Benefits of the Different Types of Smart Work Zone Systems

TxDOT Transportation Short Course

October 11, 2017

What are Smart Work Zone Systems?

- Sensors for real time data collection
- Data/information communications capabilities
- Software to process/analyze data
- Equipment to use information
 - Provide real time information to road users
 - Implement work zone management decisions

Smart work zones are designed to provide benefits to the traveling public, to the work crews on-site, and/or to the agency.

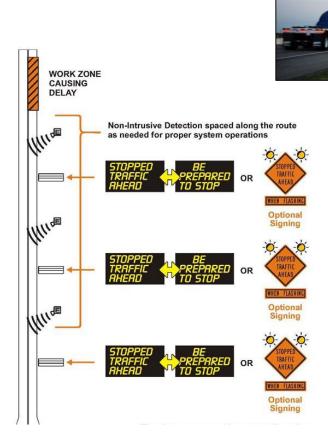
Types of Smart Work Zone Benefits

- Reduced safety impacts to travelers, workers
 - Fewer crashes
 - Less severe crashes
- Reduced traveler mobility impacts
- Reduced customer dissatisfaction/complaints
- Reduced impacts to work crew productivity

Different smart work zone system functions deliver different types of benefits

Common Smart Work Zone Functions

- Queue warning
- Travel time information/diversion advice
- Variable speed limits (VSL)/speed harmonization
- Dynamic late merge management ("zipper merge")
- Construction access point warning
- Maintenance/enhancement of traffic surveillance and incident management functions



Queue Warning Benefits

Primary:

- Fewer crashes (primarily rear-end collisions)
- Less severe crashes

- Reduced delays
- Reduced impact on contractor productivity

Travel Time Information Benefits

Primary:

- Reduced customer dissatisfaction
- Reduced delay

- Fewer crashes
- Reduced impact on contractor productivity

VSL/Speed Harmonization Benefits

Primary:

- Fewer, less severe crashes
- Reduced delay

Secondary:

 Reduced impact on contractor productivity

Dynamic (Zipper) Merge Benefits

Primary:

- Reduced customer dissatisfaction
- Fewer crashes

- Reduced delay
- Reduced impact on contractor productivity

Construction Access Point Warning Benefits

Primary:

Fewer crashes

- Reduced delay
- Reduced impact on contractor productivity

Maintenance/Enhancement of TMC Functionality Benefits

Primary:

- Fewer, less severe crashes
- Reduced delays
- Reduced customer dissatisfaction

Secondary:

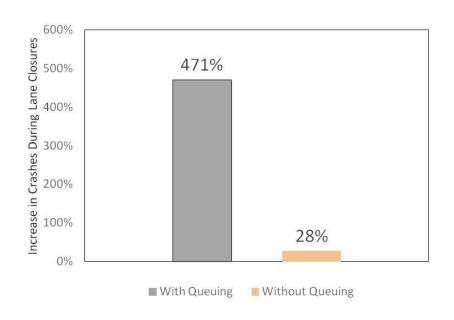
Reduced impact on contractor productivity

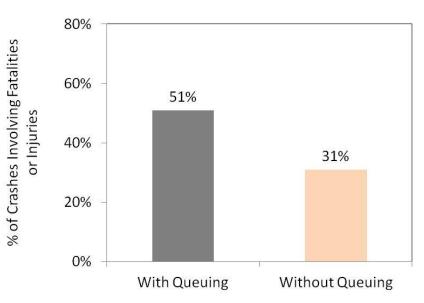
Evidence of Smart Work Zone Effects

Smart Work Zone Functionality	Examples of Benefits Observed
Queue Warning	14-55% reduction in crashes; % of crashes involving injuries cut by up to 2/3
Travel Time Information/Diversion Advice	16-19% diversion observed in some cases
VSL/Speed Harmonization	Reductions in speed variance and average speed.
Dynamic (Zipper) Late Merge Management	Queue lengths cut by 40%; forced/aggressive merges decreased by 85%
Construction Access Point Warning	unknown
Maintenance/Enhancement of TMC Functions	45% reduction in response time to incidents

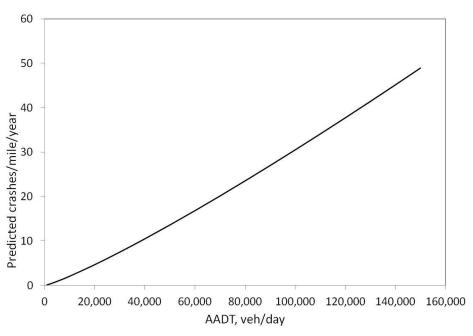
Quantifying Expected Smart Work Zone System Benefits

- \sum Benefits _{deployment} > \sum Costs _{deployment}
- Benefits depend on:
 - Frequency of system activation
 - Benefits achieved per activation
- Costs depend on:
 - Amount and type of equipment desired
 - Procurement approach used

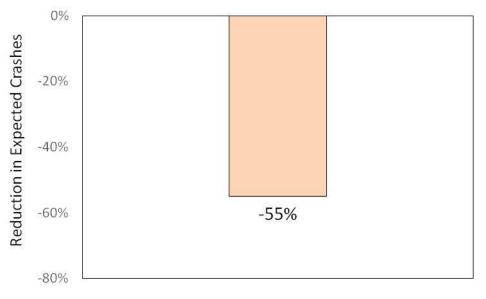


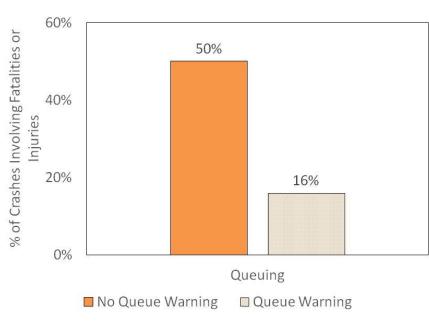

Estimating Queue Warning Benefits: Example

- What conditions will create queues?
 - Lane closures
 - Crashes, stalls (especially if shoulders closed)
- How many crashes are expected if a queue occurs?
- How much will a queue warning system reduce crashes?
- What is the economic value of the crash reductions?

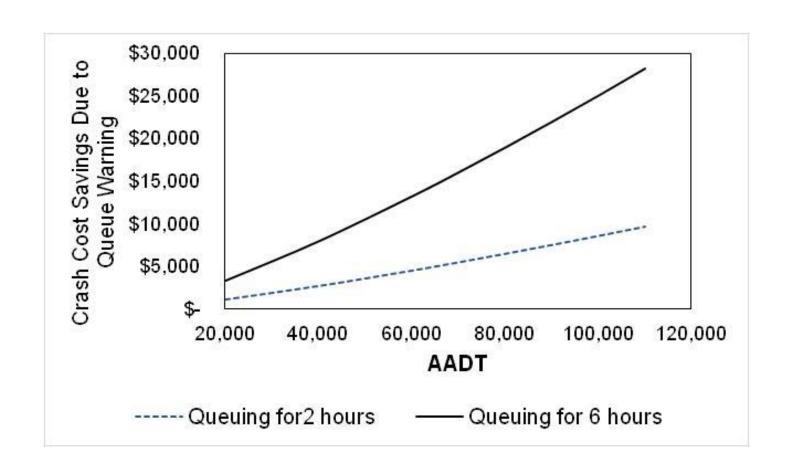


Effect of Queues...




Estimating Additional Crashes Due to Queuing

Estimated Effect of Queue Warning Systems


Economic Costs of Crashes

Crash Severity Level	Crash Costs (Highway Safety Manual)
Fatality (K)	\$4.509,991
Disabling Injury (A)	\$242,999
Evident Injury (B)	\$88,875
Possible Injury (C)	\$50,512
Property Damage Only	\$8,325

	Crash Costs (FHWA-HRT-05-051)
Fatality + Injury	\$254,789
Property Damage Only	\$9.642

Crash Cost Savings Per 11-hr Nighttime Lane Closure

Questions?

Jerry Ullman
g-ullman@tti.tamu.edu
(979) 845-9908

