
Beyond Floating Point:
Next-Generation Computer

Arithmetic

John L. Gustafson
Professor, A*STAR and National

University of Singapore

Why worry about floating-point?

a = (3.2e7, 1, –1, 8.0e7)
b = (4.0e7, 1, –1, –1.6e7)

Single Precision, 32 bits:

Note: All values are integers that can be expressed exactly in the
IEEE 754 Standard floating-point format (single or double precision)

Double Precision, 64 bits:

a · b = 0

a · b = 0

Find the scalar product a · b:

Why worry about floating-point?

a = (3.2e7, 1, –1, 8.0e7)
b = (4.0e7, 1, –1, –1.6e7)

Single Precision, 32 bits:

Note: All values are integers that can be expressed exactly in the
IEEE 754 Standard floating-point format (single or double precision)

Double Precision, 64 bits:

Double Precision
with binary sum collapse:

a · b = 0

a · b = 0

a · b = 1

Find the scalar product a · b:

Why worry about floating-point?

a = (3.2e7, 1, –1, 8.0e7)
b = (4.0e7, 1, –1, –1.6e7)

Single Precision, 32 bits:

Note: All values are integers that can be expressed exactly in the
IEEE 754 Standard floating-point format (single or double precision)

Double Precision, 64 bits:

Double Precision
with binary sum collapse:

a · b = 0

a · b = 0

a · b = 1

Correct answer: a · b = 2

Most linear
algebra is
unstable

with floats!

Find the scalar product a · b:

What’s wrong with IEEE 754? (1)

•  It’s a guideline, not a standard
•  No guarantee of identical results across

systems
•  Invisible rounding errors; the “inexact” flag is

useless
•  Breaks algebra laws, like a+(b+c) = (a+b)+c
•  Overflows to infinity, underflows to zero
•  No way to express most of the real number

line

A Key Idea: The Ubit

Incorrect: π = 3.14

Correct: π = 3.14…

The latter means 3.14 < π < 3.15, a true statement.

Presence or absence of the “…” is the ubit, just like a sign bit.
It is 0 if exact, 1 if there are more bits after the last fraction bit,
not all 0s and not all 1s.

We have always had a way of expressing infinite-
decimal reals correctly with a finite set of symbols.

What’s wrong with IEEE 754? (2)

•  Exponents usually too large; not adjustable
•  Accuracy is flat across a vast range, then falls

off a cliff
•  Wasted bit patterns; “negative zero,” too many

NaN values
•  Subnormal numbers are headache
•  Divides are hard
•  Decimal floats are expensive; no 32-bit version

Quick Introduction to Unum
(universal number) Format: Type 1

•  Type 1 unums extend
IEEE floating point with
three metadata fields for
exactness, exponent
size, and fraction size.
Upward compatible.

•  Fixed size if “unpacked”
to maximum size, but
can vary in size to save
storage, bandwidth.

IEEE Float

sign

0	

exp.

11001	

fraction

1001110001	

sign exp. fraction ubit exp. size

utag

frac. size

Type 1 Unum

0	11001	1001110001	 0	100	1001	

For details see The End of Error: Unum Arithmetic, CRC Press, 2015

Floats only express discrete points
on the real number line

Use of a tiny-
precision float
highlights the

problem.

The ubit can represent exact values
or the range between exacts

Unums cover the
entire extended real
number line using a
finite number of bits.

For details see http://superfri.org/superfri/article/view/94/78

Type 2 unums
•  Projective reals
•  Custom lattice
•  No penalty for

decimal
•  Table look-up
•  Perfect

reciprocals
•  No redundancy
•  Incredibly fast

(ROM) but limited
precision (< 20 bits)

Contrasting Calculation “Esthetics”

IEEE Standard
(1985)

Floats, f = n × 2m
m, n are integers

Intervals [f1, f2], all
x such that f1 ≤ x ≤ f2

Type 1 Unums
(2013)

“Guess” mode,
flexible precision

Unums, ubounds,
sets of uboxes

Type 2 Unums
(2016)

“Guess” mode,
fixed precision

Sets of Real
Numbers (SORNs)

Sigmoid Unums
(2017) Posits Valids

Rounded: cheap,
uncertain, but

“good enough”

Rigorous: certain,
more work,

mathematical

If you mix the two esthetics, you wind up satisfying neither.

Metrics for Number Systems

•  Accuracy –log10(log10(xj / xj+1))
•  Dynamic range log10(maxreal / minreal)
•  Percentage of operations that are exact

(closure under + – × ÷ √ etc.)
•  Average accuracy loss when they aren’t
•  Entropy per bit (maximize information)
•  Accuracy benchmarks: simple formulas,

linear equation solving, math library
kernels…

Posit Arithmetic:
Beating floats at their own game

Fixed size, nbits.
No ubit.
Rounds after every operation.
es = exponent size = 0, 1, 2,… bits.

Posit Arithmetic Example

Here, es = 3. Float-like circuitry is all that is needed
(integer add, integer multiply, shifts to scale by 2k)

Posits do not underflow or overflow. There is no NaN.

Simpler, smaller, faster circuits than IEEE 754

= 3.55⋯×10–6

Mapping to the Projective Reals
Example with
nbits = 3, es = 1.

Value at 45° is
always

If bit string < 0,
set sign to – and
negate integer.

useed useed = 2
es	2

Rules for inserting new points
Between ±maxpos
and ±∞, scale up
by useed.
(New regime bit)

Between 0 and
±minpos, scale down
by useed.
(New regime bit)

Between 2m and 2n
where n – m > 2,
insert 2(m + n)/2.
(New exponent bit)

At nbits = 5, fraction bits appear.
Between x and y
where y ≤ 2x,
insert (x + y)/2.

Notice existing
values stay in
place.

Appending bits
increases
accuracy
east and west,
dynamic range
north and south!

Posits vs. Floats:
a metrics-based study

•  Use quarter-precision IEEE-style floats
•  Sign bit, 4 exponent bits, 3 fraction bits
•  smallsubnormal = 1/512; maxfloat = 240.
•  Dynamic range of five orders of magnitude
•  Two representations of zero
•  Fourteen representations of “Not a

Number” (NaN)

Float accuracy tapers only on left

•  Min: 0.52
decimals

•  Avg: 1.40
decimals

•  Max: 1.55
decimals

Graph shows decimals of accuracy
from smallsubnormal to maxfloat.

Posit accuracy tapers on both sides

•  Min: 0.22
decimals

•  Avg: 1.46
decimals

•  Max: 1.86
decimals

Graph shows decimals of accuracy from minpos to maxpos.
But posits cover seven orders of magnitude, not five.

Both graphs at once
Where most calculations occur

⇦ Posits

⇦ Floats

ROUND 1

Unary Operations

1/x, √x, x2, log2(x), 2x

Closure under Reciprocation, 1/x

13.281%	 exact	

79.688%	 inexact	

		0.000%		 underflow	

		1.563%	 overflow	

		5.469%	 NaN	

Floats
18.750%	 exact	

81.250%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.000%	 NaN	

Posits

Closure under Square Root, √x

		7.031%	 exact	

40.625%	 inexact	

52.344%	 NaN	

Floats
7.813%	 exact	

42.188%	 inexact	

49.609%	 NaN	

Posits

Closure under Squaring, x2

Floats

Posits

13.281%	 exact	

43.750%	 inexact	

12.500%		 underflow	

25.000%	 overflow	

		5.469%	 NaN	

15.625%	 exact	

84.375%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.000%	 NaN	

Closure under log2(x)

Floats

Posits

		7.813%	 exact	

39.844%	 inexact	

52.344%	 NaN	

		8.984%	 exact	

40.625%	 inexact	

50.391%	 NaN	

Closure under 2x

Floats

Posits

		7.813%	 exact	

56.250%	 inexact	

14.844%		 underflow	

15.625%	 overflow	

		5.469%	 NaN	

		8.984%	 exact	

90.625%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.391%	 NaN	

ROUND 2

Two-Argument Operations

x + y, x × y, x ÷ y

Addition Closure Plot: Floats
18.533%	 exact	

70.190%	 inexact	

		0.000%		 underflow	

		0.635%	 overflow	

10.641%	 NaN	

Inexact results
are magenta; the
larger the error,
the brighter the
color.

Addition can
overflow, but
cannot underflow.

Addition Closure Plot: Posits
25.005%	 exact	

74.994%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.002%	 NaN	

Only one case is
a NaN:

±∞ + ±∞

With posits, a
NaN stops the
calculation.

All decimal losses, sorted

Addition closure is
harder to achieve than
multiplication closure,

in scaled arithmetic
systems.

Multiplication Closure Plot: Floats
22.272%	 exact	

58.279%	 inexact	

		2.475%		 underflow	

		6.323%	 overflow	

10.651%	 NaN	

Floats score their
first win: more
exact products
than posits…

but at a terrible
cost!

Multiplication Closure Plot: Posits
18.002%	 exact	

81.995%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.003%	 NaN	

Only two cases
produce a NaN:

±∞ × 0
0 × ±∞

The sorted losses tell the real story

Posits are actually
far more robust at

controlling accuracy
losses from

multiplication.

Division Closure Plot: Floats
22.272%	 exact	

58.810%	 inexact	

		3.433%		 underflow	

		4.834%	 overflow	

10.651%	 NaN	

Denormalized
floats lead to
asymmetries.

Division Closure Plot: Posits
18.002%	 exact	

81.995%	 inexact	

		0.000%		 underflow	

		0.000%	 overflow	

		0.003%	 NaN	

Posits do not have
denormalized
values. Nor do they
need them.

Hidden bit = 1,

always. Simplifies
hardware.

ROUND 3

Higher-Precision Operations

32-bit formula evaluation
16-bit linear equation solve

128-bit triangle area calculation
The scalar product, redux

Accuracy on a 32-Bit Budget
27 /10− e

π − 2 + 3()
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

67 /16

= 302.8827196…Compute: with ≤ 32 bits
per number.

Number
Type

Dynamic
Range

Answer Error or
Range

IEEE 32-bit float 2×1083 302.912⋯ 0.0297

Interval arithmetic 1012 [18.21875, 33056.] 3.3×104

Type 1 unums 4×1083 (302.75, 303.) 0.25

Type 2 unums 1099 302.887⋯ 0.0038

Posits, es = 3 3×10144 302.88231⋯ 0.00040

Posits, es = 1 1036 302.8827819⋯ 0.000062

Posits beat floats at both dynamic range and accuracy.

Solving Ax = b with16-Bit Numbers

•  10 by 10; random Aij entries in (0, 1)
•  b chosen so x should be all 1s
•  Classic LAPACK method: LU factorization

with partial pivoting

IEEE 16-bit Floats
Dynamic range: 1012

RMS error: 0.011
Decimals accuracy: 1.96

16-bit Posits
Dynamic range: 1016

RMS error: 0.0026
Decimals accuracy: 2.58

Thin Triangle Area

From “What Every Computer Scientist Should Know About Floating-Point Arithmetic,”
David Goldberg, published in the March, 1991 issue of Computing Surveys

Find the area of this thin triangle

using the formula

and 128-bit IEEE floats, then 128-bit posits.

Answer, correct to 36 decimals:
3.14784204874900425235885265494550774⋯×10–16

A Grossly Unfair Contest
IEEE quad-precision floats get only one decimal digit right:

3.63481490842332134725920516158057683⋯×10–16

A Grossly Unfair Contest
IEEE quad-precision floats get only one digit right:

128-bit posits get 36 digits right:

To get this accurate an answer with IEEE floats, you
need octuple precision (256-bit) representation.

Posits don’t even need 128 bits. They can get a very
accurate answer with only 119 bits.

3.63481490842332134725920516158057683⋯×10–16

3.14784204874900425235885265494550774⋯×10–16

Remember this from the beginning?

a = (3.2e7, 1, –1, 8.0e7)
b = (4.0e7, 1, –1, –1.6e7)

Correct answer: a · b = 2

Find the scalar product a · b:

IEEE floats require 80-bit precision to get it right.
Posits (es = 3) need only 25-bit precision to get it right.
The fused dot product is 3 to 6 times faster than the
float method.*

*Source: “Hardware Accelerator for Exact Dot Product,”
David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley

Summary
•  Posits beat floats at their own game:

superior accuracy, dynamic range, closure
•  Bitwise-reproducible answers (at last!)
•  Demonstrated better answers with same

number of bits
•  …or, equally good answers with fewer bits
•  Simpler, more elegant design should

reduce silicon cost, energy, and latency.

Who will be the first to produce a chip
with posit arithmetic?

