Benford's Law - Why And How To Use It

Gogi Overhoff, CPA, CFE ACFE, San Diego - June 13, 2011

イイイイイイ

Definition

Known as the "first digit law", Benford's Law states that in lists of numbers from many (but not all) real-life sources of data, the leading digit is distributed in a specific, nonuniform way.

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Benford's First Digit Chart

Expected Digit Frequency Percentages:

- 30.103% **2** - 17.609% **3** - 12.494%
- 9.691%
- 7.918%
- 6.695%
- 5.799%
- 5.115%
- 4.576%

イイイイイイ

Synopsis

- Efficient way to apply the smell test
- Easy to learn
- No need for special software
- Admissible in local, state, federal, and international criminal cases

Disclaimer: Use together with other procedures

イイイイイイ

Early History

1881, Simon Newcomb

initial discovery, article in American Journal of Mathematics

1938, Frank Benford

initial testing took 6 years

total of 20,229 observations

イイイイイイ

More History

1961: Pinkham, scale invariant

1988: Carslaw, rounded numbers

1995: Hill, mathematical proof

1996: Nigrini, identified an accounting USE

 \oplus

イイイイイイ

Since 1996

Publications

- Journal of Accountancy
- New York Times
- Proprietary Software
 - ACL, IDEA, Microsoft Access
- Major Users
 - government authorities, litigators, bloggers and...

 \oplus

What It Does

Predicts the occurrence of digits

- Counts frequencies of digits
- Improves sampling selection process
- Digits 1-3 should be > 60% of first digits
- Identifies amounts that do not conform to expectations
 - The digit 9 should appear 4.5% of the time
 - Frauds that became big after starting small
- % of the time

Uses

To find fraud

Percentages do not match expectations

To find inefficiency & errors

- Multiple checks for the same amount
- Same amount, same invoice, different vendor

To find manipulative biases

Management's educated guesses

How: Five Tests

First Digit Test

- ♣ Count frequency of 1 9 as first digit
- Second Digit Test
 - What are we counting here?
- **First Two Digits Test**
- **First Three Digits Test**
- Last Two Digits Test

Examples

• Benford's Law: "1" Appears More Often than Any Other Number

\$100 portfolio with a 10% rate of return

Dow Jones: the next order of magnitude (a new "1"!) is reached faster and faster

First & Second Digit Tests

Both are high level

Both identify only obvious anomalies

1st digit checks reasonableness of data

2nd digit shows improper rounding

First Digit Test Table

First Digit	Actual Frequency	Expected Freq.	Variance #	Actual % Freq.	Expected % Freq.	Variance %
0	0	0	0	0%	0%	0%
1	352	329	23	32.176%	30.103%	2.073%
2	153	193	-40	13.985%	17.609%	-3.624%
3	157	137	20	14.351%	12.494%	1.857%
4	136	106	30	12.431%	9.691%	2.74%
5	74	87	-13	6.764%	7.918%	-1.154%
6	47	73	-26	4.296%	6.695%	-2.398%
7	52	63	-11	4.753%	5.799%	-1.046%
8	72	56	16	6.581%	5.115%	1.466%
9	51	50	1	4.662%	4.576%	0.086%

111111

First Two Digits Test

Shows overused and underused digit patterns

Provides an efficient audit sample for testing

イイイイイイ

First Two Digits Test Chart

8	87	Sparkles INC	87.75	413
8	87	Sparkles INC	87.75	414
8	87	Sparkles INC	87.75	416
8	87	Sparkles INC	87.75	418
8	87	Sparkles	87.75	420
8	87	Sparkles INC	87.75	421
8	87	Sparkles INC	87.75	422
8	87	Sparkles	87.75	423
8	87	Sparkles	87.75	423
8	87	Sparkles	87.75	425
8	87	Sparkles	87.75	425
8	87	Sparkles	87.75	426
8	87	Sparkles	87.75	429
8	87	Sparkles	87.75	430
8	87	Sparkles	87.75	431
8	87	Sparkles	87.75	435
8	87	Sparkles	87.75	437
8	87	Sparkles	87.75	442
8	87	Sparkles	87.75	452
8	87	Sparkles	87.75	456
8	87	Sparkles INC	87.75	464
8	87	Sparkles	87.75	464
8	87	Sparkles	87.75	464
8	87	Sparkles	87.75	470
8	87	Sparkles	87.75	470
8	87	Sparkles	87.75	475
8	87	Sparkles	87.75	477
8	87	Sparkles	87.75	477
8	87	Sparkles	87.75	480
8	87	Sparkles	87.75	483
8	87	Sparkles	87.75	483
8	87	Sparkles	87.75	485
8	87	Sparkles	87.75	487
8	87	Sparkles INC	87.75	488
8	87	Sparkles INC	87.75	488
8	87	Sparkles	87.75	490
8	87	C Davis CO	87.75	431
8	87	Sparkles	87.75	497
8	87	Sparkles	87.75	499
8	87	Sparkles	87.75	502
8	87	Sparkles	87.75	503
8	87	Sparkles INC	87.75	508
8	87	Sparkles	8,775.44	507
<u> </u>		The break sector	12,460.94	001

Relative Size Factor	100
Number of checks Sparkles (incl "Inc" checks)	43 34
"Inc" checks	9

• Multiple small payments for the same amount to the same vendor.

• Why is there a vendor with the same name without the "Inc"?

• Notice the single check to C Davis Co. for the same amount as the Sparkles checks.

• The \$8,775 check - is it real?

Rules for Data Sets

- Describe similar data
- No artificial minimums or maximums
- No pre-arranged numbers
- No aggregate totals
- One accounting period
- Large enough for patterns to manifest
- More small items and fewer large items

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Two Concerns

Intuitive

A few aberrations will not trigger a significant departure from expectations

Statistical

It takes smaller proportion of aberrations to trigger a departure when the data set has a large number of transactions

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Example A: 4,356 Items

Example B: 415 Items

Example C: 748 Items

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Example D: 2,316 Items

Example E: 2,469 Items

Good Uses

Fraud inquiries

Individual financial statement accounts

Scientific data, insurance claims, survey data, campaign financing ...

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Three A's

Adaptive Benford
Almost Benford
ANN

 \oplus

111111

Additional Reading

- Nigrini, Mark. Forensic Analystics: Methods and Techniques; Wiley, 2011.
- Ferraro, Eugene. Investigations in the Workplace; Auerbach Publications, 2005.
- Gibson, William. Pattern Recognition; Berkeley, 2005.
- Numerous articles

Thank You!

Contact information:

- Gogi Overhoff
- gogi@ideology.com

