Benford's Law - Why And How To Use It

Gogi Overhoff, CPA, CFE
ACFE, San Diego - June 13, 2011

Definition

* Known as the "first digit law", Benford's Law states that in lists of numbers from many (but not all) real-life sources of data, the leading digit is distributed in a specific, nonuniform way.

Benford's First Digit Chart

Expected Digit Frequency Percentages:

1-30.103\%
2-17.609\%
3-12.494\%
4-9.691\%
5-7.918\%
6-6.695\%
7-5.799\%
8-5.115\%
9-4.576\%

Synopsis

\& Efficient way to apply the smell test
\& Easy to learn

- No need for special software
. Admissible in local, state, federal, and international criminal cases
\& Disclaimer: Use together with other procedures

Early History

- 1881, Simon Newcomb

\& initial discovery, article in American Journal of Mathematics

* 1938, Frank Benford
\& initial testing took 6 years
. total of 20,229 observations

More History

\& 1961: Pinkham, scale invariant
\& 1988: Carslaw, rounded numbers
. 1995: Hill, mathematical proof

* 1996: Nigrini, identified an accounting USE

Since 1996

\& Publications

- Journal of Accountancy
- New York Times
\& Proprietary Software
* ACL, IDEA, Microsoft Access
\& Major Users
- government authorities, litigators, bloggers and...

What It Does

: Predicts the occurrence of digits

- Counts frequencies of digits
\& Improves sampling selection process
\& Digits 1-3 should be $>60 \%$ of first digits
\&. Identifies amounts that do not conform to expectations
\& The digit 9 should appear 4.5% of the time
- Frauds that became big after starting small

Uses

\& To find fraud
\& Percentages do not match expectations
\& To find inefficiency \& errors
\& Multiple checks for the same amount
\& Same amount, same invoice, different vendor
\& To find manipulative biases
\& Management's educated guesses

How: Five Tests

\& First Digit Test

- Count frequency of $1-9$ as first digit
\& Second Digit Test
- What are we counting here?
- First Two Digits Test
* First Three Digits Test
\& Last Two Digits Test

Examples

- Benford's Law: "1" Appears More Often than Any Other Number
\& $\$ 100$ portfolio with a 10% rate of return
\& Dow Jones: the next order of magnitude (a new " 1 "!) is reached faster and faster

First \& Second Digit Tests

* Both are high level
\& Both identify only obvious anomalies
\& 1st digit checks reasonableness of data
: 2nd digit shows improper rounding

First Digit Test Table

First Digit	Actual Frequency	Expected Freq.	Variance \#	Actual \% Freq.	Expected \% Freq.	Variance \%
0	0	0	0	0\%	0\%	0\%
1	352	329	23	32.176\%	30.103\%	2.073\%
2	153	193	-40	13.985\%	17.609\%	-3.624\%
3	157	137	20	14.351\%	12.494\%	1.857\%
4	136	106	30	12.431\%	9.691\%	2.74\%
5	74	87	-13	6.764\%	7.918\%	-1.154\%
6	47	73	-26	4.296\%	6.695\%	-2.398\%
7	52	63	-11	4.753\%	5.799\%	-1.046\%
8	72	56	16	6.581\%	5.115\%	1.466\%
9	51	50	1	4.662\%	4.576\%	0.086\%

First Digit Test Chart

First Two Digits Test

\& More focused
\& Shows overused and underused digit patterns
\& Provides an efficient audit sample for testing

First Two Digits Test Chart

8	87	Sparkes INC	87.75	4132
8	87	Sparkles INC	87.75	4149
8	87	Sparkes INC	87.75	4167
8	87	Sparkles INC	87.75	4188
8	87	Sparkles	87.75	4204
8	87	Sparkles INS	87.75	4219
8	87	Sparkles INS	87.75	4226
8	87	Sparkles	87.75	4237
8	87	Sparkles	87.75	4239
8	87	Sparkles	87.75	4250
8	87	Sparkles	87.75	4259
8	87	Sparkles	87.75	4263
8	87	Sparkles	87.75	4296
8	87	Sparkles	87.75	4300
8	87	Sparkles	87.75	4318
8	87	Sparkles	87. 75	4350
8	87	Sparkles	87.75	4375
8	87	Sparkles	87.75	4429
8	87	Sparkles	87.75	4528
8	87	Sparkles	87.75	4562
8	87	Sparkles INC	87. 75	4643
8	87	Sparkles	87.75	4646
8	87	Sparkles	87.75	4648
8	87	Sparkles	87. 75	4706
8	87	Sparkles	87.75	4707
8	87	Sparkles	87. 75	4756
8	87	Sparkles	87.75	4773
8	87	Sparkles	87. 75	4779
8	87	Sparkles	87.75	4803
8	87	Sparkles	87.75	4831
8	${ }^{87}$	Sparkes	87.75	4837
8	87	Sparkles	B7. 75	4856
8	87	Sparkles	87.75	4878
8	87	Sparkes INC	87.75	4881
8	87	Sparkes INC	87.75	4888
8	87	Sparkles	87. 75	4909
8	87	C Davis co	87. 75	4311
8	87	Sparkles	87.75	4976
8	87	Sparkles	87.75	4997
8	87	Sparkles	87.75	5027
8	87	Sparkles	87.75	5033
8	87	Sparkes INC	87.75	5080
8	87	Sparkles	8,775.44	5073
12.460.94				
		Relative Size Factor	100	
		Number of checks	43	
		Sparkes (incl "lnc" checks)	34	
		"Inc" cheeks	9	

- Multiple small payments for the same amount to the same vendor.
- Why is there a vendor with the same name without the "Inc"?
- Notice the single check to C Davis Co. for the same amount as the Sparkles checks.
- The $\$ 8,775$ check - is it real?

Rules for Data Sets

\& Describe similar data
\& No artificial minimums or maximums
\therefore No pre-arranged numbers
\& No aggregate totals
\& One accounting period
\& Large enough for patterns to manifest
\& More small items and fewer large items

Two Concerns

\& Intuitive
A. A few aberrations will not trigger a significant departure from expectations
\& Statistical
I. It takes smaller proportion of aberrations to trigger a departure when the data set has a large number of transactions

Example A: 4,356 Items

Example B: 415 Items

Example C: 748 Items

Example D: 2,316 Items

Example E: 2,469 Items

Good Uses

: Fraud inquiries

- Planning
\& Individual financial statement accounts
: Scientific data, insurance claims, survey data, campaign financing ...

Three A's

- Adaptive Benford
\& Almost Benford
\therefore ANN

Additional Reading

* Nigrini, Mark. Forensic Analystics: Methods and Techniques; Wiley, 2011.
\& Ferraro, Eugene. Investigations in the Workplace; Auerbach Publications, 2005.
\& Gibson, William. Pattern Recognition; Berkeley, 2005.
\& Numerous articles

Thank You!

\& Contact information:

* Gogi Overhoff
- gogi@ideology.com

