Better Positions and

Improved Access to the

 National Spatial Reference System
The National Adjustment of 2011 and related National Geodetic Survey products \& services

Scott Lokken NGS State Advisor (NC) scott.lokken@noaa.gov

Contents:

- The National Spatial Reference System
- A (very) brief history of NAD 83
- The latest realization: NAD 83(2011) epoch 2010.00
- Related and dependant NGS products \& services
- The Multi-Year CORS Solution (MYCS)
- OPUS
- A new hybrid geoid model (GEOID12)
- New NAD 83 coordinate transformations
- New NGS Datasheet format
- Subsequent Development of GEOID12 (In progress, waiting on NAD83(2011) heights)

A (very) brief history of NAD 83

- Original realization completed in 1986
- Consisted (almost) entirely of classical (optical) observations
- "High Precision Geodetic Network" (HPGN) and "High Accuracy Reference Network" (HARN) realizations
- Most done in 1990s, essentially state-bystate
- Based on GNSS but classical stations included in adjustments
- National Re-Adjustment of 2007
- NAD 83(CORS96) and (NSRS2007)
- Simultaneous nationwide adjustment (GNSS only)
- New realization: NAD 83(2011) epoch 2010.00

Introducing... NAD 83(2011) epoch 2010.00

- Multi-Year CORS Solution (MYCS)
- Reprocessed all CORS GPS data Jan 1994-Apr 2011
- 2264 CORS \& global stations
- NAD 83 computed by transformation from IGS08
- National Adjustment of 2011-- NAD83(2011)
- New adjustment of GNSS passive control
- GNSS vectors tied (and constrained) to CORS NAD 83(2011) epoch 2010.00
- Approximately 80,000 stations and 400,000 GNSS vectors
- Realization SAME for CORS and passive marks
- This is NOT a new datum! (still NAD 83)

Why a new NAD 83 realization?

- Previous NAD 83(CORS96) needed many improvements
- NSRS improvements achieved with the MYCS include:
- Consistent coordinates and velocities from combined solution
- Aligned with most recent realization of global frame (IGSO8)
- IGS08 epoch 2005.0 (previous aligned at epoch 1997.0)
- NAD 83 epoch 2010.0 (previous epochs of 2002.0 and 2003.0)
- Major processing algorithm, modeling, metadata improvements
- Absolute phase center antenna calibrations
- Highly accurate and consistent CORS coordinates and velocities determined using Best Available Methods
- Needed because CORS network is foundation of NSRS

New Adjustment

- Name: NAD83(2011) epoch 2010.
- Released end of June 2012
- Delayed due to technical difficulties and new data inclusion
- Based on re-computation of all CORS 1994 to present to align with world wide effort.
- NC Shifts (based on CORS shifts)
- @ 1.8 cm generally ESE
- @-0.8cm (mainly due to computational change)

Shift From CORS96 to NAD83(2011)

MYCS minus CORS96 comparison

$$
\begin{aligned}
& \text { MYCS minus CORS96 } \\
& \text { dDist } \\
& \text { ncWater } \\
& \mathrm{nc} \\
& \text { Average shifts } \\
& \text { Horz }=1.8 \mathrm{~cm} \\
& \text { EllHt }=-0.8 \mathrm{~cm}
\end{aligned}
$$

Rationale for Updating the NSRS (CORS)

- Definition starts with a global RF: ITRF\#\#

Rationale for updating CORS RF(MYCS)

- NSRS's global reference frame was ITRFOO epoch 1997.00. Projecting 13 yrs was unrealistic because of velocities; NAD 83(CORS96) epoch 2002.00 projecting 8 yrs was becoming a problem
- Coordinates and velocities were a mixture from last reprocessing (1994-2002) and adjustments using 3 to 8 IGS ref. sites
- Mixture of Computed and HTDP velocities
- Assumed NAD83 vertical vel. $=0 \mathrm{~mm} / \mathrm{yr}$
- Change from Relative to Absolute antenna phase center values in ITRF definition
- Metadata issues, eg, discontinuities/offsets
- Significant software changes since 2002

Multi-year CORS Solution: MYCS

- "Multiyear" effort began 7 years ago
- IGS proposed re-processing all data to re-compute station coordinates, orbits, and EOPs (earth orientation parameters) from 1994-present
- NGS began with a revision of PAGES software and processing strategy driven by weak NGS orbit contributions to IGS
- 860 weekly (full history) CORS+ ~230 global SINEX files containing X, Y, Z positions and full variance-covariance information
- Coordinates published (online) on Sept 6, 2011

$130^{\circ} \mathrm{W} \quad 120^{\circ} \mathrm{W}$
$110^{\circ} \mathrm{W}$
$80^{\circ} \mathrm{W}$

Geodetic Reference Frames past and present

- Critical to pay attention to frame tags and epoch dates and antenna calibration values

Frame Name	Epoch	Antenna PCV*	Data Duration
ITRF2000	1997.0	Rel ANTEX	1994.0 -2002.0
ITRF00 (NGS's soln)	1997.0	Rel NGS ANTEX	1994.0-present
NAD 83(CORS96)	2002.0	Rel NGS ANTEX	1994.0-present
ITRF2008	2005.0	Abs IGS05 ANTEX	$1997.0-2009.5$
IGS08	2005.0	Abs IGS08 ANTEX	$1997.0-2009.5$
IGS08 (NGS's	2005.0	Abs IGS08 ANTEX	$1994.0-2010.5$ (ongoing)
NAD 83(2011)	2010.0	Abs IGS08 ANTEX	1994.0-2010.5 (ongoing)

*PCV - phase center value; Abs-Absolute, Rel-Relative

So, what's different about the CORS

coordinates?

- Change to absolute antenna calibrations
- Use absolute cal. in your processing: DON'T MIX!
- Better because 8 more years of data for:
- International CGPS sites
- CORS: about 1600 total, ~1000 w/ >2.5 yrs
- Orbits and sophistication for processing them
- CORS velocity
- Better HTDP modeling for those w/ <2.5 yrs
- Better processing algorithms

Antenna calibrations, ANTEX is new

NGS Home ${ }^{\text {a }}$ About NGS	Data \& Imagery	Tools	Surveys
	Survey Mark Datasheets GPS Data (CORS) GPS Data (Real-Time) Aerial Images (Storm) Aerial Images (Coast) Aeronautical Data		
			or
			rsi
			\% 90-d
			sting 0
Most Popular	Antenna Calibration Data		
Contact Us	GEOID (09,06,03,99)		o Sub
CORS	Gravity Data		eb/sur
Survey Mark Datasheets	Orbit Data		t for Fl
Geodetic Tool Kit	Shoreline Data		122 an
NA2011	Storm Imagery (Irene)		th Am
OPUS			ely wit
Publications			
Geodetic Advisors	Storm Imagery (Tuscaloosa)		

Storm Imagery
UFCORS

Upcoming Events

In response to stakeholder and N several modifications to the forme method for accessing the passive Reference System (NSRS)...more

Trial Version of the New NOAA S http://beta.ngs.noaa.gov/shorelin

On to NAD83(2011)

Timeline

- National Adjustment of 2011
- Goal: Complete May 2012, published June 2012
- Related and dependant products and services
- Multi-Year CORS Solution
- Officially released coordinates September 2011
- OPUS (Online Positioning User Service)
- Dual solutions (CORS96 and MYCS) available until NA2011 complete
- New hybrid geoid model (GEOID12)
- Use NAD 83(2011) ellipsoid heights on leveled NAVD 88 benchmarks
- Released same time as NA2011
- Problems detected and revised GEOID12A released Sept 11, 2012.
- New NAD 83 coordinate transformation tools
- HARN / NSRS2007 / 2011
- At same time as NA2011 (or soon after)
- HARN / 2007 algorithm done, just need to implement

Shift in Horizontal Positions due to Change in Ref Epoch

 NAD 83 (CORS96A @ 2010.0) - NAD 83 (CORS96 @ 2002.0)- avg. shifts: $\Delta \mathrm{E}=0.20(\pm 5.85) \mathrm{cm} ; \Delta \mathrm{N}=1.95(\pm 6.42) \mathrm{cm}$
- large shifts in western U.S. due to crustal deformation
- apparent rotation in "stable" U.S. likely due to errors in NUVEL-1A (used in HTDP)

[^0]
Shift in Vertical Positions due to Change in Ref Epoch I NAD 83 (CORS96A @ 2010.0) - NAD 83 (CORS96 @ 2002.0)

- avg. shift: $=\mathbf{- 0 . 9 2} \mathbf{~ c m}(\pm 2.04) \mathbf{c m}$
- switch to absolute antenna calibrations
- much of eastern U.S. has downward velocities
- effect of assuming $\mathrm{V}_{\mathrm{u}}=0$ in NAD 83(CORS96), i.e. local vertical motion

Why a new national adjustment?

- Optimally align passive control with new CORS
- Over 700 projects submitted since 2007 project
- Also observations for Hawaii, other Pacific islands
- Determine network and local accuracies on all stations
- Including future submitted projects
- More consistent results in tectonically active areas
- More current data, better tectonic modeling
- Better computations and analysis techniques
- E.g., improved outlier detection, weighted constraints
- Incorporation of lessons learned from previous national adjustment

Approach

- Used a Helmert blocking strategy for CONUS
- Approx 80,000 points ($\sim 240,000$ unknowns)
- Over 400,000 GNSS vectors (> 1.2 million observations)
- Individual projects weighted to account for variable error
- Horiz and vertical std deviation scale factors computed for all projects
- Outlier detection (for rejecting vectors)
- Initially using 5 cm threshold, will also check standardized residuals
- Method for vector rejection
- Rejection by downweighting vs. removal
- Challenges:
- Tectonic tribulations
- CORS complications
- Constraint conundrums
- Subsidence
- Mixing old and new observations

The building of a network

- Consists of many GPS vectors over time
- Earliest vectors determined in April 1983
- Last vectors determined in October 2011
- Vectors prior to $\sim 1993 / 1994$ may be problematic
- Orbits not accurately determined
- Poor or no models (e.g., tropo, ocean loading, etc.)
- Early generation of receivers and antennas (noisier data)
- Incomplete GPS constellation
- No antenna phase center models
- MYCS positions based only on data to 1994
- What should be done about the "old" data...?
- Was project scaling sufficient? Do additional scaling?
- Consider removing "old" data from adjustment?

A way to deal with the old \& infirm?

- Remove "old" observations from overall network
- Use cutoff of early 1994 (more or less)
- Problem: Many projects include data spanning years
- Solution: Remove projects with first observation before $1 / 1 / 1994$ and last observation before $1 / 1 / 1995$
- Identified 511 projects which will be removed
- 16,299 stations "posted" (i.e., adjusted afterward)
- 5491 stations in both overall and posted groups
- These will get adjusted coordinates in overall adjustment
- Constrain posted stations to NA2011 coords of these stations

What's in a name?

That which we call a datum

By any other name would smell as sweet...

- NAD 83(2011) epoch 2010.00
- "2011" is datum tag \rightarrow year adjustment complete
- "2010.00" is "epoch date" (January 1, 2010)
- Date associated with coordinates of control station
- Frame fixed to North American tectonic plate
- Includes California, Alaska, Puerto Rico, and US Virgin Islands
- NAD 83(PA11) epoch 2010.00
- Frame fixed to Pacific tectonic plate (Hawaii and American Samoa)
- NAD 83(MA11) epoch 2010.00
- Frame fixed to Mariana tectonic plate (Guam and CNMI)

Other NA2011 challenges

- Re-enabled ~20,000 previously rejected vectors
- Total ~22,600 now rejected (previously ~42,600 rejected)
- Perform iterative adjustments with new rejection/enabling in each
- HTDP applied to ALL GPS vectors
- Only applied to CA, AZ, NV, OR, WA, and AK in NSRS2007
- Gulf Coast and other subsidence areas
- Investigating downweighting of up vector components by time
- Estimated velocities \times delta time \rightarrow approximate additional up error
- Velocities from MYCS, GPS projects, leveling, pub height change, INSAR, etc.
- No-check stations: Reduce number by enabling additional vectors
- Recommend not publishing accuracies for remaining no-check stations
- Other challenges
- NETSTAT complexity, larger error estimates, poor network connectivity, duplicate stations, weighting of CORS constraints, CORS with "superseded" antennas

Related Tasks, Products \& Deliverables

- Release NA2011 results in "Readjustment Distribution Format" (RDF)
- aka "Bluebook" format (b-files)
- Includes positions, ellipsoid heights, and accuracies
- Accuracies as N, E, U sigmas and horizontal correlations
- New version of NGS program "ADJUST"
- Network and local accuracies
- Improved output
- Graphical User Interface!

```
ank adjust
C:\NGS\Projects\2011\NA2011>adjust (ateccyy/mm/dd) 2008/10/27
ENTER INPUT BLUE BOOK FILENAME <DEFAULT='bBOOK'>:
BBOOK
EntER adjuSTMENT FILE FILENamE <deFaulT='afile'>:
afile
    ENTER GPS FILE FILENAME
    <DEPAULT='GFILE', IF THERE ISNT ONE, ENTER: 'NOGFILE'>:
gFILE
    ENTER DOPPLER FILE FILENAME
```


Related Tasks, Products \& Deliverables

- New NAD 83 coordinate transformations
- NAD 83 "HARN" $\leftarrow \rightarrow$ NAD 83(NSRS2007/CORS96)
- Algorithm for this tool already created
- NAD 83(NSRS2007/CORS96) $\leftarrow \rightarrow$ NAD 83(2011)
- Will build this tool as soon as NA2011 results available
- Include output that indicates quality
- Provided as (conservative) error grids and reports

Related Tasks, Products \& Deliverables

Related Tasks, Products \& Deliverables

Announcing...
 A New NGS Datasheet Format

- Update to new Datasheet version (8.00)
- Changed location, length, and text for many fields
- Added new fields, deleted fields, augmented existing fields
- Intend to implement ~ same time as NA2011 released
- Announcement and prototype on NGS web site
- Summary of content changes
- Added country (e.g., USA) where control station located
- Hyperlinked vertical datum designation to datum web page
- Ortho height epoch date, if applicable (e.g., subsidence areas)
- Note for geoid model used on Ht Mod stations if not current geoid
- Network and (median) local accuracies
- Horizontal and ellipsoid height accuracy at 95\% confidence (per FGDC)
- Includes link to detailed accuracy info, list of all local accuracies
- Superseded Ht Mod ortho heights indicate geoid model used (maybe)


```
DATABASE = NGSIDB , PROGRAM = datasheet95, VERSION = 8.00
```



```
    AC6803 NOTE: NAVD 88 ortho height was determined from prior model GEOID03.
    AC6803 GEOID03 HEIGHT - -22.75 (meters)
    AC6803 GEOID09 HEIGHT - -22.80 (meters)
    AC6803 NAD 83(2007) X - -1,994,789.496 (meters) COMP
    AC6803 NAD 83(2007) Y - -4,697,388.731 (meters) COMP
    AC6803 NAD 83(2007) Z - 3,815,306.819 (meters) COMP
    AC6803 LAPLACE CORR - 3.37 (seconds) DEFLEC09
    AC6803
    AC6803 FGDC Geospatial Positioning Accuracy Standards (95% confidence, cm)
    AC6803 Type Horiz Ellip Dist(km)
    AC6803
    NETWORK ACCURACY
    AC6803 MEDIAN LOCAL ACCURACY AND DIST ( }11\mathrm{ points) 0.67 1.22 1.64
    AC6803
    AC6803
    AC6803
        NOTE: Individual local accuracy values and other accuracy information
    are available here.
AC6803
```


*** retrieval complete.
Elapsed Time $=00: 00: 00$

AC6803.part of the NAVD 88 network.
AC6803
AC6803. The X, Y, and Z were computed from the position and the ellipsoidal ht. AC6803
AC6803. The Laplace correction was computed from DEFLEC09 derived deflections. AC6803
AC6803. The ellipsoidal height was determined by GPS observations
AC6803. and is referenced to NAD 83.
AC6803
AC6803. The geoid height was determined by GEOID09.
AC6803

AC6803;		North		East	Units	Scale Factor	Conve	
AC6803; SPC AZ W	-	662,036.150		279,346.877	MT	0.99998696	+0 26	44.3
AC6803; SPC AZ W	-	2,172,034.61		916, 492.38	iFT	0.99998696	+0 26	44.3
AC6803; UTM 12	-	4,093,046.689		321,162.779	MT	0.99999401	-1 12	30.2
AC6803								
AC6803!	-	Elev Factor	x	Scale Fact	($=$	Combined Fact	tor	
AC6803!SPC AZ W	-	0.99977049	X	0.9999869	=	0.99975746		
AC6803! UTM 12	-	0.99977049	x	0.99999401	=	0.99976451		

AC6803
AC6803|-------------------------
AC6803| PID Reference Object
AC6803|
Distance
Geod. Az

AC6803| AE3181 AZC CL END RWY 20
68.963 METERS 15655

AC6803
AC6803
AC6803
AC6803
AC6803 ELLIP H (01/12/01) 1462.805 (m)
AC6803 NAD 83(1992)- $365759.55345(\mathrm{~N})$
AC6803 ELLIP H (03/14/97) 1462.873 (m)
AC6803 NAVD 88 (03/14/97) 1485.51 (m)

AC6803
AC6803. Superseded values are not recommended for survey control.
AC6803. NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
AC6803. See file dsdata.txt to determine how the superseded data were derived.

AC6803. The X, Y, and Z were computed from the position and the ellipsoidal ht. AC6803
AC6803. The Laplace correction was computed from DEFLEC09 derived deflections. AC6803
AC6803. The ellipsoidal height was determined by GPS observations AC6803. and is referenced to NAD 83.
AC6803
AC6803. The geoid height was determined by GEOID09. (remove line)
AC6803
AC6803. The following values were computed from NAD 83 (2007).
AC6803

AC6803
AC6803. Superseded values are not recommended for survey control.
AC6803. NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
AC6803. See file dsdata.txt to determine how the superseded data were derived.

What about orthometric heights?

- NA2011 will yield:
- NAD 83(2011/PA11/MA11) epoch 2010.00:
- Latitude, longitude, and ellipsoid height
- Network and "local" accuracies
- Orthometric heights ("elevations") will NOT be determined in NA2011
- Question: Will GPS-derived heights based on previous NAD 83 realizations and geoid models be consistent with those based on NAD 83(2011) and GEOID12?
- i.e., is the relative change in ellipsoid heights and/or geoid heights significant (too large to ignore)?

So...GEOID12

- New geoid model compatible with NAD83(2011) ellipsoid heights and NAVD88 bms.
- Released concurrently with NAD83(2011)
- No large slope changes in NC
- GEOID03 is NOT compatible use Geoid12!!!

Ellipsoid, Geoid, and Orthometric Heights

$\mathrm{H}=$ Orthometric Height (leveling)
$\mathrm{h}=$ Ellipsoidal Height (GPS)

$$
\mathrm{H}=\mathrm{h}-\mathrm{N}
$$

Relationship Between Heights

Hybrid Geoid Height Models (e.g., GEOID09) are determined from Gravimetric Geoid Height Models (e.g., USGG2009) and Conversion Surfaces based on GPS on BM data

Gravimetric Geoid

- Gravimetric Geoid systematic misfit to BM's but best fits "true" heights
- Hybrid Geoid "converted" to fit local BM's, so best fits NAVD 88 heights
- Conversion Surface model of systematic misfit derived from BM's in IDB

Distribution of OPUSDBBM12

An additional 6,000 points?

Most Popular

Contact Us
CORS
Survey Mark Datasheets
Geodetic Tool Kit
NAD 83(2011) epoch 2010.00

OPUS
LOCUS
Publications
Geodetic Advisors
Storm Imagery
UFCORS

Upcoming Events

September 20, 2012

Announcements

The NGS Database will briefly be unavailable on Saturday, September 22, 2012 from 4:00pm until 4:30pm Eastern time, in order to install additional storage space. This will disable retrievals of data via the web during the upgrade. Thank you for your understanding and cooperation. Please contact the Database Administrator for additional information about this event.

NOTICE: September 18,2012

NGS requests your patience while we update the "bluebooking" process for GPS projects.
While we update the adjust guidelines, submissions for all GPS projects are being postponed until the new "bluebooking" processes are posted. A notice will be posted here when this is accomplished. Thank you for your cooperation.

NOTICE: NGS Update, September 11, 2012

GEOID12A Model Released

The National Geodetic Survey has released the GEOID12A model. Analysis of the underlying control data has been completed and a number of corrections were made to the original data used in making GEOID12. Changes impacted regions in the states of Alabama, Mississippi, Louisiana, Texas, Oklahoma, and Wisconsin. GEOID12A is now available

Federal

Geodetic
Control
Subcormmittee

of the fgdc

NGS Public

 News
Questions?

National Adjustment of 2011

New NGS Datasheet Format

[^0]:

