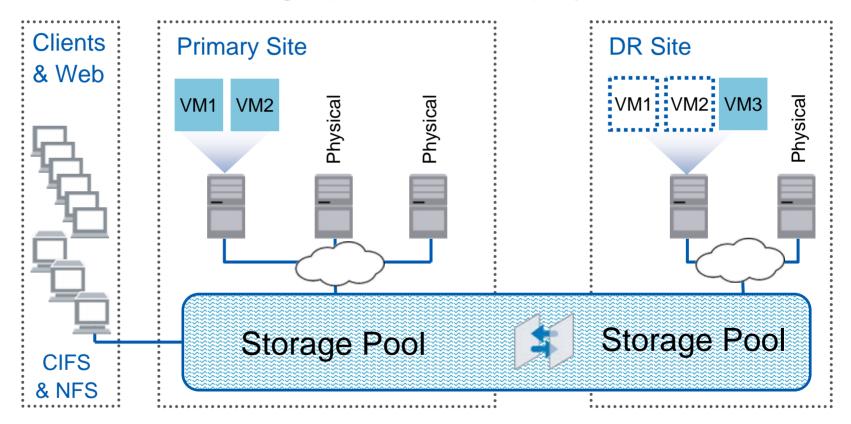


Go further, faster

Best Practices for Data Protection and Storage Flexibility

Cathy Wong Systems Engineer

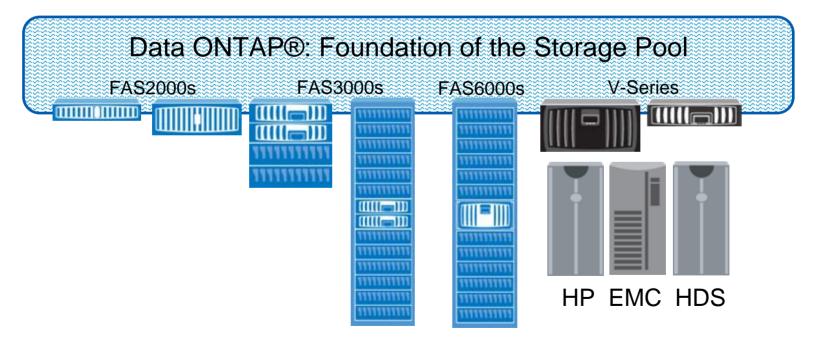
7 Aug 2008



- Data Protection
- Storage Flexibility
- Best Practices for Databases
- Best Practices for Virtualization
- Questions Throughout

The Evolution of the Data Center

A common storage pool across physical and virtual



The Broadest Range of Unified Storage

NetApp

Fabric-Attached Storage Family

- Unified storage NAS, SAN, and iSCSI
- Tiered storage from mission critical to archival
- Common software, interface, and management tools
- Support for heterogeneous storage with V-Series

Storage Pool Requirements

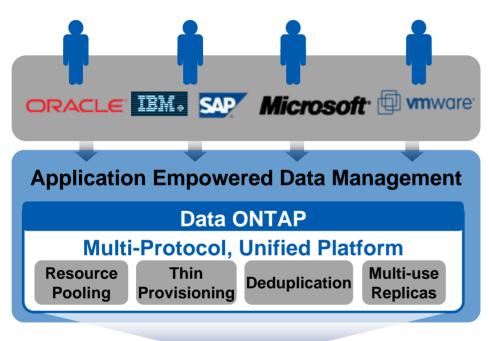
Improved data protection

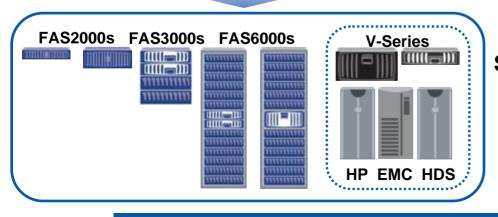
- Hardened platform
- Zero penalty backups
- Rapid recovery

Lower storage costs

- Thin provisioning
- End-to-end deduplication
- Simplified storage management

Increased storage flexibility


- Multiprotocol
- Rapid cloning & provisioning
- Scales from small to large


NetApp Best Practices

Data ONTAP

NetApp

Provides Foundation For Application-Centric Storage

Manage Data from applications:

- Application Admin's self-manage within established storage policy
- Reduced Admin h/c & training needs
- Increase flexibility of entire IT org.
- Application Synchronization
- Recover from interruptions

Start with one Storage Virtualization Engine:

- Manage storage pools instead of hardware
- The heart of Virtualized Data management

Simplify Elements to be Managed:

- Select: Capacity, Performance & Cost
- Supports: SAN & NAS Protocols
- Architected: for availability & simplicity

Storage Pool Requirements

Improved data protection
Hardened platform
Zero penalty backups
Rapid recovery

Lower storage costs

Increased storage flexibility

NetApp Best Practices

Cost-Effective Data Reliability

The Problem

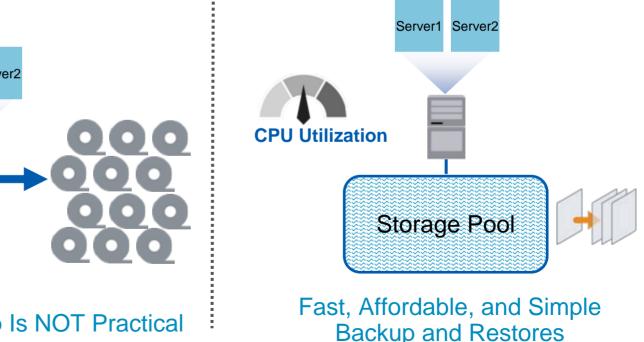
NetApp[•]

- Double-disk failure is a mathematical certainty
- RAID 5
 - Insufficient protection
- RAID 10
 - Double the cost

NetApp RAID-DP[™] Solution

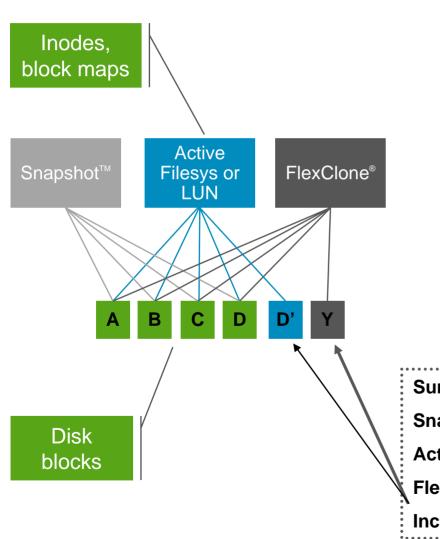
- Protects against double- disk failure
- High performance and fast rebuild
- Same protection and performance as RAID 10 at half the cost

	RAID 5	RAID 10	RAID-DP		
Cost	Low	High	Low High		
Performance	OK	High			
Resiliency	OK	High	High		
	DAS	Other Storage Vendors	NetApp		


Instantaneous Backup, Zero Server Impact


The Problem

- High server utilization
- No spare cycles for backups
- Tape is slow, complex, & expensive
- DR is very difficult


NetApp Snapshot[™] Solution

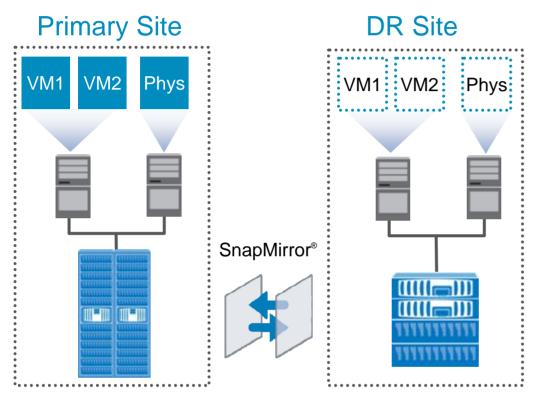
- Servers run apps, not background processes
- Instantaneous backup and recovery
- Low storage overhead
- Application consistent

The NetApp Foundation

NetApp's Unique DNA

- WAFL[®] <u>W</u>rite <u>A</u>nywhere <u>F</u>ile <u>L</u>ayout
 - Core block and file storage services
 - Resiliency features (RAID-DP[™])
- Snapshot
 - Near-instantaneous, point-in-time
 "copy" of file system (vol) or LUN
 - Read-only
- SnapRestore[®]
 - Near-instantaneous "rollback" of vol or LUN to prior Snapshot copy
- FlexClone
 - Near-instantaneous, WRITABLE
 "copy" of vol or LUN
 - Same space-sharing characteristics

```
Summary
```


```
Snapshot = A + B + C + D
```

Active = A + B + C + D'

```
FlexClone = Snapshot + Y
```

```
Incremental storage = <u>2</u> blocks
```

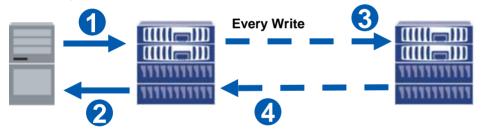
Simple, Rapid, and Reliable DR

- Flexible
 - Async, sync
 - IP or FC
- Simplifies deployment and management
 - Simple setup and recovery
 - Single product across all storage systems
 - Leverages SnapManager®, ensuring replication of applicationconsistent Snapshot[™] copies
- Cost effective
 - Mirrors between FC and ATA systems
 - Uses Snapshot copies—efficient storage and bandwidth

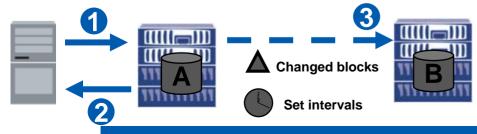


"[NetApp] has really facilitated our move to a virtualized server environment, and that is allowing us to dramatically minimize the risk and duration of any business downtime."

George White, CIO, Pennsylvania Office of the Attorney General



Synchronous SnapMirror


- No data loss exposure
- Replication distance < 100 km
- Some performance impact

Semi-Synchronous SnapMirror

- Seconds of data exposure
- Extend beyond 100 km
- No performance impact

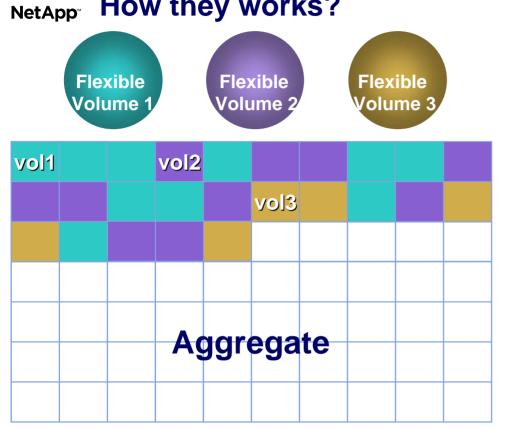
Asynchronous SnapMirror

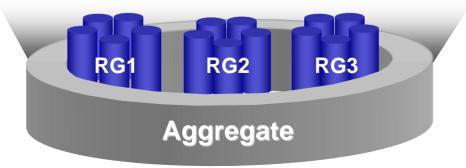
- 1 minute hours of data exposure
- No distance limit
- No performance impact

Storage Pool Requirements

Improved data protection

- Hardened platform
- Zero penalty backups
- Rapid recovery

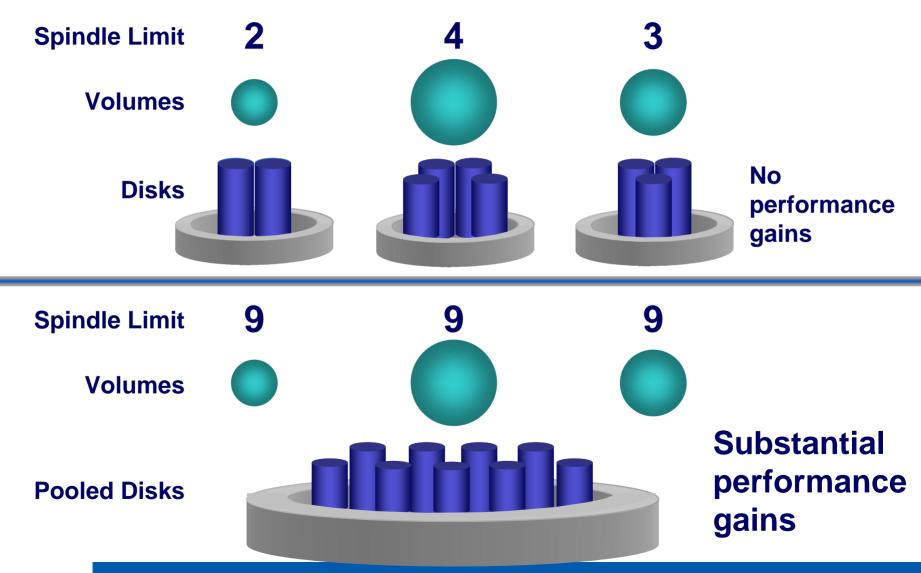

Lower storage costs


- Thin provisioning
- End-to-end deduplication
- Simplified storage management

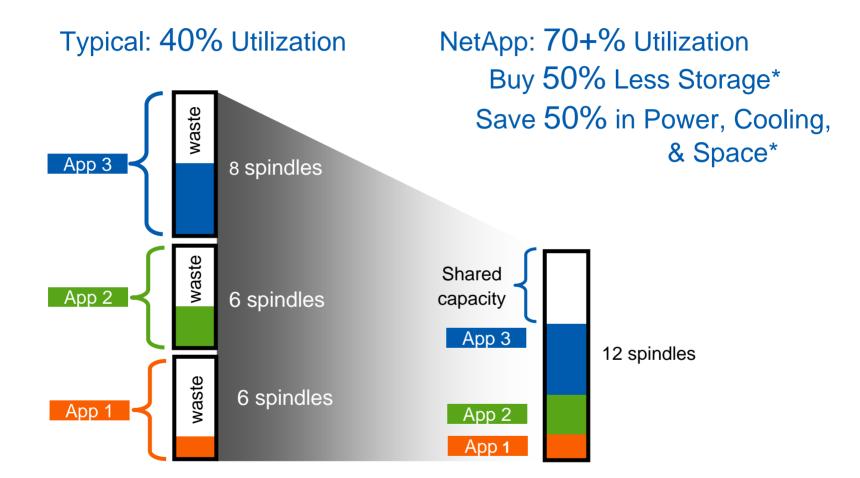
Increased storage flexibility

NetApp Best Practices

Aggregates and FlexVol[™] Volumes: How they works?



Create an aggregate

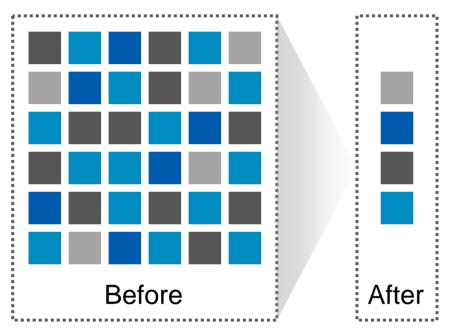

Create and populate the flexible volumes

- No pre-allocation of blocks to a specific volume
- ► WAFL® allocates space from aggregate as data is written

FlexVol[™] Volumes: Increasing I/O Performance

Lower Power, Cooling & Space

Standard Volume Manager

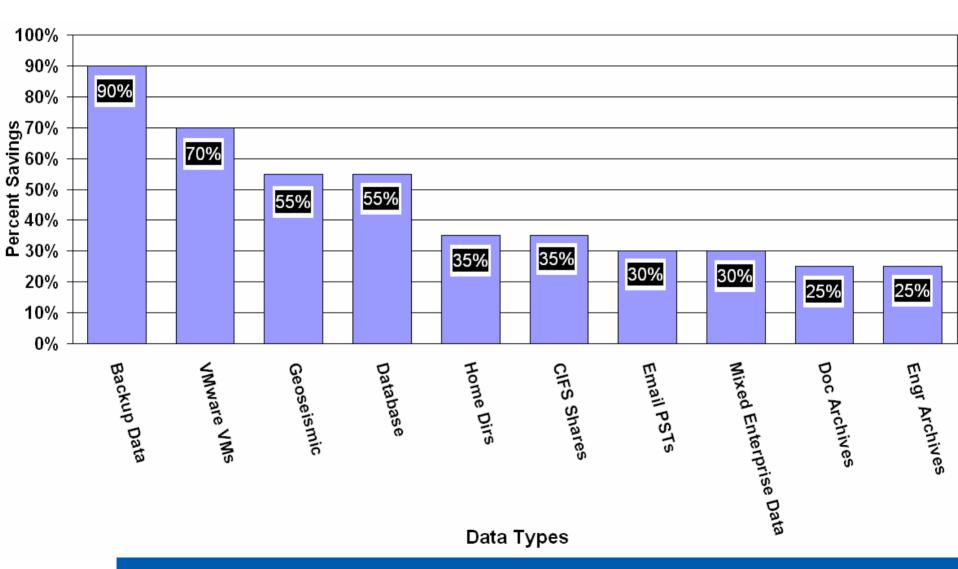

NetApp Thin Provisioning

Source: Oliver Wyman Study: "Making Green IT a Reality." November 2007.

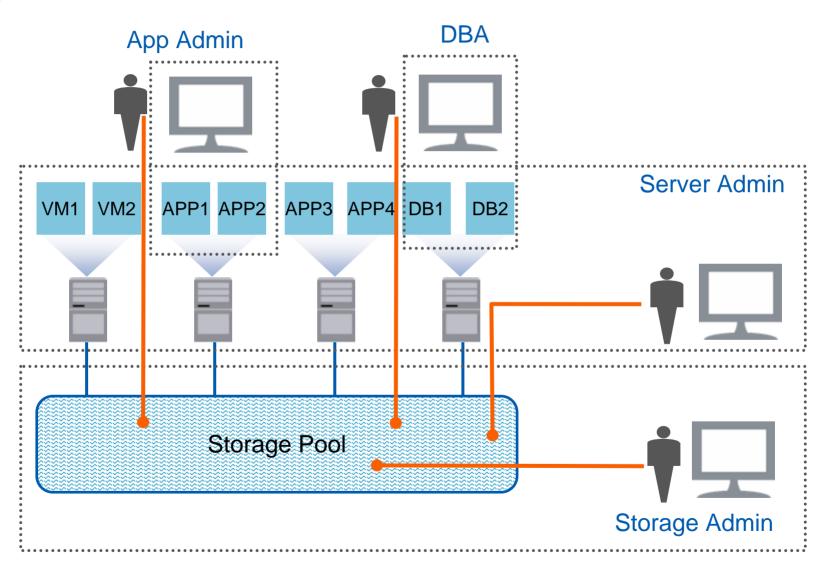
*Thin Provisioning, clones, & multiprotocol all contribute to savings.

NetApp Deduplication – End-to-End

NetApp Deduplication



- Savings across all tiers
 - Primary, backup, and archival data
 - 50% space savings, or more
 - 95% or greater for backup
- Integrated with Data ONTAP[®]
 - General-purpose volume deduplication
- Storage-efficient virtualization
 - OS & application images
 - User home directories


"We decided to utilize NetApp SnapMirror[®] for replication and Deduplication, and these became a driving factor in our solution [achieving 80% storage savings on VMware® backup data with Deduplication]." A Global Financial Services Firm

Source: Oliver Wyman VMware Storage Total Cost Comparison Interviews, Aug-Sept 2007

Application-Empowered Data Management

Storage Pool Requirements

Improved data protection

- Hardened platform
- Zero penalty backups
- Rapid recovery

Lower storage costs

- Thin provisioning
- End-to-end deduplication
- Simplified storage management

Increased storage flexibility

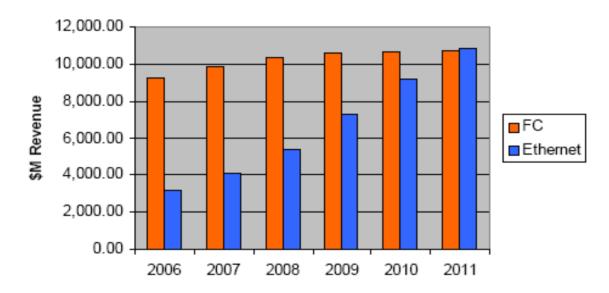
- Multiprotocol
- Rapid cloning & provisioning
- Scales from small to large

NetApp Best Practices

Broadest Scalable Storage Architecture

FAS Family of Unified Enterprise Storage Systems

Data ONTAP[®] Operating System – SAN, NAS, iSCSI


- One architecture
- One application interface

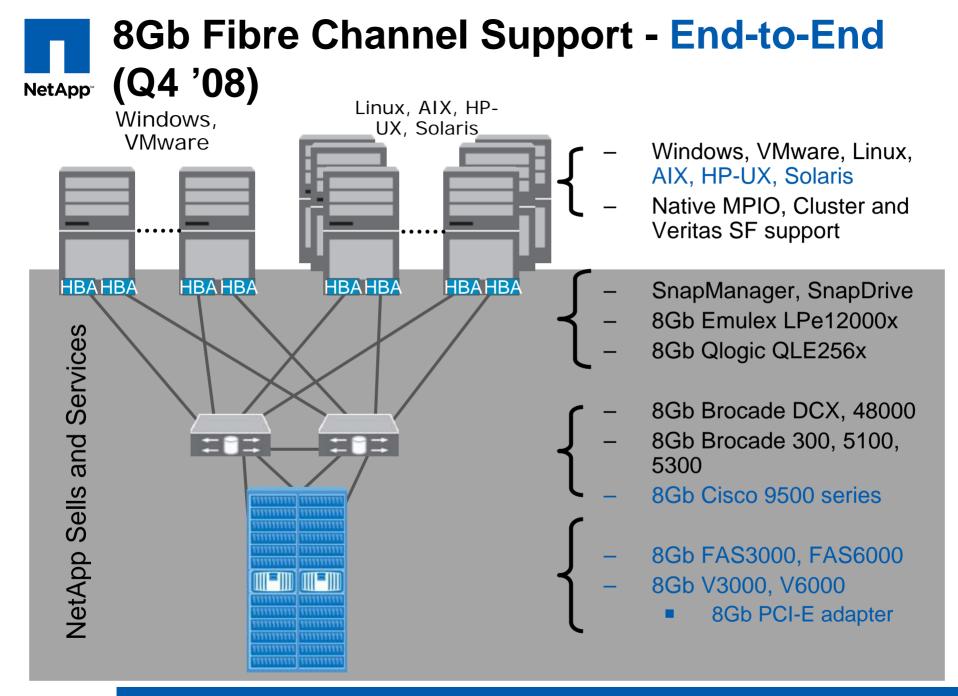
- One management interface
- Total interoperability

Growth Comparison of IP Storage and FC NetApp[®] SAN

MARKET DATA

Industry research firm IDC estimates that worldwide Ethernet-based storage systems (NAS and iSCSI SAN) will be a \$7.3B market in 2009, \$9.2B in 2010, and \$10.8B in 2011. iSCSI SAN is growing at a 61% compound annual growth rate (CAGR), followed by NAS at a 13% CAGR. In contrast, FC SAN is growing at a 3% CAGR. As shown in Figure 3, Ethernet storage is projected to have strong growth and is expected to surpass Fibre Channel storage revenue in 2011. A large portion of Ethernet storage growth is projected in new data centers and expansion of existing data centers.

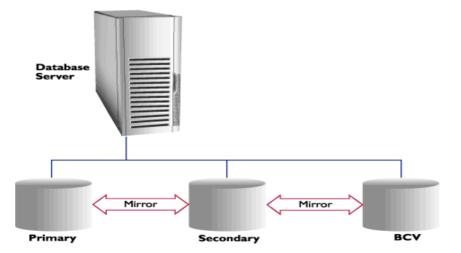
Other Networking Protocols


Infiniband

NetApp

- Primarily used in high-performance computing
- Penetration into network storage very limited
- 10GigE
 - Needs to be more readily available
 - Still expensive
 - Once costs continue to come down, will become more widely deployed
- FCIP and iFCP
 - Sending Fibre Channel data over IP networks.
 - FCIP (Fibre Channel over IP) is for exchanging data between FC networks across the Internet
 - iFCP (Internet Fibre Channel Protocol) is for extending FC networks across the Internet.
 - Both niche
- Fibre Channel over Ethernet (FCoE) being developed
 - High performance storage access over lossless (Ethernet enhancement) 10GbE fabrics
 - Transparent access to storage using SAN management methods
 - Lower cost with fewer adapters, cables, and switches
 - Increase application availability by simplifying network and server configuration

8Gb Fibre Channel (FC) SAN Overview


- Next evolution in FC SANs
 - $-1Gb \Longrightarrow 2Gb \Longrightarrow 4Gb \Longrightarrow 8Gb$
- Builds on 10+ years of FC experience
 - FC SAN is \$11B market
- Multicore processors, high-density servers, increased performance in server I/O, and server virtualization are driving the need for increased performance and bandwidth
- Ideal for disk-to-disk backup, archiving, modeling, streaming media, imaging

Cloning a File System

NetApp

- Traditional Methods
 - Backup and Restore
 - Replicate data to secondary location and create clones.
 - Split Mirror (3 Way Mirror)

NetApp Flexclone is Simpler

FIGURE 1: Three fully mirrored drive sets

Data Base Cloning

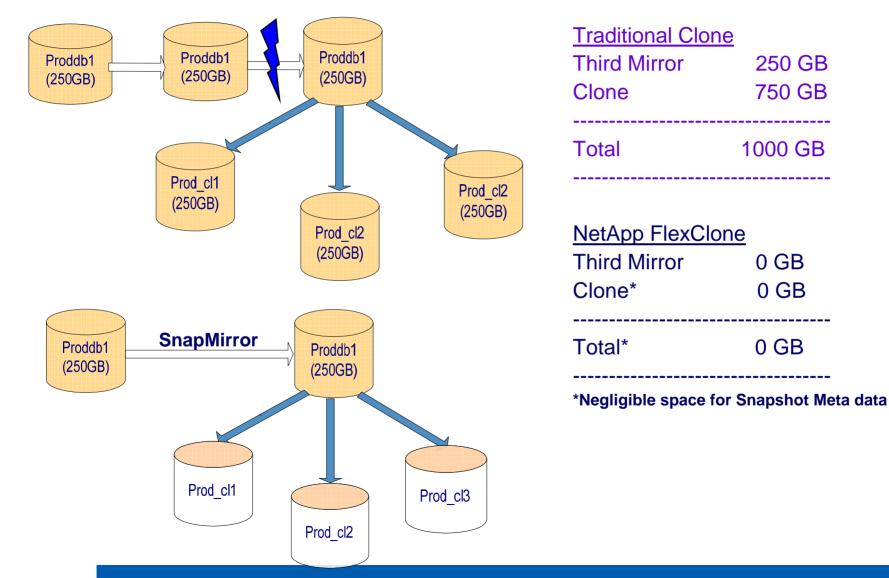
NetApp

Why Clone?

- Copy production database
 - Test & Dev environments
- Mirror for data protection
- DR site enabled for Read/Write
- System upgrade/Deployment test
- Data Mining
- Data warehouse
- More..

Challenges

- Copies whole data set takes very long time
- Copies consume lots of disk
 - < 10% unique data</p>
- Refresh complications


Solution

- FlexClone
 - Instantaneous copies
 - Improved productivity
 - Low overhead
 - Reduced costs

- Faster time to market
- Higher quality
- Lower cost

Database Clone NetApp[®] Method - Traditional Vs NetApp

Accelerate Test & Dev Environments in VMs

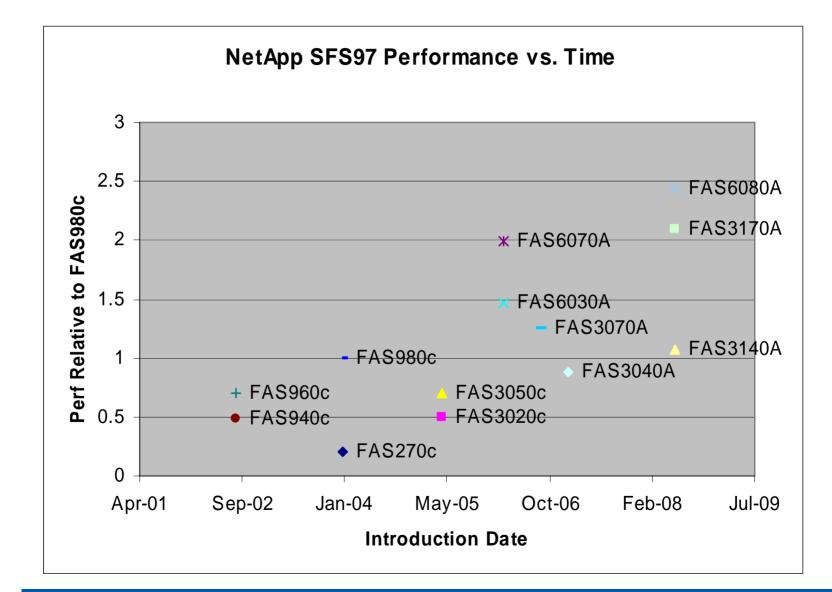
Traditional Provisioning

- Time-consuming physical copies
- Slow to provision or reprovision
- Manual and complex
- Not suited for VM provisioning

NetApp Provisioning

- Instant copies with FlexClone[®]
- Quick provisioning with FlexVol[®]
- Simple commands or policies
- Ideal for dynamic VM environment

"We can simulate every new solution we plan to introduce without interrupting the production, while predicting all the consequences and the risks to the system" Rami Sasson, Sonol Oil (NetApp and VMware customer)



-

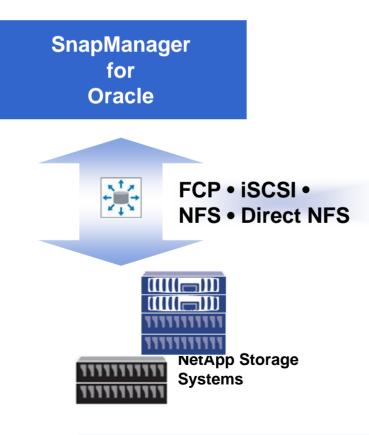
NetApp Hardware Universe - RC-0032-0608 - Side A - 06-27-2008

NetAp	pp.	Fabric-Attached Storage (FAS)										
	Model	FAS6080	FAS6040	FAS3170	FAS3140	FAS3070	FAS3040	FAS3020	FAS2050	FAS2020	FAS270	FAS250
Front View						())))	())))	(III)				
System Capacity Raw Maximum ¹		1,176TB	840TB	840TB	420TB	504TB	336TB	84TB	104TB	68TB	16TB	4TB
Aggregate/Vol Maximum Size ²		16TB	16TB	16TB	16TB	16TB	16TB	16TB	16TB	8TB	8TB	2TB
N	lax Back-End FC Loops	14	10	10	6	8	6	4	2	2	1	-
	ax Expansion Disk Shelves	84	60	60	30	36	24	12	6	4	3	
8.0	FC	1,176	840	840	420	504	336	168	84 (external)	56 (external)	56 (14 int + 42 ext)	14 (Internal)
Max Drive Quantity	SAS			7	-	1		æ	20 (Internal)	12 (internal)	37.9	5
≥0	SATA	1,176	840	840	420	504	336	168 4	104 (20 int + 84 ext)	68 (12 int + 56 ext)	28 (external)	[-
a ja	Height (HA/Single)	12U / 6U	12U / 6U	60/60	6U / 6U	6U / 3U	6U / 3U	6U / 3U	4U / 4U	2U / 2U	3U / 3U	- / 3U
Environmental HA Pair/Single Controlk	Weight (HA/Single)	242 lb. (109.6 kg) 121 lb. (54.8 kg)	242 lb. (109.6 kg) 121 lb. (54.8 kg)	122 lb. (55.3 kg) 95 lb. (43.1 kg)	122 lb. (55.3 kg) 95 lb. (43.1 kg)	150 lb. (68 kg) 75 lb. (34 kg)	150 lb. (68 kg) 75 lb. (34 kg)	150 lb. (68 kg) 75 lb. (34 kg)	110 lb. (50 kg) with drives	60 lb. (27.2 kg) with drives	77 lb. (35 kg) with drives	77 lb. (35 kg) with drives
	AC Power (HA only)	100-120V 11.2A 200-240V 5.8A	100-120V 10.8A 200-240V 5.6A	100-120V 8.1A 200-240V 4A	100-120V 5.9A 200-240V 2.9A	100-120V 7.4A 200-240V 4.2A	100-120V 6.8A 200-240V 3.8A	100-120V 4.8A 200-240V 2.8A	100-120V 5.7A 200-240V 2.9A	100-120V 4.1A 200-240V 2.2A	100-120V 4A 200-240V 2A	100-120V 4A 200-240V 2A
	Thermal ³ (HA/Single)	3,740 BTU/hr 1,870 BTU/hr	3,624 BTU/hr 1,812 BTU/hr	2,761 BTU/hr 1,602 BTU/hr	2,026 BTU/hr 1,272 BTU/hr	2,466 BTU/hr 1,233 BTU/hr	2,304 BTU/hr 1,152 BTU/hr	1,610 BTU/hr 805 BTU/hr	2,247 BTU/hr 1,988 BTU/hr	1,587 BTU/hr 1,298 BTU/hr	1,279 BTU/hr	1,178 BTU/hr
cifications controlker	Processor (HA/Single)	8 / 4 64-bit dual-core	4 / 2 64-bit	4 / 2 64-bit dual-core	2 / 1 64-bit dual-core	4 / 2 64-bit dual-core	4 / 2 64-bit	2 / 1 32-bit	2 / 1 32-bit	2 / 1 32-bit	2 / 1 64-bit	1 64-bit
	RAM (HA/Single)	64GB / 32GB	32GB / 16GB	32GB / 16GB	8GB / 4GB	16GB / 8GB	8GB / 4GB	4GB / 2GB	4GB / 2GB	2GB / 1GB	2GB / 1GB	512MB
	NVRAM (HA/Single)	4GB / 2GB	1GB / 512MB	4GB / 2GB onboard	1GB / 512MB onboard	1GB / 512MB	1GB / 512MB	1GB / 512MB	512MB / 256MB NVMEM	256MB / 128MB NVMEM	256MB / 128MB NVMEM	64MB NVMEM
Spe	PCI Slots (HA/Single)	10 / 5 (PCle) 6 / 3 (PCl-X)	10 / 5 (PCIe) 6 / 3 (PCI-X)	8 / 4 (PCle)	8 / 4 (PCle)	6/3 (PCle)	8/3 (PCle)	6 / 3 (PCI-X)	2 / 1 (PCle)	•	•	
Platform HA Pair/S	Ethernet (HA/Single)	12 / 6 GbE RJ45	12 / 6 GbE RJ45	4 / 2 GbE RJ45	4 / 2 GbE RJ45	8 / 4 GbE RJ45	8 / 4 GbE RJ45	8 / 4 GbE RJ45	4 / 2 GbE RJ45	4 / 2 GbE RJ45	4 / 2 GbE RJ45	2 GbE RJ45
Pla	FC Ports (HA/Single)	16 / 8 4Gb SFP ⁶	16 / 8 4Gb SFP ⁶	8 / 4 4Gb SFP ⁶	8 / 4 4Gb SFP ⁶	8 / 4 4Gb SFP ⁶	8 / 4 4Gb SFP ⁶	8 / 4 2Gb SFP ⁷	4 / 2 4Gb SFP ⁶	4 / 2 4Gb SFP ⁶	4 / 2 2Gb SFP ⁷	1 2Gb SFP ⁷
	Data ONTAP [®] (Min Release)	7.2.4	7.2.4	7.2.5	7.2.5	7.2.1 10.0.2	7.2.1 10.0.2	7.0.1	7.2.2L1	7.2.2L1	6.5	6.4.3

Relative Performance

Databases

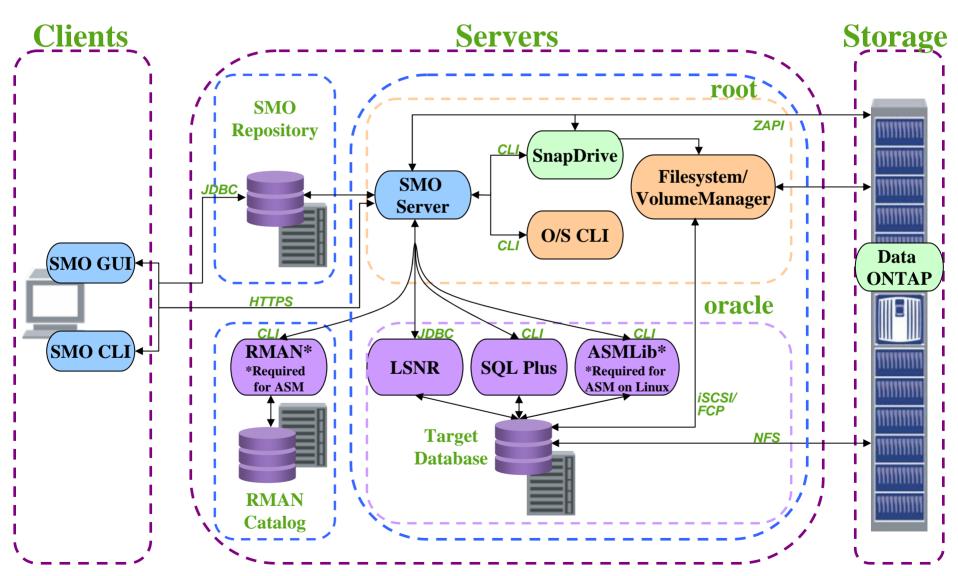
© 2008 NetApp. All rights reserved.


Database Volume Setup

- Pool disks into one large aggregate
 - Separate volumes for data files and log files
- Structure volumes on backup, restore, and replication requirements
 - No data to suggest performance improves/degrades if split up volumes for data files and logs
- RAID group size of 16 disks
 - Additional parity disk provides additional protection
- Turn off automatic snapshots on volumes
 - Want to put database in hot backup mode first

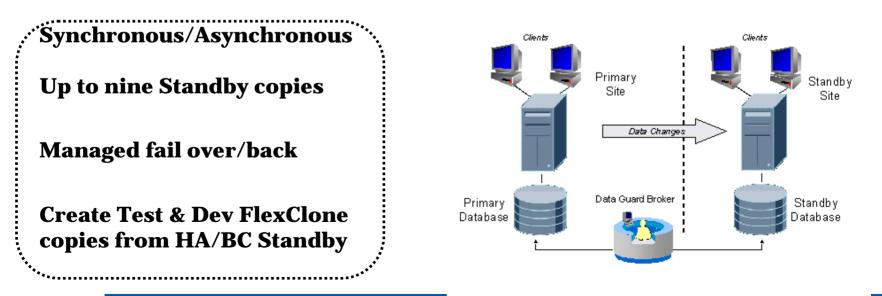
Data Protection with SnapManager for NetApp[®] Oracle[®]

ORACLE


DATABASE 9i, 10g, 11g

- Easy-to-use GUI or CLI integrates with host application
- Automates DB quiescence
- Automates and simplifies complex manual processes – backup/restore and cloning
- Saves administrative time
- Integration with RMAN, RAC, ASM and Direct NFS
- Handles NFS, FC and iSCSI protocols

Concepts: Architecture


NetApp

NetApp Oracle Data Guard on NetApp

Benefits

- Fast failover because DB is in standby mode
- Network efficient send-only logs
- Ensures database consistency

Mixed Scenarios for Data Guard and NetApp[®] SnapMirror[®] Together on NetApp

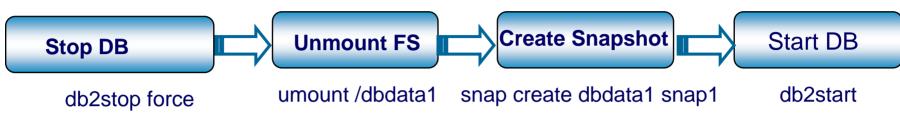
Initial transfer use case

- Use SnapMirror for initial data transfer
- Use Data Guard for ongoing log transfer

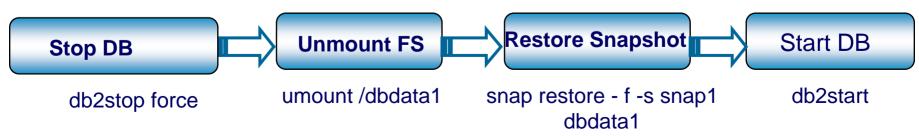
Multi-purpose use case

- Use Data Guard for Oracle DB
- Run Rapid Clone then SnapMirror for Oracle apps
- SnapMirror for non-Oracle data
- Use NetApp FlexClone for test/dev on both

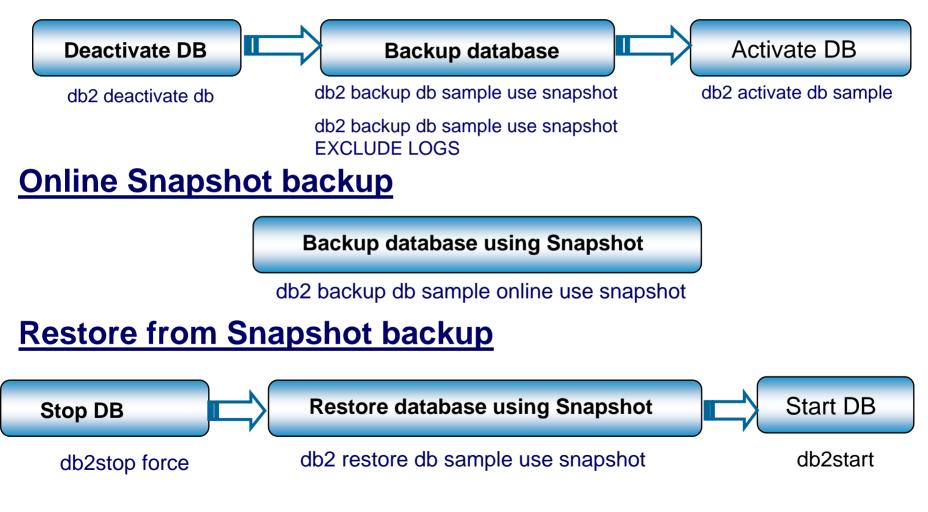
Backup use case


- Use Data Guard for Oracle DB replication
- Use SnapMirror in parallel as a redundant process

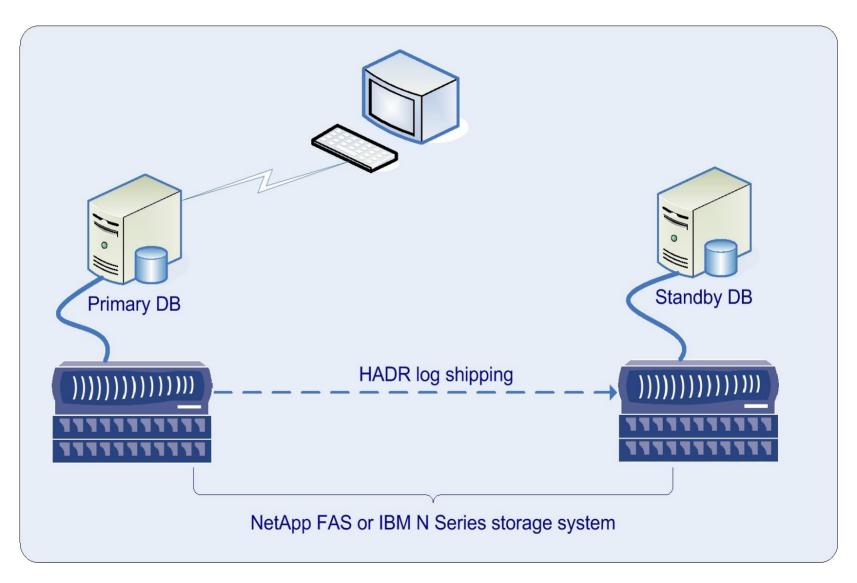
- NFS mount options
- iSCSI
 - Not gaining a lot of attention or adoption
- SAN
 - Useful where there is an investment in Fibre Channel infrastructure
 - Need database server throughput > 1Gb per second (~100MB per second)


Offline Snapshot backup

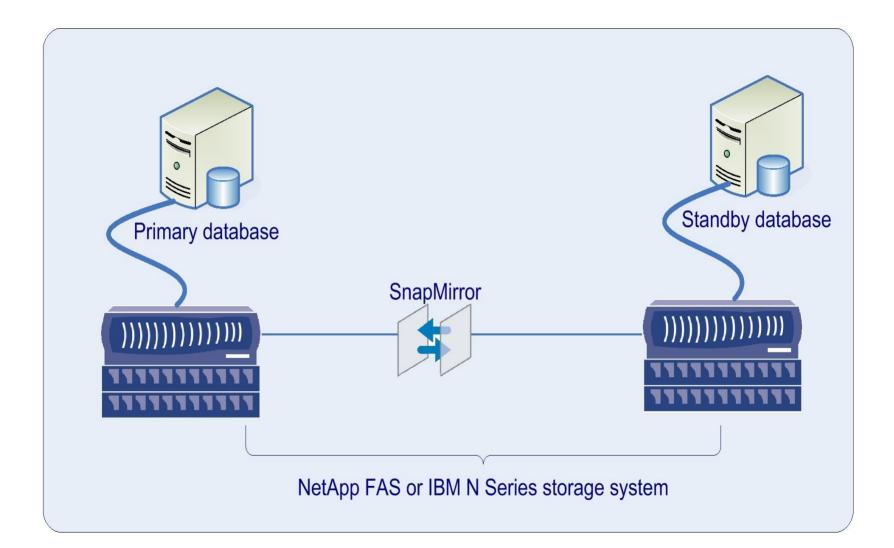
Online Snapshot backup



Restore from Snapshot backup



DB2 9.5 Backup/Restore with integrated Snapshot

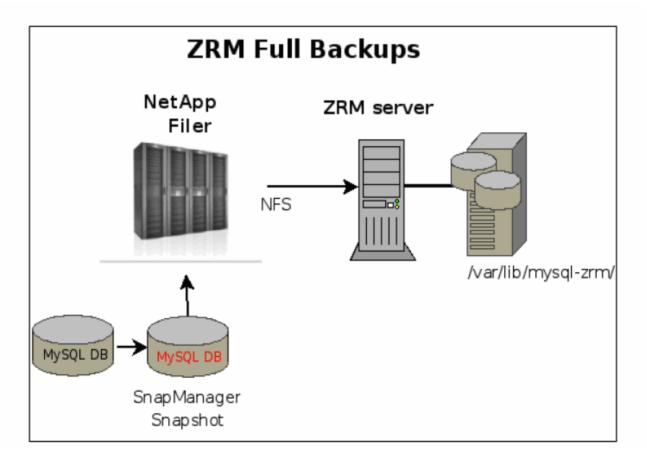

Offline Snapshot backup

DB2 HADR using SnapMirror

SnapMirror Vs DB2 HADR

SnapMirror

NetApp


- License cost
- + Failover using TSA/HACMP
- + Volume based- all the changes for the volume are replicated
- All the config changes to the db gets moved thru SnapMirror
- + Replication is back loaded, so resulting better performance
- Application binaries and stored procedures gets replicated
- Write suspend/resume

DB2HADR

- License cost
- + Can be automated using TSA
- Log base Transactions which are not logged need manual replication.
 Ex : conventional DB2 loads will require a re-sync of HADR
- Config changes to the db are not replicated
- DB server responsible for replication.
- Application binaries and stored DB object require manual intervention at standby
- + No write Suspend/Resume

- Zmanda Recovery Manager (ZRM) for MySQL
 - http://media.netapp.com/documents/tr-3656.pdf

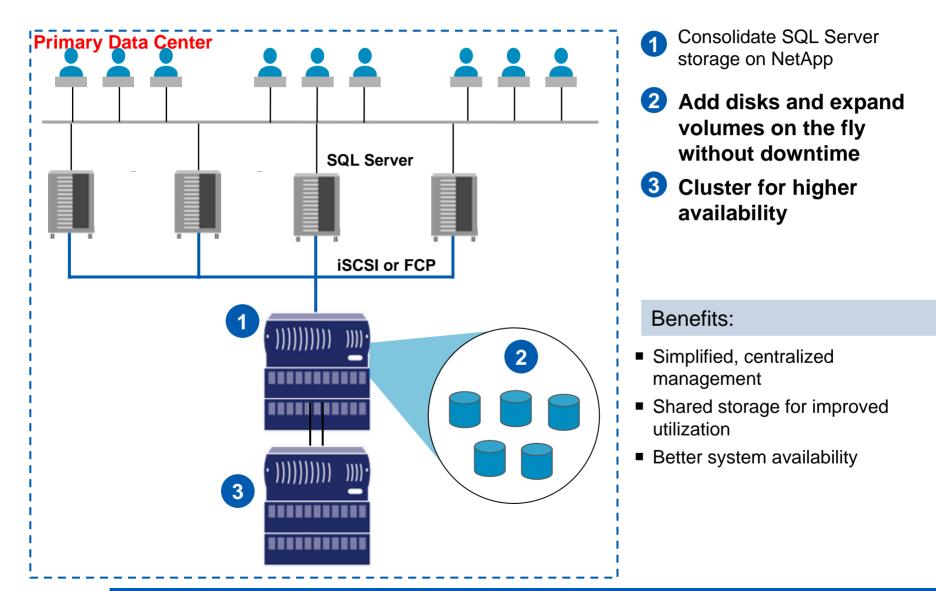
First check the /etc/my.cnf file

NetApp

Cygwin Bash Shell	- 🗆 X
[mysqld] datadir=/data/mysqldata socket=/var/lib/mysql/mysql.sock # Default to using old password format for compatibility with mysql 3.x # clients (those using the mysqlclient10 compatibility package). old_passwords=1 log-bin=/data/mysqllog/mybinlog sync_binlog=1	
[mysql.server] user=mysql basedir=/var/lib	
[mysqld_safe] log-error=/data/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid ~	
~ "/etc/my.cnf" 16L, 396C	

- Datadir=<path to nfs mount or LUN mount>
- Log-bin=<path to logfile>
- Sync_binlog=1 sync the innodb log and the bin log

To take a consistent snapshot


- Flush Tables with Read Lock;
- Take SnapShot
- Unlock tables;

- Shutdown MySQL
 - mysqladmin –u root –p shutdown
- Restore desired snapshot
 - Snap restore –s mysqldata.hot.1 MySQLData
- Start the database
 - Might want to prevent users from accessing
- Manually roll forward the logs
 - mysqlbinlog mybinlog.0000001 | mysql –u root -

SQL Server Best Practices

NetApp

SnapManager® for SQL Server®

- Provides integrated data management for SQL Server 2000 and SQL Server 2005 databases
 - Automated, fast, and space-efficient backups using Snapshot[™]
 - Automated, fast, and granular restore and recovery using SnapRestore[™]
 - Integrated with SnapMirror[™] for database replication
- Provides tight integration with Microsoft technologies such as MSCS, Volume Mount Points.

SnapManager[®] for SQL Server[®] – Key NetApp[®] Features

Features	Benefits
Rapid hot backup and restore times	 Maximizes SQL database availability and helps meet stringent SLAs Helps organizations recover from accidental user induced errors or application misbehavior Minimizes SQL downtime and thus reduces cost Increases the ability of SQL Servers to handle large number of databases and/or higher workloads.
Hot backups to Snapshot copies	No performance degradation during backups
Configuration, Backup, and Restore wizards with standard Windows GUIs	 Ease of use Virtually no training costs Cost savings
MSCS Support	High availability and enhanced reliability of SQL Server environment
NetApp [®] Clustered Failover	Further enhances availability of SQL Server
SnapMirror Integration	 Increases SQL Server's availability – can replicate the database to a secondary storage system for faster recovery in case of a disaster

SnapManager[®] for SQL Server[®] – Key NetApp[®] Features

Features	Benefits	
Online disk addition (storage expansion)	 Increases SQL Server's availability additional storage can be added without bringing the SQL Server down 	
New Features in SMSQL 2.1		
Volume Mount Point Support	Support for Volume Mount Points in order to eliminate the limitation with drive letters	
Fractional Space Reservation (Thin Provisioning)	 Allows administrators to reserve less than 100% of the LUN size SMSQL will delete backup sets and/or dismount the SQL Server databases before volume becomes full 	
Backup of read-only databases	 SMSQL now allows back up of read-only databases Read-only databases are listed in the configuration wizard, just as normal databases 	
Resource database management	SMSQL manages resource database that contain system objects included with SQL Server 2005	
Native x64 support	Supports 64bit natively on AMD64/EM64T	

- Configure 4k page sizes
 - Or multiple of 4K
 - 2k pages not optimal for WAFL 4k block size
- Single aggregate yields best performance
- Can put data files and logs into one volume
 - ASE 12.5 +: log rollforward capability integrated by Sybase in snapshots

Sybase ASE Best Practices: Backups

- Snapshot process takes very little time
- Offline backup: Database shut down
- Online backup
 - quiesce database command suspends writes
 - Login into ASE or use isql
 - Issue quiesce database hold command
 - Take snapshot on the array
 - Release the database hold with *quiesce database* release command
 - Take transaction log dumps
 - Save log dumps to another volume (for restore)

Sybase ASE Best Practices: Restore

- Bring down the ASE server
- Telnet to the array and issue the snaprestore command
 - The filer restores to the point-in-time from the snapshot
- Start the server with the –q option
- Apply the transaction logs by using the load transaction command
 - Do not bring the databases online until all logs have been applied
- Check the database and release it for user access

Virtualization

© 2008 NetApp. All rights reserved.

The NetApp and VMware Global Alliance

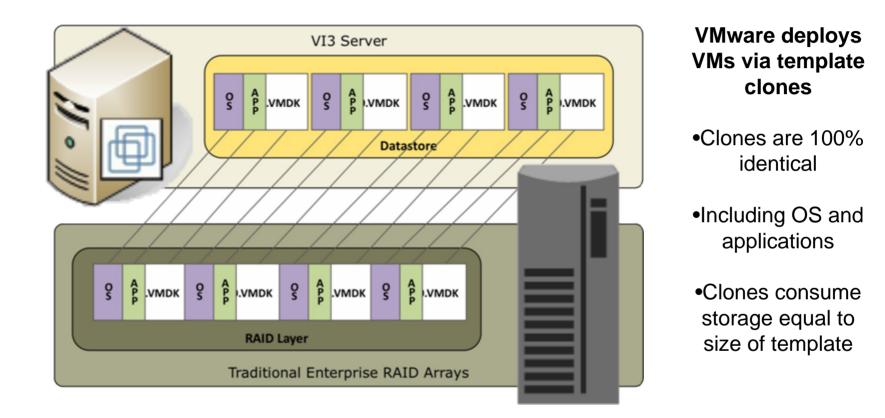
- Mutual Global Partners
- All NetApp products are VMware® certified
- Deep engineering level collaboration
- Reference platform for iSCSI and NFS
- Actively engaged at all levels: Executive through Sales
- Joint escalation team
- Over 5,000 joint ESX customers

NetApp Virtualization Alliances

Microsoft

NetApp Global Partner

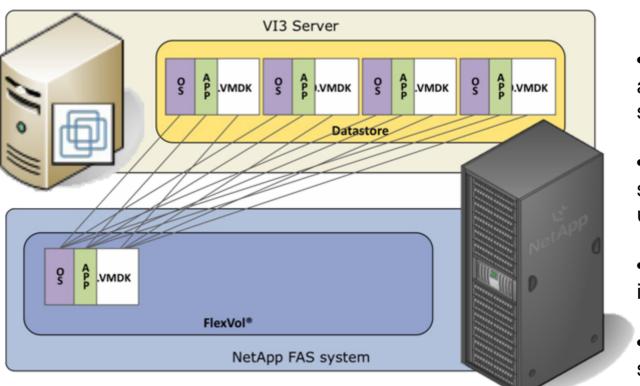
NetApp Advantage Partner


Virtualiron

NetApp Advantage Partner

- Development partner for Viridian
- Many joint customers
- XenServer Adapter for NetApp integrated into XenConsole
- FAS series fully certified
- NetApp is a Xen contributor
- Development partner for VI v4.0
- FAS series fully certified

NetApp


Storage Consumption by Traditional Storage Arrays

By design VMware® environments are very redundant

Reduce Storage Requirements with NetApp Deduplication

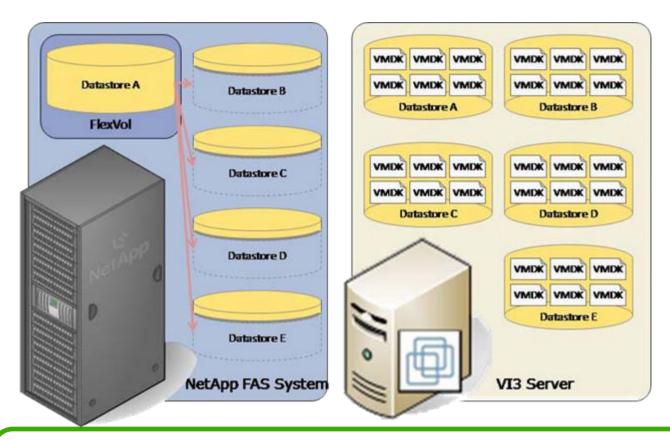
Dedupe removes redundant data

 Reduce OS and applications to a single copy

 VMs only consume storage for their unique data

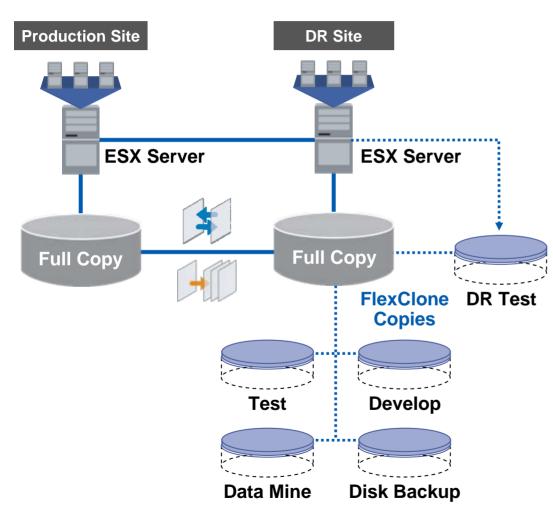
• Supports FCP, iSCSI, & NFS

• 50% – 70% storage reduction!


NetApp FAS deduplication provides the same benefits as the VMware shared cached memory functionality

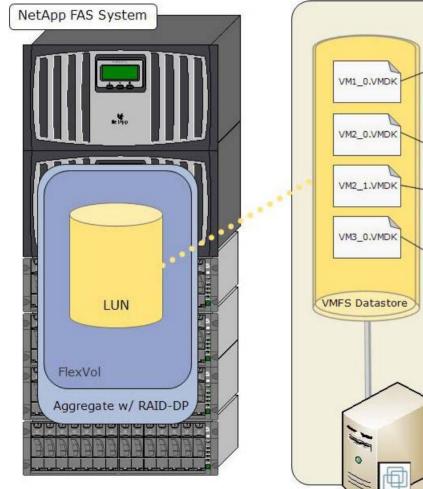
NetApp FlexClone Provisioning

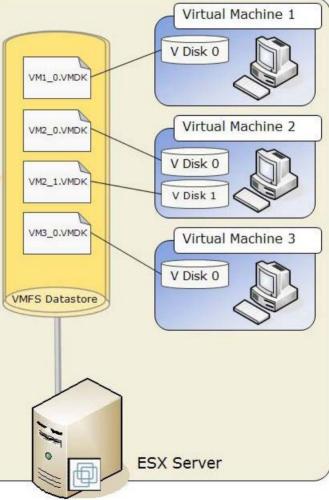
- Instantly provision cloned datastores or RDMs
 - Supports SAN, iSCSI, & NAS
 - Clones are immediately available
 - Clones require zero additional storage
 - Pointer driven block level replicas
 - Great for VDI, Training, Test & Dev, etc...


FlexClone allows you to use Site Recovery Manager to test your disaster recovery policies without impacting production

NetApp FlexClone for VDI Solutions

Deploy 1000s of VMs within minutes while not utilizing any additional storage capacity

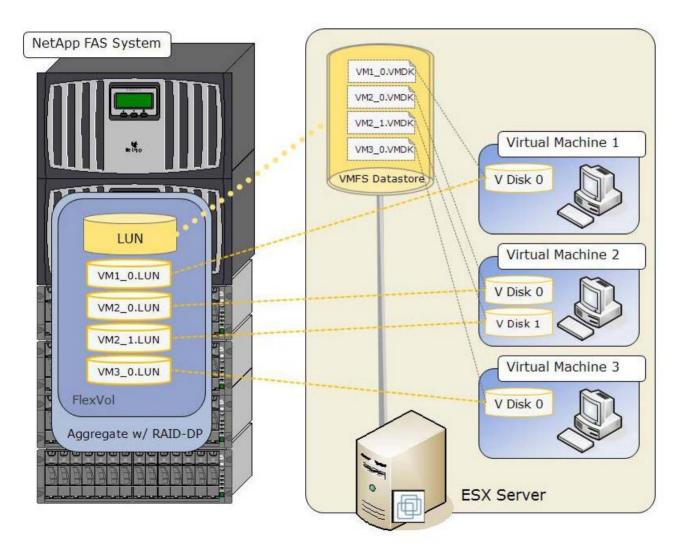

Non-disruptive DR Testing with VMware



NetApp[•]

- Instantaneous dataset clones for DR testing
- Quick and easy to set up and take down
- Zero disruption to primary environment
 - Also for test/dev, data mining, backup offload, and more

NetApp[®] VMDKs on VMFS via FCP or iSCSI

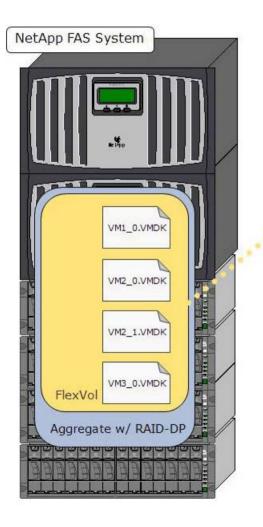

Strengths:

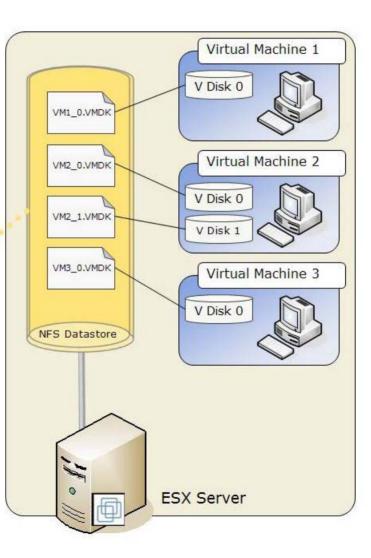
- Most commonly deployed storage format
- Once storage is provisioned the VMware Admins are free to use it as they see fit
- Most operations are available through VirtualCenter

Areas to be Aware:

- More VMDKs = performance degradation
- For performance VMware recommends smaller VMFS file systems
- More file systems = reduced storage utilization
- VMDK storage bottlenecks are very hard to identify
- Snapshots are at the VMFS level

RDMs via FCP or iSCSI


Strengths:

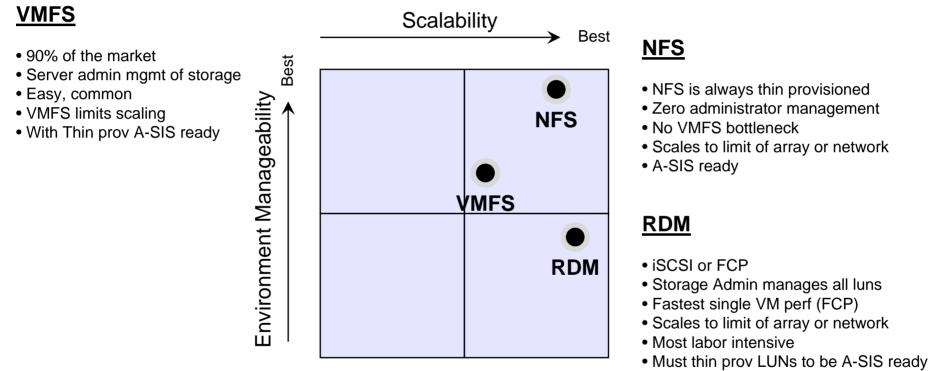

- Recommended by VMware for high IO performance
- Easy disk IO measuring
- Required for VM host side clustering (MSCS)
- Virtual mode RDMs provide support for snapshots and VMotion

Areas to be Aware:

- Introduced in ESX 2.5.x
- Provision Storage and VM Admins are free to use
- Advanced operations are not integrated into VirtualCenter Scripting required
- ESX LUN restrictions (256) may limit the size of ESX Datacenters
- Mapping files list as being the same size of RDM – actually is ~1MB

Strengths:

- Inexpensive storage networking
- VMDKs are only available in thin provisioned format
- Reduced storage consumption
- Most operations are available through VirtualCenter
- Easiest storage format to provision


Areas to be Aware:

Introduced in ESX 3.0

• For scalability / highest storage utilization you may need to implement TOE enabled NICs

Scaling and Manageability Quadrants

• NetApp tools will move this up

The choice is yours, NetApp supports them all

Increase your business flexibility and efficiency

Accelerate and transform your business

Count on a partnership dedicated to your success

Thank You

© 2008 NetApp. All rights reserved.

© 2008 NetApp. All rights reserved. Specifications subject to change without notice. NetApp, the NetApp logo, Data ONTAP, FlexClone, FlexVol, SnapMirror, and SnapManager are registered trademarks and NetApp, RAID-DP, and Snapshot are trademarks of NetApp, Inc. in the U.S. and other countries. Microsoft and SharePoint are registered trademarks of Microsoft Corporation. Oracle is a registered trademark of Oracle Corporation. SAP is a registered trademark of SAP AG. VMware is a registered trademark of VMware, Inc. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.