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Why worry about floating-point? 

a = (3.2e7, 1, –1,   8.0e7) 
b = (4.0e7, 1, –1, –1.6e7) 

Single Precision, 32 bits: 

Note: All values are integers that can be expressed exactly in the 
IEEE 754 Standard floating-point format (single or double precision) 

Double Precision, 64 bits: 

a · b = 0 

a · b = 0 

Find the scalar product a · b: 
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Why worry about floating-point? 

a = (3.2e7, 1, –1,   8.0e7) 
b = (4.0e7, 1, –1, –1.6e7) 

Single Precision, 32 bits: 

Note: All values are integers that can be expressed exactly in the 
IEEE 754 Standard floating-point format (single or double precision) 

Double Precision, 64 bits: 

Double Precision 
with binary sum collapse: 

a · b = 0 

a · b = 0 

a · b = 1 

Correct answer: a · b = 2 

Most linear 
algebra is 
unstable 

with floats!  

Find the scalar product a · b: 



What’s wrong with IEEE 754? (1) 

•  It’s a guideline, not a standard 
•  No guarantee of identical results across 

systems 
•  Invisible rounding errors; the “inexact” flag is 

useless 
•  Breaks algebra laws, like a+(b+c) = (a+b)+c 
•  Overflows to infinity, underflows to zero 
•  No way to express most of the real number 

line 



A Key Idea: The Ubit 

Incorrect: π = 3.14 
 
Correct:   π = 3.14… 

The latter means 3.14 < π < 3.15, a true statement. 
 
Presence or absence of the “…” is the ubit, just like a sign bit. 
It is 0 if exact, 1 if there are more bits after the last fraction bit, 
not all 0s and not all 1s. 

We have always had a way of expressing infinite-
decimal reals correctly with a finite set of symbols. 



What’s wrong with IEEE 754? (2) 

•  Exponents usually too large; not adjustable 
•  Accuracy is flat across a vast range, then falls 

off a cliff 
•  Wasted bit patterns; “negative zero,” too many 

NaN values 
•  Subnormal numbers are headache 
•  Divides are hard 
•  Decimal floats are expensive; no 32-bit version 



Quick Introduction to Unum 
(universal number) Format: Type 1 

•  Type 1 unums extend 
IEEE floating point with 
three metadata fields for 
exactness, exponent 
size, and fraction size. 
Upward compatible. 

•  Fixed size if “unpacked” 
to maximum size, but 
can vary in size to save 
storage, bandwidth. 

IEEE Float 

sign 

0	

exp. 

11001	

fraction 

1001110001	

sign exp. fraction ubit exp. size 

utag 

frac. size 

Type 1 Unum 

0	11001	1001110001	 0	100	1001	

For details see The End of Error: Unum Arithmetic, CRC Press, 2015 



Floats only express discrete points 
on the real number line 

Use of a tiny-
precision float 
highlights the 

problem. 



The ubit can represent exact values 
or the range between exacts 

Unums cover the 
entire extended real 
number line using a 
finite number of bits. 



For details see http://superfri.org/superfri/article/view/94/78 

Type 2 unums 
•  Projective reals 
•  Custom lattice 
•  No penalty for 

decimal 
•  Table look-up 
•  Perfect 

reciprocals 
•  No redundancy 
•  Incredibly fast 

(ROM) but limited 
precision (< 20 bits) 



Contrasting Calculation “Esthetics” 

IEEE Standard 
(1985) 

Floats, f = n × 2m 
m, n are integers 

Intervals [f1, f2], all 
x such that f1 ≤ x ≤ f2 

Type 1 Unums 
(2013) 

“Guess” mode, 
flexible precision 

Unums, ubounds, 
sets of uboxes 

Type 2 Unums 
(2016) 

“Guess” mode, 
fixed precision 

Sets of Real 
Numbers (SORNs) 

Sigmoid Unums 
(2017) Posits Valids 

Rounded: cheap, 
uncertain, but 

“good enough” 

Rigorous: certain, 
more work, 

mathematical 

If you mix the two esthetics, you wind up satisfying neither. 





Metrics for Number Systems 

•  Accuracy                –log10(log10(xj / xj+1)) 
•  Dynamic range    log10(maxreal / minreal) 
•  Percentage of operations that are exact 

(closure under + – × ÷ √ etc.) 
•  Average accuracy loss when they aren’t 
•  Entropy per bit (maximize information) 
•  Accuracy benchmarks: simple formulas, 

linear equation solving, math library 
kernels… 



Posit Arithmetic: 
Beating floats at their own game 

Fixed size, nbits. 
No ubit. 
Rounds after every operation. 
es = exponent size = 0, 1, 2,… bits. 



Posit Arithmetic Example 

Here, es = 3. Float-like circuitry is all that is needed 
(integer add, integer multiply, shifts to scale by 2k) 

 
Posits do not underflow or overflow. There is no NaN. 

Simpler, smaller, faster circuits than IEEE 754 

= 3.55⋯×10–6 



Mapping to the Projective Reals 
Example with 
nbits = 3, es = 1. 
 
Value at 45° is 
always 
 
 
If bit string < 0, 
set sign to – and 
negate integer. 

useed useed = 2 
es	2 



Rules for inserting new points 
Between ±maxpos 
and ±∞, scale up 
by useed. 
(New regime bit) 
 
Between 0 and 
±minpos, scale down 
by useed. 
(New regime bit) 
 
Between 2m and 2n 
where n – m > 2, 
insert 2(m + n)/2. 
(New exponent bit) 



At nbits = 5, fraction bits appear. 
Between x and y 
where y ≤ 2x, 
insert (x + y)/2. 
 
Notice existing 
values stay in 
place. 
 
Appending bits 
increases 
accuracy 
east and west, 
dynamic range 
north and south! 



Posits vs. Floats: 
a metrics-based study 

•  Use quarter-precision IEEE-style floats 
•  Sign bit, 4 exponent bits, 3 fraction bits 
•  smallsubnormal = 1/512; maxfloat = 240. 
•  Dynamic range of five orders of magnitude 
•  Two representations of zero 
•  Fourteen representations of “Not a 

Number” (NaN) 



Float accuracy tapers only on left 

•  Min:  0.52 
decimals 

•  Avg:  1.40 
decimals 

•  Max: 1.55 
decimals 

Graph shows decimals of accuracy 
from smallsubnormal to maxfloat. 



Posit accuracy tapers on both sides 

•  Min:  0.22 
decimals 

•  Avg:  1.46 
decimals 

•  Max: 1.86 
decimals 

Graph shows decimals of accuracy from minpos to maxpos. 
But posits cover seven orders of magnitude, not five. 



Both graphs at once 
Where most calculations occur 

⇦ Posits 

⇦ Floats 



ROUND 1 
 
 

Unary Operations 
 

1/x, √x, x2, log2(x), 2x 



Closure under Reciprocation, 1/x 

13.281%	 exact	

79.688%	 inexact	

		0.000%		 underflow	

		1.563%	 overflow	

		5.469%	 NaN	

Floats 
18.750%	 exact	

81.250%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.000%	 NaN	

Posits 



Closure under Square Root, √x 

		7.031%	 exact	

40.625%	 inexact	

52.344%	 NaN	

Floats 
7.813%	 exact	

42.188%	 inexact	

49.609%	 NaN	

Posits 



Closure under Squaring, x2 

Floats 

Posits 

13.281%	 exact	

43.750%	 inexact	

12.500%		 underflow	

25.000%	 overflow	

		5.469%	 NaN	

15.625%	 exact	

84.375%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.000%	 NaN	



Closure under log2(x) 

Floats 

Posits 

		7.813%	 exact	

39.844%	 inexact	

52.344%	 NaN	

		8.984%	 exact	

40.625%	 inexact	

50.391%	 NaN	



Closure under 2x 

Floats 

Posits 

		7.813%	 exact	

56.250%	 inexact	

14.844%		 underflow	

15.625%	 overflow	

		5.469%	 NaN	

		8.984%	 exact	

90.625%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.391%	 NaN	



ROUND 2 
 
 

Two-Argument Operations 
 

x + y, x × y, x ÷ y 



Addition Closure Plot: Floats 
18.533%	 exact	

70.190%	 inexact	

		0.000%		 underflow	

		0.635%	 overflow	

10.641%	 NaN	

Inexact results 
are magenta; the 
larger the error, 
the brighter the 
color. 
 
Addition can 
overflow, but 
cannot underflow. 



Addition Closure Plot: Posits 
25.005%	 exact	

74.994%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.002%	 NaN	

Only one case is 
a NaN: 
 

±∞ + ±∞ 
 

With posits, a 
NaN stops the 
calculation. 



All decimal losses, sorted 

Addition closure is 
harder to achieve than 
multiplication closure, 

in scaled arithmetic 
systems. 



Multiplication Closure Plot: Floats 
22.272%	 exact	

58.279%	 inexact	

		2.475%		 underflow	

		6.323%	 overflow	

10.651%	 NaN	

Floats score their 
first win: more 
exact products 
than posits… 
 
but at a terrible 
cost! 



Multiplication Closure Plot: Posits 
18.002%	 exact	

81.995%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.003%	 NaN	

Only two cases 
produce a NaN: 
 

±∞ × 0 
0 × ±∞ 

 



The sorted losses tell the real story 

Posits are actually 
far more robust at 

controlling accuracy 
losses from 

multiplication. 



Division Closure Plot: Floats 
22.272%	 exact	

58.810%	 inexact	

		3.433%		 underflow	

		4.834%	 overflow	

10.651%	 NaN	

Denormalized 
floats lead to 
asymmetries. 



Division Closure Plot: Posits 
18.002%	 exact	

81.995%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.003%	 NaN	

Posits do not have 
denormalized 
values. Nor do they 
need them. 
 

Hidden bit = 1,  
 
always. Simplifies 
hardware. 



ROUND 3 
 

Higher-Precision Operations 
 

32-bit formula evaluation 
16-bit linear equation solve 

128-bit triangle area calculation 
The scalar product, redux 



Accuracy on a 32-Bit Budget 
27 /10− e

π − 2 + 3( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

67 /16

= 302.8827196…Compute: with ≤ 32 bits 
per number. 

Number 
Type 

Dynamic 
Range 

Answer Error or 
Range 

IEEE 32-bit float 2×1083 302.912⋯ 0.0297 

Interval arithmetic 1012 [18.21875, 33056.] 3.3×104 

Type 1 unums 4×1083 (302.75, 303.) 0.25 

Type 2 unums 1099 302.887⋯ 0.0038 

Posits, es = 3 3×10144 302.88231⋯ 0.00040 

Posits, es = 1 1036 302.8827819⋯ 0.000062 

Posits beat floats at both dynamic range and accuracy. 



Solving Ax = b with16-Bit Numbers 

•  10 by 10; random Aij entries in (0, 1)  
•  b chosen so x should be all 1s 
•  Classic LAPACK method: LU factorization 

with partial pivoting 

IEEE 16-bit Floats 
Dynamic range: 1012 

RMS error: 0.011 
Decimals accuracy: 1.96 

16-bit Posits 
Dynamic range: 1016 

RMS error: 0.0026 
Decimals accuracy: 2.58 



Thin Triangle Area 

From “What Every Computer Scientist Should Know About Floating-Point Arithmetic,” 
David Goldberg, published in the March, 1991 issue of Computing Surveys 

Find the area of this thin triangle 

using the formula 

and 128-bit IEEE floats, then 128-bit posits. 
 
Answer, correct to 36 decimals: 
3.14784204874900425235885265494550774⋯×10–16 



A Grossly Unfair Contest 
IEEE quad-precision floats get only one decimal digit right: 

3.63481490842332134725920516158057683⋯×10–16 



A Grossly Unfair Contest 
IEEE quad-precision floats get only one digit right: 

128-bit posits get 36 digits right: 

To get this accurate an answer with IEEE floats, you 
need octuple precision (256-bit) representation. 
 

Posits don’t even need 128 bits. They can get a very 
accurate answer with only 119 bits. 

3.63481490842332134725920516158057683⋯×10–16 

3.14784204874900425235885265494550774⋯×10–16 



Remember this from the beginning? 

a = (3.2e7, 1, –1,   8.0e7) 
b = (4.0e7, 1, –1, –1.6e7) 

Correct answer:  a · b = 2 

Find the scalar product a · b: 

IEEE floats require 80-bit precision to get it right. 
Posits (es = 3) need only 25-bit precision to get it right. 
The fused dot product is 3 to 6 times faster than the 
float method.* 

*Source: “Hardware Accelerator for Exact Dot Product,” 
David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley 



Summary 
•  Posits beat floats at their own game: 

superior accuracy, dynamic range, closure 
•  Bitwise-reproducible answers (at last!) 
•  Demonstrated better answers with same 

number of bits 
•  …or, equally good answers with fewer bits 
•  Simpler, more elegant design should 

reduce silicon cost, energy, and latency. 

Who will be the first to produce a chip 
with posit arithmetic? 


