AP CHEMISTRY | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:	Course SCI347
This course is the equivalent of the general chemistry course taken during the first year of college.	1 year, 1.25 credit
This course provides college-level chemistry instruction; college-level laboratory experience; and	Grade 12
preparation for the AP Chemistry Exam. This course includes extensive use of technology in lab and	Prerequisite: Honors Chemistry or
classroom activities. Students will meet for an extended time during each week with the scheduled	Chemistry, teacher recommendation
determined by the teacher.	and completion of Algebra II

QUARTER 1

Topic: Foundations, Atomic Theory, and Stoichiometry

Key Terms: chemistry, matter, elements, atoms, property, molecule, gas, liquid, solid, states of matter, pure substances, compounds, law of constant composition, mixtures, solutions, impurities, physical properties, chemical properties, physical change, chemical change, energy, work, heat, kinetic energy, potential energy, SI Units, SI Prefixes, mass, volume, density, temperature, absolute zero, derived unit, accuracy, precision, uncertainty, error, percent error, significant figures, standard deviation, dimensional analysis, conversion factor, ratio, proportion, subatomic particles, cathode rays, nucleus, protons, electrons, neutrons, electronic charge, atomic mass, atomic number, mass number, mass spectroscopy, atomic weight, spectrometer, spectrograph, periodic table, group, period, metals, nonmetals, metalloids, molecules, molecular compounds, diatomic element, chemical formula, empirical formula, molecular formula, structural formula, ions, cations, anions, polyatomic ions, ionic compounds, chemical nomenclature, oxyanions, hydrocarbons, alkanes, alcohol, isomers, stoichiometry, law of conservation of mass, chemical equation, reactants, products, synthesis, decomposition, combustion analysis, limiting reactant, excess reactant, theoretical yield, percent yield

Measurable Skills: Justify, Select, Apply, Identify, Infer, Connect, Determine, Use, Express, Represent, Translate, Predict, Analyze, Relate, Design, Collect, Confirm, Draw, Explain, Interpret, Solve, Evaluate, Refine, Improve, Create, Model, Construct, Articulate, Make, Connect

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.A.1	1.1: Justify the observation that the ratio of the masses of the constituent	Activity: Polydensity Tubes
	elements in any pure sample of that compound is always identical on the basis	Video Clips: Atomic Theory
	of the atomic molecular theory. SP6.1	
1.A.2	1.2: Select and apply mathematical routines to mass data to identify or infer	
	the composition of pure substances and/or mixtures. SP2.2	

QUARTER 1

Topic: Foundations, Atomic Theory, and Stoichiometry

Key Terms: chemistry, matter, elements, atoms, property, molecule, gas, liquid, solid, states of matter, pure substances, compounds, law of constant composition, mixtures, solutions, impurities, physical properties, chemical properties, physical change, chemical change, energy, work, heat, kinetic energy, potential energy, SI Units, SI Prefixes, mass, volume, density, temperature, absolute zero, derived unit, accuracy, precision, uncertainty, error, percent error, significant figures, standard deviation, dimensional analysis, conversion factor, ratio, proportion, subatomic particles, cathode rays, nucleus, protons, electrons, neutrons, electronic charge, atomic mass, atomic number, mass number, mass spectroscopy, atomic weight, spectrometer, spectrograph, periodic table, group, period, metals, nonmetals, metalloids, molecules, molecular compounds, diatomic element, chemical formula, empirical formula, molecular formula, structural formula, ions, cations, anions, polyatomic ions, ionic compounds, chemical nomenclature, oxyanions, hydrocarbons, alkanes, alcohol, isomers, stoichiometry, law of conservation of mass, chemical equation, reactants, products, synthesis, decomposition, combustion analysis, limiting reactant, excess reactant, theoretical yield, percent yield

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	1.3: Select and apply mathematical relationships to mass data in order to	Lab: Green Chemistry
	justify a claim regarding the identity and/or estimated purity of a substance.	
	SP2.2, SP6.1	
1.A.3	1.4: Connect the number of particles, moles, mass, and volume of substances	Demo: Combustion of Mg in CO2
	to one another, both qualitatively and quantitatively. SP7.1	
1.D.1	1.13: Given information about a particular model of the atom, determine if the	
	model is consistent with specified evidence. SP5.3	
1.D.2	1.14: Use data from mass spectrometry to identify the elements and the	Activity: Mass Spectroscopy
	masses of individual atoms of a specific element. SP1.4, SP1.5	
1.E.1	1.17: Express the law of conservation of mass quantitatively and qualitatively	Activity: Blue Crystals
	using symbolic representations and particulate drawings. SP1.5	
1.E.2	1.18: Apply conservation of atoms to the rearrangement of atoms in various	Activity: Stress Ball Polymers
	processes. SP1.4	
3.A.1	3.1: Translate among macroscopic observations of change, chemical equations,	Activity: MSDS Challenge
	and particle views. SP1.5, SP7.1	Demo: Flaming Ramp

Measurable Skills: Justify, Select, Apply, Identify, Infer, Connect, Determine, Use, Express, Represent, Translate, Predict, Analyze, Relate, Design, Collect, Confirm, Draw, Explain, Interpret, Solve, Evaluate, Refine, Improve, Create, Model, Construct, Articulate, Make, Connect

QUARTER 1

Topic: Foundations, Atomic Theory, and Stoichiometry

Key Terms: chemistry, matter, elements, atoms, property, molecule, gas, liquid, solid, states of matter, pure substances, compounds, law of constant composition, mixtures, solutions, impurities, physical properties, chemical properties, physical change, chemical change, energy, work, heat, kinetic energy, potential energy, SI Units, SI Prefixes, mass, volume, density, temperature, absolute zero, derived unit, accuracy, precision, uncertainty, error, percent error, significant figures, standard deviation, dimensional analysis, conversion factor, ratio, proportion, subatomic particles, cathode rays, nucleus, protons, electrons, neutrons, electronic charge, atomic mass, atomic number, mass number, mass spectroscopy, atomic weight, spectrometer, spectrograph, periodic table, group, period, metals, nonmetals, metalloids, molecules, molecular compounds, diatomic element, chemical formula, empirical formula, molecular formula, structural formula, ions, cations, anions, polyatomic ions, ionic compounds, chemical nomenclature, oxyanions, hydrocarbons, alkanes, alcohol, isomers, stoichiometry, law of conservation of mass, chemical equation, reactants, products, synthesis, decomposition, combustion analysis, limiting reactant, excess reactant, theoretical yield, percent yield

Measurable Skills: Justify, Select, Apply, Identify, Infer, Connect, Determine, Use, Express, Represent, Translate, Predict, Analyze, Relate, Design, Collect, Confirm, Draw, Explain, Interpret, Solve, Evaluate, Refine, Improve, Create, Model, Construct, Articulate, Make, Connect

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.2	3.3: Use stoichiometric calculations to predict the results of performing a	Lab: Some Measurements of Mass
	reaction in the laboratory and/or to analyze deviations from the expected	and Volume
	results. SP2.2, SP5.1	
	3.4: Relate quantities (measured mass of substances, volumes of solutions, or	Lab: Penny Wafer
	volumes and pressures of gases) to identify stoichiometric relationships for a	
	reaction, including situations involving limiting reactants and situations in	
	which the reaction has not gone to completion. SP2.2, SP5.1, SP6.4	

QUARTER 1

Topic: Reactions in Aqueous Solutions and Thermochemistry

Key Terms: aqueous solutions, solute, solvent, electrolyte, solvation, chemical equilibrium, precipitation reactions, precipitate, solubility, metathesis, exchange reactions, molecular equation, complete ionic equation, net ionic equation, spectator ions, acids, bases, neutralization reaction, salt, oxidation, reduction, oxidation numbers, redox reactions, displacement reactions, activity series, concentration, molarity, dilution, titration, standard solution, equivalence point, indicators, end point, hydration, crystallization, saturated, unsaturated, supersaturated, thermodynamics, thermochemistry, joules, system, surroundings, work, heat, force, energy, internal energy, first law of thermodynamics, endothermic, exothermic, state function, path function, pressure-volume work, enthalpy, enthalpy of reaction, calorimetry, calorimeter, heat capacity, molar heat capacity, specific heat, Hess's Law, enthalpy of formation, standard states, standard enthalpy change, standard enthalpy of formation, phase change, heat of fusion, heat of sublimation, heat of vaporization, gravimetric analysis, conductimetric analysis, Maxwell-Boltzmann distribution

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.B.1	3.5: Design a plan in order to collect data on the synthesis or decomposition of	Lab: Decomposition of Hydrate
	a compound to confirm the conservation of matter and the law of definite	
	proportions. SP2.1, SP4.2, SP6.4	
	3.6: Use data from synthesis or decomposition of a compound to confirm the	
	conservation of matter and the law of definite proportions. SP2.2, SP6.1	
1.E.1	1.17: Express the law of conservation of mass quantitatively and qualitatively	
	using symbolic representations and particulate drawings. SP1.5	
1.E.2	1.18 - Apply conservation of atoms to the rearrangement of atoms in various	Activity: Gel Precipitates
	processes. SP1.4	
	1.19: Design, and/or interpret data from, an experiment that uses gravimetric	Lab: Gravimetric Determination of a
	analysis to determine the concentration of an analyte in a solution. SP4.2,	Precipitate
	SP5.1, SP6.1	
	1.20: Design, and/or interpret data from, an experiment that uses titration to	Lab: Conductimetric Titration
	determine the concentration of an analyte in a solution. SP4.2, SP5.1, SP6.4	Demo: Acid-Base Titration
2.A.3	2.3: Use aspects of particulate models (i.e., particle spacing, motion, and	
	forces of attraction) to reason about observed differences between solid and	
	liquid phases and among solid and liquid materials. SP6.4, SP7.1	

QUARTER 1

Topic: Reactions in Aqueous Solutions and Thermochemistry

Key Terms: aqueous solutions, solute, solvent, electrolyte, solvation, chemical equilibrium, precipitation reactions, precipitate, solubility, metathesis, exchange reactions, molecular equation, complete ionic equation, net ionic equation, spectator ions, acids, bases, neutralization reaction, salt, oxidation, reduction, oxidation numbers, redox reactions, displacement reactions, activity series, concentration, molarity, dilution, titration, standard solution, equivalence point, indicators, end point, hydration, crystallization, saturated, unsaturated, supersaturated, thermodynamics, thermochemistry, joules, system, surroundings, work, heat, force, energy, internal energy, first law of thermodynamics, endothermic, exothermic, state function, path function, pressure-volume work, enthalpy, enthalpy of reaction, calorimetry, calorimeter, heat capacity, molar heat capacity, specific heat, Hess's Law, enthalpy of formation, standard states, standard enthalpy change, standard enthalpy of formation, phase change, heat of fusion, heat of sublimation, heat of vaporization, gravimetric analysis, conductimetric analysis, Maxwell-Boltzmann distribution

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	2.8: Draw and/or interpret representations of solutions that show the	
	interactions between the solute and solvent. SP1.1, SP1.2, SP6.4	
	2.9: Create or interpret representations that link the concept of molarity with	
	particle views of solutions. SP1.1, SP1.4	
3.A.1	3.1: Translate among macroscopic observations of change, chemical equations,	
	and particle views. SP1.5, SP7.1	
	3.2: Translate an observed chemical change into a balanced chemical equation	
	and justify the choice of equation type (molecular, ionic, or net ionic) in terms	
	of utility for the given circumstances. SP1.5, SP7.1	
3.A.2	3.4: Relate quantities (measured mass of substances and/or volumes of	Lab: Synthesis of Aspirin
	solutions.) to identify stoichiometric relationships for a reaction, including	
	situations involving limiting reactants and situations in which the reaction has	
	not gone to completion. SP2.2, SP5.1, SP6.4	
3.B.3	3.8: Identify redox reactions and justify the identification in terms of electron	Demos: Zinc pyrotechnics, Rapid
	transfer. SP6.1	Oxidation, and the can ripper
		Video: Redox Titration
		Simulation: Redox Titration

QUARTER 1

Topic: Reactions in Aqueous Solutions and Thermochemistry

Key Terms: aqueous solutions, solute, solvent, electrolyte, solvation, chemical equilibrium, precipitation reactions, precipitate, solubility, metathesis, exchange reactions, molecular equation, complete ionic equation, net ionic equation, spectator ions, acids, bases, neutralization reaction, salt, oxidation, reduction, oxidation numbers, redox reactions, displacement reactions, activity series, concentration, molarity, dilution, titration, standard solution, equivalence point, indicators, end point, hydration, crystallization, saturated, unsaturated, supersaturated, thermodynamics, thermochemistry, joules, system, surroundings, work, heat, force, energy, internal energy, first law of thermodynamics, endothermic, exothermic, state function, path function, pressure-volume work, enthalpy, enthalpy of reaction, calorimetry, calorimeter, heat capacity, molar heat capacity, specific heat, Hess's Law, enthalpy of formation, standard states, standard enthalpy change, standard enthalpy of formation, phase change, heat of fusion, heat of sublimation, heat of vaporization, gravimetric analysis, conductimetric analysis, Maxwell-Boltzmann distribution

AP College Board Essential Knowledge	Student Learning Targets (AP Learning Objectives and Science Practices)	Learning Activities/Investigations
	3.9: Design and/or interpret the results of an experiment involving a redox titration. SP4.2, SP5.1	Lab: Redox Titration of Hydrogen Peroxide Demo: Bleach Redox
3.C.1	3.10: Evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. SP1.4, SP6.1	
3.C.2	3.11: Interpret observations regarding macroscopic energy changes associated with a reaction or process to generate a relevant symbolic and/or graphical representation of the energy changes. SP1.5, SP4.4	
5.A.1	5.2: Relate temperature to the motions of particles, either via particulate representations, such as drawings of particles with arrows indicating velocities, and/or via representations of average kinetic energy and distribution of kinetic energies of the particles, such as plots of the Maxwell-Boltzmann distribution. SP1.1, SP1.4, SP7.1	
5.A.2	5.3: Generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. SP7.1	

QUARTER 1

Topic: Reactions in Aqueous Solutions and Thermochemistry

Key Terms: aqueous solutions, solute, solvent, electrolyte, solvation, chemical equilibrium, precipitation reactions, precipitate, solubility, metathesis, exchange reactions, molecular equation, complete ionic equation, net ionic equation, spectator ions, acids, bases, neutralization reaction, salt, oxidation, reduction, oxidation numbers, redox reactions, displacement reactions, activity series, concentration, molarity, dilution, titration, standard solution, equivalence point, indicators, end point, hydration, crystallization, saturated, unsaturated, supersaturated, thermodynamics, thermochemistry, joules, system, surroundings, work, heat, force, energy, internal energy, first law of thermodynamics, endothermic, exothermic, state function, path function, pressure-volume work, enthalpy, enthalpy of reaction, calorimetry, calorimeter, heat capacity, molar heat capacity, specific heat, Hess's Law, enthalpy of formation, standard states, standard enthalpy change, standard enthalpy of formation, phase change, heat of fusion, heat of sublimation, heat of vaporization, gravimetric analysis, conductimetric analysis, Maxwell-Boltzmann distribution

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
5.B.1	5.4: Use conservation of energy to relate the magnitudes of the energy	Demo: Dry Ice
5.B.2	changes occurring in two or more interacting systems, including identification	
	of the systems, the type (heat versus work), or the direction of energy flow.	
	SP1.4, SP2.2	
	5.5: Use conservation of energy to relate the magnitudes of the energy	Demo: Liquid N2
	changes when two nonreacting substances are mixed or brought into contact	
	with one another. SP2.2	
5.B.3	5.6: Use calculations or estimations to relate energy changes associated with	Lab: Preparation and Enthalpy of
	heating/cooling a substance to the heat capacity, relate energy changes	Combustion for Biodiesel
	associated with a phase transition to the enthalpy of fusion/vaporization,	
	relate energy changes associated with a chemical reaction to the enthalpy of	
	the reaction, and relate energy changes to P Δ V work. SP2.2, SP2.3	
5.B.4	5.7: Design and/or interpret the results of an experiment in which calorimetry	Lab: The Handwarmer
	is used to determine the change in enthalpy of a chemical process	
	(heating/cooling, phase transition, or chemical reaction) at constant pressure.	
	SP4.2, SP5.1, SP6.4	

QUARTERS 1-2

Topic: Electronic Structure and Periodicity

Key Terms: electronic structure, electromagnetic radiation, wavelength, frequency, quantum, Planck constant, photoelectric effect, photons, spectrum, continuous spectrum, line spectrum, principal quantum number, ground state, excited state, matter waves, momentum, uncertainty principle, wave functions, probability density, electron density, subshell, orbitals, Pauli exclusion principle, orbital diagram, Hund's rule, valence electrons, core electrons, representative elements, transition elements, PES, UV spectroscopy, Infrared Spectroscopy, effective nuclear charge, Coulomb's Law, bonding atomic radius, isoelectronic series, ionization energy, periodic trends, electron affinity, metallic character, alkali metals, alkaline earth metals, hydride ion, oxides, halogens, noble gasses, photochemical reactions, Beer's Law, photoionization

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.B.1	1.5: Explain the distribution of electrons in an atom or ion based upon data. SP1.5, SP6.2	Demo: Tonic Water
	1.6: Analyze data relating to electron energies for patterns and relationships. SP5.1	
1.B.2	1.7: Describe the electronic structure of the atom, using PES data, ionization energy data, and/or Coulomb's Law to construct explanations of how the energies of electrons within shells in atoms vary. SP5.1, SP6.2	Demo: Radiated NaCl
	1.8: Explain the distribution of electrons using Coulomb's Law to analyze measured energies. SP6.2	
1.C.1	1.9: Predict and/or justify trends in atomic properties based on location on the periodic table and/or the shell model. SP6.4	Demo: Periodicity of Halogens Demo: Trends in Transition Metals and Complex Ions
	1.10: Justify with evidence the arrangement of the periodic table and can apply periodic properties to chemical reactivity. SP6.1	Activity: Photochemical Reactions and T-Shirts
	1.11: Analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses related to the molecular design of compounds for which data are not supplied. SP3.1, SP5.1	Demo: Paramagnetic O2
1.C.2	1.12: Explain why a given set of data suggests, or does not suggest, the need to refine the atomic model from a classical shell model with the quantum mechanical model. SP6.3	Activity: Flinn Models

QUARTERS 1-2

Topic: Electronic Structure and Periodicity

Key Terms: electronic structure, electromagnetic radiation, wavelength, frequency, quantum, Planck constant, photoelectric effect, photons, spectrum, continuous spectrum, line spectrum, principal quantum number, ground state, excited state, matter waves, momentum, uncertainty principle, wave functions, probability density, electron density, subshell, orbitals, Pauli exclusion principle, orbital diagram, Hund's rule, valence electrons, core electrons, representative elements, transition elements, PES, UV spectroscopy, Infrared Spectroscopy, effective nuclear charge, Coulomb's Law, bonding atomic radius, isoelectronic series, ionization energy, periodic trends, electron affinity, metallic character, alkali metals, alkaline earth metals, hydride ion, oxides, halogens, noble gasses, photochemical reactions, Beer's Law, photoionization

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.D.1	1.13: Given information about a particular model of the atom, determine if the	Demo: Titanium White and UV
	model is consistent with specified evidence. SP5.3	
1.D.3	1.15: Justify the selection of a particular type of spectroscopy to measure	Activity: Flinn Spectroscopy
	properties associated with vibrational or electronic motions of molecules.	
	SP4.1, SP6.4	
	1.16: Design and/or interpret the results of an experiment regarding the	Lab: Beer's Law and Percent Copper
	absorption of light to determine the concentration of an absorbing species in a	in Brass
	solution. SP4.2, SP5.1	

QUARTER 2

Topic: Bonding I – Intraparticle Forces, Molecular Geometry, Advanced Bonding Theories, and Solids

Key Terms: chemical bonds, ionic bond, covalent bond, metallic bond, Lewis symbols, octet rule, lattice energy, Lewis structures, nonbonding electron pairs, single bond, double bond, triple bond, bond polarity, nonpolar covalent bond, polar covalent bond, network covalent bond, electronegativity, polar molecule, dipole, dipole moment, formal charge, resonance structure, bond length, bond strength, bond energies, bond angle, VSEPR model, electron domains, bonding pairs, lone pairs, electron domain geometry, molecular geometry, valence bond theory, hybrid orbitals, hypervalent, sub-octet, sigma bond, pi bond, delocalized electrons, molecular orbital theory, molecular orbitals, energy level, bond order, paramagnetic, diamagnetism, metallic solids, ionic solids, covalent network solids, polymers, crystal lattice, alloys, interstitial alloy, substitutional alloy, electron sea model, bands, semiconductors, insulators, doping, n-type, p-type, nanomaterials

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.C.1	1.11: Analyze data, based on periodicity and the properties of binary	Lab: Synthesis of Alum
	compounds, to identify patterns and generate hypotheses related to the	
	molecular design of compounds for which data are not supplied. SP3.1, SP5.1	
2.A.1	2.1: Predict properties of substances based on their chemical formulas and	Lab: Raku and the Reduction of
	provide explanations of their properties based on particle views. SP6.4, SP7.1	Metal Oxides
2.C.1	2.17: Predict the type of bonding present between two atoms in a binary	
	compound based on position in the periodic table and the electronegativity of	
	the elements. SP6.4	
	2.18: Rank and justify the ranking of bond polarity on the basis of the locations	
	of the bonded atoms in the periodic table. SP6.1	
2.C.2	2.19: Create visual representations of ionic substances that connect the	Activity: Blowing Glass
	microscopic structure to macroscopic properties, and/or use representations	Activity: Making Glass Beads from
	to connect the microscopic structure to macroscopic properties (e.g., boiling	Borax
	point, solubility, hardness, brittleness, low volatility, lack of malleability,	
	ductility, or conductivity). SP1.1, SP1.4, SP7.1	
2.C.3	2.20: Explain how a bonding model involving delocalized electrons is consistent	Demo: milk jug rearrangement
	with macroscopic properties of metals (e.g., conductivity, malleability,	
	ductility, and low volatility) and the shell model of the atom. SP6.2, SP7.1	
2.C.4	2.21: Use Lewis diagrams and VSEPR to predict the geometry of molecules,	
	identify hybridization, and make predictions about polarity. SP1.4	

QUARTER 2

Topic: Bonding I – Intraparticle Forces, Molecular Geometry, Advanced Bonding Theories, and Solids

Key Terms: chemical bonds, ionic bond, covalent bond, metallic bond, Lewis symbols, octet rule, lattice energy, Lewis structures, nonbonding electron pairs, single bond, double bond, triple bond, bond polarity, nonpolar covalent bond, polar covalent bond, network covalent bond, electronegativity, polar molecule, dipole, dipole moment, formal charge, resonance structure, bond length, bond strength, bond energies, bond angle, VSEPR model, electron domains, bonding pairs, lone pairs, electron domain geometry, molecular geometry, valence bond theory, hybrid orbitals, hypervalent, sub-octet, sigma bond, pi bond, delocalized electrons, molecular orbital theory, molecular orbitals, energy level, bond order, paramagnetic, diamagnetism, metallic solids, ionic solids, covalent network solids, polymers, crystal lattice, alloys, interstitial alloy, substitutional alloy, electron sea model, bands, semiconductors, insulators, doping, n-type, p-type, nanomaterials

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.D.1	2.22: Design or evaluate a plan to collect and/or interpret data needed to	Lab: Qualitative Analysis and
	deduce the type of bonding in a sample of a solid. SP4.2, SP6.4	Chemical Bonding
	2.23: Create a representation of an ionic solid that shows essential	
	characteristics of the structure and interactions present in the substance.	
	SP1.1	
	2.24: Explain a representation that connects properties of an ionic solid to its	
	structural attributes and to the interactions present at the atomic level. SP1.1,	
	SP6.2, SP7.1	
2.D.2	2.25: Compare the properties of metal alloys with their constituent elements	Demo: Onion's Fusible Alloy
	to determine if an alloy has formed, identify the type of alloy formed, and	Demo: Nitinol Wire
	explain the differences in properties using particulate level reasoning. SP1.4.	
	SP7.2	
	2.26: Use the electron sea model of metallic bonding to predict or make claims	
	about the macroscopic properties of metals or alloys. SP6.4, SP7.1	
	2.27: Create a representation of a metallic solid that shows essential	Demo: Altering the crystal structure
	characteristics of the structure and interactions present in the substance.	of iron
	SP1.1	
	2.28: Explain a representation that connects properties of a metallic solid to its	Activity: Brass Penny
	structural attributes and to the interactions present at the atomic level. SP1.1,	
	SP6.2, SP7.1	

QUARTER 2

Topic: Bonding I – Intraparticle Forces, Molecular Geometry, Advanced Bonding Theories, and Solids

Key Terms: chemical bonds, ionic bond, covalent bond, metallic bond, Lewis symbols, octet rule, lattice energy, Lewis structures, nonbonding electron pairs, single bond, double bond, triple bond, bond polarity, nonpolar covalent bond, polar covalent bond, network covalent bond, electronegativity, polar molecule, dipole, dipole moment, formal charge, resonance structure, bond length, bond strength, bond energies, bond angle, VSEPR model, electron domains, bonding pairs, lone pairs, electron domain geometry, molecular geometry, valence bond theory, hybrid orbitals, hypervalent, sub-octet, sigma bond, pi bond, delocalized electrons, molecular orbital theory, molecular orbitals, energy level, bond order, paramagnetic, diamagnetism, metallic solids, ionic solids, covalent network solids, polymers, crystal lattice, alloys, interstitial alloy, substitutional alloy, electron sea model, bands, semiconductors, insulators, doping, n-type, p-type, nanomaterials

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.D.3	2.29: Create a representation of a covalent solid that shows essential	Lab: Semiconductors
	characteristics of the structure and interactions present in the substance.	
	SP1.1	
	2.30: Explain a representation that connects properties of a covalent solid to	Lab: Make Silicon Crystals
	its structural attributes and to the interactions present at the atomic level.	
	SP1.1, SP6.2, SP7.1	
2.D.4	2.31: Create a representation of a molecular solid that shows essential	
	characteristics of the structure and interactions present in the substance.	
	SP1.1	
	2.32: Explain a representation that connects properties of a molecular solid to	
	its structural attributes and to the interactions present at the atomic level.	
	SP1.1, SP6.2, SP7.1	
5.C.1	5.1: Create or use graphical representations in order to connect the	Lab: Growing Giant Crystals
5.C.2	dependence of potential energy to the distance between atoms and factors,	
	such as bond order (for covalent interactions) and polarity (for intermolecular	
	interactions), which influence the interaction strength. SP1.1, SP1.4, SP7.2	
	5.8: Draw qualitative and quantitative connections between the reaction	Activity: Rockets, Reactions, and
	enthalpy and the energies involved in the breaking and formation of chemical	Ratios
	bonds. SP2.3, SP7.1, SP7.2	

Q	Π	Δ	R	Т	E	R	2
-4	-						

Topic: Bonding II – States of Matter (Gas Laws, Intermolecular/Interparticle Forces, and Kinetic Molecular Theory)

Key Terms: vapor, pressure, STP, Gas Laws, Ideal Gas Law, gas constant, partial pressure, kinetic molecular theory, effusion, diffusion, ideal gas, real gas, intermolecular forces, molecular solid, dispersion forces, dipole-dipole forces, dipole-ion forces, hydrogen bonding, polarizability, surface tension, viscosity, distillation, chromatography, vapor pressure, volatile

Measurable Skills: Draw, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Express, Represent, Calculate, Justify, Estimate, Apply, Pose, Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Infer, Articulate, Make, Connect, Generalize, Generate, Extrapolate, Interpolate

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.A.1	2.3: Use aspects of particulate models (i.e., particle spacing, motion, and	
	forces of attraction) to reason about observed differences between solid and	
	liquid phases and among solid and liquid materials. SP6.4, SP7.1	
2.A.2	2.4: Use KMT and concepts of intermolecular forces to make predictions about	
	the macroscopic properties of gases, including both ideal and nonideal	
	behaviors. SP1.4, SP2.4	
	2.5: Refine multiple representations of a sample of matter in the gas phase to	
	accurately represent the effect of changes in macroscopic properties on the	
	sample. SP1.3, SP6.4, SP7.2	
	2.6: Apply mathematical relationships or estimation to determine macroscopic	
	variables for ideal gases. SP2.2, SP2.3	
2.A.3	2.7: Explain how solutes can be separated by chromatography based on	
	intermolecular interactions. SP6.2	
	2.8: Draw and/or interpret representations of solutions that show the	
	interactions between the solute and solvent. SP1.1, SP1.2, SP6.4	
	2.10: Design and/or interpret the results of a separation experiment (filtration,	Lab: Paper, Liquid, Column, and Gas
	paper chromatography, column chromatography, or distillation) in terms of	Chromatography
	the relative strength of interactions among and between the components.	
	SP4.2, SP5.1, SP6.4	
2.B.1	2.11: Explain the trends in properties and/or predict properties of samples	
	consisting of particles with no permanent dipole on the basis of London	
	dispersion forces. SP6.2, SP6.4	
2.B.2	2.12: Qualitatively analyze data regarding real gases to identify deviations from	Lab – Molar Mass of Butane
	ideal behavior and relate these to molecular interactions. SP5.1, SP6.5	

Board of Education Adopted: May 13, 2019

QUARTER 2

Topic: Bonding II – States of Matter (Gas Laws, Intermolecular/Interparticle Forces, and Kinetic Molecular Theory)

Key Terms: vapor, pressure, STP, Gas Laws, Ideal Gas Law, gas constant, partial pressure, kinetic molecular theory, effusion, diffusion, ideal gas, real gas, intermolecular forces, molecular solid, dispersion forces, dipole-dipole forces, dipole-ion forces, hydrogen bonding, polarizability, surface tension, viscosity, distillation, chromatography, vapor pressure, volatile

Measurable Skills: Draw, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Express, Represent, Calculate, Justify, Estimate, Apply, Pose, Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Infer, Articulate, Make, Connect, Generalize, Generate, Extrapolate, Interpolate

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	2.13: Describe the relationships between the structural features of polar	
	molecules and the forces of attraction between the particles. SP1.4, SP6.4	
	2.14: Apply Coulomb's law qualitatively (including using representations) to	
	describe the interactions of ions, and the attractions between ions and	
	solvents to explain the factors that contribute to the solubility of ionic	
	compounds. SP1.4, SP6.4	
2.B.3	2.15: Explain observations regarding the solubility of ionic solids and molecules	
	in water and other solvents on the basis of particle views that include	
	intermolecular interactions and entropic effects. SP1.4, SP6.2	
	2.16: Explain the properties (phase, vapor pressure, viscosity, etc.) of small and	
	large molecular compounds in terms of the strengths and types of	
	intermolecular forces. SP6.2	
2.D.3	2.30: Explain a representation that connects properties of a covalent solid to	
	its structural attributes and to the interactions present at the atomic level.	
	SP1.1, SP6.2, SP7.1	
2.D.4	2.31: Create a representation of a molecular solid that shows essential	
	characteristics of the structure and interactions present in the substance.	
	SP1.1	
	2.32: Explain a representation that connects properties of a molecular solid to	
	its structural attributes and to the interactions present at the atomic level.	
	SP1.1, SP6.2, SP7.1	
5.A.1	5.2: Relate temperature to the motions of particles, either via particulate	
	representations, such as drawings of particles with arrows indicating velocities,	
	and/or via representations of average kinetic energy and distribution of kinetic	

Board of Education Adopted: May 13, 2019

	QUARTER 2	
Topic: Bonding II – Sta	tes of Matter (Gas Laws, Intermolecular/Interparticle Forces, and Kinetic Molecula	ar Theory)
• •	ssure, STP, Gas Laws, Ideal Gas Law, gas constant, partial pressure, kinetic molecul	
gas, real gas, intermole	ecular forces, molecular solid, dispersion forces, dipole-dipole forces, dipole-ion fo	orces, hydrogen bonding,
polarizability, surface t	ension, viscosity, distillation, chromatography, vapor pressure, volatile	
Measurable Skills: Dra	w, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Expres	s, Represent, Calculate, Justify,
Estimate, Apply, Pose,	Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Ir	nfer, Articulate, Make, Connect,
Generalize, Generate,	Extrapolate, Interpolate	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	energies of the particles, such as plots of the Maxwell-Boltzmann distribution.	
	SP1.1, SP1.4, SP7.1	
5.D.1	5.9: Make claims and/or predictions regarding relative magnitudes of the	Demos: Poly-Ox with a Twist;
	forces acting within collections of interacting molecules based on the	Lopsided Liquid
	distribution of electrons within the molecules and the types of intermolecular	
	forces through which the molecules interact. SP6.4	
5.D.2	5.10: Support the claim about whether a process is a chemical or physical	Lab: Silver Ornaments
	change (or may be classified as both) based on whether the process involves	
	changes in intramolecular versus intermolecular interactions. SP5.1	
5.D.3	5.11: Identify the noncovalent interactions within and between large	
	molecules, and/or connect the shape and function of the large molecule to the	
	presence and magnitude of these interactions. SP7.2	

QUARTER 3

Key Terms: kinetics, reaction rates, instantaneous rate, rate law, specific rate constant, reaction order, zero order, first order, second order, half-life, elementary reaction, collision model, activation energy, activated complex, reaction mechanism, molecularity, intermediate, catalyst, rate determining step, integrated rate law, kinetic control, chemical equilibrium, equilibrium constant expression, equilibrium constant, reaction quotient, Le Chatelier's principle

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
4.A.1	4.1: Design and/or interpret the results of an experiment regarding the factors	Lab: Kinetics – Rate vs
	(i.e., temperature, concentration, surface area) that may influence the rate of	Concentration and Rate vs
	a reaction. SP4.2, SP5.1	Temperature
4.A.2	4.2: Analyze concentration vs. time data to determine the rate law for a	
	zeroth-, first-, or second-order reaction. SP5.1, SP6.4	
4.A.3	4.3: Connect the half-life of a reaction to the rate constant of a first-order	Activity: Half-Life
	reaction and justify the use of this relation in terms of the reaction being a	
	first-order reaction. SP2.1, SP2.2	
4.B.1	4.4: Connect the rate law for an elementary reaction to the frequency and	Lab: Decomposition of Hydrogen
	success of molecular collisions, including connecting the frequency and success	Peroxide
	to the order and rate constant, respectively. SP7.1	
4.B.2	4.5: Explain the difference between collisions that convert reactants to	Demo: Underwater Fireworks
	products and those that do not in terms of energy distributions and molecular	
	orientation. SP6.2	
4.B.3	4.6: Use representations of the energy profile for an elementary reaction (from	
	the reactants, through the transition state, to the products) to make	
	qualitative predictions regarding the relative temperature dependence of the	
	reaction rate. SP1.4, SP6.4	
4.C.1	4.7: Evaluate alternative explanations, as expressed by reaction mechanisms,	
4.C.2	to determine which are consistent with data regarding the overall rate of a	
4.C.3	reaction, and data that can be used to infer the presence of a reaction	
	intermediate. SP6.5	

QUARTER 3

Topic: Kinetics and Equilibrium

Key Terms: kinetics, reaction rates, instantaneous rate, rate law, specific rate constant, reaction order, zero order, first order, second order, half-life, elementary reaction, collision model, activation energy, activated complex, reaction mechanism, molecularity, intermediate, catalyst, rate determining step, integrated rate law, kinetic control, chemical equilibrium, equilibrium constant expression, equilibrium constant, reaction quotient, Le Chatelier's principle

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
4.D.1	4.8: Translate among reaction energy profile representations, particulate	Demo: Lycopodium Powder
	representations, and symbolic representations (chemical equations) of a	
	chemical reaction occurring in the presence and absence of a catalyst. SP1.5	
4.D.2	4.9: Explain and predict changes in reaction rates arising from the use of acid-	Demos: Elephant Toothpaste, Glow
	base catalysts, surface catalysts, or enzyme catalysts, including selecting	Stick
	appropriate mechanisms with or without the catalyst present using rate laws	
	and energy profile diagrams. SP6.2, SP7.2	
6.A.1	6.1: Given a set of experimental observations regarding physical, chemical,	
	biological, or environmental processes that are reversible, construct an	
	explanation that connects the observations to the reversibility of the	
	underlying chemical reactions or processes. SP6.2	
6.A.2	6.2: Given a manipulation of a chemical reaction or set of reactions (e.g.,	Demo: Thermit Reaction
	reversal of reaction or addition of two reactions), determine the effects of that	
	manipulation on Q or K. SP2.2	
6.A.3	6.3: Connect kinetics to equilibrium by using reasoning about equilibrium, such	
	as Le Chatelier's principle, to infer the relative rates of the forward and reverse	
	reactions. SP7.2	
	6.4: Given a set of initial conditions (concentrations or partial pressures) and	
	the equilibrium constant, K, use the tendency of Q to approach K to predict	
	and justify the prediction as to whether the reaction will proceed toward	
	products or reactants as equilibrium is approached. SP2.2, SP6.4	
	6.5: Given data (tabular, graphical, etc.) from which the state of a system at	Lab-The Determination of an
	equilibrium can be obtained, calculate the equilibrium constant, K. SP2.2	Equilibrium Constant

QUARTER 3

Topic: Kinetics and Equilibrium

Key Terms: kinetics, reaction rates, instantaneous rate, rate law, specific rate constant, reaction order, zero order, first order, second order, half-life, elementary reaction, collision model, activation energy, activated complex, reaction mechanism, molecularity, intermediate, catalyst, rate determining step, integrated rate law, kinetic control, chemical equilibrium, equilibrium constant expression, equilibrium constant, reaction quotient, Le Chatelier's principle

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	6.6: Given a set of initial conditions (concentrations or partial pressures) and	
	the equilibrium constant, K, use stoichiometric relationships and the law of	
	mass action (Q equals K at equilibrium) to determine qualitatively and/or	
	quantitatively the conditions at equilibrium for a system involving a single	
~ · · ·	reversible reaction. SP2.2, SP6.4	
6.A.4	6.7: Determine, for a reversible reaction that has a large or small K, which	
	chemical species will have very large versus very small concentrations at	
	equilibrium. SP2.2, SP2.3	
6.B.1	6.8: Use Le Chatelier's principle to predict the direction of the shift resulting	Lab: Gas phase Equilibrium
	from various possible stresses on a system at chemical equilibrium. SP1.4,	
	SP6.4	
	6.9: Use Le Chatelier's principle to design a set of conditions that will optimize	
	a desired outcome, such as product yield. SP4.2	
6.B.2	6.10: Connect Le Chatelier's principle to the comparison of Q to K by explaining	
	the effects of the stress on Q and K. SP1.4, SP7.2	

QUARTER 3

Topic: Acids, Bases, Buffers, and Solubility Equilibrium

Key Terms: conjugate acid-base pair, autoionization, ion-product constant, pH scale, strength, acid-dissociation constant, percent ionization, polyprotic acid, base-dissociation constant, salt hydrolysis, oxyacids, pKa, pKb, pOH, common ion effect, buffered solution, buffer capacity, pH titration curve, half equivalence point, solubility product constant, complex ions, selective precipitation

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	2.2: Explain the relative strengths of acids and bases based on molecular	
	structure, interparticle forces, and solution equilibrium. SP7.2	
3.B.2	3.7: Identify compounds as Bronsted-Lowry acids, bases, and/or conjugate	
	acid-base pairs, using proton-transfer reactions to justify the identification.	
	SP6.1	
6.C.1	6.11: Generate or use a particulate representation of an acid (strong or weak	
	or polyprotic) and a strong base to explain the species that will have large	
	versus small concentrations at equilibrium. SP1.1, SP1.4, SP2.3	
	6.12: Reason about the distinction between strong and weak acid solutions	
	with similar values of pH, including the percent ionization of the acids, the	
	concentrations needed to achieve the same pH, and the amount of base	
	needed to reach the equivalence point in a titration. SP1.4, SP6.4	
	6.13: Interpret titration data for monoprotic or polyprotic acids involving	Lab: Acidity of Beverages
	titration of a weak or strong acid by a strong base (or a weak or strong base by	
	a strong acid) to determine the concentration of the titrant and the pKa for a	
	weak acid, or the pKb for a weak base. SP5.1, SP6.4	
	6.14: Reason, based on the dependence of Kw on temperature, that neutrality	
	requires [H+] = [OH–] as opposed to requiring pH = 7, including especially the	
	applications to biological systems. SP2.2, SP6.2	
	6.15: Identify a given solution as containing a mixture of strong acids and/or	
	bases and calculate or estimate the pH (and concentrations of all chemical	
	species) in the resulting solution. SP2.2, SP2.3, SP6.4	
	6.16: Identify a given solution as being the solution of a monoprotic weak acid	
	or base (including salts in which one ion is a weak acid or base), calculate the	

	QUARTER 3	
Topic: Acids, Bases, Bu	ffers, and Solubility Equilibrium	
Key Terms: conjugate	acid-base pair, autoionization, ion-product constant, pH scale, strength, acid-disso	ociation constant, percent ionization,
polyprotic acid, base-d	issociation constant, salt hydrolysis, oxyacids, pKa, pKb, pOH, common ion effect,	buffered solution, buffer capacity, pH
titration curve, half eq	uivalence point, solubility product constant, complex ions, selective precipitation	
Measurable Skills: Dra	w, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Expres	s, Represent, Calculate, Justify,
Estimate, Apply, Pose,	Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Ir	nfer, Articulate, Make, Connect,
Generalize, Generate,	Extrapolate, Interpolate	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	pH and concentration of all species in the solution, and/or infer the relative	
	strengths of the weak acids or bases from given equilibrium concentrations.	
	SP2.2, SP6.4	
	6.17: Given an arbitrary mixture of weak and strong acids and bases (including	Lab: Equilibria with Weak Acids and
	polyprotic systems), determine which species will react strongly with one	Bases
	another (i.e., with K >1) and what species will be present in large	
	concentrations at equilibrium. SP6.4	
6.C.2	6.18: Design a buffer solution with a target pH and buffer capacity by selecting	Lab: Buffers
	an appropriate conjugate acid-base pair and estimating the concentrations	
	needed to achieve the desired capacity. SP2.3, SP4.2, SP6.4	
	6.19: Relate the predominant form of a chemical species involving a labile	Demo: Nylon
	proton (i.e., protonated/deprotonated form of a weak acid) to the pH of a	Demo: pH Indicators
	solution and the pKa associated with the labile proton. SP2.3, SP5.1, SP6.4	
	6.20: Identify a solution as being a buffer solution and explain the buffer	
	mechanism in terms of the reactions that would occur on addition of acid or	
	base. SP6.4	
6.C.3	6.21: Predict the solubility of a salt, or rank the solubility of salts, given the	
	relevant Ksp values. SP2.2, SP2.3, SP6.4	
	6.22: Interpret data regarding solubility of salts to determine, or rank, the	Lab: Determining the Ksp of Ca(OH)2
	relevant Ksp values. SP2.2, SP2.3, SP6.4	
	6.23: Interpret data regarding the relative solubility of salts in terms of factors	Demo: Common Ion Effect
	(common ions, pH) that influence the solubility. SP5.1, SP6.4	

QUARTER 3

Topic: Acids, Bases, Buffers, and Solubility Equilibrium

Key Terms: conjugate acid-base pair, autoionization, ion-product constant, pH scale, strength, acid-dissociation constant, percent ionization, polyprotic acid, base-dissociation constant, salt hydrolysis, oxyacids, pKa, pKb, pOH, common ion effect, buffered solution, buffer capacity, pH titration curve, half equivalence point, solubility product constant, complex ions, selective precipitation

Measurable Skills: Draw, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Express, Represent, Calculate, Justify, Estimate, Apply, Pose, Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Infer, Articulate, Make, Connect, Generalize, Generate, Extrapolate, Interpolate

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	6.24: Analyze the enthalpic and entropic changes associated with the dissolution of a salt, using particulate level interactions and representations. SP1.4, SP7.1	Demo: Solution Discrepant Event

QUARTERS 3-4

Topic: Thermodynamics and Electrochemistry

Key Terms: enthalpy, entropy, second law of thermodynamics, free energy, coupled reactions, reversible process, translational motion, vibrational motion, rotational motion, third law of thermodynamics, standard molar entropy, standard free energies of formation, temperature dependence, thermodynamic control, electrochemistry, reducing agent, oxidizing agent, half reactions, voltaic (galvanic) cell, anode, cathode, salt bridge, cell potential, standard cell potential, standard reduction potential, standard hydrogen electrode, Faraday's constant, nonstandard conditions, concentration cell, battery, fuel cell, metal-air cell, electrolytic cell, electrolysis, sacrificial anode, photoionization

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.B.3	3.8: Identify redox reactions and justify the identification in terms of electron transfer. SP6.1	
	3.9: Design and/or interpret the results of an experiment involving a redox titration. SP4.2, SP5.1	

QUARTERS 3-4

Topic: Thermodynamics and Electrochemistry

Key Terms: enthalpy, entropy, second law of thermodynamics, free energy, coupled reactions, reversible process, translational motion, vibrational motion, rotational motion, third law of thermodynamics, standard molar entropy, standard free energies of formation, temperature dependence, thermodynamic control, electrochemistry, reducing agent, oxidizing agent, half reactions, voltaic (galvanic) cell, anode, cathode, salt bridge, cell potential, standard cell potential, standard reduction potential, standard hydrogen electrode, Faraday's constant, nonstandard conditions, concentration cell, battery, fuel cell, metal-air cell, electrolytic cell, electrolysis, sacrificial anode, photoionization

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.C.3	3.12: Make qualitative or quantitative predictions about galvanic or electrolytic	Lab: Electrochemical cells and
	reactions based on half-cell reactions and potentials and/or Faraday's law.	Spontaneity
	SP2.2, SP2.3, SP6.4	
	3.13: Analyze data regarding galvanic or electrolytic cells to identify properties	Lab: Making batteries and Fuel Cells
	of the underlying redox reactions. SP5.1	
5.E.1	5.12: Use representations and models to predict the sign and relative	
	magnitude of the entropy change associated with chemical or physical	
	processes. SP1.4	
5.E.2	5.13: Predict whether or not a physical or chemical process is	
	thermodynamically favored by determination of (either quantitatively or	
	qualitatively) the signs of both ΔH° and ΔS° , and calculation or estimation of	
	ΔG° when needed. SP2.2, SP2.3, SP6.4	
5.E.3	5.14: Determine whether a chemical or physical process is thermodynamically	
	favorable by calculating the change in standard Gibbs free energy. SP2.2	
5.E.4	5.15: Explain how the application of external energy sources or the coupling of	Demo: Measuring Faraday's
	favorable with unfavorable reactions can be used to cause processes that are	constant using Hoffman apparatus
	not thermodynamically favorable to become favorable. SP6.2	
	5.16: Use Le Chatelier's principle to make qualitative predictions for systems in	
	which coupled reactions that share a common intermediate drive formation of	
	a product. SP6.4	

QUARTERS 3-4

Topic: Thermodynamics and Electrochemistry

Key Terms: enthalpy, entropy, second law of thermodynamics, free energy, coupled reactions, reversible process, translational motion, vibrational motion, rotational motion, third law of thermodynamics, standard molar entropy, standard free energies of formation, temperature dependence, thermodynamic control, electrochemistry, reducing agent, oxidizing agent, half reactions, voltaic (galvanic) cell, anode, cathode, salt bridge, cell potential, standard cell potential, standard reduction potential, standard hydrogen electrode, Faraday's constant, nonstandard conditions, concentration cell, battery, fuel cell, metal-air cell, electrolytic cell, electrolysis, sacrificial anode, photoionization

Measurable Skills: Draw, Explain, Interpret, Create, Describe, Model, Refine, Use, Analyze, Solve, Express, Represent, Calculate, Justify, Estimate, Apply, Pose, Evaluate, Design, Implement, Collect, Answer, Identify, Claim, Predict, Observe, Infer, Articulate, Make, Connect, Generalize, Generate, Extrapolate, Interpolate

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.17: Make quantitative predictions for systems involving coupled reactions	Lab: Metal Air Cell
	that share a common intermediate, based on the equilibrium constant for the	
	combined reaction. SP6.4	
5.E.5	5.18: Explain why a thermodynamically favored chemical reaction may not produce large amounts of product (based on consideration of both initial conditions and kinetic effects), or why a thermodynamically unfavored chemical reaction can produce large amounts of product for certain sets of initial conditions. SP1.3, SP7.2	
6.D.1	6.25: Express the equilibrium constant in terms of ΔG° and RT and use this relationship to estimate the magnitude of K and, consequently, the thermodynamic favorability of the process. SP2.3	Lab – Electroplating

District Instructional Resource:

Chemistry AP Edition (2018) / Cengage (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

AP Chemistry Course and Exam Description (2014) – retrieved Jan. 2, 2019 <u>http://media.collegeboard.com/digitalServices/pdf/ap/ap-chemistry-course-and-exam-description.pdf</u>