
Chapter 6

Bernoulli’s equation
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In section (5.4) we obtained the momentum equation for ideal fluids (i.e. inviscid and with
constant density) in the form

∂u

∂t
− u× ω +∇

(
1

2
‖u‖2

)

= −∇

(
p

ρ

)

+ g.

So, since the constant gravity g = ∇(g · x), one has

∂u

∂t
− u× ω +∇H = 0, (6.1)

where

H(x, t) =
p

ρ
+

1

2
‖u‖2 − g · x (6.2)

is called the Bernoulli function.1

6.1 Bernoulli’s theorem for steady flows

In the case of steady flows, i.e. when ∂u/∂t = 0, taking the scalar product of equation (6.1)
with the fluid velocity, u, gives the Bernoulli equation

(u · ∇)H = 0, (6.3)

since u · (u× ω) ≡ 0.

Hence, for an ideal fluid in steady flow,

H(x) =
p

ρ
+

1

2
‖u‖2 − g · x (6.4)

is constant along a streamline.

1Not to be mistaken for Bernoulli’s polynomials.
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48 6.1 Bernoulli’s theorem for steady flows

So, if a streamfunction ψ(x) can be defined, H is a function of ψ (H(x) ≡ H(ψ)).

Example 6.1 (The Venturi effect.)
Consider a flow through a narrow constriction of cross-section area A2; upstream and down-
stream the cross-sectional area is A1.

h1

h2

h3

A1

S1

S2

A2

A1

S3
V1

(a)

(b)

(c)

(Three narrow vertical tubes, (a), (b) and (c), are used to measure the pressure at different
points.)

The fluid velocity is assumed inform on cross sections, S. Upstream the fluid velocity is V1.

Mass conservation implies

∫

S
ρu · n dS = constant for any cross-section S, so

∫

S1

ρu · n dS =

∫

S2

ρu · n dS ⇒

∫

S1

u · n dS =

∫

S2

u · n dS (ρ = constant),

⇒ A1V1 = A2V2 ⇒ V2 =
A1

A2

V1 > V1 (since A1 > A2).

Neglecting gravity, we apply Bernoulli’s equation to any streamline,

p1
ρ

+
1

2
V 2
1 =

p2
ρ

+
1

2
V 2
2 ⇒ p2 = p1 −

ρ

2

(
V 2
2 − V 2

1

)
,

⇒ p2 = p1 −
ρV 2

1

2A2
2

(
A2

1 −A2
2

)
< p1.

Thus, in the constriction the speed of the flow increases (conservation of mass) and its pressure
decreases (Bernoulli’s equation).

This can be measured by the thin tubes where there is fluid but no flow (i.e. fluid in hydrostatic
equilibrium). If h1 is the height of fluid in the tube (a) then

p1 = p0 + ρgh1 (p0 ≡ patm).

If h2 is the height of fluid in the tube (b) then

p2 = p0 + ρgh2 ⇒ h2 =
p2 − p0
ρg

=
p1 − p0
ρg

−
V 2
1

2gA2
2

(
A2

1 −A2
2

)
,

⇒ h2 = h1 −
V 2
1

2gA2
2

(
A2

1 −A2
2

)
< h1.

In tube (c), V3 = V1 since A3 = A1 (mass conservation). So, Bernoulli’s equation gives

p3 +
1

2
ρV 2

3 = p1 +
1

2
ρV 2

1 ⇒ p3 = p1,

and so h3 = h1. (In practice, h3 will be slightly less than h1 due to viscosity but the effect is
small.)
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Example 6.2 (Flow down a barrel.)
How fast does fluid flow out of a barrel?

A(h) g

U

h

a

z

0

Let h be the height of fluid level in the barrel above the outlet, which has cross-sectional area
a. If a≪ A(h), then the flow can be treated as approximately steady.

Mass conservation: −A
dh

dt
= aU (with U > 0). So, if a≪ A then

∣
∣
∣
∣

dh

dt

∣
∣
∣
∣
≪ |U |.

Bernoulli’s theorem: consider a streamline from the surface of the fluid to the outlet,

p+
1

2
ρ‖u‖2 + ρgz = const.

At z = 0: p = patm and u = U ; at z = h: p = patm and u =
dh

dt
. So,

patm +
1

2
ρU2 = patm +

1

2
ρ

(
dh

dt

)2

+ ρgh,

⇒ U2 =

(
dh

dt

)2

+ 2gh⇒ U ≃
√

2gh since

∣
∣
∣
∣

dh

dt

∣
∣
∣
∣
≪ |U |.

We could have guessed this result from conservation of energy

with KE ≃ 0 and PE = ρgh at z = h

and KE =
1

2
ρU2 and PE = 0 at z = 0

}

⇒
1

2
ρU2 ≃ ρgh.

Example 6.3 (Siphon.)
A technique for removing fluid from one vessel to another without pouring is to use a siphon
tube.

z

0

C

B

L

H

A

g
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To start the siphon we need to fill the tube with fluid, but once it is going, the fluid will
continue to flow from the upper to the lower container.

In order to calculate the flow rate, we can use Bernoulli’s equation along a streamline from
the surface to the exit of the pipe.

At point A: p = patm, z = 0. We shall assume that the container’s cross-sectional area is
much larger than that of the pipe. So, UA ≃ 0 (from mass conservation; see example 6.2
−A dh/dt = aU).

At point C: p = patm, z = −H, u = Uc ≡ U .

Bernoulli’s equation:

patm
ρ

+
1

2
U2
A

≃ 0

=
patm
ρ

+
1

2
U2 − gH ⇒ U ≃

√

2gH.

If B is the highest point: (UB = UC ≡ U from mass conservation)

pB
ρ

+
1

2
U2 + gL =

patm
ρ

+
1

2
U2 − gH ⇒ pB = patm − ρg(L+H) < patm.

For pB > 0, we need H + L <
patm
ρg

≈
105

103 × 10
= 10m.

6.2 Bernoulli’s theorem for potential flows

In this section we shall extend Bernoulli’s theorem to the case of irrotational flows.

Recall that Euler’s equation can written in the form

∂u

∂t
− u× ω = −∇H where H(x, t) =

p

ρ
+

1

2
‖u‖2 − g · x.

If the fluid flow is irrotational, i.e. if ω = ∇ × u = 0, then u × ω = 0 and u = ∇φ; so, the
equation above becomes

∇

(
∂φ

∂t
+H

)

= 0,

since
∂u

∂t
=
∂∇φ

∂t
= ∇

(
∂φ

∂t

)

.

Thus, for irrotational flows,

∂φ

∂t
+H =

∂φ

∂t
+
p

ρ
+

1

2
‖∇φ‖2 − g · x ≡ f(t) (6.5)

is a function of time, independent of the position, x.

If, in addition, the flow is steady,

H =
p

ρ
+

1

2
‖∇φ‖2 − g · x, (6.6)

is constant; H has the same value on all streamlines.
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Example 6.4 (Shape of the free surface of a fluid near a rotating rod)
We consider a rod of radius a, rotating at constant angular velocity Ω, placed in a fluid.

Assuming a potential, axisymmetric and planar

fluid flow, (ur(r), uθ(r)) in cylindrical polar coor-
dinates, we wish to calculate the height of the free
surface of the fluid near to the rod, h(r). We also
assume that the solid rod is an impenetrable sur-
face on which the fluid does not slip, so that the
boundary conditions for the velocity field are

ur = 0 and uθ = aΩ at r = a.

h(r)

Ω

r

g

z

a

From mass conservation, one has

∇ · u =
1

r

d

dr
(rur) = 0 ⇔ ur(r) =

C

r
,

where C is a constant of integration. However, the boundary condition ur = C/a = 0 at r = a
implies that C = 0. So, ur = 0 and the fluid motion is purely azimuthal.
As we assume an irrotational flow,

∇× u =
1

r

d

dr
(ruθ) êz = 0 ⇔ uθ(r) =

k

r
,

where k is an integration constant to be determined using the second boundary condition. At
r = a, uθ = k/a = aΩ which implies that k = a2Ω. So, the fluid velocity near to the rod is

ur = 0 and uθ =
a2Ω

r
.

Notice that the velocity potential, function of θ, can be determined using

u = ∇φ⇒
1

r

dφ

dθ
=
a2Ω

r
⇒ φ(θ) = a2Ωθ.

By applying Bernoulli’s theorem for steady potential flows to the free surface (which is not a
streamline, as streamlines are circles about the rod axis) we obtain,

H =
patm
ρ

+
1

2
u2θ(r) + gh(r)

︸ ︷︷ ︸

near rod

=
patm
ρ

+ gh∞
︸ ︷︷ ︸

at large r

,

where the constant pressure p = patm is the atmo-
spheric pressure and lim

r→∞

h(r) = h∞. (Notice also

that uθ ∝ 1/r → 0 as r → ∞.)

Thus, the height of the free surface is

h(r) = h∞ −
1

2g
u2θ(r) = h∞ −

a4Ω2

2gr2
, (6.7)

which shows that the free surface dips as 1/r2 near
to the rotating rod.

h∞h(r)

∝ 1/r2

Alternatively, Euler’s equation could be solved directly (i.e. without involving Bernoulli’s
theorem) as in § 5.6 with an azimuthal flow, now potential, of the form uθ = a2Ω/r. We
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can then explain the result (6.7) in terms of centripetal acceleration; since the fluid particles
move in circles, there must be an inwards central force producing the necessary centripetal
acceleration (i.e. balancing the centrifugal force). Indeed, from the radial component of the
momentum equation, one has

−ρ
u2θ
r

= −
∂p

∂r
⇒

∂p

∂r
= ρ

a4Ω2

r3
.

However, since the fluid is in vertical hydrostatic equilibrium, the pressure satisfies

∂p

∂z
= −ρg ⇒ p(r, z) = patm − ρg(z − h(r)).

Hence, we have
∂p

∂r
= ρg

dh

dr
= ρ

a4Ω2

r3
⇒ h(r) = h∞ −

a4Ω2

2gr2
,

as in equation (6.7).

6.3 Drag force on a sphere

We wish to calculate the pressure force exerted by a steady fluid flow on a solid sphere.

ϕ

U

z

n r

θ

ra

In § 4.5.1 we obtained the velocity potential of a
uniform stream, U êz, past a stationary sphere of
radius a,

φ(r, z) = Uz

(

1 +
a3

2(r2 + z2)3/2

)

,

in cylindrical polar coordinates (r, θ, z). In spherical
polar coordinates, (r, θ, ϕ), this velocity potential
becomes

φ(r, θ) = U cos θ

(

r +
a3

2r2

)

. (6.8)

The non-zero components of the fluid velocity, u = ∇φ, are then

ur =
∂φ

∂r
= U cos θ

(

1−
a3

r3

)

and uθ =
1

r

∂φ

∂θ
= −U sin θ

(

1 +
a3

2r3

)

. (6.9)

Hence, at r = a, on the solid sphere’s surface, ur = 0 as required by the kinematic boundary
conditions and

uθ(θ)|r=a = −
3

2
U sin θ.

To express the pressure force on the sphere in terms of the fluid velocity, we use Bernoulli’s
theorem for steady potential flows, H = p/ρ+ ‖u‖2/2 = constant, ignoring gravity. At r = a
the fluid pressure, p(θ), therefore satisfies

p(θ)

ρ
+

1

2
u2θ
∣
∣
r=a

=
p∞
ρ

+
1

2
U2,

where p∞ is the pressure as r → ∞.
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Thus, the pressure distribution on the sphere is

p(θ) = p∞ +
1

2
ρU2

(

1−
9

4
sin2 θ

)

, (6.10)

and the total pressure force is the surface integral of p(θ) on the sphere r = a,

F = −

∫

S
pn dS = −

∫ π

0

∫ 2π

0

p(θ) êr a
2 sin θ dϕdθ, (6.11)

where êr = sin θ cosϕ êx + sin θ sinϕ êy + cos θ êz.
As the flow is axisymmetric, the only non-zero component of the force should be in the axial
direction, z. Indeed,

Fx = F · êx = −a2
∫ 2π

0

cosϕ dϕ

∫ π

0

p(θ) sin2 θ dθ = 0,

and

Fy = F · êy = −a2
∫ 2π

0

sinϕ dϕ

∫ π

0

p(θ) sin2 θ dθ = 0.

However, after substituting for p(θ) in

Fz = F · êz = −2πa2
∫ π

0

p(θ) sin θ cos θ dθ,

we find that

Fz = −2πa2
[(

p∞ +
1

2
ρU2

)∫ π

0

sin θ cos θ dθ −
9

8
ρU2

∫ π

0

sin3 θ cos θ dθ

]

= 0,

so that the total drag force on the sphere, due to the fluid flow around it, is zero!

D’Alembert’s paradox: it can be demonstrated that the drag force on any 3-D solid body
moving at uniform speed in a potential flow is zero (see, e.g., Paterson, § XI.9, p. 240).
This is not true in reality of course, as flows past 3-D solid bodies are not potential.

We can see why a potential flow past a sphere gives zero drag by looking at the streamlines.

U

S1 S2

low p

high phigh p

low p

The flow is clearly fore-aft symmetric (symmetry about z = 0); the front (S1) and the back
(S2) of the sphere are stagnation points at equal pressure, PS1

= PS2
= p∞ + 1

2
ρU2. At the

side, ur = 0 and u2θ > 0, so from Bernoulli’s theorem, the pressure there is lower than at
the stagnation points but it must have the same symmetry as the flow. Notice that, from
Bernoulli’s theorem, the pressure does not depend on the direction of the flow, but on its
speed ‖u‖ only.
However, the real flow past a sphere is not symmetric and, as a consequence, the fluid exerts

a net drag force on the sphere.
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6.4 Separation

The pressure distribution on the surface a solid sphere placed is a uniform stream,

p(θ) = p∞ +
1

2
ρU2

(

1−
9

4
sin2 θ

)

,

reaches its minimum, pmin = p∞ − 5/8 ρU2, at θ = ±π/2. So, the pressure gradient in the
direction of the flow, (u·∇)p, is a positive from θ = 0 to θ = ±π/2 and negative beyond.

(u·∇)p < 0

(u·∇)p < 0

U

(u·∇)p > 0

(u·∇)p > 0

pmin

pmax
U θ

pmin

pmax

An adverse pressure gradient, (u·∇)p > 0 (i.e. pressure
increasing in the direction of the flow along the surface),
is “bad news” and causes the flow to separate, leaving a
turbulent wake behind the sphere.
Very roughly one can estimate the pressure difference
upstream and downstream as 1/2 ρU2, so that the drag
force F ∝ 1/2 ρU2 × A, where A is the cross-sectional
area.
The ratio

CD =
F

1
2
ρU2A

(6.12)

is called drag coefficient and depends, e.g., on the shape
of the body (see Acheson §4.13, p. 150).

The way to reduce drag (i.e. resistance) is to reduce separation:

• Streamlining: separation occurs because of adverse pressure gradients on the surface of
solid bodies. These can be reduced by using more “streamlined” shapes, that avoid di-
verging streamlines (e.g., aerodynamic bike helmets (time trial cyclist), ships, aeroplanes
and cars).

• Surface roughness: paradoxically, a rough surface can reduce drag by reducing separa-
tion (e.g. dimple pattern of golf balls and shining of cricket ball on one side).



Chapter 6 – Bernoulli’s equation 55

6.5 Unsteady flows

6.5.1 Flows in pipes

In example 6.2 we consider a flow out of a barrel through a small hole. Now, consider a flow
out of a narrowing tube, opened to the atmosphere at both ends, where the exit is not much
smaller than the cross-section (i.e. the fluid flow cannot be assumed steady).

g
h(t)

z

a

A(h)

Let A(z) be the smoothly varying cross-sectional area of the pipe at height z, such that
A→ A∞ as z → ∞ and A(0) = a.

We assume that the flow is potential and purely in the z-direction, uz = ∂φ/∂z ≡ w.

By conservation of mass the volume flux, Q(t) = −w(z, t)A(z), must be independent of height.
Hence,

∂φ

∂z
= w(z, t) = −

Q(t)

A(z)
⇒ φ(z, t) = φ(0, t)−Q(t)

∫ z

0

dµ

A(µ)
.

(Note that we could set φ(0, t) = 0 without loss of generality.) Applying Bernoulli’s theorem
for potential flows, p/ρ+ ‖u‖2/2+∂φ/∂t−g ·x = F (t), at the free surface and the exit gives,

at z = 0,
patm
ρ

+
1

2

Q2(t)

a2
+

d

dt
φ(0, t) = F (t),

and at z = h,
patm
ρ

+
1

2

(
dh

dt

)2

+
d

dt
φ(0, t)−

dQ

dt

∫ h

0

dz

A(z)
+ gh = F (t).

Equating both expressions gives

1

2

[(
dh

dt

)2

−
Q2(t)

a2

]

−
dQ

dt

∫ h

0

dz

A(z)
+ gh = 0,

⇔
1

2

[

1−
A2(h)

a2

](
dh

dt

)2

+A(h)
d2h

dt2

∫ h

0

dz

A(z)
+ gh = 0 since Q(t) = −A(h)

dh

dt
.

The fluid height, h(t), is then solution to the nonlinear second order ordinary differential
equation

(

A(h)

∫ h

0

dz

A(z)

)
d2h

dt2
+

1

2

[

1−
A2(h)

a2

](
dh

dt

)2

+ gh = 0. (6.13)

Far from the exit this equation becomes approximately

hḧ+
1

2

(

1−
A2

∞

a2

)

ḣ2 + gh = 0,

since, as h→ ∞,

A(h) ∼ A∞ and

∫ h

0

dz

A(z)
∼

∫ h

0

dz

A∞

=
h

A∞

.
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Using the chain rule, ḧ = dḣ/dt = dḣ/dh dh/dt = ḣ dḣ/dh, one finds

hḣ
dḣ

dh
+

1

2

(

1−
A2

∞

a2

)

ḣ2 + gh = 0 ⇔
1

2

dḣ2

dh
+

1

2

(

1−
A2

∞

a2

)
ḣ2

h
+ g = 0

which can be written as a linear differential equation for Z = ḣ2/2,

dZ

dh
+

(

1−
A2

∞

a2

)
Z

h
+ g = 0.

6.5.2 Bubble oscillations

The sound of a “babbling brook” is due to the oscillation (compression/expansion) of air
bubbles entrained into the stream. The pitch of the sound depends on the size of the bubbles.

Consider a bubble of radius a(t); the velocity of the fluid at the bubble surface, ur =
da

dt
≡ ȧ.

a(t)

gas

liquid

We can model the oscillations of the bubble of air using a potential flow due to a point
source/sink of fluid at the centre of the bubble,

φ(r, t) = −
k(t)

r
⇒ ur =

∂φ

∂r
=

k

r2
.

The boundary condition at the bubble’s surface, r = a, is ur =
k

a2
= ȧ. So,

k = ȧa2 ⇒ ur =
ȧa2

r2
and φ = −

ȧa2

r
⇒

∂φ

∂t
= −

äa2

r
− 2

aȧ2

r

Applying Bernoulli’s theorem (ignoring gravity) as r → ∞,

p

ρ
+

1

2
‖∇φ‖2 +

∂φ

∂t
= F (t) =

p∞
ρ

(as r → ∞, φ→ 0 and ‖u‖ → 0: the fluid is stationary).

At the bubble’s surface,

p(a)

ρ
+

1

2
ȧ2 −

äa2

a
− 2

aȧ2

a
=
p(a)

ρ
− äa−

3

2
ȧ2 = F (t).

Combining the two expressions above, one gets

p(a)− p∞
ρ

= äa+
3

2
ȧ2, (6.14)

where p(a) is the fluid pressure at the bubble’s surface. Now, if the gas inside the bubble of
mass m is subject to adiabatic changes, its equation of state is

pg = Kργg where ρg =
3m

4πa3
,
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and K is a constant to determine — the adiabatic index γ depends on the gas considered.

Moreover, since the bubble of gas is in balance with the surrounding fluid, continuity of
pressure pg = p(a) must be satisfied at the surface r = a(t).

Now, for a bubble in equilibrium, such that a = a0 and ȧ = ä = 0, equation (6.14) gives
p = p∞ and, imposing pressure continuity pg = p at r = a0, one gets

pg = Kργg = K

(
3m

4πa30

)γ

= p∞ ⇒ K = p∞

(
4πa30
3m

)γ

.

So, pressure continuity at the bubble’s surface r = a(t) implies

p(a) = pg = Kργg = p∞

(
4πa30
3m

)γ (
3m

4πa3

)γ

= p∞

(a0
a

)3γ
.

Then, equation (6.14) becomes

p∞
ρ

(

a3γ0
a3γ

− 1

)

= äa+
3

2
ȧ2.

For small amplitude oscillations about the equilibrium a(t) = a0+ ǫ(t) where |ǫ| ≪ a0, so that
ȧ = ǫ̇, ä = ǫ̈ and ȧ2 = ǫ̇2 ≃ 0; the nonlinear terms are negligible at first approximation. Thus,

a0ǫ̈ =
p∞
ρ






a3γ0

a3γ0

(

1 + ǫ
a0

)3γ − 1




 ≃ −3γ

p∞
ρ

ǫ

a0
,

⇒ ǫ̈+
3γp∞
ρa20

ǫ = 0.

The bubble undergo periodic small amplitude oscillations with frequency ω =

(
3γp∞
ρa20

)1/2

.

Note that the frequency scales with the inverse of the (mean) radius of the bubbles. E.g. for
γ = 3/2, p∞ = 105 Pa and ρ = 103 kgm−3,

f =
ω

2π
=

1

2πa0

√
3γp∞
ρ

⇒ f × a0 ≃ 3 kHz mm.

For bubbles of size a0 = 0.2mm, f ≃ 15 kHz (G9).

6.6 Acceleration of a sphere

We have already shown that a sphere moving with a steady velocity under a potential flow
has no drag force. What about an accelerating sphere?

The velocity potential for a sphere of radius a moving with velocity U in still water is

φ = −
Ua3

2r2
cos θ.

(This flow satisfies the following boundary conditions: u = ∇φ → 0 as r → ∞ together with
ur = U cos θ êr at r = a.)
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Rather than calculating the pressure via Bernoulli’s theorem, we calculate the work done by
the forces acting on the sphere as it moves at speed U , function of time, through the fluid.

The total kinetic energy of the system sphere of mass m plus fluid is

T =
1

2
mU2 +

∫

V

1

2
ρ (∇φ)2 dV,

=
1

2
mU2 +

1

2
ρ

∫

V



∇·(φ∇φ)− φ∇2φ
︸︷︷︸

0



 dV, (using ∇·(fA) = A · ∇f + f∇·A)

=
1

2
mU2 +

1

2
ρ

∫

S
φ∇φ · n dS, by divergence theorem.

Here S is the surface of the sphere of radius a. So n = −êr and dS = a2 sin θ dθ dϕ, such that

T =
1

2
mU2 −

1

2
ρ

∫ π

0

φ|r=a
∂φ

∂r

∣
∣
∣
∣
r=a

2πa2 sin θ dθ,

=
1

2
mU2 +

πa3

2
ρU2

∫ π

0

cos2 θ sin θ dθ,

=
1

2
mU2 +

πa3

3
ρU2 since

∫ π

0

cos2 θ sin θ dθ = −
1

3

∫ π

0

d cos3 θ

dθ
dθ =

2

3
.

So T =
1

2
(m+M)U2, where M =

2

3
πa3ρ is called the added mass and represents the mass of

fluid that must be accelerated along with the sphere.

The rate of working of the forces F acting on the sphere equals the change of kinetic energy,

FU =
dT

dt
= (m+M)U

dU

dt
.

Hence, the force required to accelerate the sphere is given by

F = (m+M)
dU

dt
.

Thus, the acceleration of a bubble (mass m and radius a) rising under gravity (see §5.3 on
Archimedes theorem) satisfies

F =
4

3
πa3ρg
︸ ︷︷ ︸

buoyancy force

−mg
︸ ︷︷ ︸

weight

= (2M −m)g = (m+M)
dU

dt
,

⇒
dU

dt
=

2M −m

M +m
g =

4πa3ρ− 3m

2πa3ρ+ 3m
g.

As mass density is much less for a gas than for a liquid, we can assume
m≪M , so that

dU

dt
≃ 2g.

buoyancy

mg

z

Alternatively: Consider a bubble of mass m rising under gravity with speed U =
dz

dt
.
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z

U

t

At height z the potential energy is

V = mgz
︸︷︷︸

weight

−
4

3
πa3ρgz
︸ ︷︷ ︸

buoyancy

.

In absence of dissipative processes the total energy remains constant; hence,

T + V =
1

2
(m+M)U2 +mgz −

4

3
πa3ρgz = const.

Differentiating this expression with respect to time gives

(m+M)U
dU

dt
+

(

m−
4

3
πa3ρ

)

gU = 0,

⇒
dU

dt
=

2M −m

M +m
g =

4πa3ρ− 3m

2πa3ρ+ 3m
g.

Again, for a bubble of gas in a liquid M ≫ m, so
dU

dt
≃ 2g; the bubble accelerates at twice

the gravitational acceleration.
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