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Context of my work: Chess: Center for 

Hybrid and Embedded Software Systems 

Board of Directors 

Edward A. Lee 

Alberto Sangiovanni-Vincentelli 

Shankar Sastry 

Claire Tomlin 

Executive Director 

Christopher Brooks 

Other key faculty at Berkeley 

Dave Auslander 

Ruzena Bajcsy 

Raz Bodik 

Karl Hedrick 

Kurt Keutzer 

George Necula 

Masayoshi Tomizuka 

Pravin Varaiya 

This center, founded in 2002, 

blends systems theorists and 
application domain experts with 

software technologists and 
computer scientists. 

Some Research Projects 

Precision-timed (PRET) machines 

Distributed real-time computing 

Systems of systems 

Theoretical foundations of CPS 

Hybrid systems 

Design technologies 

Verification 

Intelligent control 

Modeling and simulation 

Applications 

Building systems 

Automotive 

Synthetic biology 

Medical systems 

Instrumentation 

Factory automation 

Avionics 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 

generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 
SFO) 

Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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CPS Example – Printing Press  

•

•

•

•

•

•

•

•

•

•
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Where CPS Differs from 

the traditional embedded systems problem: 

The traditional embedded systems problem: 

 Embedded software is software on small 

computers. The technical problem is one of 

optimization (coping with limited resources). 

The CPS problem: 

 Computation and networking integrated with 

physical processes. The technical problem is 

managing dynamics, time, and concurrency in 
networked computational + physical systems. 
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Cyber Physical Systems: 

Computational + 
Physical 

CPS is Multidisciplinary  

Computer Science: 

Carefully abstracts the 

physical world  

System Theory: 

Deals directly with  

physical quantities 
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A Key Challenge 

Models for the physical world and for computation diverge. 

physical: time continuum, ODEs, DAEs, PDEs, dynamics 

computational: a “procedural epistemology,” logic 

There is a huge cultural gap. 

Physical system models must be viewed as semantic 
frameworks, and theories of computation must be viewed as 

alternative ways of talking about dynamics. 
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First Challenge on the Cyber Side: 

Real-Time Software 

Correct execution of a program in C, C#, Java, 

Haskell, etc. has nothing to do with how long it 

takes to do anything. All our computation and 

networking abstractions are built on this premise. 

Timing of programs is not repeatable, 

except at very coarse granularity.  

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Techniques that Exploit this Fact 

Programming languages 

Virtual memory 

Caches 

Dynamic dispatch 

Speculative execution 

Power management (voltage scaling) 

Memory management (garbage collection) 

Just-in-time (JIT) compilation 

Multitasking (threads and processes) 

Component technologies (OO design) 

Networking (TCP) 

… 
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A Story 

In “fly by wire” aircraft, certification of the 

software is extremely expensive. Regrettably, it 

is not the software that is certified but the entire 

system. If a manufacturer expects to produce a 

plane for 50 years, it needs a 50-year stockpile of 

fly-by-wire components that are all made from 

the same mask set on the same production line. 

Even a slight change or “improvement” might 

affect timing and require the software to be re-

certified. 
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Consequences 

Stockpiling for a product run 

Some systems vendors have to purchase up front the entire 
expected part requirements for an entire product run. 

Frozen designs 

Once certified, errors cannot be fixed and improvements cannot 
be made. 

Product families 

Difficult to maintain and evolve families of products together. 

It is difficult to adapt existing designs because small changes 
have big consequences 

Forced redesign 

A part becomes unavailable, forcing a redesign of the system. 

Lock in 

Cannot take advantage of cheaper or better parts. 

Risky in-field updates 

In the field updates can cause expensive failures. 
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Abstraction Layers 

 The purpose for an 

abstraction is to 

hide details of the 

implementation 

below and provide a 

platform for design 

from above. 
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Abstraction Layers 

 Every abstraction 

layer has failed for 

real-time programs. 

 The design is the 

implementation. 
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Abstraction Layers 

 How about “raising 

the level of 

abstraction” to solve 

these problems? 
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But these higher abstractions rely on an 

increasingly problematic fiction: WCET 

Example war story: 

Analysis of: 

• Motorola ColdFire 

• Two coupled pipelines (7-stage) 
• Shared instruction & data cache 

• Artificial example from Airbus 

• Twelve independent tasks 

• Simple control structures 

• Cache/Pipeline interaction 
leads to large integer linear  

programming problem 

And the result is valid only for that exact 

Hardware and software! 

Fundamentally, the ISA of the processor  
has failed to provide an adequate abstraction. 

C. Ferdinand et al., “Reliable and 
precise WCET determination for a 
real-life processor.” EMSOFT 2001. 
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The Key Problem 

 Electronics technology 

delivers highly reliable and 

precise timing… 

… and the overlaying software 

abstractions discard it. 

20.000 MHz (± 100 ppm) 
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Second Challenge on the Cyber Side: 

Concurrency  
(Needed for real time and multicore) 

Threads dominate concurrent software. 

Threads: Sequential computation with shared memory. 

Interrupts: Threads started by the hardware. 

Incomprehensible interactions between threads are the sources 
of many problems: 

Deadlock 
Priority inversion 

Scheduling anomalies 
Timing variability 

Nondeterminism  

Buffer overruns 
System crashes 
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My Claim 

Nontrivial software written with threads is 

incomprehensible to humans, and it 

cannot deliver repeatable or predictable 

timing, except in trivial cases. 
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Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 

 “humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings 
among even simple collections of partially 
ordered operations.” 

 H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005. 
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Is Concurrency Hard? 

It is not 

concurrency that 

is hard… 
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…It is Threads that are Hard! 

Threads are sequential processes that 

share memory. From the perspective of 

any thread, the entire state of the universe 

can change between any two atomic 

actions (itself an ill-defined concept). 

Imagine if the physical world did that… 
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Concurrent programs using shared memory are 

incomprehensible because concurrency in the 

physical world does not work that way. 

We have no experience! 
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Consider an Automotive Example 

Periodic events 

Quasi-periodic events 

Sporadic events 

Consider handling this with timers, interrupts, threads, 

shared memory, priorities, and mutual exclusion. 

This is a nightmare! 
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The Current State of Affairs 

We build embedded 

software on abstractions  

where time is irrelevant  

using concurrency  

models that are  

incomprehensible. 

Just think what we could do with the  

right abstractions! 
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The Berkeley Solution 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Foundations:  

Timed-Computational Semantics. 

s  S N 

Causal systems operating on 

signals are usually naturally 
(Scott) continuous. 

concurrent actor-

oriented models 

abstraction 

fixed-point 

semantics 

super-dense 

time 
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Some 

Reading on 

Foundations 

Papers: 

[1]  Lee and Matsikoudis, "
The Semantics of Dataflow with Firing," in From 
Semantics to Computer Science: Essays in 
memory of Gilles Kahn, Cambridge 2008. 

[2]  Zhou and Lee. "Causality Interfaces for Actor 
Networks," ACM Trans. on Embedded 
Computing Systems, April 2008. 

[3]  Lee, " Application of Partial Orders to Timed 
Concurrent Systems," article in Partial order 
techniques for the analysis and synthesis of 
hybrid and embedded systems, in CDC 07. 

[4]  Liu and Lee, "CPO Semantics of Timed 
Interactive Actor Networks," Technical Report 
No. UCB/EECS-2007-131, November 5, 2007 
(under review). 

[5]  Lee and Zheng, "Leveraging Synchronous 
Language Principles for Heterogeneous 
Modeling and Design of Embedded Systems," 
EMSOFT ’07. 

[6]  Liu, Matsikoudis, and Lee. "Modeling Timed 
Concurrent Systems," CONCUR ’06. 

[7]  Cataldo, Lee, Liu, Matsikoudis and Zheng "A 
Constructive Fixed-Point Theorem and the 
Feedback Semantics of Timed Systems," 
WODES'06 

etc. ... 

Ph.D. Theses: 

[1]  Haiyang Zheng, "Operational 
Semantics of Hybrid Systems," 
May 18, 2007. 

[2]  Ye Zhou, "Interface Theories 
for Causality Analysis in Actor 
Networks," May 15, 2007. 

[3]  Xiaojun Liu, "Semantic 
Foundation of the Tagged 
Signal Model," December 20, 
2005. 



Lee, Berkeley 28 

The Berkeley Solution 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Bottom Up: Make Timing Repeatable 

Precision-Timed (PRET) Machines 

Make temporal behavior as important as logical function.  

Timing precision with performance: Challenges: 

Memory hierarchy (scratchpads?) 

Deep pipelines (interleaving?) 

ISAs with timing (deadline instructions?) 

Predictable memory management (Metronome?) 

Languages with timing (discrete events? Giotto?) 

Predictable concurrency (synchronous languages?) 

Composable timed components (actor-oriented?) 

Precision networks (TTA? Time synchronization?) 

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET) 

Machine," in the Wild and Crazy Ideas Track of the Design Automation 

Conference (DAC), June 2007. 
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The Berkeley Solution 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Object Oriented vs. Actor Oriented 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 

an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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The First (?) Actor-Oriented Programming Language 
The On-Line Graphical Specification of Computer Procedures 

W. R. Sutherland, Ph.D. Thesis, MIT, 1966 

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen 

Partially constructed actor-oriented model with 

a class definition (top) and instance (below). 

Bert Sutherland used the first acknowledged object-

oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 

programming language (which had a visual syntax). 
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Examples of Actor-Oriented Systems 

UML 2 and SysML (activity diagrams) 

ASCET (time periods, interrupts, priorities, preemption, shared variables ) 

Autosar (software components w/ sender/receiver interfaces) 

Simulink (continuous time, The MathWorks) 

LabVIEW (structured dataflow, National Instruments) 

SCADE (synchronous, based on Lustre and Esterel) 

CORBA event service (distributed push-pull) 

ROOM and UML-2 (dataflow, Rational, IBM) 

VHDL, Verilog (discrete events, Cadence, Synopsys, ...) 

Modelica (continuous time, constraint-based, Linkoping) 

OPNET (discrete events, Opnet Technologies) 

SDL (process networks) 

Occam (rendezvous) 

SPW (synchronous dataflow, Cadence, CoWare) 

… 

The semantics of 

these differ 
considerably in their 

approaches to 
concurrency and time. 

Some are loose 

(ambiguous) and 
some rigorous. Some 

are strongly actor-
oriented, while some 

retain much of the 

flavor (and flaws) of 
threads. 
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Give a Component Technology rather than 

New Languages 

It leverages: 
Language familiarity 

Component libraries 

Legacy subsystems 

Design tools 

The simplicity of sequential reasoning 

It allows for innovation in 
Distributed time-sensitive system design 

Hybrid systems design 

Service-oriented architectures 

Software is intrinsically concurrent 
Better use of multicore machines 

Better use of networked systems 

Better potential for robust design 
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Ptolemy II: Our Laboratory for Experiments with 

Actor-Oriented Design 

Director from a library 

defines component 

interaction semantics 

Large, behaviorally-

polymorphic component 

library. 

Visual editor supporting an abstract syntax 

Type system for 

transported data 

Concurrency management supporting 

dynamic model structure. 
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Approach: Concurrent Composition of 

Components designed with Conventional 

Languages 



Lee, Berkeley 37 

Example: Discrete Event Models 

DE Director implements 

timed semantics using an 

event queue 

Event source 

Time line 

Reactive actors 

Signal 

Components send time-

stamped events to other 
components, and components 

react in chronological order. 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

Distributed execution under discrete-event semantics, with 

“model time” and “real time” bound at sensors and actuators. 

Input time stamps are 

 real time 

Input time stamps are 

 real time 

Output time stamps 

are  real time 

Output time stamps 

are  real time 
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PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems 

… and being explicit about time delays means that we can 

analyze control system dynamics… 

Feedback through the physical world 
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Experimental 

Setup 

HW Platform Software 

Component 

Library 

Ptides Model Code 

Generator 

PtidyOS 

Code 

Plant Model 

Network Model 

HW in the 

Loop 

Simulator 

Causality 

Analysis 

Program 

Analysis 

Schedulability 

Analysis 

Mixed 

Simulator 

Ptolemy II Ptides domain 

Ptolemy II Discrete-event, 

Continuous, and 

Wireless domains 

Luminary  

Micro  

8962 
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The Berkeley Solution 

Time and concurrency in the core abstractions: 

Foundations: Timed computational semantics. 

Bottom up: Make timing repeatable. 

Top down: Timed, concurrent components. 

Holistic: Model engineering. 
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Model Engineering Topics 

Model transformation 
Model optimization 

Scalable model construction (big models from small descriptions) 

Product families (multiple products from one model) 

Design refactoring 

Workflow automation 

Model ontologies 
Property annotations and inference 

Sound foundation based on type theories 

Scalable to large models 

Multimodeling 
Hierarchical multimodeling 

Multi-view modeling 

Meta modeling 
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Model Ontologies:  

Built on Hindley-Milner Type Theories 

A lattice is a partially ordered 

set (poset) where every subset 

has a least upper bound (LUB) 
and a greatest lower bound 

(GLB). 

Modern type systems 

(including the Ptolemy II type 

system, created by Yuhong 

Xiong) are based on efficient 

algorithms for solving 
inequality constraints on 

lattices. 
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Property Lattices capture domain-specific 

semantic information 

Components in a 

model (e.g. 

parameters, ports) can 
have properties drawn 

from a lattice. 

Components in a 

model (e.g. actors) can 
impose constraints on 

property relationships. 

The type system 

infrastructure can infer 
properties and detect 

errors. 
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Property Systems 

Input constraint and one constraint on a constant leads to 

inference of semantic information throughout the model. 
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Beyond Embedded to 

Cyber-Physical Systems 
The Berkeley Approach 

Foundations 

Concurrency and time 

Bottom up 

Make behaviors predictable and repeatable 

Top down 

Actor component architectures 

Holistic 

Model engineering 
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The Ptolemy Pteam 

John 

Eidson 

Isaac Liu 

Christopher Brooks 

Jia Zou 

Edward  

Lee 

Ben  

Lickly 

Thomas 

Huining 

Feng 

Jackie 

Mankit 

Leung 

Jeff  

Jensen 

Bert Rodiers Hiren Patel 

Yasemin 

Demir 

Shanna- 

Shaye 

Forbes 

Thomas  

Mandl 

Elefterios 

Matsikoudis 


