed length for 90^{*})

It is almost impossible to bend at one degree. Sometimes it is better to have flat spots between bends and bend at 3° or
(5) $89 / \frac{2.12 \text { " or } 21 / 8 \text { (Length of spaces) }}{188.4}$ 5°

Tray Cuts for Any Given Angle

To determine amount to cut from the tray for any given angle: Multiply the depth (or width) of the tray by the tangent of $1 / 2$ the cut angle. Cut this amount from each side of the center line.
$\operatorname{Tan} 15^{\circ}=\frac{\text { opp } \quad \text { (amount to cut each side of center) }}{\operatorname{adj} \quad(\text { depth of width of tray })}$
opp $=\operatorname{Tan}\left(15^{\circ}\right) \mathrm{X} \operatorname{adj}\left(2^{\prime \prime}\right)$
opp $=.2679 \times 2$ "
opp $=.5358^{\prime}=17 / 32^{"}$
Cut 17/32" from each side of the center line

Conduit	3/4 ${ }^{\text {' }}$	1"	1 1/4"	1 1/2"	2"
Travel 15*	11/4"	$11 / 2$ "	17/8"	2 1/4"	$21 / 2{ }^{\prime \prime}$
Travel 20*	$15 / 8$ "	2"	2 1/2"	3"	$33 / 8$ "
Travel 30*	$23 / 8$ "	$3 "$	$33 / 4$ "	$41 / 2$ "	5 "
Travel 45*	3 5/8"	4 5/8"	5 5/8"	63/4"	$71 / 2 "$
Travel 90*	$73 / 8$ "	9 1/4"	11 1/4"	13 1/2"	151/8"
< 2" Offset Hyp.	43/4"	5 5/8"	67/8"	$83 / 4$ "	13 1/2"

Travel Chart - Figures are approximate and may vary a little with each bender. Cross reference degree of bend and conduit size. This is the amount to pull through for the angle.

Un- known	Known	5°	10°	15°	20°	25°	30°	45°	60°	Trig f(x)
\mathbf{L}	\mathbf{S}	11.4	5.76	3.86	2.92	2.37	2.00	1.41	1.16	CSC
\mathbf{S}	\mathbf{L}	.087	.174	.259	.342	.423	.50	.707	.866	SIN
\mathbf{R}	\mathbf{S}	11.4	5.67	3.73	2.75	2.14	1.76	1.00	5.77	COT
\mathbf{S}	\mathbf{R}	.087	.176	.268	.364	.466	.577	1.00	1.73	TAN
\mathbf{L}	\mathbf{R}	1.00	1.02	1.04	1.06	1.10	1.16	1.41	2.00	SEC
\mathbf{R}	\mathbf{L}	.996	.985	.966	.939	.906	.866	.707	.50	COS

S = amount of offset
$\mathrm{L}=$ length between bends
$\mathrm{R}=$ center to center of bends after offset is completed

To find unknown: Multiply known figure by the multiplier for desired angle.
Example:
Find (R) if the amount of offset (S) is 2 " and the bends are 30°. If (S) is known and (R) is the unknown, that would be line 3 of the chart. Under 30° you find the multiplier is 1.73. Multiply 2" (S) by 1.73 and $(\mathrm{R})=3.46$ " or $37 / 16$ ".

$\sin \theta=\frac{o p p}{\text { hyp }}$	Argle		Sine	$\begin{aligned} & \text { Co- } \\ & \text { sine } \end{aligned}$	Tangent	Angle		Sine	$\begin{gathered} \mathrm{Co}- \\ \text { sine } \end{gathered}$	Tangent
	Degree	Rsdian				Degree	Radian			
$\cos \theta=\frac{\text { adj }}{\text { byp }}$	0°	0.000	0.000	1.000	0.000					
	$1{ }^{*}$	0.017	0.017	1.000	0.017	46°	0.808	0.719	0.695	1.036
	2°	0.035	0.085	0.989	0.085	47°	0.820	0.731	0.682	1.072
	3°	0.052	0.052	0.999	0.052	48°	0.338	0.743	0.669	1.111
$\tan \theta=\frac{o p p}{\text { hyp }}$	4°	0.070	0.070	0.008	0.070	49°	0.855	0.755	0.656	1. 150
	5°	0.087	0.087	0.986	0.087	50 0°	0.373	0.766	0.643	1.192
	6°	0.105	0.105	0.995	0.105	51°	0.890	0.777	0.629	1.233
$\cot \theta=\operatorname{adj}$	7°	0122	0.122	0.908	0.123	$52^{\text {a }}$	0.308	0.788	0.616	1.280
	8°	0.140	0.139	0.990	0.14 :	$53^{\text {a }}$	0.225	0.799	0.602	1.327
	$9{ }^{3}$	0.157	0.150	0.988	0.158	$54{ }^{\text {a }}$	0.342	0.809	0.388	1.376
	10^{6}	0.175	0174	0.985	0.176	$55^{\text {E }}$	0.360	0.819	0.574	1.428
$\sec \theta=\frac{\text { hyp }}{\text { adj }}$	$11^{\text {c }}$	0.192	0.191	0.982	0.194	56^{*}	0.977	0.829	0.359	1.483
	$12{ }^{5}$	0.209	0208	0.978	0.213	57°	0.395	0.850	0.845	1.540
	$13^{\text {c }}$	0.227	0.225	0.974	0.231	58°	1.912	0.848	0.880	1.600
	$14^{\text {c }}$	0.244	0242	0.970	0.249	59°	1.030	0.857	0.515	1.664
$\csc \theta=\frac{\text { hyp }}{\frac{\text { ppp }}{}}$	15^{6}	0.262	0259	0.966	0.268	60°	1.047	0.866	0.500	1.732
	$16^{\text {e }}$	0.279	0.276	0.961	0.287	61°	1.065	0.875	0.485	1.804
	17°	0.297	0292	0.956	0.306	62°	1.082	0.883	0.469	1.881
Pythagorean Theorem	18°	0.314	0309	0.951	0.325	63°	1.100	0.891	0.454	1.963
	19^{6}	0.332	0.325	0.946	0.344	64°	1.117	0.899	0.438	2.050
	20^{6}	0.349	0342	0.940	0.364	65°	1.134	0.906	0.423	2.145
$\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{C}^{2}$	21°	0.367	0358	0.834	0.384	66°	1.152	0.914	0.407	2.245
	$22^{\text {c }}$	0.384	0375	0.927	0.404	67°	1.169	0.921	0.391	2.355
3,4,5 rule (right angle rule)	23°	0.401	0.391	0.921	0.424	.68 ${ }^{\circ}$	1.187	0.327	0.375	2.45
	24^{6}	0.419	0.407	0.914	0.445	69°	1.204	0.934	0.358	2.605
	$25{ }^{\circ}$	0.433	0.428	0.906	0.466	70°	1.222	0.940	0.342	2.743
	26°	0.454	0.438	0889	0.488	71°	1.209	0.346	0.326	2.904
	27°	0.471	0.454	0891	0.510	$7^{7}{ }^{\circ}$	1.257	0.351	0.309	3.078
	$28{ }^{6}$	0.489	0.469	0888	0.532	73°	1.274	0.356	0.292	3.271
	29°	0.503	0.485	0875	0.554	74*	1.292	0.961	0.276	3.487
	30^{6}	0.524	0.500	0866	0.577	55°	1.309	0.966	0.259	3.732
	$31^{\text {c }}$	0.541	0.515	0857	0.601	76°	1.326	0.370	0.242	4.011
	32°	0.559	0.530	0848	0.625	77^{6}	1.344	0.374	0.225	4.332
Circumference of a circle	33°	0.575	0.545	0889	0.649	78°	1.361	0.378	0.208	4.705
	34^{6}	0.593	0.559	0889	0.675	79°	1.379	0.382	0.191	5.145
	$35^{\text {E }}$	0.611	0.574	0818	0.700	80°	1.396	0.985	0.174	$5.6 \overline{1} 1$
	$36{ }^{\circ}$	0.623	0.588	0809	0.727	81°	1.414	0.388	0.156	6.314
	37°	0.645	0.602	0.799	0.754	82°	1.431	0.890	0.139	7.115
$\mathbf{C}=\mathbf{R} \times 2 \times \pi$	38°	0.663	0.615	0.788	0.781	$8{ }^{\circ}$	1,449	0.393	0.122	8.144
	39°	0.681	0.629	0.777	0.810	84°	1.466	0.085	0.105	9.514
	40^{6}	0.693	0.643	$0 \% 66$	0.883	$8{ }^{\circ}$	1.484	0.996	0.087	11.43
	41°	0.715	0.655	0.75	0880	86°	1.501	0.998	0.070	14.30
	42°	0.733	0.669	0.743	0.900	87°	1.518	0.399	0.052	19.08
	43°	0.759	0.682	0.731	0.933	$88{ }^{\circ}$	1.536	0.999	0.035	28.64
	44°	0.763	0.695	0.719	0.966	89°	1.553	1.000	0.017	57.29
	45°	0.785	0.807	0.807	1.000	90°	1.541	1.000	0.000	

Using a Folding Rule to Find Angles

Degrees	Inches	Degrees	Inches	Degrees	Inches
2.36	$1 / 32 "$	34.31	$13 / 4 "$	65.91	$57 / 8 "$
4.72	$1 / 16 "$	37.02	$2 "$	68.40	$63 / 8^{\prime \prime}$
6.98	$1 / 8^{\prime \prime}$	39.74	$21 / 4 "$	70.82	$7 "$
9.25	$3 / 16 "$	42.47	$25 / 8 "$	73.25	$73 / 8 "$
12.27	$1 / 4 "$	45.16	$215 / 16 "$	75.58	$73 / 4 "$
15.30	$3 / 8^{\prime \prime}$	47.85	$31 / 4 "$	77.92	$81 / 4 "$
18.00	$1 / 2 "$	50.50	$39 / 16 "$	80.18	$89 / 16 "$
20.70	$5 / 8^{\prime \prime}$	53.16	$4 "$	82.45	$9 "$
23.41	$3 / 4 "$	55.76	$43 / 8 "$	84.61	$97 / 16 "$
26.13	$1 "$	58.37	$49 / 16 "$	86.78	$101 / 16 "$
28.86	$11 / 8^{\prime \prime}$	60.90	$47 / 8 "$	88.39	$103 / 8 "$
31.60	$13 / 8 "$	63.43	$59 / 16 "$	90.00	$103 / 4 "$

Use folding rule to check degrees. Fold the rule at 18 " joint and again at 36 " joint. When the end is at $103 / 4$ ", a 90 degree bend is formed at the $18^{\prime \prime}$ joint. The opposite side of the $18 "$ mark is $54 "$

