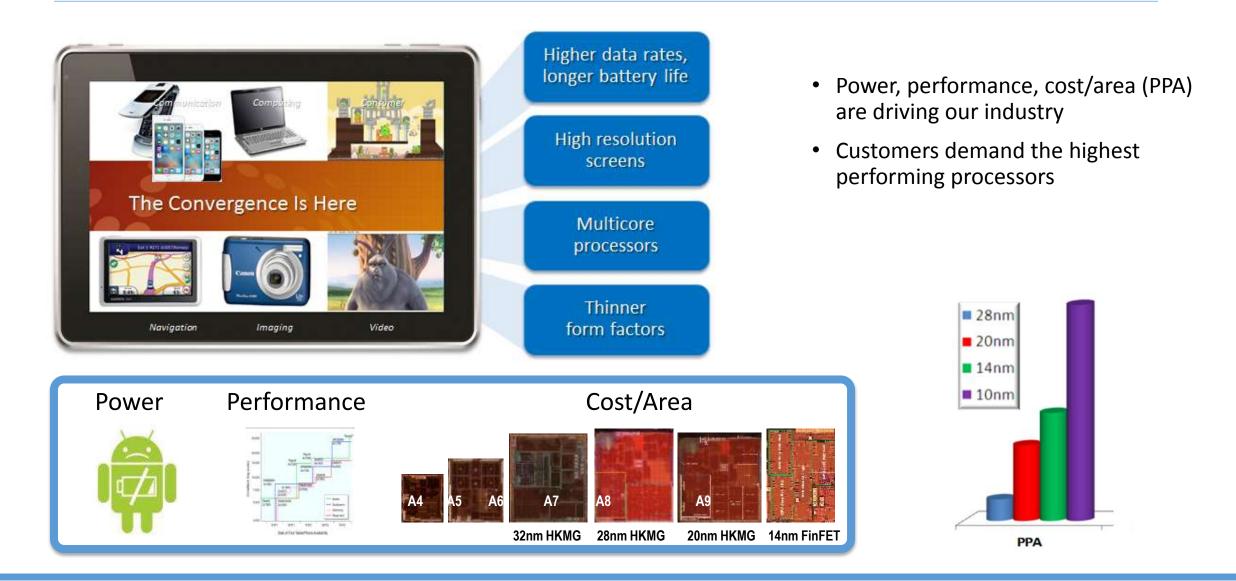
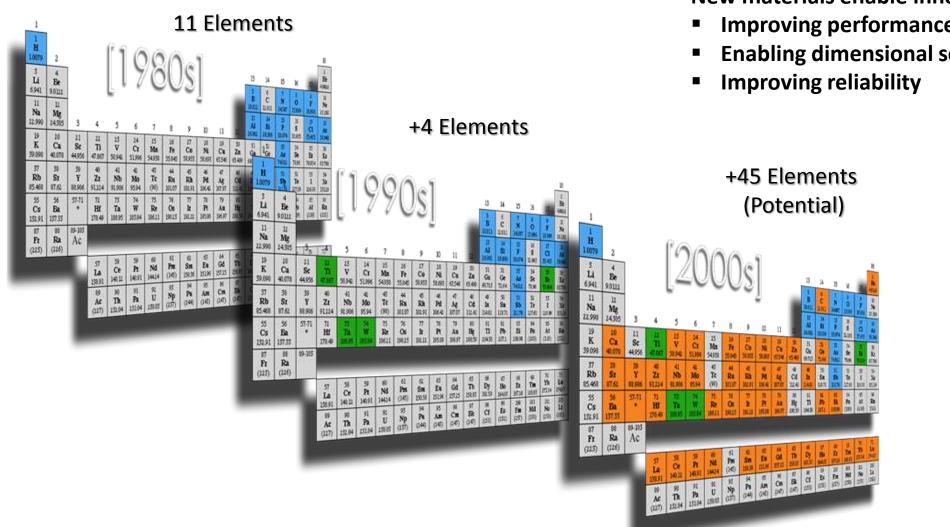
BEOL Interconnect Innovations for Improving Performance


Paul Besser, PhD

Formerly Senior Technology Director at Lam Research Currently Director of Emerging Technologies at ARM

Acknowledgements

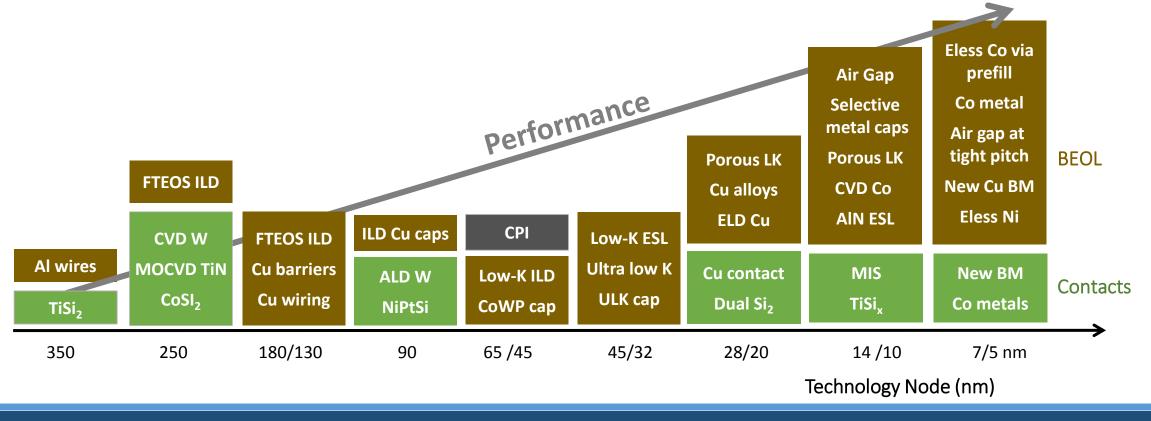

- Lam Research
 - Hui-Jung Wu, Justin Jiang, Kaushik Chattopadhyay, Lee Brogan, Natalia Doubina, Nagraj Shankar, Cheng-Kai Li, and Larry Zhao
- imec
 - Houman Zahedmanesh, Kristof Croes, Ivan Ciofi
- GLOBALFOUNDRIES
 - Todd Ryan
- ARM
 - Saurabh Sinha, Brian Cline, Greg Yeric

Market Needs Drive Requirements and Technology Innovations

3

Innovations in Silicon Manufacturing

New materials enable innovation by

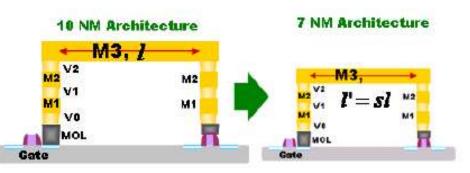

Improving performance,

4

Enabling dimensional scaling, and

MOL and BEOL Materials Innovations Roadmap

- Improving performance (data access speed, battery life, etc.) is much more than just shrinking the dimensions of the processor
- Novel materials innovations drive contact and BEOL RC improvement (reduction)
 - RC Delay ∝ Resistance x Capacitance

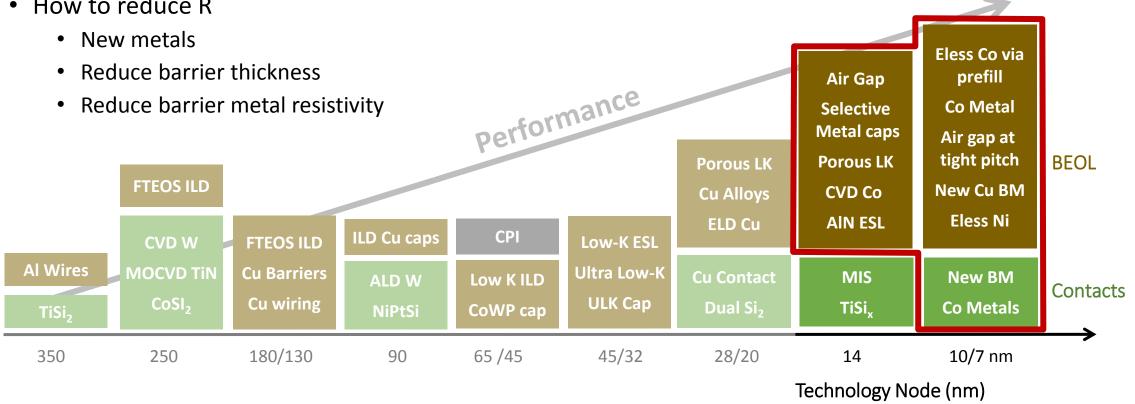

BEOL — How Important Are Resistance and Capacitance?

	Technology		14nm	10nm	7nm	5nm
	R _{CONTACT} + EPI, per side	Ω-µm	4 6	56	67	78
BEOL FEOL	R _{SPREADING} + R _{EXTENSION} , Per side	Ω-µm	51	47	28	25
	CFEOL	aF/µm	750	800	690	750
	Back end R	Ω/µm	27	72	173	400
BE	Back end C	aF/μm	19.8	17.1	16.5	16.0

Greg Yeric, ARM (IEDM 2014)

- Back-end interconnect resistance will dominate product performance at 5nm
- BEOL capacitance scaling slows, beyond 10nm

- Key issue at 5 nm: non-scaling parasitics
 - Line Rs dominates but at 5 nm
 - Via Rs will affect design
 - More power is required when design adds a buffer to compensate for R
- Unidirectional patterning has made via Rs more critical since it requires routing changes; standard cell routes must go through multiple vias

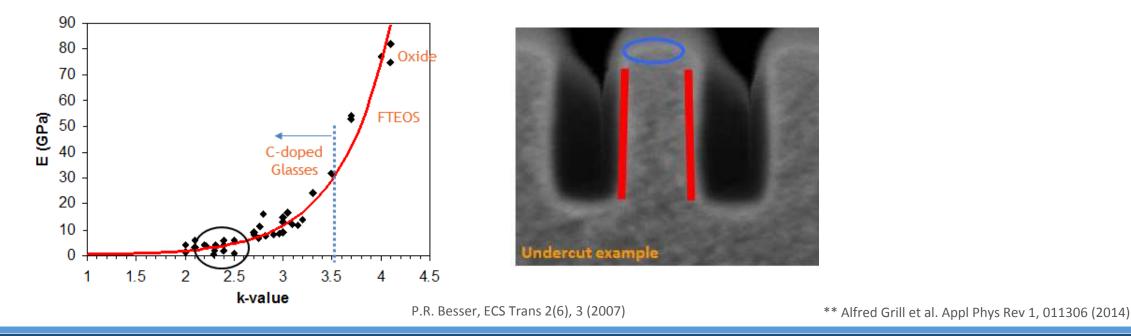

6

James Hsueh-Chung Chen (IITC 2014)

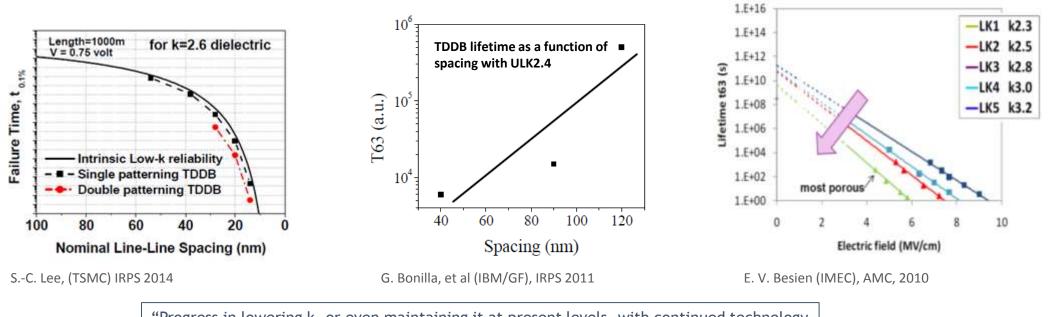
BEOL RC Reduction Innovations for Future Generations

- How to reduce C
 - New lower K dielectrics, even dielectric replacement
 - Air gaps
 - Lower K FSL
- How to reduce R

RC Delay \propto Resistance x Capacitance



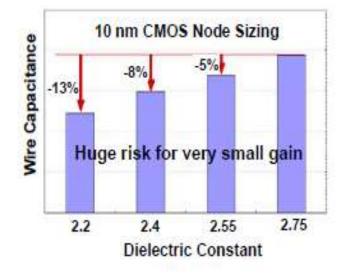
7


Capacitance Reduction Opportunities

Challenges with Lowering Capacitance

- Capacitance (C) can be reduced by lowering the dielectric constant (k) of the material, but at a cost!
 - Dielectric constant is lowered by changing the chemical composition of the dielectric or by introducing porosity (pULK)**
 - \downarrow k will \downarrow elastic modulus (E) \rightarrow reliability, integration, and packaging issues
- Process-induced damage to trench sidewall and top interface is a major integration challenge**
 - Higher K, moisture uptake, increased capacitance, TDDB failure

TDDB Lifetime and Interconnect Scaling

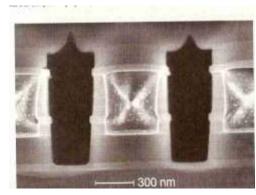


- Capacitance reduction by increasing porosity is high risk with little benefit
- TDDB is a critical hurdle for BEOL scaling, suffering an order of magnitude degradation for each generation @ ULK2.4
- Reducing ULK dielectric constant further degrades dielectric reliability
- Poor LER and misaligned vias can further degrade TDDB

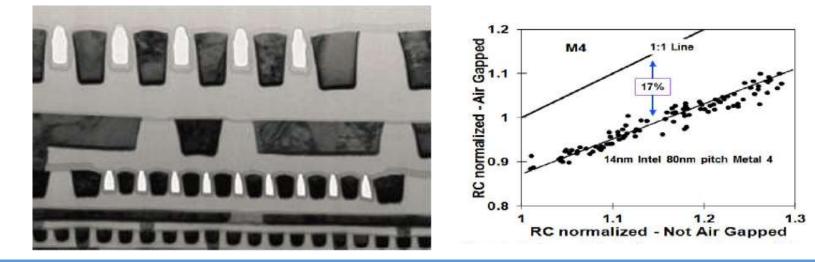
10

New Dielectrics Can Help Reduce RC, but Have Challenges

- Porous low k were introduced as part of the 32/28 nm technology
 - ↑ porosity ↓ k value, but dielectrics have ↑ process-induced damage and ↓ mechanical strength
 - Damage ↑ the effective k and can erase the capacitance benefit
- As a result, at tight pitch interconnects, industry options are **
 - Higher K, non-porous, dense LK dielectrics (less susceptible to damage)
 - Single precursor formulations (dense LK) with a lower K, and/or
 - Low porosity ULK with higher C content
- Industry is spending much resource and has a huge risk exposure for a little gain in C
 - Is there a better way?

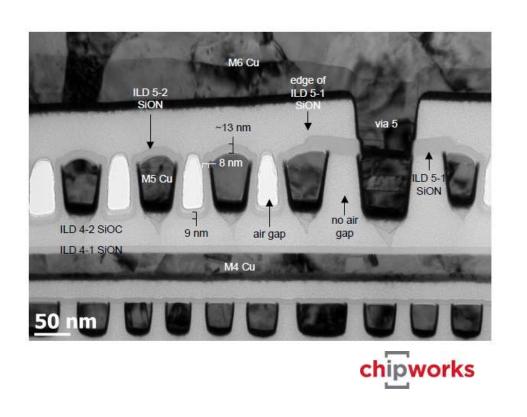


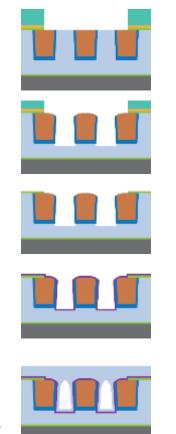
Rama Divakaruni (IBM) SOI Technology Summit, Shanghai (2013)


** E Todd Ryan et al, IITC-MAM (2015)

Technology Elements of Air Gaps (AG) in Integrated Circuits

- Air gap insertion has been demonstrated to reduce capacitance and lower the effective dielectric constant
 - Logic had AG >20 years ago: Al technology, pre-unlanded vias
 - Memory AG in production for years: NAND BL-BL + WL-WL, DRAM BL-BL
- AG for capacitance reduction reemerging **
 - Implemented by Intel 14 nm in performance critical layers
 - Two metal levels, with one level without air gap between AG layers
 - Huge RC gain was realized 14 and 17% at 80 and 160nm pitch.




G Schindler et al., AMC (2006)

Fischer et al., IITC/MAM (2015)

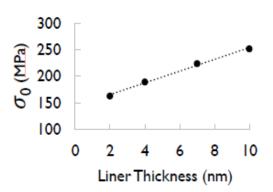
Air Gap Structure and Integration Flow

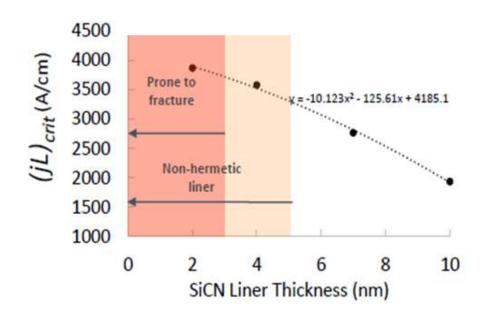


- 1. Diffusion barrier open in select AG regions
- 2. Low-k etch process
- 3. Post-etch strip/clean
- 4. Conformal dielectric barrier deposition
- 5. Non-conformal low-k deposition to create AG

Every process step is critical for reliability, but conformal DB dep affects design

Reliability Considerations: Short Lines are Integrated in Products!

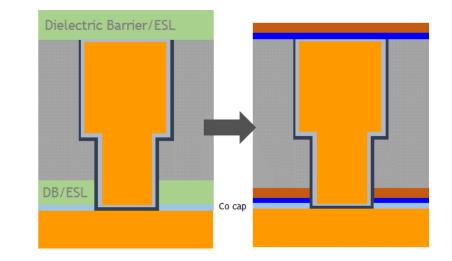

- Under normal electromigration (EM) testing,
 - As atoms diffuse along the line length, compressive and tensile stresses develop at opposite ends of the line
- Line length:
 - If the line is long, then a void develops in the line = failure
 - If the line is short enough (< jL_{crit}), there is a balance between electromigration- and stress-induced atomic diffusion
- Short-line effect:
 - Short lines will never fail (< jL_{crit} = Blech Length)
 - Short-line effect will depend on dielectric material**

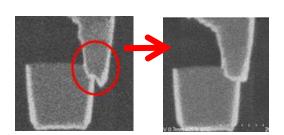


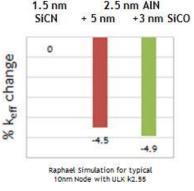
Designers utilize and rely on short line effects in their designs for tight pitch interconnects; however, Blech Length is also considered at all metal layers, for deciding current density design rules

Thickness of DB, Post Air Gap Formation, Affects Reliability

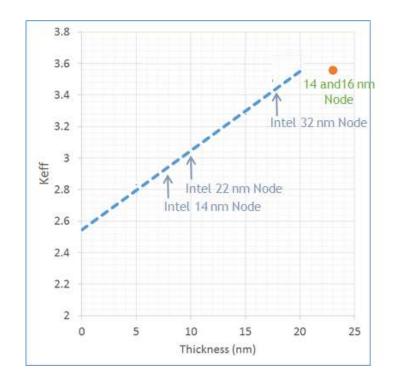
- Air gaps have to be designed into the chip
 - Air gaps are selectively introduced, avoiding vias and placing air gaps at critical layers with high current densities for maximum benefit
- Process-oriented simulations reveal affect of Air Gaps on circuit design:
 - As expected, the tensile stress in Cu lines increases linearly DB thickness
 - JI_{crit} (Blech Length) in an air-gapped interconnect depends on SiCN (DB) thickness and increasing the DB thickness degrades _{Jlcrit}
 - Airgapped interconnects with 5 nm conformal SiCN have a JI_{crit} comparable to non-airgapped interconnects (with ULK 2.5 ILD)
 - DB must be thick enough to be hermetic, but if too thick, JI_{crit} will be degraded, affecting circuit design

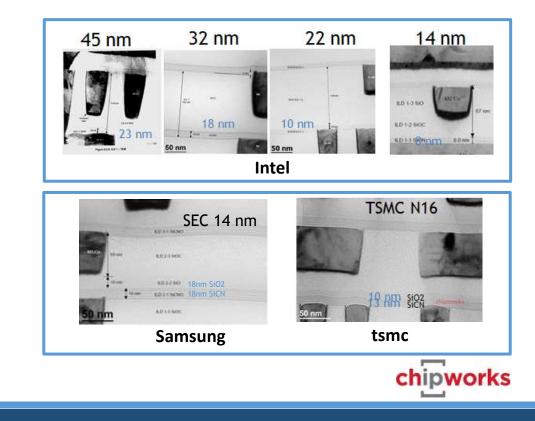



Houman, Besser, Wilson and Croes, JAP 120, 095103 (2016)

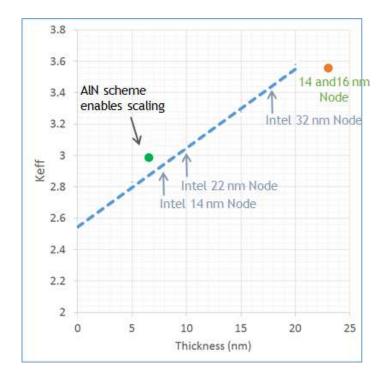

Dielectric Barrier/Etch Stop Layer Requirements

- Requirements for dielectric barrier/ESL
 - Cu diffusion barrier
 - Hermetic barrier for moisture and O₂ Thicker Barrier
 - High etch selectivity
 - Excellent adhesion to metal and ULK
 - High breakdown voltage and low leakage
 - Low dielectric constant


- A combination of high etch selectivity ESL and thin hermetic Cu barrier enables DB scaling
- A high selectivity ESL can provide better control of unlanded via over etch and enable TiN wet removal with protected via bottom
 - Replacing SiCN with AIN + SiCO is a offers a highly conformal stack with high etch selectivity, k_{eff} reduction, and excellent diffusion barrier;
 - film is hermetic at 3 nm thick.

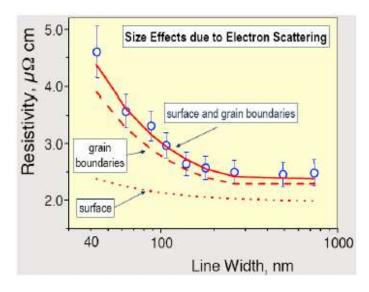


Dielectric Barrier (DB)/Etch Stop Layer (ESL) Scaling to the Rescue

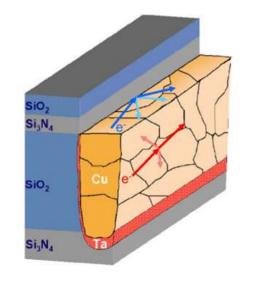

- Modelling suggest thinning or scaling the DB to 5 nm NDC thickness provides 7% k_{eff} reduction, which is more than one generation of low k dielectric progress.
- Can DB/ESL continue to scale with all the DB/ESL requirements and increasing complex patterning?

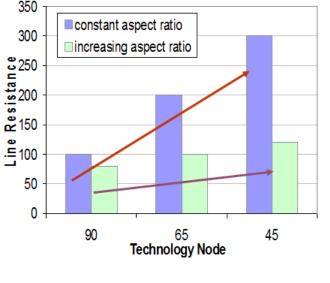
Dielectric Barrier (DB)/Etch Stop Layer (ESL) Scaling to the Rescue

- DB/ESL remains as the key process for capacitance reduction
- Co-optimization of etch and ESL is needed to enable robust via patterning and capacitance improvement

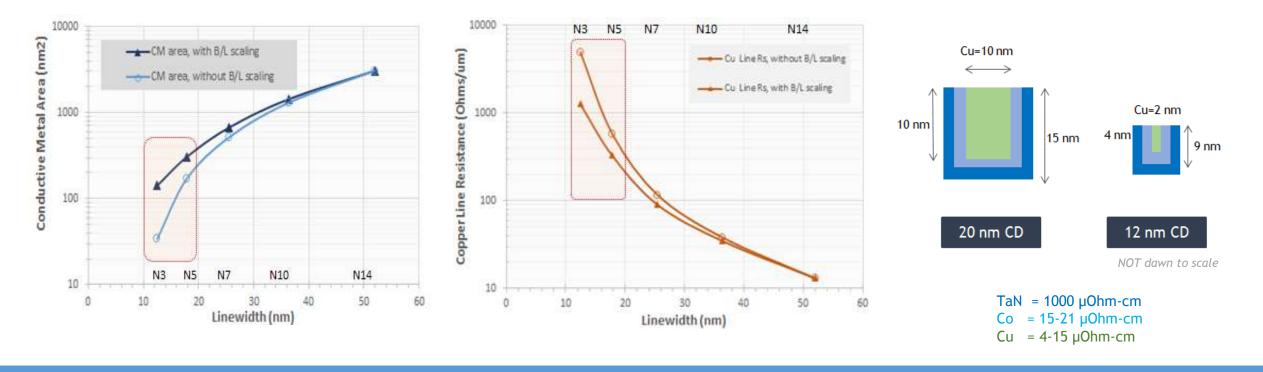

- Integrating AIN + SiCO stacks as a replacement for SiCN provides an integration advantage:
 - Scaling enabled
 - High etch selectivity
 - Significant \mathbf{k}_{eff} reduction
 - Excellent diffusion barrier

Resistance Reduction Opportunities

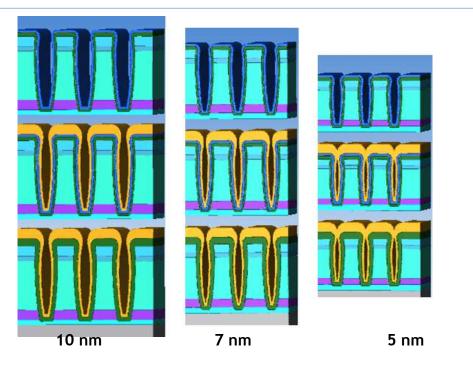

How far can Cu extend? And what replaces Cu?


Understanding Copper Resistance Increase in Narrow Features

- Resistance increase with decreasing linewidth, due to scattering
 - Electrons are scattered by grain boundaries, interfaces, surfaces, and defects (Cu electron mfp = 36 nm)
 - Scattering events lead to Cu resistivity \uparrow with \downarrow linewidth
 - How to compensate?
 - Increase aspect ratio of the Cu line? Void-free fill is a challenge.


G. Schindler, Sematech workshop on Cu resistivity (2005)

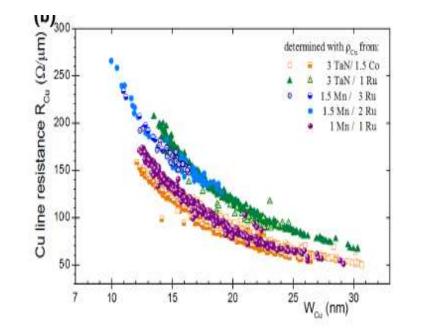
P.R. Besser, ECS Trans 2(6), 3 (2007)


Paul Besser, NCCAVS Symposium in San Jose, CA

Why Line Resistance Increases as Linewidth Decreases

- Cu extendibility is challenged by fill, barrier integrity, conductive metal area, and scattering; Cu current carrying cross-section i with i linewidth
- A calculation of conductive metal area and Cu line Rs as a function of linewidth reveals
 - Barrier thicknesses has not scaled below 2.5 nm, but must scale for Cu to scale below 20 nm linewidth, and
 - Area for conductive metal is small, leading to a high Rs in narrow features

BEOL Scaling Simulations: Cu can Extend to 7 nm, Maybe to 5 nm

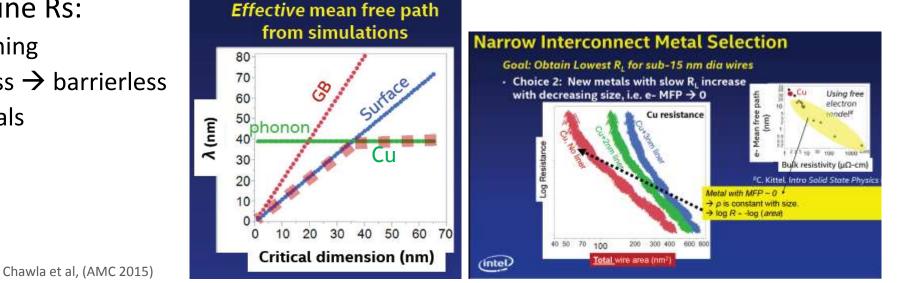

PVD TaN barrier + CVD Co liner

PVD TaN barrier + CVD Co liner + PVD Cu seed

PVD TaN/Ta barrier + PVD Cu seed

- ► Coventor[™] simulations (to scale) reveal the challenge with extending PVD barrier/liner/seed: PVD overhang and can lead to voids in narrow features
 - Cu extendibility is a function of design rules
 - Cu seed extendibility to 5nm is questionable
- ▶ Migrating to PVD TaN/CVD liner (Co or Ru) is likely at 7 nm to enable extendibility of Cu

At 10 and 7nm, Cu Extendibility is Possible



- Co liner provides an improvement for Cu scaling; however, only to 12 nm linewidth
- Scaling the liner thickness (with alternative liners) can extend Cu, but with a net resistance line
 resistance increase

What Is Beyond Cu?

Resistivity in Narrow Features (Intel, 2015)

- At the 5 nm node, not scaling the PVD liner thickness reduces the electrical area by a factor of 2 while increasing the Rs by an order of magnitude
- Based on modeling, resistivity in a 12 nm line (AR=1.5, 3 nm liner) is dominated by surface scattering:
 - Surface scattering (54%), bulk resistivity/phonon(15%) and GB scattering (31%)
- Options to reduce line Rs:
 - Subtractive patterning
 - Scale liner thickness \rightarrow barrierless
 - Smaller EMFP metals

Another Perspective: EMFP and Resistivity

- In the case of thin wires and/or small grain sizes, the wire resistivity is proportional to the product of EMFP (λ) and bulk resistivity (ρ_0), for a fixed grain size distribution and linewidth
- With this metric, options to consider as Cu replacements are:
 - Rh cost
 - Ir cost
 - Al cost and thermal excursion
 - Co
 - Ni options to consider...
 - Ru

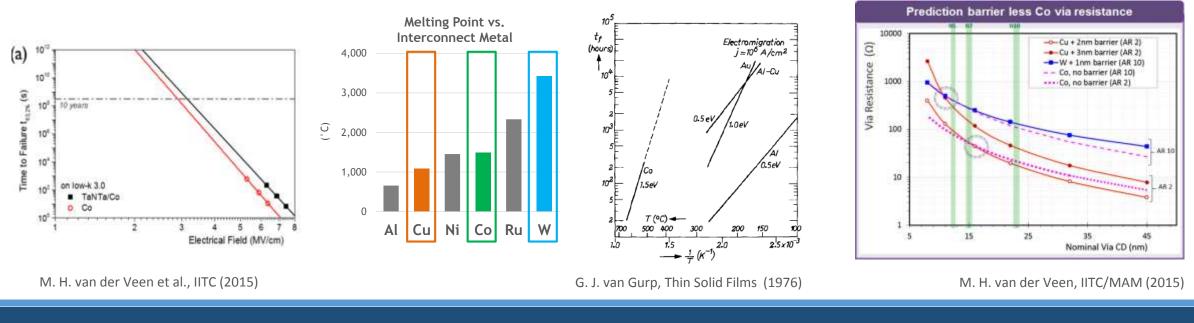
Element		Crystal structures	λ_n (nm)	$\lambda \times \rho_0 (10^{-16} \Omega m^2)$	
Silver	Ag	fcc	53.3	8.46	
Copper	Cu	fcc	39.9	6.70	
Gold	Au	fcc	37.7	8.35	
Aluminum	Al	fcc	18.9	5.01	
Calcium	Ca	fcc	35.4	11.9	
Beryllium	Be	hcp	48.0/68.2	17.1/24.3	
Magnesium	Mg	hcp	22.3/20.0	9.81/8.80	
Rhodium	Rh	fcc	6.88	3.23	
Sodium	Na	bcc	30.9	14.7	
Iridium	Ir	fcc	7.09	3.69	
Tungsten	W	bcc	15.5	8.20	
Molybdenum	Mo	bcc	11.2	5.99	
Zinc	Zn	hcp	17.4/13.7	10.3/8.1	
Cobalt	Co	hcp	11.8/7.77	7.31/4.82	
Nickel	Ni	fcc	5.87	4.07	
Potassium	K	bcc	31.5	22.7	
Cadmium	Cd	hcp	16.8/15.1	12.6/11.3	
Ruthenium	Ru	hcp	6.59/4.88	5.14/3.81	
Indium	In	bet	8.65/8.16	7.62/7.18	
Osmium	Os	hcp	7.20/4.87	6.41/4.33	

D. Gall, JAP 119, 085101 (2016)

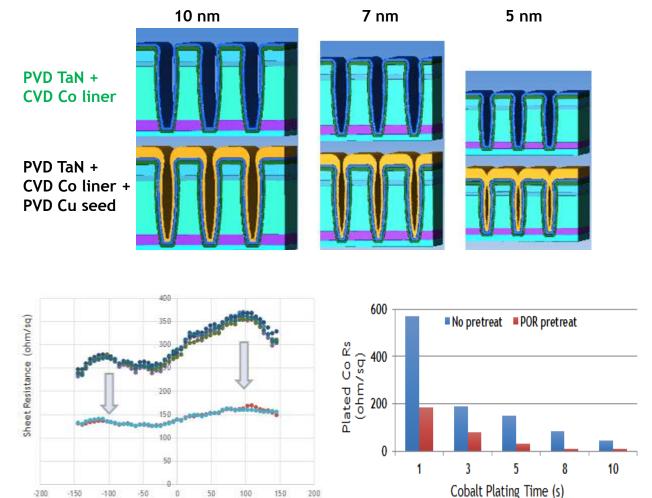
Metal Options: Choosing a Good Metal Conductor to Replace Cu

	Cu	Со	Ru	Ni
Barrier/Liner Needed	Barrier	Thin liner	Thin liner	TBD
Bulk Resistivity				
EMFP (nm)	39	6	10	18
Melting Point (°C)	1083	1495	2250	1453
Deposition processes	ECD, PVD	ECD, ELD, CVD, PVD	CVD, PVD	PVD, CVD, ELD
Gap Fill of Narrow Features				
Cost				

Co exhibits short EMFP, high melting point, and can be deposited with various techniques at low cost


P.R. Besser, ECS Trans 2(6), 3 (2007)

Why Cobalt for Interconnects?

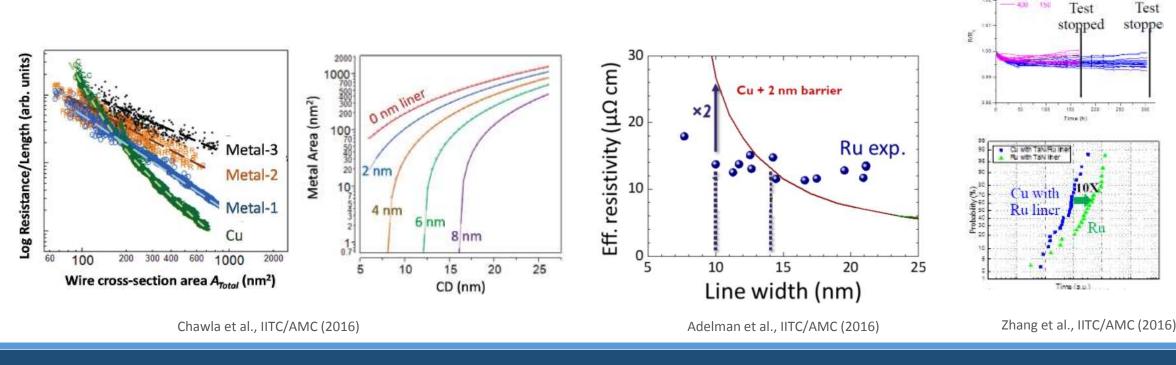

- Co is already integrated in IC processing as a liner and a cap layer
- The shorter mean free path of electrons in Co and the reduced requirement for a barrier reduce the resistivity disadvantage of Co (vs. Cu) in the 15-20 nm line dimension range
- Co electromigration (EM) is better than Cu, based on melting point and publications
- Electroplating allows bottom-up Co fill at a low cost, but CVD/PVD also fills features

Paul Besser, NCCAVS Symposium in San Jose, CA

• IMEC simulations suggest barrierless vias filled with Co have a resistance benefit for N7 and beyond

Enabling Void-Free Metallization with Co Electrochemical Dep

15nm 53nm 14nm 124nm 16nm

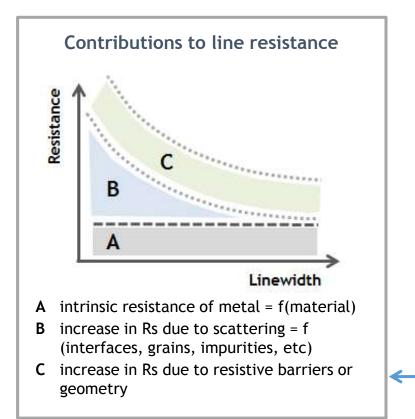

- Co electroplating on CVD Co liner alleviates PVD Cu seed "pinch off"
- Co liner oxidizes when exposed to air and leads to resistivity increase and potential interfacial integrity degradation
- Pre-treatment of Co liner results in substantial conductivity increase and allows for improved nucleation of ECP Co film
- Temperature/time/chemistry can be used to control the sheet resistance drop and Co agglomeration

Hui-Jung Wu et al., Semicon West (2016)

Natalia Doubina et al., CSTIC 2016, Shanghai

Other Alternatives to Cu

- Resistance and Electromigration Performance of 6 nm Wires (Intel)
 - Line Rs and EM were measured for 6 nm CD wires; interconnect performance was measured down to 60 nm² wire crosssectional area.
- Ruthenium is an option to replace Cu at 5nm (imec, GLOBALFOUNDRIES, IBM)
 - Ru reflows at a low temperature; resistivity is 18 µΩ-cm at 7 nm LW is better than Cu (with a 2 nm barrier); via Rs was comparable to Cu; a thin adhesion layer is required (TiN), but TDDB and EM are good
 - The challenges with Ru are cost, CMP, and immaturity

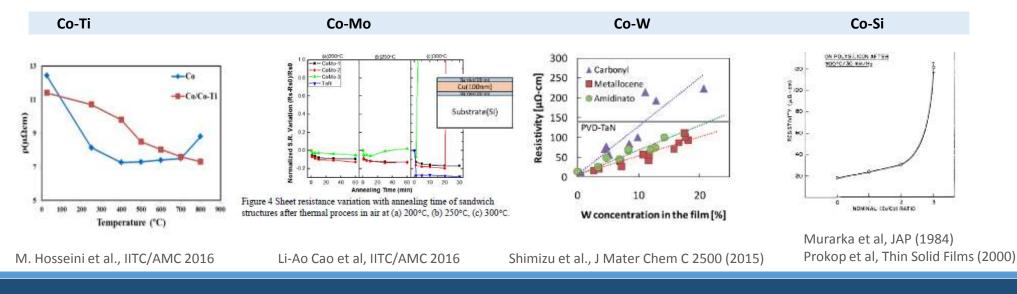

Resistance ratio vs stress time


i mAAum

T(°C)

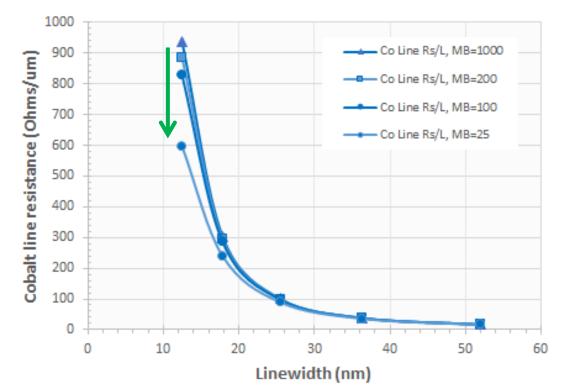
How to Reduce Interconnect Rs Further?

• The solutions shown thus far are incremental improvements in via/line Rs: the industry needs still lower via and line Rs!


31

How to Reduce Interconnect Rs Further?

• The solutions shown thus far are incremental improvements in via/line Rs: the industry needs still lower via and line Rs!


• One option: directly platable, conductive liner

- Co-Ti (University of Tokyo). Resistivity is ~130 $\mu\Omega\text{-cm}$
- Co-Mo (Fudan University). Resistivity is 100-150 $\mu\Omega$ -cm
- Co-W (Tokyo University). Resistivity of CoW films (200 nm) with 10 and 20%W were 80 and 200 μΩ-cm. Adding Cp₂WH₂ into source gas in an ALD cycle -> CoW alloy film with 5%W without including WO₃ or C reduced resistivity to 25 μΩ-cm (15 nm thick)
- Co-Si (Literature). Resistivity is10-40 μΩ-cm, depending on the phase of CoSix formed

32

Modelling of Barrier Resistivity Affects Line Resistance

Co Line Rs vs. linewidth

Technology		14nm	10nm	7nm	5nm
Back end R	Ω/µm	27	72	173	400
Back end C	aF/µm	19.8	17.1	16.5	16.0

Greg Yeric, ARM (IEDM 2014)

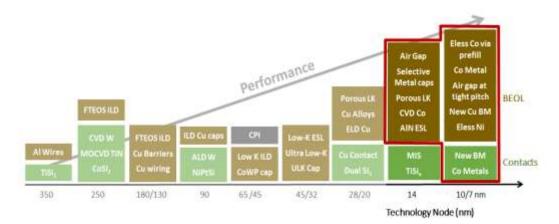
Calculations of line resistance as a function of barrier resistivity (25 vs. 1000 µOhm-cm) reveal barrier line Rs reduces ~40% as a function of barrier resistance (at 12 nm linewidth)

Barrier resistance matters

Circuit performance simulations confirm a performance gain with conductive liner

Assumptions

- Co Line Rs based was measured to 18nm. Extrapolated to 12nm LW
- 70% linewidth scaling node to node
- aspect ratio is constant at 2
- Metal resistivity changes with linewidth (LW)
- Barrier thickness = constant at 2.5 nm


33

Barrier resistivity changes from 25-1000 μOhm-cm

Paul Besser, NCCAVS Symposium in San Jose, CA

Summary

- Materials innovations drive performance improvements in the microelectronics industry, creating faster and smaller devices
- Leading-edge nodes are seeing an explosion of new innovations to drive BEOL RC reduction
- For capacitance (C)
 - Capacitance scaling has slowed
 - Dielectric barrier scaling (i.e. AIN + SiCO) offers the best opportunity to reduce capacitance
- For resistance (R)
 - Line and via resistance are the dominant source of interconnect delay at 7 and 5 nm
 - Cu line and via resistance are increasing with each technology node, due to electron scattering, but also due unidirectional patterning and a lack of barrier scaling
 - Conductive liner/barriers offer promise to lower line and via resistance
 - Co interconnects show great promise to replace Cu, either by
 - Electroless Co via prefill or
 - Co electroplating

Thank you