
Best practices for MySQL High Availability 
Colin Charles, Chief Evangelist, Percona Inc.

colin.charles@percona.com / byte@bytebot.net

http://www.bytebot.net/blog/ | @bytebot on Twitter

Percona Webminar

7 February 2017



whoami

• Chief Evangelist (in the CTO office), Percona Inc

• Founding team of MariaDB Server (2009-2016), previously at 
Monty Program Ab, merged with SkySQL Ab, now MariaDB 
Corporation

• Formerly MySQL AB (exit: Sun Microsystems)

• Past lives include Fedora Project (FESCO), OpenOffice.org

• MySQL Community Contributor of the Year Award winner 2014

2



3



4



5



Uptime

Percentile target Max downtime per year
90% 36 days
99% 3.65 days

99.5% 1.83 days
99.9% 8.76 hours
99.99% 52.56 minutes
99.999% 5.25 minutes
99.9999% 31.5 seconds

6



Estimates of levels of availability

7

Method Level of 
Availability

Simple replication 98-99.9%

Master-Master/MMM 99%

SAN 99.5-99.9%

DRBD, MHA, Tungsten 
Replicator 99.9%

NDBCluster, Galera Cluster 99.999%



HA is Redundancy

• RAID: disk crashes? Another works

• Clustering: server crashes? Another works

• Power: fuse blows? Redundant power supplies

• Network: Switch/NIC crashes? 2nd network route

• Geographical: Datacenter offline/destroyed? Computation to 
another DC

8



Durability

• Data stored on disks

• Is it really written to the disk?

• being durable means calling fsync() on each commit

• Is it written in a transactional way to guarantee atomicity, 
crash safety, integrity?

9



High Availability for databases

• HA is harder for databases

• Hardware resources and data need to be redundant

• Remember, this isn’t just data - constantly changing data

• HA means the operation can continue uninterrupted, not by 
restoring a new/backup server

• uninterrupted: measured in percentiles

10



Redundancy through client-side 
XA transactions

• Client writes to 2 independent but identical databases

• HA-JDBC (http://ha-jdbc.github.io/) 

• No replication anywhere

11

http://ha-jdbc.github.io/


InnoDB “recovery” time

•innodb_log_file_size 

• larger = longer recovery times

• Percona Server 5.5 (XtraDB) - innodb_recovery_stats

12



Redundancy through 
shared storage

• Requires specialist hardware, like a SAN

• Complex to operate

• One set of data is your single point of failure

• Cold standby

• failover 1-30 minutes

• this isn’t scale-out

• Active/Active solutions: Oracle RAC, ScaleDB

13



Redundancy through disk 
replication

• DRBD

• Linux administration vs. DBA skills

• Synchronous

• Second set of data inaccessible for use

• Passive server acting as hot standby

• Failover: 1-30 minutes

• Performance hit: DRBD worst case is ~60% single node performance, with 
higher average latencies

14



Redundancy through MySQL 
replication

• MySQL replication

• Tungsten Replicator

• Galera Cluster

• MySQL Cluster (NDBCLUSTER)

• Storage requirements are multiplied

• Huge potential for scaling out

15



MySQL Replication
• Statement based generally

• Row based became available in 5.1, and the default in 5.7

• mixed-mode, resulting in STATEMENT except if calling

• UUID function, UDF, CURRENT_USER/USER function, LOAD_FILE function

• 2 or more AUTO_INCREMENT columns updated with same statement

• server variable used in statement

• storage engine doesn’t allow statement based replication, like 
NDBCLUSTER

16



MySQL Replication II

• Asynchronous by default

• Semi-synchronous plugin in 5.5+

• However the holy grail of fully synchronous replication is not 
part of standard MySQL replication (yet?)

• MariaDB Galera Cluster is built-in to MariaDB Server 10.1

17



The logs

• Binary log (binlog) - events that describe database changes

• Relay log - events read from binlog on master, written by slave 
i/o thread

• master_info_log - status/config info for slave’s connection to 
master

• relay_log_info_log - status info about execution point in slave’s 
relay log

18



Semi-synchronous replication

• semi-sync capable slave acknowledges transaction event only 
after written to relay log & flushed to disk

• timeout occurs? master reverts to async replication; resumes 
when slaves catch up

• at scale, Facebook runs semi-sync: http://
yoshinorimatsunobu.blogspot.com/2014/04/semi-synchronous-
replication-at-facebook.html 

19

http://yoshinorimatsunobu.blogspot.com/2014/04/semi-synchronous-replication-at-facebook.html


MySQL Replication in 5.6
• Global Transaction ID (GTID)

• Server UUID

• Ignore (master) server IDs 
(filtering)

• Per-schema multi-threaded 
slave

• Group commit in the binary 
log

• Binary log (binlog) checksums

• Crash safe binlog and relay 
logs

• Time delayed replication

• Parallel replication (per 
database)

20



Replication: START TRANSACTION 
WITH CONSISTENT SNAPSHOT

• Works with the binlog, possible to obtain the binlog position corresponding to a 
transactional snapshot of the database without blocking any other queries. 

• by-product of group commit in the binlog to view commit ordering

• Used by the command mysqldump--single-transaction --
master-data to do a fully non-blocking backup 

• Works consistently between transactions involving more than one storage 
engine

• https://kb.askmonty.org/en/enhancements-for-start-transaction-with-consistent/

• Percona Server made it better, by session ID, and also introducing backup locks

21

https://kb.askmonty.org/en/enhancements-for-start-transaction-with-consistent/


Multi-source replication

• Multi-source replication - (real-time) analytics, shard provisioning, 
backups, etc.

• @@default_master_connection contains current connection 
name (used if connection name is not given)

• All master/slave commands take a connection name now (like 
CHANGE MASTER “connection_name”, SHOW SLAVE 
“connection_name” STATUS, etc.)

22



Global Transaction ID (GTID)

• Supports multi-source replication

• GTID can be enabled or disabled independently and online for masters or 
slaves

• Slaves using GTID do not have to have binary logging enabled.

• (MariaDB) Supports multiple replication domains (independent binlog 
streams)

• Queries in different domains can be run in parallel on the slave.

23



Why MariaDB GTID is different 
compared to 5.6?

• MySQL 5.6 GTID does not support multi-source replication

• Supports —log-slave-updates=0 for efficiency

• Enabled by default

• Turn it on without having to restart the topology

24



Parallel replication

• Multi-source replication from different masters executed in parallel 

• Queries from different domains are executed in parallel 

• Queries that are run in parallel on the master are run in parallel 
on the slave (based on group commit).

• Transactions modifying the same table can be updated in parallel 
on the slave! 

• Supports both statement based and row based replication. 

25



All in… sometimes it 
can get out of sync

• Changed information on slave directly

• Statement based replication

• non-deterministic SQL (UPDATE/
DELETE with LIMIT and without 
ORDER BY)

• triggers & stored procedures

• Master in MyISAM, slave in InnoDB 
(deadlocks)

• --replication-ignore-db with fully 
qualified queries

• Binlog corruption on master

• PURGE BINARY LOGS issued and 
not enough files to update slave

• read_buffer_size larger than 
max_allowed_packet

• Bugs? 

26



Replication Monitoring

• Percona Toolkit is important

• pt-slave-find: find slave information from master

• pt-table-checksum: online replication consistency check

• executes checksum queries on master

• pt-table-sync: synchronise table data efficiently

• changes data, so backups important

27



Replication Monitoring with 
PMM

28

•http://pmmdemo.percona.com/

http://pmmdemo.percona.com/


mysqlbinlog versions

• ERROR: Error in Log_event::read_log_event(): 'Found invalid 
event in binary log', data_len: 56, event_type: 30

• 5.6 ships with a “streaming binlog backup server” - v.3.4; 
MariaDB 10 doesn’t - v.3.3 (fixed in 10.2 - MDEV-8713)

• GTID variances!

29



Slave prefetching

• Replication Booster

• https://github.com/yoshinorim/replication-booster-for-mysql

• Prefetch MySQL relay logs to make the SQL thread faster

• Tungsten has slave prefetch

• Percona Server till 5.6 + MariaDB till 10.1 have InnoDB fake 
changes

30

https://github.com/yoshinorim/replication-booster-for-mysql


What replaces slave prefetching?

• In Percona Server 5.7, slave prefetching has been replaced by 
doing intra-schema parallel replication

• Feature removed from XtraDB

• MariaDB Server 10.2 will also have this feature removed

31



Tungsten Replicator
• Replaces MySQL Replication layer

• MySQL writes binlog, Tungsten reads it and uses its own replication protocol

• Global Transaction ID

• Per-schema multi-threaded slave

• Heterogeneous replication: MySQL <-> MongoDB <-> PostgreSQL <-> Oracle

• Multi-master replication

• Multiple masters to single slave (multi-source replication)

• Many complex topologies

• Continuent Tungsten (Enterprise) vs Tungsten Replicator (Open Source)

32



In today’s world, what does it 
offer?

• opensource MySQL <-> Oracle replication to aid in your 
migration 

• automatic failover without MHA

• multi-master with cloud topologies too

• Oracle <-> Oracle replication (this is Golden Gate for FREE) 

• Replication from MySQL to MongoDB

• Data loading into Hadoop

33



Galera Cluster
• Inside MySQL, a replication plugin (wsrep)

• Replaces MySQL replication (but can work alongside it too)

• True multi-master, active-active solution

• Synchronous

• WAN performance: 100-300ms/commit, works in parallel

• No slave lag or integrity issues

• Automatic node provisioning

34



35



Percona XtraDB Cluster 5.7

• Engineering within Percona

• Load balancing with ProxySQL (bundled)

• PMM integration

• Benefits of all the MySQL 5.7 feature-set

36



Group replication

• Fully synchronous replication (update everywhere), self-healing, 
with elasticity, redundancy

• Single primary mode supported

• MySQL InnoDB Cluster - a combination of group replication, 
Router, to make magic!

37



MySQL NDBCLUSTER
• 3 types of nodes: SQL, data and management

• MySQL node provides interface to data. Alternate API’s available: LDAP, memcached, 
native NDBAPI, node.js

• Data nodes (NDB storage)

• different to InnoDB

• transactions synchronously written to 2 nodes(ore more) - replicas

• transparent sharding: partitions = data nodes/replicas

• automatic node provisioning, online re-partitioning

• High performance: 1 billion updates / minute

38



Summary of Replication 
Performance

• SAN has "some" latency overhead compared to local disk. Can be great 
for throughput.

• DRBD = 50% performance penalty

• Replication, when implemented correctly, has no performance penalty

• But MySQL replication with disk bound data set has single-threaded 
issues!

• Semi-sync is poorer on WAN compared to async

• Galera & NDB provide read/write scale-out, thus more performance

39



Handling failure
• How do we find out about failure?

• Polling, monitoring, alerts...

• Error returned to and handled in client side

• What should we do about it?

• Direct requests to the spare nodes (or DCs)

• How to protect data integrity?

• Master-slave is unidirectional: Must ensure there is only one master at all times.

• DRBD and SAN have cold-standby: Must mount disks and start mysqld.

• In all cases must ensure that 2 disconnected replicas cannot both commit independently. (split 
brain)

40



Frameworks to handle failure

• MySQL-MMM

• Severalnines 
ClusterControl

• Orchestrator

• MySQL MHA

• Percona Replication 
Manager

• Tungsten Replicator

• 5.6: mysqlfailover, 
mysqlrpladmin

• (MariaDB) Replication 
Manager

41



Orchestrator

• Reads replication topologies, keeps state, 
continuous polling

• Modify your topology — move slaves around

• Nice GUI, JSON API, CLI

42



MySQL MHA
• Like MMM, specialized solution for MySQL replication

• Developed by Yoshinori Matsunobu at DeNA

• Automated and manual failover options

• Topology: 1 master, many slaves

• Choose new master by comparing slave binlog positions

• Can be used in conjunction with other solutions

• http://code.google.com/p/mysql-master-ha/

43

http://code.google.com/p/mysql-master-ha/


Pacemaker
• Heartbeat, Corosync, Pacemaker

• Resource Agents, Percona-PRM

• Percona Replication Manager - cluster, geographical disaster recovery 
options

• Pacemaker agent specialised on MySQL replication

• https://github.com/percona/percona-pacemaker-agents/ 

• Pacemaker Resource Agents 3.9.3+ include Percona Replication 
Manager (PRM)

44

https://github.com/percona/percona-pacemaker-agents/


Load Balancers for multi-master 
clusters

• Synchronous multi-master clusters like Galera require load 
balancers

• HAProxy

• Galera Load Balancer (GLB)

• MaxScale

• ProxySQL

45



MySQL Router

• Routing between applications and any backend MySQL servers

• Failover

• Load Balancing

• Pluggable architecture (connection routing, Fabric cache)

46



MaxScale

• “Pluggable router” that offers connection & statement based 
load balancing

• Possibilities are endless - use it for logging, writing to other 
databases (besides MySQL), preventing SQL injections via regex 
filtering, route via hints, query rewriting, have a binlog relay, etc.

• Load balance your Galera clusters today!

47



ProxySQL

• High Performance MySQL proxy with a GPL license

• Performance is a priority - the numbers prove it

• Can query rewrite

• Sharding by host/schema or both, with rule engine + 
modification to SQL + application logic

48



JDBC/PHP drivers

• JDBC - multi-host failover feature (just specify master/slave 
hosts in the properties)

• true for MariaDB Java Connector too

• PHP handles this too - mysqlnd_ms

• Can handle read-write splitting, round robin or random host 
selection, and more

49



Clustering: solution or part of 
problem?

• "Causes of Downtime in Production MySQL Servers" whitepaper, 
Baron Schwartz VividCortex

• Human error

• SAN

• Clustering framework + SAN = more problems

• Galera is replication based, has no false positives as there’s no 
“failover” moment, you don’t need a clustering framework (JDBC or 
PHP can load balance), and is relatively elegant overall

50



InnoDB based?

• Use InnoDB, continue using InnoDB, know workarounds to 
InnoDB

• All solutions but NDB are InnoDB. NDB is great for telco/
session management for high bandwidth sites, but setup, 
maintenance, etc. is complex

51



Replication type
• Competence choices

• Replication: MySQL DBA manages

• DRBD: Linux admin manages

• SAN: requires domain controller

• Operations

• DRBD (disk level) = cold standby = longer 
failover

• Replication = hot standby = shorter failover

• GTID helps tremendously

• Performance

• SAN has higher latency than local disk

• DRBD has higher latency than local disk

• Replication has little overhead

• Redundancy

• Shared disk = SPoF

• Shared nothing = redundant

52



SBR vs RBR? Async vs sync?

• row based: deterministic

• statement based: dangerous

• GTID: easier setup & failover of complex topologies

• async: data loss in failover

• sync: best

• multi-threaded slaves: scalability (hello 5.6+, Tungsten)

53



Conclusions for choice
• Simpler is better

• MySQL replication > DRBD > SAN

• Sync replication = no data loss

• Async replication = no latency (WAN)

• Sync multi-master = no failover required

• Multi-threaded slaves help in disk-bound workloads

• GTID increases operational usability

• Galera provides all this with good performance & stability

54



Conclusion

• MySQL replication is amazing if you know it (and monitor it) 
well enough

• Large sites run just fine with semi-sync + tooling for automated 
failover

• Galera Cluster is great for fully synchronous replication

• Don’t forget the need for a load balancer: ProxySQL is nifty

55



At Percona, we care about your 
High Availability

• Percona XtraDB Cluster 5.7 with support for ProxySQL and 
Percona Monitoring & Management (PMM)

• Percona Monitoring & Management (PMM) with Orchestrator

• Percona Toolkit

• Percona Server for MySQL 5.7

• Percona XtraBackup

56



Q&A / Thanks
colin.charles@percona.com / byte@bytebot.net
@bytebot on Twitter | http://bytebot.net/blog/ 

slides: slideshare.net/bytebot

57

mailto:colin.charles@percona.com
mailto:byte@bytebot.net
http://bytebot.net/blog/
http://slideshare.net/bytebot

