Beyond Floating Point: Next-Generation Computer Arithmetic

John L. Gustafson
Professor, A*STAR and National
University of Singapore

Why worry about floating-point?

Find the scalar product *a* · *b*:

$$a = (3.2e7, 1, -1, 8.0e7)$$

 $b = (4.0e7, 1, -1, -1.6e7)$

Note: All values are integers that can be expressed exactly in the IEEE 754 Standard floating-point format (single or double precision)

Single Precision, 32 bits: $a \cdot b = 0$

Double Precision, 64 bits: $a \cdot b = 0$

Why worry about floating-point?

Find the scalar product *a* · *b*:

$$a = (3.2e7, 1, -1, 8.0e7)$$

 $b = (4.0e7, 1, -1, -1.6e7)$

Note: All values are integers that can be expressed exactly in the IEEE 754 Standard floating-point format (single or double precision)

Single Precision, 32 bits: $a \cdot b = 0$

Double Precision, 64 bits: $a \cdot b = 0$

Double Precision with binary sum collapse: $a \cdot b = 1$

Why worry about floating-point?

Find the scalar product *a* · *b*:

$$a = (3.2e7, 1, -1, 8.0e7)$$

 $b = (4.0e7, 1, -1, -1.6e7)$

Note: All values are integers that can be expressed exactly in the IEEE 754 Standard floating-point format (single or double precision)

Single Precision, 32 bits: $a \cdot b = 0$

Double Precision, 64 bits: $a \cdot b = 0$

Double Precision with binary sum collapse: $a \cdot b = 1$

Correct answer: $a \cdot b = 2$

Most linear algebra is unstable with floats!

What's wrong with IEEE 754? (1)

- It's a guideline, not a standard
- No guarantee of identical results across systems
- Invisible rounding errors; the "inexact" flag is useless
- Breaks algebra laws, like a+(b+c) = (a+b)+c
- Overflows to infinity, underflows to zero
- No way to express most of the real number line

A Key Idea: The Ubit

We have always had a way of expressing infinitedecimal reals correctly with a finite set of symbols.

Incorrect: $\pi = 3.14$

Correct: $\pi = 3.14$ ···

The latter means $3.14 < \pi < 3.15$, a **true statement**.

Presence or absence of the "···" is the *ubit*, just like a sign bit. It is 0 if exact, 1 if there are more bits after the last fraction bit, not all 0s and not all 1s.

What's wrong with IEEE 754? (2)

- Exponents usually too large; not adjustable
- Accuracy is flat across a vast range, then falls off a cliff
- Wasted bit patterns; "negative zero," too many NaN values
- Subnormal numbers are headache
- Divides are hard
- Decimal floats are expensive; no 32-bit version

Quick Introduction to Unum (universal number) Format: **Type 1**

- Type 1 unums extend IEEE floating point with three metadata fields for exactness, exponent size, and fraction size. Upward compatible.
- Fixed size if "unpacked" to maximum size, but can vary in size to save storage, bandwidth.

Floats only express discrete points on the real number line

The ubit can represent exact values or the range between exacts

Type 2 unums

- Projective reals
- Custom lattice
- No penalty for decimal
- Table look-up
- Perfect reciprocals
- No redundancy
- Incredibly fast (ROM) but limited precision (< 20 bits)

For details see http://superfri.org/superfri/article/view/94/78

Contrasting Calculation "Esthetics"

Rounded: cheap, uncertain, but "good enough" Rigorous: certain, more work, mathematical

IEEE Standard (1985) Floats, $f = n \times 2^m$ m, n are integers Intervals $[f_1, f_2]$, all x such that $f_1 \le x \le f_2$

Type 1 Unums (2013)

"Guess" mode, flexible precision

Unums, ubounds, sets of uboxes

Type 2 Unums (2016)

"Guess" mode, fixed precision

Sets of Real Numbers (SORNs)

Sigmoid Unums (2017)

Posits

Valids

If you mix the two esthetics, you wind up satisfying *neither*.

posit | 'päzət |

noun Philosophy

a statement that is made on the assumption that it will prove to be true.

Metrics for Number Systems

- Accuracy $-\log_{10}(\log_{10}(x_i/x_{i+1}))$
- Dynamic range $log_{10}(maxreal \mid minreal)$
- Percentage of operations that are exact (closure under + - × ÷ √ etc.)
- Average accuracy loss when they aren't
- Entropy per bit (maximize information)
- Accuracy benchmarks: simple formulas, linear equation solving, math library kernels...

Posit Arithmetic: Beating floats at their own game

Fixed size, nbits.

No ubit.

Rounds after every operation.

es = exponent size = 0, 1, 2,... bits.

Posit Arithmetic Example

Here, es = 3. Float-like circuitry is all that is needed (integer add, integer multiply, shifts to scale by 2^k)

Posits do not underflow or overflow. There is no NaN.

Simpler, smaller, faster circuits than IEEE 754

Mapping to the Projective Reals

Example with nbits = 3, es = 1.

Value at 45° is always $useed = 2^{2}$

If bit string < 0, set sign to – and negate integer.

Rules for inserting new points

Between ±maxpos and ±∞, scale up by useed. (New regime bit)

Between 0 and ±minpos, scale down by useed.
(New regime bit)

Between 2^m and 2^n where n - m > 2, insert $2^{(m+n)/2}$. (New exponent bit)

At *nbits* = 5, fraction bits appear.

Between x and y where $y \le 2x$, insert (x + y)/2.

Notice existing values stay in place.

Appending bits increases accuracy east and west, dynamic range north and south!

Posits vs. Floats: a metrics-based study

- Use quarter-precision IEEE-style floats
- Sign bit, 4 exponent bits, 3 fraction bits
- *smallsubnormal* = 1/512; *maxfloat* = 240.
- Dynamic range of five orders of magnitude
- Two representations of zero
- Fourteen representations of "Not a Number" (NaN)

Float accuracy tapers only on left

- Min: 0.52 decimals
- Avg: 1.40 decimals
- Max: 1.55 decimals

Graph shows decimals of accuracy from *smallsubnormal* to *maxfloat*.

Posit accuracy tapers on both sides

Min: 0.22 decimals

Avg: 1.46 decimals

 Max: 1.86 decimals

Graph shows decimals of accuracy from *minpos* to *maxpos*. But posits cover *seven* orders of magnitude, not five.

Both graphs at once

ROUND 1

Unary Operations

$$1/x$$
, \sqrt{x} , x^2 , $\log_2(x)$, 2^x

Closure under Reciprocation, 1/x

Closure under Square Root, \sqrt{x}

Closure under Squaring, x²

Closure under $log_2(x)$

Closure under 2^x

ROUND 2

Two-Argument Operations

$$x + y$$
, $x \times y$, $x \div y$

Addition Closure Plot: Floats

18.533%	exact	
70.190%	inexact	
0.000%	underflow	
0.635%	overflow	
10.641%	NaN	

Inexact results are magenta; the larger the error, the brighter the color.

Addition can overflow, but cannot underflow.

Addition Closure Plot: Posits

25.005%	exact
74.994%	inexact
0.000%	underflow
0.000%	overflow
0.002%	NaN

Only one case is a NaN:

$$\pm \infty + \pm \infty$$

With posits, a NaN stops the calculation.

All decimal losses, sorted

Multiplication Closure Plot: Floats

22.272%	exact
58.279%	inexact
2.475%	underflow
6.323%	overflow
10.651%	NaN

Floats score their first win: more exact products than posits...

but at a terrible cost!

Multiplication Closure Plot: Posits

18.002%	exact	
81.995%	inexact	
0.000%	underflow	
0.000%	overflow	
0.003%	NaN	

Only two cases produce a NaN:

$$\pm \infty \times 0$$

The sorted losses tell the real story

Division Closure Plot: Floats

22.272%	exact	
58.810%	inexact	
3.433%	underflow	
4.834%	overflow	
10.651%	NaN	

Denormalized floats lead to asymmetries.

Division Closure Plot: Posits

18.002%	exact
81.995%	inexact
0.000%	underflow
0.000%	overflow
0.003%	NaN

Posits do not have denormalized values. Nor do they need them.

Hidden bit = 1,

always. Simplifies hardware.

ROUND 3

Higher-Precision Operations

32-bit formula evaluation
16-bit linear equation solve
128-bit triangle area calculation
The scalar product, redux

Accuracy on a 32-Bit Budget

Compute:
$$\left(\frac{27/10 - e}{\pi - (\sqrt{2} + \sqrt{3})}\right)^{67/16} = 302.8827196...$$
 with ≤ 32 bits per number.

Number Type	Dynamic Range	Answer	Error or Range
IEEE 32-bit float	2×10 ⁸³	302. <mark>912</mark> ···	0.0297
Interval arithmetic	1012	[18.21875, 33056.]	3.3×10 ⁴
Type 1 unums	4×10 ⁸³	(302. <mark>75</mark> , 30 <mark>3</mark> .)	0.25
Type 2 unums	1099	302.88 <mark>7</mark> ···	0.0038
Posits, es = 3	3×10 ¹⁴⁴	302.882 <mark>31</mark> ···	0.00040
Posits, es = 1	10 ³⁶	302.8827 <mark>819</mark> ···	0.000062

Posits beat floats at both dynamic range and accuracy.

Solving Ax = b with 16-Bit Numbers

- 10 by 10; random A_{ij} entries in (0, 1)
- b chosen so x should be all 1s
- Classic LAPACK method: LU factorization with partial pivoting

IEEE 16-bit Floats

Dynamic range: 10¹²

RMS error: 0.011

Decimals accuracy: 1.96

16-bit Posits

Dynamic range: 10¹⁶

RMS error: 0.0026

Decimals accuracy: 2.58

Thin Triangle Area

Find the area of this thin triangle

$$b = 7/2 + 3 \times 2^{-111}$$

$$a = 7$$

$$c = 7/2 + 3 \times 2^{-111}$$

using the formula

$$s = \frac{a+b+c}{2}$$
; $A = \sqrt{s(s-a)(s-b)(s-c)}$

and 128-bit IEEE floats, then 128-bit posits.

Answer, correct to 36 decimals: 3.14784204874900425235885265494550774...×10⁻¹⁶

From "What Every Computer Scientist Should Know About Floating-Point Arithmetic," David Goldberg, published in the March, 1991 issue of *Computing Surveys*

A Grossly Unfair Contest

IEEE quad-precision floats get only one decimal digit right:

3.63481490842332134725920516158057683···×10⁻¹⁶

A Grossly Unfair Contest

IEEE quad-precision floats get only one digit right:

3.63481490842332134725920516158057683···×10⁻¹⁶

128-bit posits get 36 digits right:

3.14784204874900425235885265494550774···×10⁻¹⁶

To get this accurate an answer with IEEE floats, you need *octuple* precision (256-bit) representation.

Posits don't even need 128 bits. They can get a very accurate answer with only 119 bits.

Remember this from the beginning?

Find the scalar product *a* · *b*:

$$a = (3.2e7, 1, -1, 8.0e7)$$

 $b = (4.0e7, 1, -1, -1.6e7)$

Correct answer: $a \cdot b = 2$

IEEE floats require 80-bit precision to get it right.

Posits (es = 3) need only 25-bit precision to get it right.

The **fused dot product** is 3 to 6 times **faster** than the float method.*

*Source: "Hardware Accelerator for Exact Dot Product,"
David Biancolin and Jack Koenig, ASPIRE Laboratory, UC Berkeley

Summary

- Posits beat floats at their own game: superior accuracy, dynamic range, closure
- Bitwise-reproducible answers (at last!)
- Demonstrated better answers with same number of bits
- ...or, equally good answers with fewer bits
- Simpler, more elegant design should reduce silicon cost, energy, and latency.

Who will be the first to produce a chip with posit arithmetic?