BERING STRAIT NORSEMAN II 2015 MOORING CRUISE PLAN
 Research Vessel Norseman II, Norseman Maritime Charters
 Nome-Nome, $1^{\text {st }}$ July to gh $^{\text {th }}$ July 2015
 Rebecca Woodgate, University of Washington (UW), woodgate@apl.washington.edu and the Bering Strait 2015 Science Team
 Funding from NSF Arctic Observing Network Program PLR-1304052

(Photo from www.norsemanmartime.com)

Chief Scientist: Rebecca Woodgate, University of Washington (UW), USA.
1013 NE $40^{\text {th }}$ Street, Seattle WA, 98105
Email: woodgate@apl.washington.edu
Tel: +1-206-221-3268; Fax: +1-206-543-6785
Co-Pls: Patrick Heimbach, Massachusetts Inst. of Technology (MIT), USA
An Nguyen, MIT, USA
Related Pls: Kate Stafford, UW, USA
Terry Whitledge, University of Alaska, Fairbanks (UAF), USA
Laurie Juranek and Burke Hales, Oregon State University (OSU) USA
As part of the Bering Strait project funded by NSF-AON (Arctic Observing Network), in July 2015 a team of US scientists will undertake a ~ 8 day cruise in the Bering Strait and southern Chukchi Sea region on the US vessel Norseman II, operated by Norseman Maritime Charters.

The primary goals of the expedition are:

1) recovery of 3 moorings carrying physical oceanographic (Woodgate-NSF), bio-optical (Whitledge) and whale acoustic (Stafford) instrumentation. These moorings were deployed in the Bering Strait region in 2014 from the Norseman II. The funding for the physical oceanographic components of these moorings comes from NSF-AON.
2) deployment of 3 moorings in the Bering Strait region, carrying physical oceanographic (Woodgate), ocean acidification (Juranek and Hales) and whale acoustic (Stafford) instrumentation. The funding for the physical oceanographic components of these moorings comes from NSF-AON.
3) accompanying CTD sections (without water sampling).
4) collection of accompanying ship's underway data (surface water properties, ADCP, meteorological data).

The cruise will load and offload in Nome, Alaska.

SCIENCE BACKGROUND

The $\sim 50 \mathrm{~m}$ deep, $\sim 85 \mathrm{~km}$ wide Bering Strait is the only oceanic gateway between the Pacific and the Arctic oceans.

The oceanic fluxes of volume, heat, freshwater, nutrients and plankton through the Bering Strait are critical to the water properties of the Chukchi [Woodgate et al., 2005a]; act as a trigger of sea-ice melt in the western Arctic [Woodgate et al., 2010]; provide a subsurface source of heat to the Arctic in winter, possibly thinning sea-ice over about half of the Arctic Ocean [Shimada et al., 2006; Woodgate et al., 2010]; are $\sim 1 / 3^{\text {rd }}$ of the freshwater input to the Arctic [Aagaard and Carmack, 1989; Woodgate and Aagaard, 2005]; and are a major source of nutrients for ecosystems in the Arctic Ocean and the Canadian Archipelago [Walsh et al., 1989]. In modeling studies, changes in the Bering Strait throughflow also influence the Atlantic Meridional Circulation [Wadley and Bigg, 2002] and thus world climate [De Boer and Nof, 2004].

Quantification of these fluxes (which all vary significantly seasonally and interannually) is critical to understanding the physics, chemistry and ecosystems of the Chukchi Sea and western Arctic, including sea-ice retreat timing and patterns, and possibly sea-ice thickness. Understanding the processes setting these fluxes is vital to prediction of future change in this region and likely in the Arctic and beyond.

Figure 1: (Left) Chukchi Sea ice concentration (AMSR-E) with schematic topography. White arrows mark three main water pathways melting back the ice edge [Woodgate et al., 2010].
(Middle) Detail of the Bering Strait, with schematic flows and mooring locations (black dots - A2, A3, A4). The main northward flow passes through both channels (magenta arrows). Topography diverts the western channel flow eastward near site A3. The warm, fresh Alaskan Coastal Current (ACC) (red arrow) is present seasonally in the east. The cold, fresh Siberian Coastal Current (SCC) (blue dashed arrow) is present in some years seasonally in the west. Green dashed line at $168^{\circ} 58.7^{\prime} \mathrm{W}$ marks the US-Russian EEZ (Exclusive Economic Zone) boundary. Note all moorings are in the US EEZ. Depth contours are from IBCAO [Jakobsson et al., 2000]. The Diomede Islands are in the center of the strait, seen here as small black dots on the green dashed line marking the US-Russian boundary.
(Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space Flight Center). White areas indicate clouds. Note the dominance of the warm ACC along the Alaskan Coast, and the suggestion of a cold SCC-like current along the Russian coast [Woodgate et al., 2006].

Since 1990, year-round moorings have been maintained almost continually year-round in the Bering Strait region, supported by typically annual servicing and hydrographic cruises [Woodgate et al., submitted]. These data have allowed us to quantify seasonal and interannual change [Woodgate et al., 2005b; Woodgate et al., 2006; Woodgate et al., 2010; Woodgate et al., 2012], and assess the strong contribution of the Alaskan Coastal Current (ACC) to the fluxes through the strait [Woodgate and Aagaard, 2005]. These data also show that the Bering Strait throughflow increased ~50\% from 2001 ($\sim 0.7 \mathrm{~Sv}$) to 2011 ($\sim 1.1 \mathrm{~Sv}$), driving heat and freshwater flux increases [Woodgate et al., 2012]. While ~ $1 / 3^{\text {rd }}$ of this change is attributable to weaker local winds, $2 / 3$ rds appears to be driven by basin-scale changes between the Pacific and the Arctic. Remote data (winds, SST) prove insufficient for
quantifying variability, indicating interannual change can still only be assessed by in situ year-round measurements [Woodgate et al., 2012]. Indeed, data from 2013 indicate a surprisingly low flow year.

The work to be accomplished/started on this cruise will extend this mooring time-series to summer 2016.

Figure 2, adapted from [Woodgate et al., 2012; (a) Woodgate et al., submitted]
a) transport calculated from A3 (blue) or A2 (cyan), with error bars (dashed) calculated from variability; including adjustments estimated from 2007-2009 Acoustic Doppler Current Profiler data for 6-12m changes in instrument depth (black);
(b) b) near-bottom temperatures from A3 (blue) and A4 (magenta-dashed);
c) salinities from A3 (blue) and A4 (magenta);
d) heat fluxes: blue - from A3 only; red - including ACC correction $\left(1 \times 10^{20} \mathrm{~J}\right)$ and contributions from surface layer of 10 m (lower bound) or 20 m (upper bound) at SST, with black x indicate heat added from 20 m surface layer;
e) freshwater fluxes: blue - from A3 only; red including $800-1000 \mathrm{~km}^{3}$ (lower and upper bounds) correction for stratification and ACC;
g) to 2011, transport attributable to NCEP wind (heading 330°, i.e., northwestward) at each of 4 points (coloured X in Figure 1) and the average thereof (black); and
h) to 2011, transport attributable to the pressurehead term from the annual (black) or weekly (green) fits.
Uncertainties are order 10-20\%. Red lines on (g)
(e) and (h) indicate best fit for 2001-2011 (trends=m $\pm e r r o r$, in Sv/yr, error being the 95\% confidence limit from a 1 -sided Student's t-test).

International links: Maintaining the time-series measurements in Bering is important to several national and international programs, e.g., the Arctic Observing Network (AON), started as part of the International Polar Year (IPY) effort; NSF's Freshwater Initiative (FWI) and Arctic Model Intercomparison Project (AOMIP), and the international Arctic SubArctic Ocean Fluxes (ASOF) program. For several years, the work was part of the RUSALCA (Russian-US Long Term Census of the Arctic). Some of the CTD lines are part of the international Distributed Biological Observatory (DBO) effort. The mooring work also supports regional studies in the area, by providing key boundary conditions for the Chukchi Shelf/Beaufort Sea region; a measure of integrated change in the Bering Sea, and an indicator of the role of Pacific Waters in the Arctic Ocean.

SCIENCE GOALS FOR THE 2015 BERING STRAIT MOORING CRUISE

Figure 3 shows the locations of the moorings and the possible CTD sections for the 2015 cruise.
There are 3 moorings to be recovered, viz:

- moorings A2, A4, in the eastern channel of the Bering Strait; and
- mooring A3, ~ 35nm north of the strait.

To provide an in situ test of the moorings to be recovered, we would like to take a CTD cast at each mooring site sometime before the mooring is recovered. (This may be immediately before recovery, or some time before recovery.)

There are 3 moorings to be deployed, viz:

- mooring A3, ~ 35nm north of the strait; and
- moorings A2 and A4 in the eastern channel of the Bering Strait.

Again, to provide an in situ test, we would like to take a CTD cast at each site post deployment.
Once mooring operations are complete, we will sample as many CTD lines as possible in the remaining time. These CTD lines are taking profile data only, i.e., there is no rosette and no water samples will be taken.

Summary of CTD lines.

CTD lines will be run as time and weather allow, and will likely be taken from the following set of historic lines which have been run several times in the past. The order and direction of the lines may change, and new lines may be introduced, as dictated by science, weather or timing needs. Some lines may be repeated during the cruise. All sections are confined to US waters.
All positions are given in an Appendix.
Highest priority lines
BS - the main Bering Strait line, providing a context for the in-strait moorings, run every year since 2000. Often occupied more than once in a cruise.

AL - from the mooring site A3, to where the main channel of the strait shallows on the eastern (US) side, providing a context for mooring A3. Also sometimes repeated during a cruise.
Other lines (in no priority order)
CS - a cross strait line, from the central Chukchi DBO site to Point Hope.
DL - a high resolution line running north from the Diomede Islands to study an hypothesized eddy and mixing region north of the islands. Often repeated during a cruise.
DLA and DLB - two high resolution lines offset $\sim 2 n m$ from DL to provide a mapping of the hypothesized eddy and mixing region north of the islands.
AS - a section across the Alaskan Coastal Current towards the central Chukchi (rarely run).
LIS - from Cape Lisburne towards the WNW, a previous RUSALCA line and close to the CP line occupied in previous Bering Strait cruises in 2003, 2004. LIS has been occupied in 2011, 2012, 2013.
CCL - a line running down the convention line from the end of the LIS line towards the Diomedes (also run in 2003, 2004 and 2011, 2012, 2013), incorporating a rerun of the high resolution DI line at the southern end.
NBS - a high resolution line run across the northern part of the strait crossing the northward branch of the ACC.
MBS - a high resolution line run across the middle part of the strait crossing the northward branch of the ACC.

Figure 3: Bering Strait 2015 Plan: Black dots with blue centers - moorings to be recovered and redeployed (A2, A3, A4). Red dots - historic CTD stations. Depth contours every 10 m from the International Bathymetric Chart of the Arctic Ocean [Jakobsson et al., 2000].

Figure 4: Bering Strait 2015 Plan with key distances in nautical miles (nm)

BS11-DL1=1nm
BS11 - MBSn1 $=4 \mathrm{~nm}$
BS11 - MBSn8 $=21 \mathrm{~nm}$
BS11 - NBS1 $=12 \mathrm{~nm}$
BS11 - NBS9 $=28 \mathrm{~nm}$
BS11-A3 $=31 \mathrm{~nm}$
BS11-Al24 $=45 \mathrm{~nm}$
BS11-AS1 $=62 \mathrm{~nm}$
BS11-CS10 $=110 \mathrm{~nm}$
BS11-CS18 $=158 \mathrm{~nm}$
BS11-CCL22 $=193 \mathrm{~nm}$

MBSn1-NBS1 = 8nm

A3 - MBSn1	$=27 \mathrm{~nm}$
A3 - NBS1	$=20 \mathrm{~nm}$
A3-AS1	$=38 \mathrm{~nm}$
A3-CS10	$=79 \mathrm{~nm}$
A3-CS18	$=128 \mathrm{~nm}$
A3-LIS1	$=167 \mathrm{~nm}$
A3-CCL22	$=161 \mathrm{~nm}$
CS10 - AL24	$=73 \mathrm{~nm}$
CS10 - LIS1	$=96 \mathrm{~nm}$
CS10 - CCL22	$=82 \mathrm{~nm}$

BERING STRAIT 2015 SCIENCE PARTICIPANTS

1. Rebecca Woodgate (F) UW
2. Jim Johnson (M)
3. Robert Daniels (M)
4. Max Showalter (M)
5. An Nguyen (F)
6. Kate Stafford (F)
7. Melania Guerra (F) UW
8. Maggie Buktenica (F) OSU

Chief Scientist and UW PI
UW Mooring lead
UW Undergrad-student
UW Grad-student
MIT Co-PI
UW Co-PI Marine Mammal moorings/observations
UW Postdoc Marine Mammal moorings/observations OSU Grad-student, Ocean Acidification moorings

UW - University of Washington, US
MIT - Massachusetts Institute of Technology, US
OSU - Oregon State University, US

Dietary/Allergy issues:

Daniels = vegetarian
Stafford = vegetarian
Buktenica $=$ vegetarian

EMERGENCY CONTACTS:

UW:

Pascal Schuback, International Travel Security Manager, Tel: 206-616-7927, Email: schuback@uw.edu Dian Gay, APL Director of Resources, Tel: 206-543-1525, Email: dian@apl.washington.edu

CPS

CPS Main Office for Alaska Operations, Tel: 907-455-4214 (24hr paging service)
Anna Schemper, Cell: 907-978-1110, Email: anna@polarfield.com
Marin Kulzenga, Cell: 907-590-0755, Email: marin@polarfield.com
Elizabeth Kendal, Satellite Phones and Comms, Cell: 650-906-6982, Email: Elizabeth.Kendall@sri.com
Kim Derry, Remote Medical, Cell: 303-349-6382, Email: kim@polarfield.com

BERING STRAIT 2015 PRELIMINARY CRUISE SCHEDULE

Saturday $27^{\text {th }}$ June 2015 Science Party arrives in Nome.
Sunday $28^{\text {th }}$ June 2015 onwards Science Party preps mooring gear in Nome at Northland Services
Wednesday $1^{\text {st }}$ July $2015 \quad$ Ship in Nome ?time? On load, sail by afternoon/evening
Likely order of work: Mooring operations (~1-3 days + weather + issues)

- Recover all moorings (dragging if necessary), with CTD casts pre recovery (likely order A4CTD, A4 recovery, A2CTD, A2 recovery, A3CTD, A3 recovery)
- Deploy all moorings, with CTD casts post deployment (likely order A3, A2, A4)
CTD sections (rest of time)
- CTD starting with BS line

Thursday $9^{\text {th }}$ July $2015 \quad$ Ship arrives Nome, off-load, clear ship by ?time? afternoon?
Thursday 9th $^{\text {th }}$ July 2015
Science party leaves Nome on the 8:29pm Alaska Air flight.

MOORING SCHEMATICS

(see appendix for positions and larger figures)

RECOVERIES

= in the eastern channel of the Bering Strait

DEPLOYMENTS

(Full sized copies at end of document)

MOORING OPERATIONS

We anticipate mooring operations proceeding as last year (see 2014 cruise report at http://psc.apl.washington.edu/BeringStrait.html). All moorings carry acoustic releases which, on command, separate the mooring instruments from the anchor, allowing the mooring instruments to rise to the surface for recovery. If the acoustic release fails to release the mooring, then dragging operations will be required. We understand the Norseman II is providing dragging grapples, etc., for such operations.

Recovered moorings also contain instrumentation from Terry Whitledge, UAF.

CTD OPERATIONS

The CTD system to be used in 2015 is the same as that used in 2014. There is no water sampling rosette on this system. Indeed, no water samples will be taken during the cruise. The 2015 CTD package contains the following items:

- one Seabird SBE9+ instrument with pressure sensor (SN5915)
- two Seabird SBE3 temperature sensors (SN0843, SN0844)
- two Seabird SBE4 conductivity sensors (SN0484, SN0485)
- two Seabird SBE43 oxygen sensors (SN1753, SN1754)
- one Wetlabs FLNTURT fluoresence/turbidity sensor (SN1622)
- one Benthos Altimeter (SN50485)
- two Seabird pumps (SN0340, SN5236)
- one EG\&G (ORE Offshore) Model D-CAT transponder (SN31892)

This is all housed in one frame, and will be connected to the new conducting cable winch on the Norseman II.

Once mooring work is completed, we would like to work 24 hr CTD operations (weather permitting). Since there is no water sampling, we would like the Norseman II to provide all the manning necessary on deck for deployment and recovery of the CTD. The Science party will provide 24 hr CTD console driving personnel (1 person per shift).

MARINE MAMMAL WATCH

When the marine mammal personnel are not engaged in mooring activities, they would like to maintain a bridge watch for marine life.

HAZMAT

None

OTHER POSSIBLE OPERATIONS

1) Glider deployment. Via a collaboration with Peter Winsor and Mark Baumgartner, Kate Stafford may wish to deploy a glider near A3 or CS10. The operation would consist of putting the glider over the side. No follow-up is required. This operation is still to be confirmed, and relies on several things, including the glider reaching Nome in a timely manner
2) Ocean Acidification water sampling at mooring site A4. Discussions are still on-going concerning the possible collection of a few water samples at moorings site A4, as calibration for moored ocean acidification sensors from OSU.

ISSUES STILL TO BE RESOLVED

Berthing - Woodgate to discuss with ship.
Planned time of arrival of ship into Nome at the start of the cruise (weather and schedule permitting) Planned time of science clearing the ship in Nome at the end of the cruise.

APPENDIX - POSITION INFORMATION FOR BERING STRAIT 2015 CRUISE

```
%============================================================
% Stations for BStrait Mooring Cruise 2015 NorsemanII
%============================================================
%
% US-Russian convention line is at 168deg 58.7'W.
% All stations in this file are in US waters.
% (Let me know if any points are too close to border for you.)
%
% Time estimates are based on the 2013 NorsemanII cruise.
%===========================================================
%
%============================================================
% ***** MOORING POSITIONS
```



```
% In likely order of servicing, i.e.,
% - recoveries from east to west in strait, then northern site;
% - deployments northern site, the west to east in strait.
% == 3 moorings to recover
% == 3 moorings to deploy
%--------------------------------------------
% RECOVERIES of moorings deployed in 2014
%---------------------------------------------
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \%NAME & \multicolumn{2}{|l|}{Lat (N)} & \multicolumn{2}{|r|}{Long (W)} & Water & Top \\
\hline \% & & min & & min & depth & Float \\
\hline \% A3-14 & 66 & 19.59 & 168 & 57.06 & 58 m & 15 m \\
\hline \% A2-14 & 65 & 46.85 & 168 & 34.09 & 56 m & 15 m \\
\hline \% A4-14 & 65 & 44.72 & 168 & 15.82 & 49 m & 15 m \\
\hline
\end{tabular}
%---------------------------------
% DEPLOYMENTS for this 2015 cruise
%---------------------------------
% Target same as 2012 positions.
\begin{tabular}{|c|c|c|c|}
\hline \%NAME & Lat (N) & Long (W) & Wate \\
\hline \% & deg min & deg min & depth \\
\hline \% A3-15 & 6619.61 & 16857.05 & 58 m \\
\hline \% A2-15 & 6546.86 & 16834.07 & 56 m \\
\hline \% A4-15 & 6544.75 & 16815.77 & 49 m \\
\hline
\end{tabular}
%
%------------------------
% INTERMOORING DISTANCES
%-----------------------
% A2 - A4 ~ 8nm
%------------
% To A3 from
%------------
% A2 - 34nm
% A4 - 39nm
%-------------
% To Nome from
%-------------
% A4 - 120nm
% CS1 - 200-220nm
```



```
%
```



```
% ***** HISTORIC CTD SECTIONS *****
%============================================================
There are 11 historic CTD lines here.
We may not have time for all of these, in which case
we will do a subset. But I've included
them all, so you have the positions in advance.
If operations/science dictate, then there
might be different lines proposed while at sea.
Naming is based on historic data.
"+net" also refers to historic operations and
is not relevant for this cruise.
"no bottles" refers to historic operations and
is not relevant for this cruise. (No bottles
will be taken on any CTD casts of the 2015 cruise.)
Known Hazards are indicated.
Stay a safe distance (300m?) from all deployed
moorings.
Except for around moorings or for mooring work,
within 200m is ok for positions.
%
%======================================
BS = Bering Strait Line (US portion)
%=====================================
- 15 stations
    - station spacing generally ~ 2nm
    Distances: - BS11-BS22 21.7nm
                            - BS22-BS24 3.1nm
    Total length 24.8nm
%--
Time from NorsemanII, 6 hrs running W, 5 hrs running E
Time from Khromov 10.5hrs
%------------------------------------------------------
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \% Lat (N) & Long (W) & Lat (N) & Long & (W) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Name}} \\
\hline \% & & deg min & deg & min & & \\
\hline 65.805 & 168.933 & 6548.31 & 168 & 55.96 & \% BS11 & \\
\hline 65.788 & 168.860 & 6547.26 & 168 & 51.62 & \% BS12 & \\
\hline 65.772 & 168.794 & 6546.33 & 168 & 47.64 & \% BS13 & \\
\hline 65.755 & 168.721 & 6545.28 & 168 & 43.29 & \% BS14 & \\
\hline 65.739 & 168.663 & 6544.35 & 168 & 39.80 & \% BS15 & \\
\hline 65.722 & 168.591 & 6543.29 & 168 & 35.46 & \% BS16 & + net \\
\hline 65.704 & 168.521 & 6542.23 & 168 & 31.28 & \% BS17 & \\
\hline 65.695 & 168486 & 6541.70 & 168 & 29.16 & \% BS17S & \\
\hline 65.686 & 168.449 & 6541.18 & 168 & 26.94 & \% BS18 & \\
\hline 65.672 & 168.391 & 6540.35 & 168 & 23.44 & \% BS19 & \\
\hline 65.655 & 168.318 & 6539.29 & 168 & 19.09 & \% BS20 & \\
\hline 65.642 & 168.250 & 6538.53 & 168 & 14.97 & \% BS21 & \\
\hline 65.625 & 168.177 & \(65 \quad 37.48\) & 168 & 10.63 & \% BS22 & + net \\
\hline 65.599 & 168.161 & \(65 \quad 35.96\) & 168 & 9.66 & - BS23 & \\
\hline 65.582 & 168.117 & 6534.91 & 168 & 7.00 & \% BS24 & \\
\hline
\end{tabular}
```

```
%
%This might also be run at the extra high resolution
% of 2014, viz:
\begin{tabular}{llllll}
65.805 & 168.933 & 65 & 48.31168 & \(55.96 \%\) & BS11 \\
65.797 & 168.897 & 65 & 47.79168 & \(53.79 \%\) & BS11J Jim \\
65.788 & 168.86 & 65 & 47.26168 & \(51.62 \%\) & BS12 \\
65.780 & 168.827 & 65 & 46.8168 & \(49.63 \%\) & BS12AJ \\
65.772 & 168.794 & 65 & 46.33168 & \(47.64 \%\) & BS13 \\
65.764 & 168.758 & 65 & 45.81168 & \(45.47 \%\) & BS13Z Zack \\
65.755 & 168.721 & 65 & 45.28168 & \(43.29 \%\) & BS14 \\
65.747 & 168.692 & 65 & 44.82168 & \(41.55 \%\) & BS14J Jorin \\
65.739 & 168.663 & 65 & 44.35168 & \(39.8 \%\) & BS15 \\
65.731 & 168.627 & 65 & 43.82168 & \(37.63 \%\) & BS15J Jack \\
65.722 & 168.591 & 65 & 43.29168 & \(35.46 \%\) & BS16 \\
65.713 & 168.556 & 65 & 42.76168 & \(33.37 \%\) & BS16J Jim \\
65.704 & 168.521 & 65 & 42.23168 & \(31.28 \%\) & BS17 \\
65.695 & 168.486 & 65 & 41.7168 & \(29.16 \%\) & BS17S Scotty \\
65.686 & 168.449 & 65 & 41.18168 & \(26.94 \%\) & BS18 \\
65.679 & 168.42 & 65 & 40.77168 & \(25.19 \%\) & BS18J Joanne \\
65.672 & 168.391 & 65 & 40.35168 & \(23.44 \%\) & BS19 \\
65.664 & 168.355 & 65 & 39.82168 & \(21.27 \%\) & BS19H Harry \\
65.655 & 168.318 & 65 & 39.29168 & \(19.09 \%\) & BS20 \\
65.649 & 168.284 & 65 & 38.91168 & \(17.03 \%\) & BS20J John \\
65.642 & 168.25 & 65 & 38.53168 & \(14.97 \%\) & BS21 \\
65.634 & 168.214 & 65 & 38.01168 & \(12.8 \%\) & BS21AAndy \\
65.625 & 168.177 & 65 & 37.48168 & \(10.63 \%\) & BS22 \\
65.599 & 168.161 & 65 & 35.96168 & \(9.66 \%\) & BS23 \\
65.582 & 168.117 & 65 & 34.91168 & 7 & \(\%\) \\
BS24
\end{tabular}
%
%
%===========================
% AL = A3 Line (US portion)
%===========================
% Hazards on this line:
% == First station on this line is at mooring A3-15, so exact
% position needs to be altered to be a safe distance (300m?)
% from mooring A3-15 site.
%------------------------------------------------------------
% - 13 stations including cast at A3mooring site
% - station spacing ~ 1.9nm
% Distance: - A3 to AL24 = 22.2nm
% --
% Time from NorsemanII ~5.5hrs
% Time from Khromov ~9hrs
%--------------------------------------------------------------
% Lat (N) Long (W) Lat (N) Long (W) Name
%
    deg min deg min
    66.327 168.951 66 19.61 168 57.05 % A3-14
% *** Adjust this first position to be safe distance (300m?) from A3-15
    66.340 168.895 66 20.39 168 53.71 % AL13
    66.352 168.823 66 21.09 168 49.40 % AL14
    66.363 168.752 66 21.80 168 45.09 % AL15
    66.375 168.680 66 22.51 168 40.78 % AL16
    66.387 168.608 66 23.21 168 36.47 % AL17 + net
```



```
%===================================================
% DL = Diomede Line (US only, 1nm east of border)
%===================================================
% This line is to map eddying area north of the Diomedes
% - 19 stations
% - station spacing ~ 1nm in South,
% ~ 2.5nm in north
% Distance: - DL1 to DL19 28.7nm
%--
% Time from NorsemanII - 5.5 hrs running N; 9hrs running S
% Time from Khromov to DL19 ~10hrs
%-----------------------------------------------------------
```



```
% DL A and B lines (Diomede A and B lines)
```



```
% These lines, with DL, form a grid to map
% eddying N of the Diomedes.
% - each line 12 stations
% - station spacing ~ 1nm
% Distances: - each line ~ 11nm
%--
% Estimate for NorsmanII for each line ~3.5hrs
% Time from Khromov for each line ~5hrs
%----------------------------------------------
\begin{tabular}{llllllll}
\(\%\) & Lat (N) & Long & (W) & Name \\
\(\%\) & deg min & deg & min & & \\
\(\%\) & Northbound leg & & & & \\
0 & 0 & 65 & 49.30 & 168 & 52.2 & \(\%\) & DLa \\
0 & 0 & 65 & 50.27 & 168 & 52.2 & \(\%\) & DLa \\
0 & 2 \\
0 & 0 & 65 & 51.25 & 168 & 52.2 & \(\%\) & DLa \\
0 & 0 & 65 & 52.22 & 168 & 52.2 & \(\%\) & DLa
\end{tabular}
```



```
% SCH13 68 2.002N 168 50.028W
%---------------------------------------------
% Line running from northern most point
% due south, ~ 1nm US side of conventionline
% - 20 stations (counting arriving at A3-14)
% - station spacing ~ 10nm until CCL8,
% then reducing to ~5nm and ~2.5nm
% Distances: - CCL22 to A3-13 ~ 161nm
%--
% Time from NorsemanII, 21.5hrs
% Time from Khromov ~26hrs
```



```
0 0 67 30.0 168 56.0 % CCL13
0 0 67 20.0 168 56.0 % CCL12
0 0 67 10.0 168 56.0 % CCL11
0 0 67 00.0 168 56.0 % CCL10 + Net
0 0 66 50.0 168 56.0 % CCL9
0 0 66 40.0 168 56.0 % CCL8
% - spacing now 5nm
0 66 35.0 168 56.0 % CCL7
0 66 30.0 168 56.0 % CCL6
0 66 25.0 168 56.0 % CCL5
% - spacing now 2.5nm
0 0 66 22.3 168 56.0 % CCL4
0 0 66 19.61 168 57.05 % A3-13
% *** Adjust this position to be safe distance (300m?) from A3-13
%
%
%==========================================
% NBS - North Bering Strait line
%==========================================
% Hazards on this line:
% == Section crosses shallow waters.
% Beware of shallows from NBS9 and eastwards.
% (Helix diverted N to avoid shallows between
% stations NBS10 and NBS11)
% == Consider terminating line at NBS9
%--------------------------------------------
% Another cross strait line, run previously
% at lower resolution (i.e. without the 0.5 stations).
% - stations 9 (NBS1-9) to 16 (NBS1-9 with 0.5s)
```

```
% to 21 (full section, including shallows).
% - station spacing (with 0.5s) ~ 1.7nm
% Distance: - NBS1-9 25.8nm
% - NBS1-14 44.1nm
%--
% Time from Helix to NBS9, 9 casts ~5.5hrs
% - Estimate for NorsemanII to NBS9, 9 casts, 6hrs
% - Estimate for NorsemanII to NBS9, 16 casts, 7.5hrs
% - Estimate Khromov to NBS9, 9 casts ~6.5hrs
% - Estimate Khromo to NBS9, 16 casts ~8hrs
% Time from Helix to NBS14, 14 casts ~8.5hrs
% - Estimate for NorsemanII to NBS14, 14 casts, 9hrs
% - Esimate for NorsemanII to NSB14, 21 casts, 10.5hrs
% - Estimate Khromov to NBS14, 14 casts ~1Ohrs
% - Estimate Khromov to NBS14, 21 casts ~13hrs
lol----------------------------------------
% llcremin deg min
0 0 66 0.0 168 53.0 % NBS1.5
0 0 66 0.0 168 49.9 % NBS2
0 06 0.0 168 45.8 % NBS2.5
0 0 66 0.0 168 41.6 % NBS3
0 0 66 0.0 168 37.4 % NBS3.5
0 0 66 0.0 168 33.2 % NBS4
0 0 66 0.0 168 29.1 % NBS4.5
0 0 66 0.0 168 25.0 % NBS5
0 0 66 0.0 168 20.7 % NBS5.5
0 0 66 0.0 168 16.4 % NBS6
0 06 0.0 0.0 168 12.4 % NBS6.5
0 0 66 0.0 168 8.4 % NBS7
0 0 66 0.0 168 4.2 % NBS7.5
00 66 0.0 168 0.0 % NBS8 - 34m water
0066 0.0 167 55.1 % NBS9 - 20m water
% (consider terminating line here)
0 66 0.0 167 52.0 % NBS10 - 12m water
% (Helix diverted N to avoid shallows between these stations)
0 06 0.0 167 40.1 % NBS11 - 15m water
0066 0.0 167 29.1 % NBS12 - 18m water
0 06 0.0 167 18.1 % NBS13 - 13m water
0 66 0.0 167 10.2 % NBS14 - 10m water
%
%
```

```
%======================================
% MBSn = Mid Bering Strait line (new)
%=====================================
% Just north of the Bering Strait line
% - 14 stations
% - station spacing 1.7nm, less near coast
% Distance: - 21.0nm total
%--
% Time from Helix (8casts only) ~2.5hrs
% - Estimate NorsemanII (8 casts only) ~ 4hrs
% - Estimate NorsemanII (14 casts) ~ 6hrs
% - Estimate Khromov (8casts only)~5.5hrs
% - Estimate Khromov (14casts) ~ 7hrs
%---------------------------------------
```


Deploy Date: 03 July 2014
Deploy Time : 0055 UTC
Recovery Date: \qquad
Recovery Time: \qquad

Bottom Depth: \square
56 m.
Anchor
Dry Wt. $=\underline{1700}_{\text {ibs }}$

MOORING ID:

ISCAT
SBE-37IM S/N 5472
Depth 16 m .
$1 / 4$ " Neilspin (Iscat \& Term.)
20 m . Wire rope (+1.2m)
$\longleftarrow 5 / 8^{\prime \prime}$ S.S. - Weak link
Corrected Depth: 48.5 m .
Bridge echosounder 45.5 m below keel

$$
+\frac{3.0 \mathrm{~m} \text { draft }}{48.5 \mathrm{~m}}
$$

Bridge position $65^{\circ} 44.749 \mathrm{~N}$.
$168^{\circ} 15.777 \mathrm{~W}$. (58m away)

Deploy Date: 03 July 2014 Deploy Time : 0226 UTC

Recovery Date: \qquad Recovery Time: \qquad

Bottom Depth:
: \qquad

« 1/2"S.S. - 1/2" Galv.
« Aural M2 (1.8m) Recorder S/N 0234LF
Depth 44 m .
$\longleftarrow 1 / 2 "$ S.S. $-1 / 2 "$ Galv.
$\longleftarrow 1 / 2$ " Galv. - 1/2" Galv. EG\&G 824

Disable $\frac{566620}{56620}$
Release 544323
Int. 11.5 KHZ
Reply $\mathbf{1 0 . 0} \mathrm{KHZ}$
5/8" Galv.
$\longleftarrow 1 m$ Chain (Long Link)
๒ $1 / 2^{\prime \prime}$ Galv. - $1 / 2^{\prime \prime}$ Galv.
Anchor
Dry Wt. $=\underline{1700}_{\text {Iss. }}$

REFERENCES

Aagaard, K., and E. C. Carmack (1989), The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94(C10), 14485-14498.
De Boer, A. M., and D. Nof (2004), The Bering Strait's grip on the northern hemisphere climate, DeepSea Res., Part I, 51(10), 1347-1366, doi: 10.1016/j.dsr.2004.05.003.
Jakobsson, M., C.Norman, J.Woodward, R. MacNab, and B.Coakley (2000), New grid of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96.
Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky (2006), Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, Geophys. Res. Lett., 33, L08605, doi: 10.1029/2005GL025624.
Wadley, M. R., and G. R. Bigg (2002), Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: an ocean modelling study, Quarterly Journal of the Royal Meteorological Society, 128(585), 2187-2203.
Walsh, J. J., et al. (1989), Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean, Prog. Oceanogr., 22(4), 277-259, doi: 10.1016/0079-661(89)90006-2.
Woodgate, R. A., and K. Aagaard (2005), Revising the Bering Strait freshwater flux into the Arctic Ocean, Geophys. Res. Lett., 32(2), L02602, doi: 10.1029/2004GL021747.
Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2005a), A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990-1991, Deep-Sea Res., Part II, 52(24-26), 3116-3149, doi: 10.1016/j.dsr2.2005.10.016.
Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2005b), Monthly temperature, salinity, and transport variability of the Bering Strait throughflow, Geophys. Res. Lett., 32(4), L04601, doi: 10.1029/2004GL021880.

Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2006), Interannual Changes in the Bering Strait Fluxes of Volume, Heat and Freshwater between 1991 and 2004, Geophys. Res. Lett., 33, L15609, doi: 10.1029/2006GL026931.
Woodgate, R. A., T. J. Weingartner, and R. W. Lindsay (2010), The 2007 Bering Strait Oceanic Heat Flux and anomalous Arctic Sea-ice Retreat, Geophys. Res. Lett., 37, L01602, doi: 10.1029/2009GL041621.

Woodgate, R. A., T. J. Weingartner, and R. Lindsay (2012), Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39(24), 6, doi: 10.1029/2012gl054092.
Woodgate, R. A., K. M. Stafford, and F. G. Prahl (submitted), A Synthesis of Year-round Interdisciplinary Mooring Measurements in the Bering Strait (1990-2014) and the RUSALCA years (2004-2011), submitted to Oceanography, Februrary 2015, available at http://psc.apl.washington.edu/BeringStrait.html.

