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Abstract

Though there have been extensive works on best constants for Moser-Trudinger inequalities
in Euclidean spaces, Heisenberg groups or compact Riemannian manifolds, much less is
known for sharp constants for the Moser-Trudinger inequalities on hyperbolic spaces. Ear-
lier works only include the sharp constant for the Moser-Trudinger inequality on the two-
dimensional hyperbolic disc. In this paper, we establish best constants for several types of
Moser-Trudinger inequalities on high dimensional hyperbolic spaces Hn (n ≥ 2). These in-
clude sharp constants for the Moser-Trudinger inequalities on both bounded and unbounded
domains of the hyperbolic spaceHn (see Theorems 1.1 and 1.2), sharp constants for the sin-
gular Moser-Trudinger inequality on unbounded domains when we impose restrictions only
on the gradient norms (Theorem 1.3) or on the full hyperbolic Sobolev norms (Theorem
1.4). Our results are surprisingly general and extend most results in Euclidean spaces to
hyperbolic spaces of any dimension. In particular, we have used a rearrangement-free ar-
gument in the hyperbolic spaces to establish Theorems 1.3 and 1.4 where symmetrization
argument does not work to prove such sharp singular Moser-Trudinger inequalities on the
entire hyperbolic space.
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1 Introduction
The Moser-Trudinger inequalities can be considered as the limiting case of Sobolev in-
equalities. They were established independently by Yudovič [28], Pohožaev [24] and
Trudinger [26]. In 1971, Moser [22], sharpening Trudinger’s inequality, proved that

Theorem A. Let Ω be a domain with finite measure in Euclidean n−space Rn, n ≥ 2. Then
there exists a sharp constant αn = nω

1
n−1
n−1(where ωn−1 is the area of the surface of the unit

n−ball) such that
1
|Ω|

∫

Ω

exp
(
α | f | n

n−1
)

dx ≤ c0 < ∞

for any α ≤ αn, any f ∈ C∞0 (Ω) with
∫
Ω
|∇ f |n dx ≤ 1. This constant αn is sharp in the sense

that if α > αn, then the above inequality can no longer hold with some c0 independent of
f .

This result has been generalized in many directions. For instance, the singular Moser-
Trudinger inequality which is an interpolation of Hardy inequality and Moser-Trudinger
inequality was studied by Adimurthi and Sandeep in [3]: there exists a constant C0 =
C0(n) > 0 such that

1
|Ω|1− αn

∫

Ω

exp
(
α |u| n

n−1
)

|x|β
dx ≤ C0 (1.1)

for any β ∈ [0, n) , 0 ≤ α ≤
(
1 − βn

)
αn, any u ∈ W1,n

0 (Ω) with
∫
Ω
|∇u|n dx ≤ 1. Moreover,

this constant
(
1 − βn

)
αn is sharp in the sense that if α >

(
1 − βn

)
αn, then the above inequality

can no longer hold with some C0 independent of u.
When Ω has infinite volume, some versions of Moser-Trudinger type inequalities for

unbounded domains were first proposed by D.M. Cao [8] when n = 2 and J.M. do Ó [12]
for the general case n ≥ 2. However, those inequalities are not sharp. These results were
sharpened later by Adachi and Tanaka [1] in order to determine the best constant.

B. Ruf [23] (for the case n = 2), Y. Li and B. Ruf [20] (for the general case n ≥ 2)
established a critical Moser-Trudinger type inequality for unbounded domains in Euclidean
spaces. It was extended further in [4] to the singular Moser-Trudinger type inequality on
unbounded domains in Euclidean spaces.

Recently, there has been further progress in establishing sharp constants for both critical
and subcritical Moser-Trudinger inequalities on unbounded domains in non-Euclidean set-
ting such as on the Heisenberg groups by Lam et al. in [14], [18] which improve the earlier
work on bounded domains by Cohn and Lu [9, 10] (see also [17]) or for Adams inequalities
[2] on high (fractional) order Sobolev spaces by Lam and Lu in [15], [16] which improve
the work of Ruf and Sani [25]. One of the key ingredients in the above works is a new
approach of establishing sharp constants for Moser-Trudinger inequalities on unbounded
domains and Adams inequalities without using the symmetrization argument. Indeed, op-
timal symmetrization principle is not available in the aforementioned circumstances.

There has also been substantial progress for the Moser-Trudinger inequality on spheres
or compact Riemannian manifolds. We refer the interested reader to [6], [11], [13], [19],



Best constants for Moser-Trudinger inequalities on hyperbolic spaces 1037

[7], just to name a few. Nevertheless, much less is known for sharp constants of Moser-
Trudinger inequalities in a hyperbolic space. In 2010, Mancini and Sandeep [21] estab-
lished the following Moser-Trudinger inequality on a conformal disc:

Theorem B. Let D be the unit open disc in R2 endowed with a conform metric g =
( 2

1−|x|2 )2ge, and dVg = ( 2
1−|x|2 )2dx be the volume form. Then

sup
u∈C∞0 (D),

∫
D |∇u|2dx≤1

∫

D
(e4πu2 − 1)dV < ∞

and 4π cannot be improved.

In this paper, we will establish sharp constants for Moser-Trudinger inequalities on the
hyperbolic space. The hyperbolic space Hn (n ≥ 2) is a complete and simply connected
Riemannian manifold having constant sectional curvature equal to −1, and for a given
dimensional number, any two such spaces are isometric [27]. There are several models
for Hn, the most important model being the half-space model, the ball model, and the
hyperboloid or Lorentz model, with the ball model being especially useful for questions
involving rotational symmetry. We will only use the ball model in this paper.

Let Bn = {x ∈ Rn : |x| < 1} denote the unit open ball in the Euclidean space Rn. The
space Bn endowed with the Riemannian metric gi j = ( 1

1−|x|2 )2δi j is called the ball model of
the hyperbolic space Hn. Denote the associated hyperbolic volume by dV = ( 2

1−|x|2 )ndx.
For any measurable set E ⊂ Hn, set |E| =

∫
E dV . Let d(0, x) denote the hyperbolic distance

between the origin and x. It is known that d(0, x) = ln 1+|x|
1−|x| for x ∈ Hn. The hyperbolic

gradient ∇g is given by ∇g = ( 1−|x|2
2 )2∇.

Let Ω ⊂ Hn be a bounded domain. Denote ∥ f ∥n,Ω = (
∫
Ω
| f |ndV)

1
n . Then we have the

following:

∥∇g f ∥n,Ω = (
∫

Ω

< ∇g f ,∇g f >n/2
g dV)

1
n = (

∫

Ω

|∇ f |pdx)
1
n .

Let ∥ f ∥n = (
∫
Hn | f |ndV)

1
n . Then we have

∥∇g f ∥n = (
∫

Hn
< ∇g f ,∇g f >n/2

g dV)
1
n = (

∫

Bn
|∇ f |pdx)

1
n .

We use W1,n
0 (Ω) to express the completion of C∞0 (Ω) under the norm

∥u∥W1,n
0 (Ω) = (

∫

Ω

| f |ndV +
∫

Ω

|∇ f |ndx)
1
n .

We will also use W1,n(Hn) to express the completion of C∞0 (Hn) under the norm

∥u∥W1,n
0 (Hn) = (

∫

Hn
| f |ndV +

∫

Hn
|∇ f |ndx)

1
n .

It is known that the symmetrization argument is the key tool in the proof of the classi-
cal Moser-Trudinger inequalities. Now, let’s recall some facts about the rearrangement in
hyperbolic space [5].
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Let f : Hn → R be such that

|{x ∈ Hn : | f (x)| > t}| =
∫

{x∈Hn:| f (x)|>t}
dV < +∞

for every t > 0. Its distribution function is defined by

µ f (t) = |{x ∈ Hn : | f (x)| > t}|.

Then its decreasing rearrangement f ∗ is defined by

f ∗(s) = sup{t > 0, µ f (t) > s}.

Now, define f ♯ : Hn → R by

f ♯(x) = f ∗(|B(0, d(0, x))|),

where B(0, d(0, x)) is the ball centered at the origin and with radius d(0, x) in the hyperbolic
space. Then, for every continuous increasing function Φ : [0,∞) → [0,∞), we have from
[5] that ∫

Hn
Φ(| f |)dV =

∫

Hn
Φ( f ♯)dV.

And for any Lipschitz continuous function f ,

∥∇g f ♯∥p ≤ ∥∇g f ∥p.

In this paper, we will first prove the sharp singular Moser-Trudinger inequality on
bounded domains in the hyperbolic space of any high dimension.

Theorem 1.1 Let Ω ⊂ Hn be an open domain with |Ω| =
∫
Ω

dV < +∞, 0 ≤ β < n and

0 ≤ α ≤ αn(1 − βn ), αn = nω
1

n−1
n−1. Then there exists a constant Cβ > 0 such that

sup
u∈C∞0 (Ω),∥∇gu∥n,Ω≤1

∫

Ω

exp(α|u| n
n−1 )

[d(0, x)]β
dV ≤ Cβ

∫

Ω

dV
[d(0, x)]β

.

The result is sharp in the sense that: if α > αn(1 − βn ), the supreme will become infinite.

Setting β = 0 in the theorem (1.1), we can obtain the following standard Moser-Trudinger
inequality on bounded domains in hyperbolic spaces of any high dimension.

Corollary 1.1 Let Ω ⊂ Hn be an open domain with |Ω| =
∫
Ω

dV < +∞. Then there exists a
constant Cn > 0 such that

sup
u∈C∞0 (Ω),∥∇gu∥n,Ω≤1

1
|Ω|

∫

Ω

exp(αn|u|
n

n−1 )dV ≤ Cn.

The constant αn is sharp in the sense that if αn is replaced by any α bigger than αn, the
supreme will become infinite.
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Then we will set up the following sharp subcritical Moser-Trudinger type inequality
on the entire hyperbolic space in the spirit of Adachi-Tanaka [1] when we only restrict the
norm of the hyperbolic gradient of the function.

Theorem 1.2 For any α ∈ (0,αn), there exists a constant Cα > 0 such that
∫

Hn
[Φn(α(

|u|
∥∇gu∥n

)
n

n−1 )]dV ≤ Cα
∥u∥nn
∥∇gu∥nn

,

for u ∈ W1,n(Hn) \ {0}, where Φn(x) = ex −∑n−2
j=0

x j

j! . Moreover, the restriction 0 < α < αn is
optimal in the sense that for α ≥ αn, there exists a sequence {uk}∞k=1 ⊂ W1,n(Hn) \ {0} such
that ∥∇guk∥n = 1 and

1
∥uk∥nn

∫

Hn
[Φn(α(|uk |)

n
n−1 )]dV → ∞.

Next, we will prove the following sharp singular Adachi-Tanaka type inequality on the
entire hyperbolic space which extends the result of Theorem 1.2.

Theorem 1.3 Let 0 ≤ β < n. For any α ∈ (0,αn(1 − βn )), there exists a constant Cα,β > 0
such that for any u ∈ W1,n(Hn) \ {0} satisfying ∥∇gu∥n ≤ 1,

∫

Hn

Φn(α|u| n
n−1 )

[d(0, x)]β
dV ≤ Cα,β

∫

Hn

|u|n
[d(0, x)]β

dV .

Moreover, the restriction 0 < α < αn(1 − βn ) is also optimal.

Finally, we will establish the sharp critical singular Moser-Trudinger inequality on the
entire hyperbolic space when we restrict the norms of functions to full hyperbolic Sobolev
norm.

Theorem 1.4 Let 0 ≤ β < n, τ > 0. For any α ∈ (0,αn(1 − βn )], there exists a constant
Cα,τ > 0 such that

sup
u∈W1,n(Hn),∥∇gu∥nn+τ∥u∥nn≤1

∫

Hn

Φn(α|u| n
n−1 )

[d(0, x)]β
dV ≤ Cα,τ.

The constant αn(1 − βn ) is sharp in the sense that if αn(1 − βn ) is replaced by any α bigger
than αn, the supreme will become infinite.

It is worthwhile to remark that there is a crucial difference between the inequalities
in Theorem 1.3 and Theorem 1.4. Indeed, the restriction on the norms of functions in
Theorem 1.3 is only imposed on the gradient in hyperbolic spaces, while the restriction on
the norm of functions in Theorem 1.4 is imposed on the full Sobolev norm in hyperbolic
spaces. This subtlety will be evident from the proofs of these two theorems.

The organization of the paper is as follows. In Section 2, we will establish the sharp
Moser-Trudinger inequality on bounded domains in hyperbolic spaces of any dimension
(Theorem 1.1). Section 3 will give a sharp Adachi-Tanaka type inequality in the entire hy-
perbolic space when we only restrict the norm of functions to gradient norm (Theorems 1.2
and 1.3). In Section 4, we will prove the sharp singular Moser-Trudinger inequality on the
entire hyperbolic space when we restrict the norm of functions to full hyperbolic Sobolev
norm.
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2 Sharp Moser-Trudinger inequality on bounded domains
in high dimensional hyperbolic spaces

To prove Theorem 1.1, we use an idea of Moser [22]. Note that (d(0, x))♯ = d(0, x), and for
u ≥ 0,

(exp(αu
n

n−1 ))♯ = expα(u♯)
n

n−1 ,

∥∇gu♯∥n ≤ ∥∇gu∥n ≤ 1.

By the Hardy-Littlewood inequality and properties of the rearrangement, it suffices to show
the desired inequality for u being radially symmetric, nonnegative, smooth, and compactly
supported with the form u(x) = u0(d(0, x)), Ω = {x ∈ Hn : d(0, x) ≤ R} and u0(R) = 0, for
some 0 < R < ∞.

For u being radially symmetric, the desired inequality can be rewritten, in the hyper-
bolic polar coordinates |x| = tanh t/2, as

sup
ωn−1

∫ R
0 |u′0 |n(sinh t)n−1dt≤1

∫ R

0

exp(α|u0|
n

n−1 )
tβ

(sinh t)n−1dt ≤ Cβ
∫ R

0

(sinh t)n−1

tβ
dt.

Set w(x) = u0(|x|), then w is a smooth function with compact support in the Euclidean
ball {|x| < R}. Since t ≤ sinh t for t ≥ 0, then

∫

|x|<R
|∇w|ndx = ωn−1

∫ R

0
|u′0|ntn−1dt ≤ ωn−1

∫ R

0
|u′0|n(sinh t)n−1dt ≤ 1.

By inequality (1.1) (the singular Moser-Trudinger inequality on any bounded domain in the
Euclidean space ), we have

∫

|x|<R

exp(α|w| n
n−1 )

|x|β dx ≤ C|R|n−β.

Namely, ∫ R

0
exp(α|u0|

n
n−1 )tn−1−βdt ≤ C|R|n−β.

Now we first estimate
∫ R/2

0

exp(α|u0|
n

n−1 )
tβ

(sinh t)n−1dt

=

∫ R/2

0
exp(α|u0|

n
n−1 )tn−1−β(

sinh t
t

)n−1dt

≤
∫ R/2

0
exp(α|u0|

n
n−1 )tn−1−β(

sinh R/2
R/2

)n−1dt

≤ CR1−β(sinh R/2)n−1.

Since when R→ 0 ∫ R
0

(sinh t)n−1

tβ dt
R1−β(sinh R/2)n−1 →

2n−1

n − β ,
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and when R→ ∞ ∫ R
0

(sinh t)n−1

tβ dt
R1−β(sinh R/2)n−1 → ∞,

then

sup
ωn−1

∫ R
0 |u′0 |n(sinh t)n−1dt≤1

∫ R/2

0

exp(α|u0|
n

n−1 )
tβ

(sinh t)n−1dt ≤ Cβ
∫ R

0

(sinh t)n−1

tβ
dt. (2.2)

Next, we consider the integral over (R/2,R). Since u(R) = 0,

|u0(t)| = |
∫ R

t
u′0(s)ds|

≤ (
∫ R

t
|u′0(s)|n(sinh s)n−1ds)1/n(

∫ R

t

1
sinh s

ds)
n−1

n

≤ [ln(
eR − 1
eR + 1

et + 1
et − 1

)]
n−1

n (ωn−1)−
1
n ,

where we use the Hölder inequality in the first inequality. So we have
∫ R

R/2

exp(α|u0|
n

n−1 )
tβ

(sinh t)n−1dt

≤
∫ R

R/2

exp(αn(1 − βn )|u0|
n

n−1 )
tβ

(sinh t)n−1dt

≤
∫ R

R/2
(
eR − 1
eR + 1

et + 1
et − 1

)n−βt−β(sinh t)n−1dt

≤ (
eR − 1
eR + 1

eR/2 + 1
eR/2 − 1

)n−β
∫ R

R/2
t−β(sinh t)n−1dt

≤ 2n−β
∫ R

R/2
t−β(sinh t)n−1dt.

Then

sup
ωn−1

∫ R
0 |u′0 |n(sinh t)n−1dt≤1

∫ R

R/2

exp(α|u0|
n

n−1 )
tβ

(sinh t)n−1dt ≤ Cβ
∫ R

0

(sinh t)n−1

tβ
dt (2.3)

Therefor by (2.2) and (2.3), we get the desired inequality.

Next, we will prove the sharpness of our result. It suffices to find a sequence of function
wk(t) : R→ R, which satisfies wk(t) ≥ 0, w′k(t) ≤ 0, wk(R) = 0, ωn−1

∫ R
0 |w

′
k |n(sinh t)n−1dt ≤

1, and ∫ R

0

exp(α|wk |
n

n−1 )
tβ

(sinh t)n−1dt → +∞,
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for any α > αn(1 − βn ). Now, when R > 1, we choose {wk} as follows:

wk(t) = ω−
1
n

n−1Ck

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k
n−1

n , if 0 ≤ t ≤ e−k,

k
n−1

n − ln t
k , if e−k < t ≤ 1,

0, if 1 < t,

where Ck = ( 1
k

∫ 1
e−k t−n(sinh t)n−1dt)−

1
n . Since Ck ∼ ( (sinh e−k)n−1

(e−k)n−1 )−
1
n , as k → ∞, then Ck → 1,

α
αn(1− βn )

(Ck)
n

n−1 → α
αn(1− βn )

> 1, as k → ∞. Therefore

ωn−1

∫ R

0
|w′k |n(sinh t)n−1dt =

∫ 1

e−k
(Ck)n 1

k
1
tn (sinh t)n−1dt = 1,

and as k → 0,

∫ R

0

exp(α|wk |
n

n−1 )
tβ

(sinh t)n−1dt

≥
∫ e−k

0

exp( α
αn(1− βn )

(n − β)ω
1

n−1
n−1|wk |

n
n−1 )

tβ
(sinh t)n−1dt

∼ Rn−β

n − β exp(
α

αn(1 − βn )
(n − β)k(Ck)

n
n−1 − (n − β)k)

∼ (exp((n − β)k))
α

αn (1− βn )
(Ck)

n
n−1 −1

→ +∞.

When R ≤ 1, we choose {wk} as follows:

wk(t) = ω−
1
n

n−1Ck

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k
n−1

n , if 0 ≤ t ≤ e−kR,
k

n−1
n
− ln t/R

k , if e−kR < t ≤ R,
0, if R < t,

where Ck = ( 1
k

∫ R
e−kR t−n(sinh t)n−1dt)−

1
n 1

R . Since Ck ∼ ( (sinh e−kR)n−1

(e−kR)n−1 )−
1
n 1

R , as k → ∞, then
Ck → 1

R , α
αn(1− βn )

(Ck)
n

n−1 → α
αn(1− βn )

( 1
R )

n
n−1 > ( 1

R )
n

n−1 , as k → ∞. Therefore

ωn−1

∫ R

0
|w′k |n(sinh t)n−1dt =

∫ R

e−kR
(Ck)n 1

k
Rn

tn (sinh t)n−1dt = 1,
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and
∫ R

0

exp(α|wk |
n

n−1 )
tβ

(sinh t)n−1dt

≥
∫ e−kR

0

exp( α
αn(1− βn )

(n − β)ω
1

n−1
n−1|wk |

n
n−1 )

tβ
(sinh t)n−1dt

=

∫ e−kR

0

exp( α
αn(1− βn )

(n − β)k(Ck)
n

n−1 )

tβ
(sinh t)n−1dt.

Since R ≤ 1, then ( 1
R )

n
n−1 ≥ 1, and α

αn(1− βn )
(Ck)

n
n−1 ≥ α

αn(1− βn )
> 1. So as k → 0,

∫ e−kR

0

exp( α
αn(1− βn )

(n − β)k(Ck)
n

n−1 )

tβ
(sinh t)n−1dt

∼ Rn−β

n − β exp(
α

αn(1 − βn )
(n − β)k(Ck)

n
n−1 − (n − β)k)

∼ (exp((n − β)k))
α

αn (1− βn )
(Ck)

n
n−1 −1

→ +∞.

So we have found the desired sequence and this completes the proof of the sharpness of
our inequality. Thus, the proof of Theorem 1.1 is finished.

3 Sharp Moser-Trudinger inequality in the sense of Adachi
and Tanaka type

To prove Theorem 1.2, we will also use the rearrangement argument. By means of sym-
metrization, it suffices to show the desire inequality for functions u(x) = u0(d(0, x)), which
are radially symmetric, nonnegative, smooth, compactly supported and u0(t) : [0,+∞)→ R
is decreasing.

Following Moser’ argument of the classical inequality [22], we set w(t) = ω
1
n
n−1u0(t),

|x| = tanh t/2, then w(t) ≥ 0, w′ ≤ 0 and w(t0) = 0 for some t0 ∈ R. Then, we have
∫

Hn
Φn(α|u| n

n−1 )dV = ωn−1

∫ ∞

0
Φn(αω−

1
n−1

n−1 |w|
n

n−1 )(sinh t)n−1dt,

∥∇gu∥nn =
∫ ∞

0
|w′|n(sinh t)n−1dt,

and ∫

Hn
|u|ndV =

∫ ∞

0
|w|n(sinh t)n−1dt.
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Thus, to prove the theorem, it suffices to show that for any β ∈ (0, n), there exists a constant
Cβ such that ∫ ∞

0
Φn(β|w| n

n−1 )(sinh t)n−1dt ≤ Cβ
∫ ∞

0
|w|n(sinh t)n−1dt

for any w satisfying w(t) ≥ 0, w′ ≤ 0, w(t0) = 0 for some t0 ∈ R and
∫ ∞

0 |w
′|n(sinh t)n−1dt ≤

1.
Set T0 = sup{t ∈ R : w(t) ≥ 1}, and we know that for t > T0, 0 ≤ w(t) < 1 and

w(T0) = 1. For t ∈ (T0,∞), we have w(t) ∈ [0, 1). Since for x ∈ [0, n) we can find a
constant Cn such that Φn(x) ≤ Cnxn−1; thus we have

∫ +∞

T0

Φn(β|w| n
n−1 )(sinh t)n−1dt ≤ Cnβ

n−1
∫ +∞

T0

|w|n(sinh t)n−1dt. (3.4)

Next, we consider the integral over (0,T0]. Since w(T0) = 1, for t ≤ T0

w(t) = w(T0) +
∫ t

T0

w′(s)ds

≤ w(T0) + (
∫ T0

t
|w′(s)|n(sinh s)n−1ds)1/n(

∫ T0

t

1
sinh s

ds)
n−1

n

= 1 + (ln(
eT0 − 1
eT0 + 1

et + 1
et − 1

))
n−1

n .

It is well known that for any ε > 0, there exists a constant Cε > 0 s.t.

1 + s
n−1

n ≤ ((1 + ε)s +Cε)
n−1

n .

Thus, we have |w(t)| n
n−1 ≤ (1 + ε) ln( eT0−1

eT0+1
et+1
et−1 ) +Cε, for t ∈ (0,T0]. Since β ∈ (0, n), we can

choose ε > 0 so small that β(1 + ε) < n. Then
∫ T0

0
Φn(β|w| n

n−1 )(sinh t)n−1dt ≤
∫ T0

0
eβ|w|

n
n−1 (sinh t)n−1dt

≤
∫ T0

0
eβCε (exp(ln(

eT0 − 1
eT0 + 1

et + 1
et − 1

)))β(1+ε)(sinh t)n−1dt

= eβCε (
eT0 − 1
eT0 + 1

)β(1+ε)
∫ T0

0

(et + 1)β(1+ε)+n−1

(et − 1)β(1+ε)−n+1
dt

(2et)n−1 .

When n > β(1 + ε) > n − 1,

eβCε (
eT0 − 1
eT0 + 1

)β(1+ε)
∫ T0

0

(et + 1)β(1+ε)+n−1

(et − 1)β(1+ε)−n+1
dt

(2et)n−1

≤ 2eβCε(
eT0 − 1
eT0 + 1

)β(1+ε)
∫ T0

0

(2et)β(1+ε)−1

(et − 1)β(1+ε)−n+1 det

≤ 2eβCε(
eT0 − 1
eT0 + 1

)β(1+ε)(2eT0 )β(1+ε)−1
∫ T0

0

1
(et − 1)β(1+ε)−n+1 det

≤ 2β(1+ε)eβCε

n − β(1 + ε)
(eT0 − 1)n

eT0
.
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When β(1 + ε) ≤ n − 1,

∫ T0

0
Φn(β|w| n

n−1 )(sinh t)n−1dt ≤
∫ T0

0
eβ|w|

n
n−1 (sinh t)n−1dt

≤
∫ T0

0
exp(

n − 1
1 + ε

|w| n
n−1 )(sinh t)n−1dt

≤
∫ T0

0
eβCε(exp(ln(

eT0 − 1
eT0 + 1

et + 1
et − 1

)))n−1(sinh t)n−1dt

= eβCε(
eT0 − 1
eT0 + 1

)n−1
∫ T0

0

(et + 1)n−1

(et − 1)n−1
(et − 1)n−1(et + 1)n−1

(2et)n−1 dt

≤ 2eβCε(
eT0 − 1
eT0 + 1

)n−1
∫ T0

0
(2et)n−1dt

≤ 2n−1eβCε
(eT0 − 1)n

eT0
.

On the other hand,

∫ T0

0
|w(t)|n(sinh t)n−1dt ≥

∫ T0

0
(sinh t)n−1dt

=

∫ T0

0

(et − 1)n−1(et + 1)n−1

2n−1(et)n−1 dt

≥ 1
2n−1

∫ T0

0

(et − 1)n−1

et det

≥ 1
2n−1

1
eT0

(eT0 − 1)n

n
.

Then
∫ T0

0
Φn(β|w| n

n−1 )(sinh t)n−1dt ≤ Cn,β

∫ T0

0
|w|n(sinh t)n−1dt. (3.5)

Therefore, by (3.4) and (3.5), we get the desired inequality of Theorem 1.2.

Next we will show that the restriction 0 < α < nω
1

n−1
n−1is optimal. Using Moser’ idea

again, repeating the argument above, we can see that it suffices to find a sequence of func-
tions wk : R → R which satisfies wk(t) ≥ 0, w′k ≤ 0, wk(t0) = 0 for some t0 ∈ R,∫ ∞

0 |w
′
k |n(sinh t)n−1dt = 1 and

∫ +∞

0
|wk |n(sinh t)n−1dt → 0,

∫ +∞

0
Φn(n|wk |

n
n−1 )(sinh t)n−1dt ≥ 1

n
.
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We choose {wk} as follows:

wk(t) = Ck

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k
n−1

n , if 0 ≤ t ≤ e−k,

k
n−1

n − ln t
k , if e−k ≤ t ≤ 1,

0, if 1 < t,

where Ck = ( 1
k

∫ 1
e−k t−n(sinh t)n−1dt)−

1
n . Since Ck ∼ ( (sinh e−k)n−1

e−(n−1)k )−
1
n , as k → ∞, then Ck → 1

and (Ck)
n

n−1 k − k → 0 as k → ∞. Therefore
∫ +∞

0
|w′k |n(sinh t)n−1dt =

∫ 1

e−k
(Ck)n 1

k
1
tn (sinh t)n−1dt = 1,

∫ +∞

0
|wk |n(sinh t)n−1dt

=

∫ e−k

0
(Ck)nkn−1(sinh t)n−1dt +

∫ 1

e−k
(Ck)n 1

k
| ln t|n(sinh t)n−1dt

∼ kn−1

enk +
C
k

→ 0.

Moreover,
∫ +∞

0
Φn(n|wk |

n
n−1 )(sinh t)n−1dt

=

∫ e−k

0
Φn(n(Ck)

n
n−1 k)(sinh t)n−1dt +

∫ 1

e−k
Φn(n(Ck)

n
n−1 k−

1
n−1 | ln t| n

n−1 )(sinh t)n−1dt

≥
∫ e−k

0
Φn(n(Ck)

n
n−1 k)(sinh t)n−1dt −

n−2∑

j=1

∫ 1

e−k

(n(Ck)
n

n−1 k−
1

n−1 | ln t| n
n−1 ) j

j!
(sinh t)n−1dt

∼ en(Ck)
n

n−1 k e−kn

n
−

n−2∑

j=0

(nC
n

n−1
k k) j

j!
e−kn

n
−

n−2∑

j=1

C( j)

k
j

n−1

→ 1
n
.

Hence, we obtain the desired sequence. This completes the proof of Theorem 1.2.

Now, we will prove Theorem 1.3. Before doing that, we like to make some comments.
We will not use the symmetrization argument here. Instead, we will use a new method, a
rearrangement-free argument developed in Lam and Lu in [14, 15], to establish the sharp
inequality. In fact, using this new idea, we can prove Theorem 1.3 without using the method
of symmetrization.

By a standard density argument, we can suppose that u ∈ C∞0 (Hn), u ≥ 0 and ∥∇gu∥n ≤
1.
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Denote
Ω(u) = {x ∈ Hn : u(x) > 1},

I1 =

∫

Ω(u)

Φn(α(|u|) n
n−1 )

[d(0, x)]β
dV,

and

I2 =

∫

Hn\Ω(u)

Φn(α(|u|) n
n−1 )

[d(0, x)]β
dV.

First, we estimate I1. Set v(x) = u(x) − 1 in Ω(u), then v ∈ W1,n
0 (Ω(u)) and ∥∇gv∥n,Ω(u) ≤ 1.

Then by Theorem 1.1, we have

∫

Ω(u)

exp(αn(1 − βn )|v(x)| n
n−1 )

[d(0, x)]β
dV ≤ Cβ

∫

Ω(u)

dV
[d(0, x)]β

.

Now, put ε = αn
α (1 − βn ) − 1 > 0. Using the following elementary inequality:

(a + b)p ≤ εbp + (1 − (1 + ε)−
1

p−1 )1−pap,

for any a, b, ε > 0 and p > 1, we have in Ω(u) that

|u(x)| n
n−1 = (1 + v(x))

n
n−1 ≤ (1 + ε)|v| n

n−1 + (1 − 1
(1 + ε)n−1 )

1
1−n .

Set Cε = (1 − 1
(1+ε)n−1 )

1
1−n . Hence

I1 =

∫

Ω(u)

Φn(α(|u|) n
n−1 )

[d(0, x)]β
dV

≤
∫

Ω(u)

exp(α(|u|) n
n−1 )

[d(0, x)]β
dV

=

∫

Ω(u)

exp(α(|v + 1|) n
n−1 )

[d(0, x)]β
dV

≤
∫

Ω(u)

exp(α(1 + ε)|v| n
n−1 + αCε)

[d(0, x)]β
dV

≤ eαCε
∫

Ω(u)

exp(αn(1 − βn )|v| n
n−1 )

[d(0, x)]β
dV

≤ Cα,β
∫

Ω(u)

dV
[d(0, x)]β

≤ Cα,β
∫

Hn

|u|n
[d(0, x)]β

dV .
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To estimate I2, we first note that u ≤ 1 in Hn \Ω(u). As a consequence, we have

I2 =

∫

Hn\Ω(u)

Φn(α(|u|) n
n−1 )

[d(0, x)]β
dV

≤
∫

{u≤1}

1
[d(0, x)]β

∞∑

j=n−1

α j

j!
|u|k n

n−1 dV

≤
∫

{u≤1}

1
[d(0, x)]β

∞∑

j=n−1

α j

j!
|u|ndV

≤ eα
∫

Hn

|u|n
[d(0, x)]β

dV .

Finally, noting that
∫
Hn
Φn(α|u| n

n−1 )
[d(0,x)]β dV = I1 + I2, we get the desired inequality.

To prove the restriction 0 < α < αn(1− βn ) is optimal, we can use the following sequence
of functions:

wk(x) = ω−
1
n

n−1Ck

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k
n−β−1

n−β , if 0 ≤ d(0, x) ≤ e−k,

k
n−β−1

n−β − ln d(0,x)
k , if e−k ≤ d(0, x) ≤ 1,

0, if 1 < d(0, x),

where Ck = (k
−n

n−β
∫ 1

e−k t−n(sinh t)n−1dt)−
1
n . Doing almost the same calculation as we did in

the proof of Theorems 1.1 and 1.2, we can obtain that the result is optimal. This completes
the proof of Theorem 1.3.

4 Sharp singular Moser-Trudinger inequality on the en-
tire hyperbolic space

Now, we will prove Theorem 1.4. It suffices to prove that for any β, τ satisfying 0 ≤
β < n, and τ > 0, there exists a constant Cβ,τ such that for any u ∈ C∞0 (Hn), u ≥ 0 and
∥∇gu∥nn + τ∥u∥nn ≤ 1, there holds

∫

Hn

Φn(αn(1 − βn )|u| n
n−1 )

[d(0, x)]β
dV ≤ Cβ,τ.

Set
A(u) = 2−

1
n(n−1) τ

1
n ∥u∥n,

Ω(u) = {x ∈ Bn : u(x) > A(u)}.
Then, it’s clear that

A(u) < 1.

Moreover ∫

Hn
|u|ndv ≥

∫

Ω(u)
|u|ndV > 2−

1
n−1 τ∥u∥nn|Ω(u)|,
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so we have
|Ω(u)| ≤ 2

1
n−1

1
τ
.

Now, we write ∫

Hn

Φn(αn(1 − βn )|u| n
n−1 )

[d(0, x)]β
dV = I1 + I2,

where

I1 =

∫

Ω(u)

Φn(αn(1 − βn )|u| n
n−1 )

[d(0, x)]β
dV

and

I2 =

∫

Hn\Ω(u)

Φn(αn(1 − βn )|u| n
n−1 )

[d(0, x)]β
dV.

First, we estimate I2. Since {Bn \Ω(u)} ⊂ {u(x) < 1}, we see that

I2 ≤
∫

{u≤1}

1
[d(0, x)]β

∞∑

j=n−1

α j
n(1 − βn ) j

j!
|u|k n

n−1 dV

≤
∞∑

j=n−1

α j
n(1 − βn ) j

j!

∫

{u≤1}

1
[d(0, x)]β

|u|ndV

= Cβ(
∫

{u≤1,d(0,x)≤1}

1
[d(0, x)]β

|u|ndV +
∫

{u≤1,d(0,x)>1}

1
[d(0, x)]β

|u|ndV)

≤ Cβ(
∫

{d(0,x)≤1}

1
[d(0, x)]β

dV +
∫

{u≤1,d(0,x)>1}
|u|ndV)

≤ Cβ,τ.

Next, to estimate I1, we set v(x) = u(x) − A(u) in Ω(u), then v ∈ W1,n
0 (Ω(u)). Moreover

|u| n
n−1 ≤ (|v| + A(u))

n
n−1

≤ |v| n
n−1 +

n
n − 1

2
n

n−1−1(|v| n
n−1−1A(u) + |A(u)| n

n−1 )

≤ |v| n
n−1 +

n
n − 1

2
n

n−1−1 |v|
n

n−1 |A(u)|n
n

+
n

n − 1
2

n
n−1−1(

n − 1
n
+ |A(u)| n

n−1 )

= |v| n
n−1 (1 +

2
1

n−1

n − 1
|A(u)|n) +Cn,

where we use Young’s inequality and the following elementary inequality: for all q ≤ 1
and a, b ≥ 0,

(a + b)q ≤ aq + q2q−1(aq−1b + bq).

Let w(x) = (1 + 2
1

n−1

n−1 |A(u)|n)
n−1

n v(x) in Ω(u). Then w ∈ W1,n
0 (Ω(u)) and |u| n

n−1 ≤ |w| n
n−1 +Cn.

Moreover we have

∇gw = (1 +
2

1
n−1

n − 1
|A(u)|n)

n−1
n ∇gv.



1050 G. Lu, H. Tang

Then
∫

Ω(u)
|∇w|ndx = (1 +

2
1

n−1

n − 1
|A(u)|n)n−1

∫

Ω(u)
|∇u|ndx

≤ (1 +
2

1
n−1

n − 1
|A(u)|n)n−1(1 − τ

∫

Hn
|u|ndV).

Thus

(
∫

Ω(u)
|∇w|ndx)

1
n−1 ≤ (1 +

2
1

n−1

n − 1
|A(u)|n)(1 − τ

∫

Hn
|u|ndV)

1
n−1

≤ (1 +
2

1
n−1

n − 1
|A(u)|n)(1 − τ

n − 1

∫

Hn
|u|ndV)

≤ (1 +
τ

n − 1

∫

Hn
|u|ndV)(1 − τ

n − 1

∫

Hn
|u|ndV)

≤ 1,

here we use the inequality (1 − x)q ≤ 1 − qx for all 0 ≤ x ≤ 1, 0 < q ≤ 1. Thus, we can use
Theorem 1.1 to estimate I1:

I1 ≤
∫

Ω(u)

exp(αn(1 − βn )|u| n
n−1 )

[d(0, x)]β
dV

≤
∫

Ω(u)

exp(αn(1 − βn )|w| n
n−1 +Cn)

[d(0, x)]β
dV

≤ Cβ
∫

Ω(u)

dV
[d(0, x)]β

= Cβ(
∫

Ω(u)∩{d(0,x)>1}

dV
[d(0, x)]β

+

∫

Ω(u)∩{d(0,x)≤1}

dV
[d(0, x)]β

)

≤ Cβ(|Ω(u)| +
∫

{d(0,x)≤1}

dV
[d(0, x)]β

)

≤ Cβ,τ.

By the estimates of I1 and I2, we obtain the inequality and then complete the proof of the
first part of Theorem 1.4.

Next, we will show that the inequality in Theorem 1.4 is sharp. Namely, we will show
that the inequality in Theorem 1.4 does not hold if α > αn(1 − β). We choose {uk}∞k=1 as
follows:

uk(x) = ω−
1
n

n−1Ck

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k
n−β−1

n−β , if 0 ≤ d(0, x) ≤ e−k,

k
n−β−1

n−β − ln [d(0,x)]
k , if e−k ≤ d(0, x) ≤ 1,

0, if 1 < d(0, x),

where Ck = (k
−n

n−β
∫ 1

e−k t−n(sinh t)n−1dt)−
1
n . Since Ck ∼ ( (sinh e−k)n−1

e−(n−1)k )−
1
n k

β
n(n−β) , as k → ∞, then

Ck → k
β

n(n−β) , as k → ∞. Then, by calculation

∥∇guk∥nn = 1,
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and ∫

Hn
|uk |ndV = O(

1
k

).

Set ∥uk∥n,τ = (∥∇guk∥nn + τ
∫

Bn |uk |ndV)
1
n , and ũk =

uk
∥uk∥n,τ . Now, ũk ∈ W1,n(Hn), ∥∇gũk∥nn +

τ∥ũk∥nn = 1. It follows that
∫

Hn

Φn(α|ũk |
n

n−1 )
[d(0, x)]β

dV

≥
∫

d(0,x)≤e−k

Φn(α|ũk |
n

n−1 )
[d(0, x)]β

dV

= ωn−1Φn(
α(ω−

1
n

n−1Ckk
n−β−1

n−β )
n

n−1

(∥uk∥n,τ)
n

n−1
)
∫ e−k

0

(sinh t)n−1

tβ
dt

∼ Φn(
α(ω−

1
n

n−1Ckk
n−β−1

n−β )
n

n−1

(∥uk∥n,τ)
n

n−1
)(e−k)n−β

∼ Φn(
α
αn

nk

(∥uk∥n,τ)
n

n−1
)(e−k)n−β

∼ exp(kn(
α

αn(∥uk∥n,τ)
n

n−1
+
β

n
− 1)).

Since α > αn(1 − βn ) and ∥uk∥n,τ = 1 + τO( 1
k ), then the last term in the above inequality

tends to infinity as k → ∞. So we complete the proof of Theorem 1.4.
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