
Beyond Embedded Systems:
Integrating Computation,

Networking, and Physical Dynamics

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Invited Keynote Talk

ACM SIGPLAN/SIGBED 2009 Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES)

Dublin, Ireland

June 19-20, 2009

Lee, Berkeley 2

Context of my work: Chess: Center for

Hybrid and Embedded Software Systems

Board of Directors

Edward A. Lee

Alberto Sangiovanni-Vincentelli

Shankar Sastry

Claire Tomlin

Executive Director

Christopher Brooks

Other key faculty at Berkeley

Dave Auslander

Ruzena Bajcsy

Raz Bodik

Karl Hedrick

Kurt Keutzer

George Necula

Masayoshi Tomizuka

Pravin Varaiya

This center, founded in 2002,

blends systems theorists and
application domain experts with

software technologists and
computer scientists.

Some Research Projects

Precision-timed (PRET) machines

Distributed real-time computing

Systems of systems

Theoretical foundations of CPS

Hybrid systems

Design technologies

Verification

Intelligent control

Modeling and simulation

Applications

Building systems

Automotive

Synthetic biology

Medical systems

Instrumentation

Factory automation

Avionics

Lee, Berkeley 3 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power

generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at
SFO)

Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 4

CPS Example – Printing Press

•

•

•

•

•

•

•

•

•

•

Lee, Berkeley 5

Where CPS Differs from

the traditional embedded systems problem:

The traditional embedded systems problem:

 Embedded software is software on small

computers. The technical problem is one of

optimization (coping with limited resources).

The CPS problem:

 Computation and networking integrated with

physical processes. The technical problem is

managing dynamics, time, and concurrency in
networked computational + physical systems.

Lee, Berkeley 6

Cyber Physical Systems:

Computational +
Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the

physical world

System Theory:

Deals directly with

physical quantities

Lee, Berkeley 7

A Key Challenge

Models for the physical world and for computation diverge.

physical: time continuum, ODEs, DAEs, PDEs, dynamics

computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks, and theories of computation must be viewed as

alternative ways of talking about dynamics.

Lee, Berkeley 8

First Challenge on the Cyber Side:

Real-Time Software

Correct execution of a program in C, C#, Java,

Haskell, etc. has nothing to do with how long it

takes to do anything. All our computation and

networking abstractions are built on this premise.

Timing of programs is not repeatable,

except at very coarse granularity.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Lee, Berkeley 9

Techniques that Exploit this Fact

Programming languages

Virtual memory

Caches

Dynamic dispatch

Speculative execution

Power management (voltage scaling)

Memory management (garbage collection)

Just-in-time (JIT) compilation

Multitasking (threads and processes)

Component technologies (OO design)

Networking (TCP)

…

Lee, Berkeley 10

A Story

In “fly by wire” aircraft, certification of the

software is extremely expensive. Regrettably, it

is not the software that is certified but the entire

system. If a manufacturer expects to produce a

plane for 50 years, it needs a 50-year stockpile of

fly-by-wire components that are all made from

the same mask set on the same production line.

Even a slight change or “improvement” might

affect timing and require the software to be re-

certified.

Lee, Berkeley 11

Consequences

Stockpiling for a product run

Some systems vendors have to purchase up front the entire
expected part requirements for an entire product run.

Frozen designs

Once certified, errors cannot be fixed and improvements cannot
be made.

Product families

Difficult to maintain and evolve families of products together.

It is difficult to adapt existing designs because small changes
have big consequences

Forced redesign

A part becomes unavailable, forcing a redesign of the system.

Lock in

Cannot take advantage of cheaper or better parts.

Risky in-field updates

In the field updates can cause expensive failures.

Lee, Berkeley 12

Abstraction Layers

 The purpose for an

abstraction is to

hide details of the

implementation

below and provide a

platform for design

from above.

Lee, Berkeley 13

Abstraction Layers

 Every abstraction

layer has failed for

real-time programs.

 The design is the

implementation.

Lee, Berkeley 14

Abstraction Layers

 How about “raising

the level of

abstraction” to solve

these problems?

Lee, Berkeley 15

But these higher abstractions rely on an

increasingly problematic fiction: WCET

Example war story:

Analysis of:

• Motorola ColdFire

• Two coupled pipelines (7-stage)
• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction
leads to large integer linear

programming problem

And the result is valid only for that exact

Hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 16

The Key Problem

 Electronics technology

delivers highly reliable and

precise timing…

… and the overlaying software

abstractions discard it.

20.000 MHz (± 100 ppm)

Lee, Berkeley 17

Second Challenge on the Cyber Side:

Concurrency
(Needed for real time and multicore)

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.

Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources
of many problems:

Deadlock
Priority inversion

Scheduling anomalies
Timing variability

Nondeterminism

Buffer overruns
System crashes

Lee, Berkeley 18

My Claim

Nontrivial software written with threads is

incomprehensible to humans, and it

cannot deliver repeatable or predictable

timing, except in trivial cases.

Lee, Berkeley 19

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

 “humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

 H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 20

Is Concurrency Hard?

It is not

concurrency that

is hard…

Lee, Berkeley 21

…It is Threads that are Hard!

Threads are sequential processes that

share memory. From the perspective of

any thread, the entire state of the universe

can change between any two atomic

actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 22

Concurrent programs using shared memory are

incomprehensible because concurrency in the

physical world does not work that way.

We have no experience!

Lee, Berkeley 23

Consider an Automotive Example

Periodic events

Quasi-periodic events

Sporadic events

Consider handling this with timers, interrupts, threads,

shared memory, priorities, and mutual exclusion.

This is a nightmare!

Lee, Berkeley 24

The Current State of Affairs

We build embedded

software on abstractions

where time is irrelevant

using concurrency

models that are

incomprehensible.

Just think what we could do with the

right abstractions!

Lee, Berkeley 25

The Berkeley Solution

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 26

Foundations:

Timed-Computational Semantics.

s S N

Causal systems operating on

signals are usually naturally
(Scott) continuous.

concurrent actor-

oriented models

abstraction

fixed-point

semantics

super-dense

time

Lee, Berkeley 27

Some

Reading on

Foundations

Papers:

[1] Lee and Matsikoudis, "
The Semantics of Dataflow with Firing," in From
Semantics to Computer Science: Essays in
memory of Gilles Kahn, Cambridge 2008.

[2] Zhou and Lee. "Causality Interfaces for Actor
Networks," ACM Trans. on Embedded
Computing Systems, April 2008.

[3] Lee, " Application of Partial Orders to Timed
Concurrent Systems," article in Partial order
techniques for the analysis and synthesis of
hybrid and embedded systems, in CDC 07.

[4] Liu and Lee, "CPO Semantics of Timed
Interactive Actor Networks," Technical Report
No. UCB/EECS-2007-131, November 5, 2007
(under review).

[5] Lee and Zheng, "Leveraging Synchronous
Language Principles for Heterogeneous
Modeling and Design of Embedded Systems,"
EMSOFT ’07.

[6] Liu, Matsikoudis, and Lee. "Modeling Timed
Concurrent Systems," CONCUR ’06.

[7] Cataldo, Lee, Liu, Matsikoudis and Zheng "A
Constructive Fixed-Point Theorem and the
Feedback Semantics of Timed Systems,"
WODES'06

etc. ...

Ph.D. Theses:

[1] Haiyang Zheng, "Operational
Semantics of Hybrid Systems,"
May 18, 2007.

[2] Ye Zhou, "Interface Theories
for Causality Analysis in Actor
Networks," May 15, 2007.

[3] Xiaojun Liu, "Semantic
Foundation of the Tagged
Signal Model," December 20,
2005.

Lee, Berkeley 28

The Berkeley Solution

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 29

Bottom Up: Make Timing Repeatable

Precision-Timed (PRET) Machines

Make temporal behavior as important as logical function.

Timing precision with performance: Challenges:

Memory hierarchy (scratchpads?)

Deep pipelines (interleaving?)

ISAs with timing (deadline instructions?)

Predictable memory management (Metronome?)

Languages with timing (discrete events? Giotto?)

Predictable concurrency (synchronous languages?)

Composable timed components (actor-oriented?)

Precision networks (TTA? Time synchronization?)

See S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of the Design Automation

Conference (DAC), June 2007.

Lee, Berkeley 30

The Berkeley Solution

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 31

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through

an object is

evolving data

class name

data

methods

call return

What flows through

an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 32

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures

W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with

a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-

oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented

programming language (which had a visual syntax).

Lee, Berkeley 33

Examples of Actor-Oriented Systems

UML 2 and SysML (activity diagrams)

ASCET (time periods, interrupts, priorities, preemption, shared variables)

Autosar (software components w/ sender/receiver interfaces)

Simulink (continuous time, The MathWorks)

LabVIEW (structured dataflow, National Instruments)

SCADE (synchronous, based on Lustre and Esterel)

CORBA event service (distributed push-pull)

ROOM and UML-2 (dataflow, Rational, IBM)

VHDL, Verilog (discrete events, Cadence, Synopsys, ...)

Modelica (continuous time, constraint-based, Linkoping)

OPNET (discrete events, Opnet Technologies)

SDL (process networks)

Occam (rendezvous)

SPW (synchronous dataflow, Cadence, CoWare)

…

The semantics of

these differ
considerably in their

approaches to
concurrency and time.

Some are loose

(ambiguous) and
some rigorous. Some

are strongly actor-
oriented, while some

retain much of the

flavor (and flaws) of
threads.

Lee, Berkeley 34

Give a Component Technology rather than

New Languages

It leverages:
Language familiarity

Component libraries

Legacy subsystems

Design tools

The simplicity of sequential reasoning

It allows for innovation in
Distributed time-sensitive system design

Hybrid systems design

Service-oriented architectures

Software is intrinsically concurrent
Better use of multicore machines

Better use of networked systems

Better potential for robust design

Lee, Berkeley 35

Ptolemy II: Our Laboratory for Experiments with

Actor-Oriented Design

Director from a library

defines component

interaction semantics

Large, behaviorally-

polymorphic component

library.

Visual editor supporting an abstract syntax

Type system for

transported data

Concurrency management supporting

dynamic model structure.

Lee, Berkeley 36

Approach: Concurrent Composition of

Components designed with Conventional

Languages

Lee, Berkeley 37

Example: Discrete Event Models

DE Director implements

timed semantics using an

event queue

Event source

Time line

Reactive actors

Signal

Components send time-

stamped events to other
components, and components

react in chronological order.

Lee, Berkeley 38

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

Distributed execution under discrete-event semantics, with

“model time” and “real time” bound at sensors and actuators.

Input time stamps are

 real time

Input time stamps are

 real time

Output time stamps

are real time

Output time stamps

are real time

Lee, Berkeley 39

PTIDES: Programming Temporally

Integrated Distributed Embedded Systems

… and being explicit about time delays means that we can

analyze control system dynamics…

Feedback through the physical world

Lee, Berkeley 40

Experimental

Setup

HW Platform Software

Component

Library

Ptides Model Code

Generator

PtidyOS

Code

Plant Model

Network Model

HW in the

Loop

Simulator

Causality

Analysis

Program

Analysis

Schedulability

Analysis

Mixed

Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,

Continuous, and

Wireless domains

Luminary

Micro

8962

Lee, Berkeley 41

The Berkeley Solution

Time and concurrency in the core abstractions:

Foundations: Timed computational semantics.

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Holistic: Model engineering.

Lee, Berkeley 42

Model Engineering Topics

Model transformation
Model optimization

Scalable model construction (big models from small descriptions)

Product families (multiple products from one model)

Design refactoring

Workflow automation

Model ontologies
Property annotations and inference

Sound foundation based on type theories

Scalable to large models

Multimodeling
Hierarchical multimodeling

Multi-view modeling

Meta modeling

Lee, Berkeley 43

Model Ontologies:

Built on Hindley-Milner Type Theories

A lattice is a partially ordered

set (poset) where every subset

has a least upper bound (LUB)
and a greatest lower bound

(GLB).

Modern type systems

(including the Ptolemy II type

system, created by Yuhong

Xiong) are based on efficient

algorithms for solving
inequality constraints on

lattices.

Lee, Berkeley 44

Property Lattices capture domain-specific

semantic information

Components in a

model (e.g.

parameters, ports) can
have properties drawn

from a lattice.

Components in a

model (e.g. actors) can
impose constraints on

property relationships.

The type system

infrastructure can infer
properties and detect

errors.

Lee, Berkeley 45

Property Systems

Input constraint and one constraint on a constant leads to

inference of semantic information throughout the model.

Lee, Berkeley 46

Beyond Embedded to

Cyber-Physical Systems
The Berkeley Approach

Foundations

Concurrency and time

Bottom up

Make behaviors predictable and repeatable

Top down

Actor component architectures

Holistic

Model engineering

Lee, Berkeley 47

The Ptolemy Pteam

John

Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward

Lee

Ben

Lickly

Thomas

Huining

Feng

Jackie

Mankit

Leung

Jeff

Jensen

Bert Rodiers Hiren Patel

Yasemin

Demir

Shanna-

Shaye

Forbes

Thomas

Mandl

Elefterios

Matsikoudis

