
BER Comparison Between Convolutional, Turbo,
LDPC, and Polar Codes
Bashar Tahir∗, Stefan Schwarz†, and Markus Rupp‡

Institute of Telecommunications
Technische Universität (TU) Wien

Vienna, Austria
Email: {∗bashar.tahir, †stefan.schwarz, ‡markus.rupp}@tuwien.ac.at

Abstract—Channel coding is a fundamental building block in
any communications system. High performance codes, with low
complexity encoding and decoding are a must-have for future
wireless systems, with requirements ranging from the operation
in highly reliable scenarios, utilizing short information messages
and low code rates, to high throughput scenarios, working with
long messages, and high code rates.

We investigate in this paper the performance of Convolutional,
Turbo, Low-Density Parity-Check (LDPC), and Polar codes, in
terms of the Bit-Error-Ratio (BER) for different information
block lengths and code rates, spanning the multiple scenarios
of reliability and high throughput. We further investigate their
convergence behavior with respect to the number of iterations
(turbo and LDPC), and list size (polar), as well as how their per-
formance is impacted by the approximate decoding algorithms.

I. INTRODUCTION

In 1948, Shannon [1] showed that an error-free commu-
nication over a noisy channel is possible, if the information
transmission rate is below or equal to a specific bound; the
Channel Capacity bound. Since then, enormous efforts were
put into finding new transmission techniques with the aim to
get closer and closer to the channel capacity.

Channel coding is one of the fundamental techniques that
make such near-capacity operation possible. By introducing
a structured redundancy at the transmitter (encoding), and ex-
ploiting it at the receiver (decoding), wide possibilities of error
detection and correction can be achieved. We consider four
coding schemes: convolutional, turbo, Low-Density Partiy-
Check (LDPC), and polar codes. These schemes were selected
as candidates for 5th generation wireless communications
(5G), due to their good performance, and low complexity state-
of-the-art implementation.

Convolutional codes were introduced by Elias in 1955 [2].
They are a class of linear codes in which the input information
bits are encoded in a bit-by-bit (stream) fashion, in such
way that the input bits are convolved with (or slided against)
predefined polynomials, hence the name “convolutional”. The
common decoding algorithms for convolutional codes, are the
Viterbi algorithm [3], and the BCJR algorithm [4].

The financial support by the Austrian Federal Ministry of Science, Research
and Economy and the National Foundation for Research, Technology and
Development is gratefully acknowledged.
†Stefan Schwarz is with the Christian Doppler Laboratory for Dependable

Wireless Connectivity for the Society in Motion.

A major breakthrough happened in 1993 when turbo codes
were introduced [5]. They represent a class of codes that
can perform very close to the capacity limit. In its common
form, turbo encoding is done using two recursive convolutional
encoders. The input stream is passed to the first encoder, and a
permuted version is passed to the second one. At the receiving
side, two decoders are used, each one decodes the streams
of the corresponding encoder. By exchanging probabilistic
information, the two decoders can iteratively help each other
in a manner similar to a turbo engine.

Another class of capacity-approaching codes, are the LDPC
codes. They were first proposed by Gallager in 1960 [6].
At that time, they were considered too complex for practical
implementation. In 1996 [7], LDPC codes were rediscovered,
and obtained a steady interest further on. As the name implies,
LDPC codes are block codes with a sparse parity check matrix.
Such sparsity allows for low complexity decoding using the
iterative Belief Propagation algorithm [8], also called Sum-
Product Algorithm (SPA), and when designed with a specific
structure, low-complexity encoding can also be performed.

A fairly recent type of codes, called polar codes, were
introduced by Arıkan in 2008 [9]. They are constructed using
the channel polarization transform. Aside from their great
performance, they are the first practical codes that are proven
to achieve the channel capacity at infinite length. Arıkan also
showed that a polar code of length N , can be encoded and
decoded with a complexity of O(N logN) each. The encoding
is performed using the Generator matrix obtained from the
polarization transform, and the decoding can be achieved by
a Successive Cancellation (SC) technique [9].

Similar partial comparisons between those schemes have
been carried out in previous publications, such as [10]–[16],
but they provided only a limited set of results. We present
here, a Bit-Error-Ratio (BER) comparison between the afore-
mentioned coding schemes for different block lengths and code
rates, representing the multiple scenarios of reliability and high
throughput. We also examine their convergence behavior, and
the effect of using the approximate decoding algorithms.

In Section II to V, we present an overview of the encoding,
and decoding process of those schemes. In Section VI, we
explain our methodology for the comparison and present our
results. In Section VII, we provide concluding remarks.

978-1-5386-0643-8/17/$31.00 ©2017 IEEE

II. CONVOLUTIONAL CODES

A. Encoding

Convolving the inputs bits with the code polynomials can
be done efficiently using a simple combination of memory
elements and XOR operations. Fig. 1 shows the rate 1/3
convolutional encoder used in LTE [17], where the polyno-
mials (Gi) are described in Octal form. Understanding the
states’ transitions, is important later on for the decoding. Also,
knowing the starting and ending states of the encoder is needed
at the decoder, otherwise performance loss might exist.

D D D D D D

p
l

(1)

p
l

(2)

p
l

(3)

ul

G = 133
0

G = 171
1

G = 165
2

Fig. 1. LTE rate 1/3 convolutional encoder [17].

Due to the simple structure, convolutional codes enjoy low
complexity encoding, and combined with the fast clock speeds
of the state-of-the-art systems, encoding latency is not an issue.

B. Decoding

We consider the Bit-wise Maximum A Posteriori (MAP)
decoder, which is utilized using the BCJR algorithm [4]. For
information bit ul at time l, received codeword y, and decoded
bit ûl, the Log-Likelihood Ratio (LLR) of ul is given by

Lul
= log

(
P{ul = 0|y}
P{ul = 1|y}

)
. (1)

Due to the Trellis structure of convolutional codes, these
probabilities can be written as [18]

Lul
= log

(∑
U0
P{sl−1 = s′, sl = s, y}∑

U1
P{sl−1 = s′, sl = s, y}

)
, (2)

where sl is the state at time l, U0 is the set of pairs (s′, s) for
the state transition s′ → s when ul = 0, and U1 is the set of
pairs (s′, s) for the transition when ul = 1. Using the BCJR
algorithm, these probabilities can be factorized as

P{sl−1 = s′, sl = s, y} = αl−1(s
′)γl(s

′, s)βl(s). (3)

where γl(s′, s) is the Branch Metric. The probabilities αl, and
βl are calculated recursively [4]. Processing this in the log-
domain, the final expression for the LLR is given by [18]

Lul
= max

U0

∗[αl−1(s
′) + γl(s

′, s) + βl(s)]

−max
U1

∗[αl−1(s
′) + γl(s

′, s) + βl(s)], (4)

The max∗ function is given by

max∗(a, b) = max(a, b) + log(1 + e−|a−b|). (5)

An approximation can be made by neglecting the log term,
yielding the Max-Log-MAP algorithm [19].

III. TURBO CODES

Turbo codes are usually constructed by a parallel concate-
nation of two recursive convolutional encoders separated by an
Interleaver. The task is then to design the code polynomials for
the individual encoders, and to use an appropriate interleaver.

A. Encoding

Since the individual encoders are basically convolutional,
the same discussion we had in the previous section carries
on to here. The only new element is the interleaver. Fig.
2 shows the turbo encoder used in LTE [17] [20], where a
Quadratic Permutation Polynomials (QPP) interleaver is used.
The outputs of the first encoder are a systematic stream ul,
and a parity stream p

(1)
l , while the second encoder generates

a parity stream p
(2)
l only. This makes it a rate 1/3 turbo code.

D D D

Turbo
Interleaver

D D D

p
l

(1)

p
l

(2)

ul

ul

Fig. 2. LTE rate 1/3 turbo encoder [17].

Similarly here, knowing the starting and ending states of the
of the encoder at the decoder is important to avoid performance
loss. This is handled via trellis termination.

B. Decoding

The turbo decoder consists of two Soft-Input Soft-Ouput
(SISO) decoders. Those decoders are similar to the convolu-
tional decoder, except of some modifications. The systematic
stream and the first parity stream are fed to the first decoder,
while an interleaved version of the systematic stream, and
the second parity stream are fed to the second one. The
first decoder starts, and instead of generating a final LLR,
it generates a cleared up version, called extrinsic information.
This is interleaved, and sent to the second decoder. It performs
decoding, which is more reliable compared to the case where
it does not have the additional information from the first
decoder. In a similar manner, it generates extrinsic information
for the first decoder, and instead of interleaving, it performs
deinterleaving, and at this point, an iteration is completed.

On the next iteration, the first decoder starts the same as
before, but now it has extrinsic information from the second
decoder, and therefore a more reliable output is calculated.
The decoding continues until a stopping criterion is satisfied,
or the maximum number of iterations has been reached.

After any iteration, the total LLR is calculated as [18]

Lul(total) = Lul(channel) + Le(2→1)
uDeint(l)

+ Le(1→2)
ul

, (6)

where Lul(channel) is the channel LLR, Le(1→2)
ul is the ex-

trinsic information sent from first decoder to the second one.
Deint(l) is the deinterleaved position of ul.

If the interleaver is designed appropriately, then it would ap-
pear as if the original and interleaved streams are uncorrelated.
This is essential for the turbo gain, since it will be unlikely
that the original stream and its interleaved counterpart undergo
the same encoding, transmission, and/or decoding conditions.

IV. LDPC CODES

An LDPC code is characterized by its sparse parity check
matrix. Such sparsity facilitates low complexity encoding and
decoding. An example code is the following

H =

 1 1 0 0 1 0
1 0 1 1 0 0
0 0 1 0 1 1
0 1 0 1 0 1

 , (7)

which is given here just for demonstration. LDPC codes can be
represented by a Tanner graph [21]. Each row is represented
by a Check Node (CN), and each column is represented by
a Variable Node (VN). The “1”s in the matrix represent the
connections between the CNs and VNs. Fig. 3 shows the
Tanner graph of the example code.

CN1 CN2 CN3 CN4

VN1 VN2 VN3 VN4 VN5 VN6
Fig. 3. Tanner graph of the example code.

A. Encoding

The encoding can be described in the following form

c = uG, (8)

where c is the output codeword, u is the input block, and G
is the generator matrix.

For LDPC codes, the parity check matrix H is the design
parameter, and not the generator matrix G. However, the
generator matrix can still be obtained from a given parity check
matrix. This is usually done by putting H into systematic form
using Gauss-Jordan Elimination, and then the generator matrix
is found directly [18].

Two problems exist, first, the parity check matrix is de-
signed for a specific input block length, and therefore using
other lengths is not possible. The second problem lies in the
transformation of H into systematic form, since it can get
too complicated for long block lengths. The first problem
is handled using Quasi-Cyclic (QC) LDPC codes, and those
can easily support variable input sizes through Lifting [22].

The second problem can be mitigated by utilizing a structure
similar to Repeat-Accumulate (RA) codes [23], which allows
direct encoding from the parity check matrix through back-
substitution [24].

B. Decoding

Decoding of LDPC codes is performed with the Sum-
Product Algorithm (SPA) [8]. This is based on message
passing between the CNs, and VNs in the Tanner graph.

At the start, the VNs send the channel LLRs Lj to the
connected CNs. The CNs then perform their calculation, and
pass new messages to their connected VNs according to [18]

Li→j = 2 tanh−1
[∏
j′∈N(i)−{j}

tanh(Lj′→i/2)

]
, (9)

where Li→j is the message passed from the ith CN to jth
VN, Lj→i is the message passed from the jth VN to the ith
CN, and N(i) is the set of VNs connected to the ith CN. The
VNs receive these messages, process them, and then pass new
messages to the connected CNs according to

Lj→i = Lj +
∑

i′∈N(j)−{i}

Li′→j , (10)

where N(j) is the set of CNs connected to the jth VN. At
this point, one iteration is finished, and the total LLR can be
calculated as

Lj(total) = Lj +
∑

i∈N(j)

Li→j . (11)

The sequence in which the nodes are scheduled can affect
the performance. The one described above, in which all the
CNs, and then all the VNs update their messages in parallel,
is called the Flood schedule. An improved performance can
be achieved if serial scheduling is performed. This is called
Layered Belief Propagation (LBP) [25], [26], and it offers
almost double the convergence speed (in terms of iterations)
to that of the flood schedule.

An approximation can be made to (9) in the form

Li→j =

(∏
j′∈N(i)−{j}

αj′→i

)
· min
j′∈N(i)−{j}

βj′→i, (12)

where αj′→i and βj′→i are the sign and magnitude of Lj′→i,
respectively. This is the Min-Sum approximation [27], and
offers lower complexity decoding at the cost of some perfor-
mance loss.

V. POLAR CODES

Polar codes are those constructed as a result of the channel
polarization transform [9]. The idea is that by channel com-
bining and splitting, and at infinite length, the channels (bits’
positions) will polarize in the sense that some of channels
will be highly reliable, and the rest will be unreliable. If
the information bits are put only into the reliable channels,

and foreknown bits (usually zeros) are put into the unreliable
channels, then the channel capacity can be achieved.

The task of polar code construction is to find this set of the
most unreliable channels, which is usually called the Frozen
Set. There exist multiple construction algorithms [28], with
varying complexity, and due to the non-universal behavior
of polar codes, those algorithms require a parameter called
Design-SNR. However, universal constructions also exist.

A. Encoding

The encoder is basically the polarization transform, which
is given by the kernel [9]

F =
[
1 0
1 1

]
. (13)

The transform for a larger input size is obtained via the
Kronecker product of this kernel with itself, causing polar
codes to have lengths that are powers of 2. For a code of
length N , and n = log2(N), the encoder is given by

G = F⊗n, (14)

where F⊗n is the Kronecker product of F with itself n times.
The encoding is then carried out as in (8), which is shown in
Fig. 4 for a code of length 4.

u1

u2

u3

u4

c1

c2

c3

c4

Fig. 4. Polar encoder of length 4.

B. Decoding

Although polar codes can be decoded through Belief Propa-
gation, the standard decoding algorithm is Successive Cancel-
lation (SC). The SC decoder can be found directly from the
encoder, where the XOR, and connection nodes are represented
by the probabilistic nodes f and g, respectively. In the LLR
domain, the f and g nodes perform the following calculations
for given input LLRs a and b [29]

f(a, b) = log

(
ea+b + 1

ea + eb

)
, (15)

g(a, b, s) = (−1)sa+ b,

where s is the Partial Sum, which is the sum of the previously
decoded bits that are participating in the current g node. An
approximation can be applied to f , yielding

f(a, b) = sign(a)sign(b)min (|a|, |b|). (16)

The LLRs are propagated from the right to the left in Fig. 4.
The first bit u1 can be decoded directly by passing the LLRs
through the appropriate f nodes. Once it is decoded, u2 can
be decoded using a g node, which requires the corresponding
partial sum. Since only u1 is participating, then the partial

sum is equal to u1. If u1 is frozen, then the decoder already
knows its value, and can directly set it to 0. Therefore, the
channel LLRs and u1 are used to decode u2, leading to a
higher decoding reliability of u2. The decoding continues until
all the nodes are processed.

The performance can be improved, if a List Decoder [30] is
used, yielding the List-SC decoder. For each decoded bit, the
two possibilities of being decoded as 1 or 0 are considered.
This is achieved by splitting the current decoding path into
two new paths, one for each possibility. The total number of
possibilities across the decoding tree is limited by the List
size. After the decoding is finished, the path with the smallest
Path Metric is chosen [29]. A further improvement can be
achieved by performing a Cyclic Redundancy Check (CRC)
on the surviving paths, and the one satisfying it, is the correct
one.

VI. PERFORMANCE COMPARISON

In this section, we compare the coding schemes in terms
of the BER for different information block lengths, and code
rates. We check their convergence behavior, and the impact of
using the approximate decoding algorithms described above.

A. Setup and Code Construction

We transmit using Binary Phase Shift Keying (BPSK) over
the Additive White Gaussian Noise (AWGN) channel. For con-
volutional and turbo codes, we chose those of LTE [17]. The
interleaver parameters for information length of K = 8192
were obtained from [31]. For LDPC, we used the IEEE 802.16
codes [32], and since it does not support codes of rate 1/3,
an extension method has been applied to the rate 1/2 code
in a fashion similar to [33]. As for polar codes, they were
constructed using the Bhattacharya bounds algorithm [28], and
by searching for a suitable Design-SNR. The constructed codes
are available from the author on request.

The rate adaption for convolutional and turbo codes was
obviously done by puncturing. For polar codes, since the
encoder size is limited to powers of 2, the extra positions were
handled by applying zeros to the encoder bottom positions, and
since their corresponding outputs do not depend on the upper
positions, then they are also equal to zero and can be removed
from the output codeword. At the decoder, the LLRs of these
positions are set to a very high positive value, reflecting a
positive infinity LLR.

B. Convergence

We examine here how the performance is affected with
respect to the number of iterations (turbo and LDPC), and
list size (polar). The decoding algorithms used are Max-
Log-MAP, Layered Min-Sum, List-SC with approximation for
turbo, LDPC, and polar codes, respectively. The results are
given for a rate R of 1/2, with information block length K of
2048 (2052 for LDPC). These are shown in Figs. 5, 6 and 7,
for iterations (list sizes) of 32, 16, 8, 4, 2, and 1.

Given the results, it is apparent that going for more than
eight iterations for turbo codes, does not provide that much

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Turbo

Fig. 5. Turbo code convergence, K = 2048, R = 1/2, Iterations = 32, 16, 8,
4, 2, 1 from left to right.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
LDPC

Fig. 6. LDPC code convergence, K = 2052, R = 1/2, Iterations = 32, 16, 8,
4, 2, 1 from left to right.

gain, especially if we consider the relatively high cost of a
single turbo iteration. For the LDPC code, 16 iterations appear
to be sufficient, and there is very little gain if we go for
32 iterations. An integral part of this fast convergence is due
to the usage of layered decoding. As for polar codes, better
performance is obtained for larger list sizes, and at the list
size of 32, the limitation in the low BER region due to the
Maximum Likelihood (ML) bound [30], starts to appear.

For the rest of simulations, we choose 8 iterations for turbo,
16 iterations for LDPC, and a list size of 8 for polar codes.

C. Decoding Algorithms

Fig. 8 shows the performance of the exact algorithms
(dashed) against their approximations (solid) in (5), (12), and
(16). For convolutional and polar codes, the difference is
almost nonexistent. However, for turbo and LDPC, there is
a considerable difference of approximately 0.37 to 0.47 dB.
There are modified algorithms that help close the gap to the
exact ones, some of them use look-up tables, offsetting, or
low complexity functions, which might require some extra
processing, or additional memory usage.

For the simulations in the next section, MAX-Log-MAP is
used for convolutional and turbo codes, Layered Min-Sum for
LDPC codes, and List-SC with approximation for polar codes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Polar

Fig. 7. Polar code convergence, K = 2048, R = 1/2, List size = 32, 16, 8,
4, 2, 1 from left to right.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Convolutional
Turbo
LDPC
Polar

Fig. 8. Exact (dashed) vs. Approximate (solid) decoding algorithms, K =
2048 (2052 for LDPC), R = 1/2, 8 iterations turbo, 16 iterations LDPC,
list size 8 polar.

D. Results for different block lengths and code rates

In Figs. 9 to 14, the performance of the coding schemes
for information block lengths of K = 256, 512, 1024, 2048,
4096, and 8192, and code rates of R = 1/3, 1/2, 2/3, and
5/6 are given. For LDPC, the information length is slightly
different, since the dimensions of the used base matrices do
not allow such extension. The number of iterations (list size)
and decoding algorithms follow the previous two subsections.

Turbo, LDPC, and polar codes perform somehow close to
each other, especially at long block lengths. The convolutional
code, as expected, performs the worst. But, it still provides a
low complexity alternative. The results for polar codes are
quite interesting, considering that we used only a list size
of 8, and without CRC. This shows how good a polar code
can perform when it is constructed appropriately. Nonetheless,
some of the polar code curves exhibited a relative saturation in
the low BER region. However, potential improvement through
better construction should be possible.

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

1/3 1/2 2/3 5/6

Fig. 9. BER comparison for different code rates, K = 256 (For LDPC,
K = 252 for R = 1/2, and 1/3, and K = 260 for R = 5/6.)

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

5/62/31/21/3

Fig. 10. BER comparison for different code rates, K = 512 (For LDPC,
K = 516 for R = 1/2, and 1/3, and K = 520 for R = 5/6.)

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

1/3 1/2 2/3 5/6

Fig. 11. BER comparison for different code rates, K = 1024 (For LDPC,
K = 1020 for R = 1/2, 1/3, and 5/6.)

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

1/3 1/2 2/3 5/6

Fig. 12. BER comparison for different code rates, K = 2048 (For LDPC,
K = 2052 for R = 1/2, and 1/3, and K = 2040 for R = 5/6.)

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

1/3 1/2 2/3 5/6

Fig. 13. BER comparison for different code rates, K = 4096 (For LDPC,
K = 4092 for R = 1/2, and 1/3, and K = 4100 for R = 5/6.)

-2 -1 0 1 2 3 4 5 6 7 8 9

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Uncoded
Conv.
Turbo
LDPC
Polar

1/3 1/2 2/3 5/6

Fig. 14. BER comparison for different code rates, K = 8192 (For LDPC,
K = 8196 for R = 1/2, and 1/3, and K = 8200 for R = 5/6.)

VII. CONCLUSION

In this paper, we provide a BER comparison between the
coding schemes: convolutional, turbo, LDPC and polar codes
for different scenarios. We consider the current state-of-the-
art practical codes, except of polar codes, where a custom
construction as described in Section VI.A was applied.

With exception of the convolutional code, the other schemes
perform close to each other, which is the more true the larger
the information block length is.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[2] P. Elias, “Coding for noisy channels,” IRE Convention Record, pp. 37–
46, 1955.

[3] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, April 1967.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE Transactions
on Information Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in IEEE International
Conference on Communications, 1993. ICC ’93 Geneva. Technical
Program, Conference Record, vol. 2, May 1993, pp. 1064–1070 vol.2.

[6] R. G. Gallager, Low Density Parity Check Codes,. Sc.D. thesis, MIT,
Cambridge, 1960.

[7] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 33, no. 6, pp.
457–458, Mar. 1997.

[8] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, Mar. 1999.

[9] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[10] J. V. Wonterghem, A. Alloum, J. J. Boutros, and M. Moeneclaey,
“Performance comparison of short-length error-correcting codes,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1609.07907

[11] T. Hehn and J. B. Huber, “LDPC codes and convolutional codes with
equal structural delay: a comparison,” IEEE Transactions on Communi-
cations, vol. 57, no. 6, pp. 1683–1692, June 2009.

[12] S. V. Maiya, D. J. Costello, T. E. Fuja, and W. Fong, “Coding with a
latency constraint: The benefits of sequential decoding,” in 2010 48th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton), Sep 2010, pp. 201–207.

[13] K. Fagervik and A. S. Larssen, “Performance and complexity compar-
ison of low density parity check codes and turbo codes,” Norwegian
Signal Processing Symposium, 2003.

[14] Üstün Özgür, “A Performance Comparison of Polar Codes with Convo-
lutional Turbo Codes,” Master’s thesis, Bilkent University, Turkey, 2009.

[15] N. Andreadou, F. N. Pavlidou, S. Papaharalabos, and P. T. Mathiopoulos,
“Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes for deep
space and high data rate applications,” in Satellite and Space Communi-
cations, 2009. IWSSC 2009. International Workshop on, Sep. 2009, pp.
225–229.

[16] E. Arikan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir,
“Challenges and some new directions in channel coding,” Journal of
Communications and Networks, vol. 17, no. 4, pp. 328–338, Aug. 2015.

[17] “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing
and channel coding,” 3rd Generation Partnership Project (3GPP), TS
36.212, 2016.

[18] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cam-
bridge University Press, 2009.

[19] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded
data disturbed by time-varying intersymbol interference [applicable to
digital mobile radio receivers],” in Global Telecommunications Confer-
ence, 1990, and Exhibition. ’Communications: Connecting the Future’,
GLOBECOM ’90., IEEE, Dec. 1990, pp. 1679–1684 vol.3.

[20] J. C. Ikuno, S. Schwarz, and M. Simko, “LTE Rate Matching Perfor-
mance with Code Block Balancing,” in 17th European Wireless 2011 -
Sustainable Wireless Technologies, April 2011, pp. 1–3.

[21] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sep.
1981.

[22] S. Myung, K. Yang, and Y. Kim, “Lifting methods for quasi-cyclic LDPC
codes,” IEEE Communications Letters, vol. 10, no. 6, pp. 489–491, June
2006.

[23] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for turbo-like
codes,” Proc. 36th Annual Allerton Conf. on Communication, Control,
and Computing, pp. 201–210, Sep. 1998.

[24] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 638–656, Feb. 2001.

[25] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief
propagation decoding,” Physica A Statistical Mechanics and its Appli-
cations, vol. 330, pp. 259–270, Dec. 2003.

[26] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures
for low-density parity-check codes,” in Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 2, Nov. 2002, pp. 1383–
1388 vol.2.

[27] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Transactions on Communications, vol. 47, no. 5,
pp. 673–680, May 1999.

[28] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar
code constructions for the AWGN channel,” July 2015. [Online].
Available: https://arxiv.org/abs/1501.02473v1

[29] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Transactions
on Signal Processing, vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

[30] I. Tal and A. Vardy, “List decoding of polar codes,” in 2011 IEEE
International Symposium on Information Theory Proceedings (ISIT),
July 2011, pp. 1–5.

[31] “Contention-free Interleaver designs for LTE Turbo Codes,” Motorola,
R1- 070054, 2007.

[32] “IEEE Standard for Air Interface for Broadband Wireless Access Sys-
tems,” Institute of Electrical and Electronics Engineers (IEEE), IEEE
Std 802.16, 2012.

[33] H. J. Joo, S. N. Hong, and D. J. Shin, “Design of rate-compatible ra-type
low-density parity-check codes using splitting,” IEEE Transactions on
Communications, vol. 57, no. 12, pp. 3524–3528, Dec. 2009.

