

Old New: Best Practices For Modernizing Legacy

Applications With Microservices

{API:World} Oct 10, 2019

Introductions

2

Kevin Israel

Richmond Virginia

19 years in Information Technology

Background is in software engineering and architecture

Founder/organizer of RVA Software Development User

Group

Market Technical Director at Terazo

Focused on Client Delivery and Technical Solutions

Terazo – Software Engineering (with an API focus),

DevOps and Data Engineering

{API:World} Oct 10, 2019

What we will cover

• Why we are here

• Legacy application lifecycle

• Peeling the onion (it will make you cry)

• Types of monoliths

• Why microservices

• Reaching the turning point

• Best Practices

• Decompose using iterative process

• Get a product owner

• Containerize

• Rough design up front

• Follow good API development

patterns

• Develop iteratively

3

• Best Practices continued

• Decompose with roadmap in mind

• Implement API gateway

• Work towards an event driven

architecture

• Write good tests

{API:World} Oct 10, 2019

Why are we here?

4

The reality is that many organizations have – and some struggle with – legacy

applications.

Typically the legacy application was:

• Built on older technology stacks.

• Deployed to production with technical debt.

• Designed for now, with no vision of the future.

• Not designed for functional testing with automated tooling.

• Not built in a loosely coupled way so flexibility is limited, change is difficult,

scalability is limited.

{API:World} Oct 10, 2019

Why are we here?

5

Typically the legacy application is:

• critical to the operations of the company

• generating revenue for the company

• hard to make changes to

• not documented well

• nearing it’s end of life

{API:World} Oct 10, 2019

The lifecycle of a legacy application

6

{API:World} Oct 10, 2019

Peeling the onion

7

You are working with your team who
has been tasked with “stabilizing” a
legacy web application that is core to
both the operation of the company as
well as revenue. Your team is told that it
is a priority. When you ask why it is a
priority at this time, it is explained to
you that there are some defects that are
impacting the business’s ability to
operate and “workarounds” that once
were enough to maintain the business
process, no longer are. Someone from IT
leadership says, “We can’t add new
features because we end up breaking
things even though we think we have
tested the application end-to-end. Our
time to market is abysmal. The business
units are getting fed up.” The rose is
now an onion!

{API:World} Oct 10, 2019

The Monolith

8

All In One Monolith Modular Monolith

COTS Monolith Distributed Monolith

Module A Module B Module C

Module D Module E Module F

{API:World} Oct 10, 2019

Why a microservice architecture?

9

Some goodness of microservices are:

• Smaller isolated pieces allow for simplified deployment model.

• With loosely coupled design and less dependencies comes simplicity in understanding.

• Share small services that implement cross cutting (shared) functionality. Reusability.

• Easier to test since smaller test footprint.

• Faster ability to isolate and mitigate defects.

• Easier to monitor and manage a microservice.

• Compliments containerization well which allows for scalability, especially in cloud.

{API:World} Oct 10, 2019

Turning point

10

When faced with a stabilization or modernization effort, or when faced with the reality

that you need a stabilization or modernization effort, embrace microservices to both

positively impact the business you work in or the clients you work for.

To be successful in modernizing a legacy application with microservices, we need to

embrace the fact that it will involve making a fundamental shift in the way we think, in

the processes we follow, in the culture we embrace, in the way we work and sometimes

even the people we work with.

{API:World} Oct 10, 2019

Best Practices

11

{API:World} Oct 10, 2019

Decompose using iterative approach

12

Not sure how to start?

• Meet with the folks who use the legacy application and get a list of all the pain points

they experience.

• Work on prioritizing the top five to ten items.

• Take a deep dive into the legacy code and study the code that has the responsibility for

implementing the functionality in question.

• Try to understand the intent of the code as written.

• If the intent is unclear (that might be part of the root problem), it’s time to meet with

the end users/product owner to establish, in clear requirements, what needs to happen.

{API:World} Oct 10, 2019

Decompose using iterative approach

13

Not sure how to start?

• Determining where the integration of the microservice should occur.

• Translate your findings to each microservice, building your needed functionality

within your microservice.

• Finally, define an integration strategy.

• Follow this pattern until the identified priority pain points have been mitigated by

microservice integration. Meet and assign the next set of pain points to be addressed

and start the process all over again.

{API:World} Oct 10, 2019

Decompose using iterative approach

14

There are other avenues to use when ascertaining where to introduce microservices.

 As a development team, review the code together, looking for any:

• “Code smells” that may indicate areas of functionality that may benefit from

refactoring to a microservice.

• High traffic/high risk areas of code with no testing.

• External calls to web services, SOAP-based or RESTful, and consider implementing

a microservice wrapper for that. This will allow any changes the external service

makes to be handled by a microservice and allow great testing as well as individual

deployments.

{API:World} Oct 10, 2019

Get a Product Owner

15

What is a product owner and why do we need one?

A product owner is one of the keys to success when moving to a microservice architecture. A
product owner performs several key duties:

• Providing product vision

• Owning and prioritizing the product backlog

• Involving customers, users, and other stakeholders

• Collaborating with others on the team

The role of product owner is critical for ensuring that the rest of the business and the IT team
work together effectively. It also requires significant effort on a daily basis. The product owner
provides vision, mentors the team, answers questions, makes decisions about the product,
communicates with the broader organization, negotiates resource contentions, coordinates
business interaction and serves as a liaison to leaders.

{API:World} Oct 10, 2019

Get a Product Owner

16

The product owner is ideally in between the business and the IT teams.

The product owner must be able to communicate different messages to different people about the project at
any given time.

The vision the product owner provides is based on:

• Hard business requirements – “we have to send an email to the customer.”

• Implied business requirements – “we hope to double the transaction load in 2 months.”

• Best practices – “Let’s build in a heartbeat check on the microservice.”

• Best practices – “Make sure you write a test for every microservice we build and deploy.”

• Upcoming initiatives – “The Operations team is looking to move forward with containers Q2.”

Becomes the single voice for the product based on what they know.

{API:World} Oct 10, 2019

Containerize

17

Containerization reduces wasted resources because each container only holds the application
and related binaries or libraries. By allowing more containers in the environment without the
need for more servers, containerization increases scalability anywhere from 10 to 100 times that
of traditional VM environments.

Containers can be deployed as part of a CI/CD pipeline.

Key benefits:

• Increased portability.

• Improved scalability.

• Simple and fast deployment.

• Increased productivity

• Better Security

{API:World} Oct 10, 2019

Containerize

18

Containerization is the natural successor to virtualization.

Portability and consistency are the main drivers.

Orchestration makes all the difference, a greater number of moving parts increases the

potential for greater friction.

Containers are perfect for a microservice architecture – like peanut butter and jelly!

Microservices use containers to deliver smaller, single-function modules, which work to

create scalable applications. With this approach, there is no need to build and deploy an

entirely new software version every time you change or scale a specific function.

{API:World} Oct 10, 2019

Rough design up front

19

Big Design Up Front (BDUF) is a tenant of the Waterfall methodology of application

development.

Rough Design Up Front is different in strategy and intent.

Significant parts of a solution can, and should, be designed up front. Not every project

is so complex and uncertain that it must be evolved from scratch — In fact most are not.

Experienced Product Owners and Technical Architects/Leads can usually create a rough

design for up to 75% of a solution in the first few iterations of a project.

{API:World} Oct 10, 2019

Rough design up front

20

Legacy App
Sprint 1

Email

SMS

Shipping
Rates

Tax
Calc

Logging

A
P

I G
at

ew
ay

UPS API

Twilio API

Data

AWS

{API:World} Oct 10, 2019

Follow good API patterns

21

Some of the common mistakes when building APIs for REST microservices include:

• Designing the API based on the client

• Designing the API the way you would design a class – what I call the MOD (Many
Overloads Design)

• Testing the microservice by testing the legacy application

Here are some good patterns and practices to follow when designing and developing
APIs:

• Use plurals - plurals help avoid confusion when we are talking about getting single
resource or a collection. => /cars/car

• Use nouns not verbs => /customer vs /getAllCustomers

{API:World} Oct 10, 2019

Follow good API patterns

22

Good patterns and practices to follow when designing and developing APIs con’t:

• Use plurals - plurals help avoid confusion when we are talking about getting single resource
or a collection. => /cars/car

• Use the right HTTP Methods => GET, POST, PUT/PATCH and DELETE
• Use parameters – Sometimes we need and API to return data by more than id, we should

make use of query parameters to design the API.
 => products?name=’Wild Widget’ should be preferred over /getProductsByName
• Use proper HTTP codes - Most of us only end up using two — 200 and 500! This is certainly

not good. => 200 OK, 201 CREATED, 202, ACCEPTED ,400 BAD REQUEST etc.

• Versioning - Versioning of APIs is very important. User header versioning or URL.

{API:World} Oct 10, 2019

Follow good API patterns

23

Good patterns and practices to follow when designing and developing APIs con’t:

• Use pagination – exposing a huge amount of data over a REST API microservice can

slow down the consumer of your service and impact user experience. =

/products?limit=25&offset=50

• Proper error messages

• The GET method should not be used to alter state – Instead use the PUT, POST and

DELETE methods. GET /orders/737272/process

{API:World} Oct 10, 2019

Iterative development

24

Iterative development is now becoming common practice because it better fits the
natural path of progression in software development. Instead of investing a lot of
time/effort chasing the 'perfect design' based on assumptions, the iterative approach is
all about creating something that's 'good enough' to start and evolving it to fit the user's
needs.

At the end of the iteration, working code is expected that can be demonstrated for a
customer.

Example:

Review/add user stories -> Update rough design -> write tests -> develop -> CI -> CD -
> Test

{API:World} Oct 10, 2019

Create a road map and decompose with it in mind

25

Where we are Where we want to be Iterative Decomposition

{API:World} Oct 10, 2019

Create a road map and decompose with it in mind

26

Where we are Where we want to be Iterative decomposition
to monolith

{API:World} Oct 10, 2019

Implement an API Gateway

27

An API gateway is technology that sits in front of an API and acts as a single point of entry for a defined group
of microservices. It handles routing,

Some benefits:

• Insulates the clients from how the application is partitioned into microservices.

• Insulates the clients from the problem of determining the locations of service instances.

• Provides the optimal API for each client.

• Reduces chattiness. The API gateway enables clients to retrieve data from multiple services with a single
round-trip. Fewer requests also means less overhead and improves the user experience. An API gateway is
important for mobile applications.

• Simplifies the client by moving logic for calling multiple services from the client to API gateway.

• Translates from a “standard” public web-friendly API protocol to whatever protocols are used internally.

{API:World} Oct 10, 2019

Implement an API Gateway

28

Web
App

Mobile
App

API
Gateway

REST: Order

AMQP: Inventory

REST: Payment

Web
App

Web App
API

Gateway

REST: Order

AMQP: Inventory 3rd Pty
App

Mobile
API

Gateway

REST: Payment

Public
API

Gateway

Mobile
App

{API:World} Oct 10, 2019

Implement an API Gateway

29

Warning!!

If not implemented correctly, the API gateway can become as costly to maintain as the

legacy application.

It is yet another moving part that must be developed, deployed and managed.

{API:World} Oct 10, 2019

Work towards an event driven architecture

30

• Since microservice architecture is an approach to developing an application as a suite

of small independently deployable services built around specific business

capabilities, it plays nicely with event driven architectures and event streams.

• When moving from legacy applications to a microservices architecture, a common

architecture pattern is event sourcing using an “append only” the event stream. With

event streaming tools, events are grouped into logical collections of events called

Topics. Topics are partitioned for parallel processing. You can think of a partitioned

Topic like a queue, events are delivered in the order they are received.

{API:World} Oct 10, 2019

Work towards an event driven architecture

31

Producers

Producers

Consumers

Producers Consumers

Consumers

Topic - Order

Topic - Payment

Topic - Inventory

Topic - Order

Topic - Payment

Topic - Inventory

Topic - Order

Topic - Payment

Topic - Inventory

{API:World} Oct 10, 2019

Write good tests

32

Testing helps coach good development. Even if you have a simple logging service that
receives a message and logs it, it should send a status. Alternatively you could
implement an API that reads the log file based on the log you just created. The point is
write tests for your microservices.

1. Unit Tests/Functional Testing

2. Performance Testing

• Keep the testing code compact and readable

• Cover as much of the range as possible to show positive cases and especially
erroneous code paths

• Don't mock a type you don't own!

{API:World} Oct 10, 2019

Summary

Decompose using iterative process.

Get a product owner.

Containerize.

Rough design up front

Follow good API development patterns.

Iterative development.

Create a roadmap and decompose with it in mind.

Implement an API gateway.

Work towards an event driven architecture.

Write good tests.

33

{API:World} Oct 10, 2019

Questions

Contact Information

Kevin Israel

Market Technical Director

kevin.israel@terazo.com

https://www.linkedin.com/in/kevinisra
el/

www.terazo.com

34

mailto:kevin.israel@terazo.com
https://www.linkedin.com/in/kevinisrael/
https://www.linkedin.com/in/kevinisrael/
http://www.terazo.com/

