

Beyond Mendel's Lawsof Inheritance

Extending Mendelian genetics

- Mendel worked with a simple system
 - peas are genetically simple
 - most traits are controlled by a single gene
 - each gene has only 2 alleles, 1 of which is completely dominant to the other
- The relationship between genotype & phenotype is rarely that simple

Incomplete dominance

- Heterozygote shows an intermediate, blended phenotype
 - example:
 - RR = red flowers
 - rr = white flowers
 - Rr = pink flowers
 - make 50% less color

 \rightarrow RR

 \rightarrow WW

 $\rightarrow RW$

Incomplete dominance

P

true-breeding red flowers

X S

true-breeding white flowers

100% pink flowers

F₁ generation (hybrids)

100%

self-pollinate

F₂ generation

1:2:1

Co-dominance

- 2 alleles affect the phenotype equally & separately
 - not blended phenotype
 - human ABO blood groups
 - 3 alleles
 - I^A, I^B, i
 - IA & IB alleles are co-dominant
 - –glycoprotein antigens on RBC
 - —I^AI^B = both antigens are produced
 - i allele recessive to both

Genetics of Blood type

pheno- type	genotype	antigen on RBC	antibodies in blood	donation status
A	A A or A	type A antigens on surface of RBC	<u>anti-B</u> antibodies	
В	BB or B	type B antigens on surface of RBC	anti-A antibodies	
AB	I A I B	both type A & type B antigens on surface of RBC	<u>no</u> antibodies	universal recipient
0	ii	no antigens on surface of RBC	anti-A & anti-B antibodies	universal donor

Pleiotropy

Most genes are <u>pleiotropic</u>

one gene affects more than one phenotypic character

• 1 gene affects more than 1 trait

dwarfism (achondroplasia)

gigantism (acromegaly)

Acromegaly: André the Giant

Inheritance pattern of Achondroplasia

Epistasis

- One <u>gene</u> completely masks another <u>gene</u>
 - coat color in mice = 2 separate genes
 - <u>C,c</u>:
 pigment (C) or
 no pigment (c)
 - B,b: more pigment (black=B) or less (brown=b)
 - cc = albino, no matter B allele
 - 9:3:3:1 becomes 9:3:4

Epistasis in Labrador retrievers

- 2 genes: (E,e) & (B,b)
 - pigment (E) or no pigment (e)
 - pigment concentration: black (B) to brown (b)

Polygenic inheritance

- Some phenotypes determined by additive effects of 2 or more genes on a single
 - character
 - phenotypes on a continuum
 - human traits
 - skin color
 - height
 - weight
 - intelligence
 - behaviors

Skin color: Albinism

 However albinism can be inherited as a single gene trait

-aa = albino

Johnny & Edgar Winter

OCA1 albino

Bianca Knowlton

Sex linked traits

1910 | 1933

- Genes are on <u>sex chromosomes</u>
 - Discovered by T.H. Morgan at Columbia U.
 - Drosophila breeding
 - good genetic subject
 - -prolific breeders/2 week generations
 - —4 pairs of chromosomes
 - -XX=female, XY=male

Discovery of sex linkage

P

F₁ generation (hybrids)

F₂ generation

Genetics of Sex

- In humans & other mammals, there are 2 sex chromosomes: X & Y
 - 2 X chromosomes
 - develop as a female: XX
 - gene redundancy,
 like autosomal chromosomes
 - an X & Y chromosome
 - develop as a male: XY
 - no redundancy

X Y
XX XY
XX XY

50% female : 50% male

Let's reconsider Morgan's

Genes on sex chromosomes

- Y chromosome
 - few genes other than <u>SRY</u>
 - sex-determining region: master regulator for maleness
 - turns on genes for production of male hormones
 - -many effects = pleiotropy!
- X chromosome
 - other genes/traits beyond sex determination
 - mutations:
 - Hemophilia, Duchenne muscular dystrophy, color-blindness

Human X chromosome

- Sex-linked
 - usually means"X-linked"
 - more than60 diseasestraced to geneson Xchromosome

Map of Human Y chromosome?

< 30 genes on Y chromosome

Sex-determining Region Y (SRY)

Channel Flipping (FLP)

Catching & Throwing (BLZ-1)

Self confidence (BLZ-2)

note: not linked to ability gene

Devotion to sports (BUD-E)

Addiction to death & destruction movies (SAW-2)

Air guitar (RIF)

Scratching (ITCH-E) linked

Inability to express affection over phone (ME-2)

Selective hearing loss (HUH)
Total lack of recall for dates (OOPS)

X-inactivation

- Female mammals inherit 2 X chromosomes
 - one X becomes inactivated during embryonic development
 - condenses into compact object = <u>Barr body</u>
 - which X becomes Barr body is random in each cell
 - patchwork trait = "mosaic"

Environmental effects

 Phenotype is controlled by both environment & genes

Human skin color is influenced by both genetics & environmental conditions

Coat color in arctic fox influenced by heat sensitive alleles

Any Questions?

Review Questions

1. Three babies were recently mixed up in a hospital. After consideration of the data below, which of the following represent the correct baby/parent combinations?

Couple # Blood groups	I	II	III
	A and A	A and B	B and O
Baby #	1	2	3
Blood groups	B	O	AB

- A. I-3, II-1, III-2
- B. I-1, II-3, III-2
- C. I-2, II-3, III-1
- D. I-2, II-1, III-3
- E. I-3, II-2, III-1

1. Three babies were recently mixed up in a hospital. After consideration of the data below, which of the following represent the correct baby/parent combinations?

Couple # Blood groups	I	II	III
	A and A	A and B	B and O
Baby #	1	2	3
Blood groups	B	O	AB

- A. I-3, II-1, III-2
- B. I-1, II-3, III-2
- C. I-2, II-3, III-1
- D. I-2, II-1, III-3
- E. I-3, II-2, III-1

- 2. A mother with type B blood has two children, one with type A blood and one with type O blood. Her husband has type O blood. Which of the following could you conclude from this information?
 - A. The husband could not have fathered either child.
 - B. The husband could have fathered both children.
 - C. The husband must be the father of the child with type O blood and could be the father of the type A child.
 - D. The husband could be the father of the child with type O blood, but not the type A child.
 - E. Neither the mother nor the husband could be the biological parent of the type A child.

- 2. A mother with type B blood has two children, one with type A blood and one with type O blood. Her husband has type O blood. Which of the following could you conclude from this information?
 - A. The husband could not have fathered either child.
 - B. The husband could have fathered both children.
 - C. The husband must be the father of the child with type O blood and could be the father of the type A child.
 - D. The husband could be the father of the child with type O blood, but not the type A child.
 - E. Neither the mother nor the husband could be the biological parent of the type A child.

3. Vermilion eyes is a sex-linked recessive characteristic in fruit flies. If a female having vermilion eyes is crossed with a wild-type male, what percentage of the F₁ males will have vermilion eyes?

A. 0%

B. 25%

C. 50%

D. 75%

E. 100%

3. Vermilion eyes is a sex-linked recessive characteristic in fruit flies. If a female having vermilion eyes is crossed with a wild-type male, what percentage of the F₁ males will have vermilion eyes?

A. 0%

B. 25%

C. 50%

D. 75%

E. 100%

4. A recessive allele on the X chromosome is responsible for red-green color blindness in humans. A woman with normal vision whose father is color-blind marries a color-blind male. What is the probability that this couple's son will be color-blind?

```
A. 0
```

B. 1/4

C. 1/2

D. 3/4

E. 1

4. A recessive allele on the X chromosome is responsible for red-green color blindness in humans. A woman with normal vision whose father is color-blind marries a color-blind male. What is the probability that this couple's son will be color-blind?

```
A. 0
```

B. 1/4

C. 1/2

D. 3/4

E. 1

- 5. Red-green color blindness is a sex-linked recessive trait in humans. Two people with normal color vision have a color-blind son. What are the genotypes of the parents?
 - A. XcXc and XcY
 - B. XcXc and XCY
 - C. XCXC and XcY
 - D. XCXC and XCY
 - E. XCXc and XCY

- 5. Red-green color blindness is a sex-linked recessive trait in humans. Two people with normal color vision have a color-blind son. What are the genotypes of the parents?
 - A. XcXc and XcY
 - B. XcXc and XCY
 - C. XCXC and XcY
 - D. XCXC and XCY
 - E. XCXc and XCY

6. A color-blind son inherited this trait from his

- A. mother.
- B. father.
- C. mother only if she is color-blind.
- D. father only if he is color-blind.
- E. mother only if she is not color-blind.

6. A color-blind son inherited this trait from his

- A. mother.
- B. father.
- C. mother only if she is color-blind.
- D. father only if he is color-blind.
- E. mother only if she is not color-blind.

- 7. In cattle, roan coat color (mixed red and white hairs) occurs in the heterozygous (*Rr*) offspring of red (*RR*) and white (*rr*) homozygotes. When two roan cattle are crossed, the phenotypes of the progeny are found to be in the ratio of 1 red:2 roan:1 white. Which of the following crosses could produce the highest percentage of roan cattle? *
 - A. $red \times white$
 - B. roan x roan
 - C. white \times roan
 - D. $red \times roan$
 - E. All of the above crosses would give the same percentage of roan.

- 7. In cattle, roan coat color (mixed red and white hairs) occurs in the heterozygous (*Rr*) offspring of red (*RR*) and white (*rr*) homozygotes. When two roan cattle are crossed, the phenotypes of the progeny are found to be in the ratio of 1 red:2 roan:1 white. Which of the following crosses could produce the highest percentage of roan cattle? *
 - A. $red \times white$
 - B. roan x roan
 - C. white \times roan
 - D. $red \times roan$
 - E. All of the above crosses would give the same percentage of roan.

- 8. You think that two alleles for coat color in mice show incomplete dominance. What is the best and simplest cross to perform in order to support your hypothesis?
 - A. a testcross of a homozygous recessive mouse with a mouse of unknown genotype
 - B. a cross of F₁ mice to look for a 1:2:1 ratio in the offspring
 - C. a reciprocal cross in which the sex of the mice of each coat color is reversed
 - D. a cross of two true-breeding mice of different colors to look for an intermediate phenotype in the F₁
 - E. a cross of F₁ mice to look for a 9:7 ratio in the offspring

- 8. You think that two alleles for coat color in mice show incomplete dominance. What is the best and simplest cross to perform in order to support your hypothesis?
 - A. a testcross of a homozygous recessive mouse with a mouse of unknown genotype
 - B. a cross of F₁ mice to look for a 1:2:1 ratio in the offspring
 - C. a reciprocal cross in which the sex of the mice of each coat color is reversed
 - D. a cross of two true-breeding mice of different colors to look for an intermediate phenotype in the F₁
 - E. a cross of F₁ mice to look for a 9:7 ratio in the offspring